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The foundational Franz-Keldysh effect and Einstein model are applied in this work to characterize semicon-
ductor band-edge absorption—and its departures from ideality. We unify the Franz-Keldysh and Einstein models
to fully characterize the field-induced tunneling of photoexcited electrons from degenerate valence bands into
the conduction band, with encroachment into the band gap arising as an Urbach tail. Our unified model is
implemented for semi-insulating indium phosphide (SI-InP) with strong agreement seen between the theoretical
and experimental results for varied photon energies and electric fields.

DOI: 10.1103/PhysRevB.105.155203

I. INTRODUCTION

Semiconductor physics and devices have evolved over the
past century, with much of the interest owing to their enabling
of interactions with light and fields. The understanding of such
interactions reached a milestone in 1958 via formulations by
Franz [1] and Keldysh [2]. The Franz-Keldysh effect proposed
that an electric field could constrict a band gap to promote
tunneling of photoexcited electrons from the valence to con-
duction band. This would give increased absorption at photon
energies below the band-gap energy [3,4]. The Franz-Keldysh
effect was later demonstrated and applied via electrorefrac-
tion, spanning the work of Seraphin and Bottka [5] to Pintus
et al. [6], or electroabsorption, spanning the work of Chester
and Wendland [7] to ourselves [8].

Nonetheless, challenges remain in interpreting and apply-
ing the underlying Franz-Keldysh model. The past [7,9] and
present [10] literature show a complex interplay between pho-
ton energy, temperature, and electric field—with assumptions
yielding potentially significant departures from ideality. The
challenges arise here because the ideal band gap neglects the
continuum of Urbach tail states that can arise at the band
edges. These states encroach into the band gap and yield
field-induced changes in absorption that are especially strong
(in comparison to those predicted in an ideal band gap) [8,11]
and temperature dependent (as thermal energy transforms the
characteristics of the Urbach tail) [12,13].

In this work, we unite the Franz-Keldysh model, with
degeneracy in the valence band and Urbach tails in the
valence and conduction bands, to the Einstein model, char-
acterizing the temperature dependence of the tail states. The
theoretical results for our unified Franz-Keldysh and Einstein
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models are compared to experimental results for semi-
insulating indium phosphide (SI-InP) under varied photon
energies, temperatures, and electric fields. Strong agreement
is seen—suggesting that the unified model can give deeper
understanding on the interactions of light and field in semi-
conductors. Such knowledge can support the development of
electroabsorption modulators operating with standard laser
wavelengths, such as 980 nm, and nonepitaxial semiconduc-
tors, such as SI-InP.

II. THEORETICAL MODELS

The following subsections detail the Einstein model,
Franz-Keldysh model, and our proposed unified Franz-
Keldysh and Einstein model.

A. Einstein model

The Einstein model characterizes the continuum of states
at the band edge of a semiconductor. The states encroach into
the band gap in the form of an Urbach tail with its band gap
and characteristic width having energies of [13]

Eg(T ) = Eg,0 − SgkBθE
1

exp(θE/T ) − 1
(1)

and

E0(T ) = S0kBθE

(
1 + X

2
+ 1

exp(θE/T ) − 1

)
, (2)

respectively, where kB is Boltzmann’s constant, and T is
the temperature. The material parameters are defined for the
material of interest to this work, SI-InP, in accordance with
the findings of Beaudoin et al. [13]: Eg,0 = 1.4236 eV is
the band-gap energy at 0 K, θE = 316.5 K is three-quarters
of the Debye temperature; S0 = 0.173 is a dimensionless
constant linked to electron-phonon coupling; Sg = 5.12 is a
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FIG. 1. The central � valley of SI-InP as energy E versus wave
vector k. The inset shows the band structure with a degenerate va-
lence band, for heavy (VBhh) and light (VBlh) holes, an Urbach tail
in the conduction band (CB), with states decaying down from Eg(T )
over a characteristic width of E0(T ), and a photon energy of Eph.

dimensionless coupling constant; X = 1.1 is a dimension-
less constant characterizing structural disorder. The central
�-valley of SI-InP is depicted in Fig. 1 as energy E versus
wave vector k with the band structure detailed in the inset.
The inset shows degeneracy in the valence band, as heavy-
and light-hole bands, an Urbach tail in the conduction band,
as states encroaching into Eg(T ) over a characteristic width
of E0(T ), and a photon energy of Eph. For expository pur-
poses, this figure and the remainder of this work depict the
encroachment at the conduction band with sharp edges at the
valence band, as seen elsewhere [14]. However, it should be
understood that the absorption characteristics manifest via a
joint density of states distribution for electron transitions from
a tail of encroaching states at the degenerate valence bands to
a tail of encroaching states at the conduction band.

B. Franz-Keldysh model

The Franz-Keldysh model manifests as an electric-field-
induced perturbation to the absorption of a semiconductor.
It is characterized in this work by the fundamental theories
of Franz [1] and Keldysh [2] and extensions by Bennett and
Soref [3]. Their theory quantifies field-induced tunneling of
photoexcited electrons from valence bands to an idealized
conduction band, which can be visualized in Fig. 1 as a perfect
curve with E0(T ) = 0 and a well-defined minimum at Eg(T ).
In this work, according to the depiction above, we expand

the theory to have a continuum of states in the conduction
band, distributed over a generalized energy E , with the states
decaying from the conduction band edge at Eg(T ) over a
characteristic width of E0(T ) in accordance with the Einstein
model. This is illustrated in Fig. 1. A gradient is formed
in this conduction band when a uniform electric field E is
applied, which aids tunneling of electrons from the valence
to conduction band. This perturbs the real component ε1 and
imaginary component ε2 of the complex dielectric constant,
ε = ε1 + iε2, which manifest as [3]

�ε1,i(Eph, E ) = a1
h̄2(1 + m0/mi )μ
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and
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respectively. Here, a1 is a material-dependent constant and
ωE,i = [e2E2/(2h̄me-i )]1/3 is an angular frequency charac-
terizing field-induced perturbation, where e is the electron
charge and h̄ is the reduced Planck’s constant. The subscript i
instantiates heavy-hole (i = hh) and light-hole (i = lh) contri-
butions, such that μe-hh and μe-lh are reduced effective masses
of the electron with heavy and light holes, respectively, and
m0, mhh, and mlh are effective masses of the free electron,
heavy hole, and light hole, respectively. The expressions are
stated in terms of the Heaviside function, u(·), Airy func-
tion, Ai(·), and Bairy function, Bi(·), where a primed symbol
denotes differentiation of the function with respect to its ar-
gument. Given the definition of the absorption coefficient,
2Ephε2/(2h̄cn), and �ε2,i(Eph, E ) from Eq. (4), the field-
induced change in absorption coefficient for each i = hh and
lh can be expressed as [3]

�αi(E , Eph, E ) = 2Eph�ε2,i(Eph, E )
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, (4)

where c is the free-space speed of light and n = ε1
1/2 is the refractive index. Here, the first two terms in brackets become zero

as the applied electric field approaches zero, which leaves the third term with the expected square-root dependence on Eph – E if

155203-2



BAND-EDGE ABSORPTION CHARACTERISTICS OF … PHYSICAL REVIEW B 105, 155203 (2022)

(and only if) Eph exceeds E . The absorption coefficient for each i = hh and lh can then be cast as [3]

αi(E , Eph, E ) = a1
h̄π (1 + m0/mi )μ

3/2
e-i

cnEph
ω

1/2
E,i

[
Ai′ 2

(
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h̄ωE,i

)
−

(
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h̄ωE,i

)
Ai2

(
E − Eph

h̄ωE,i

)]
. (5)

C. Unified Franz-Keldysh and Einstein model

We now unify the Franz-Keldysh and Einstein models to define the absorption coefficient of a semiconductor for field-
induced transitions from degenerate valence bands to the conduction band, with states distributed in a continuum. For this, we
integrate E over a product of αi(Eph, T, E ), in Eq. (5), and a weighting distribution of exp[–(Eg(T ) –E )/E0(T )], according to
the characteristics of Eg(T ) and E0(T ) in Eqs. (1) and (2), respectively. This gives a total absorption coefficient, summed over
heavy and light hole contributions, of

α(Eph, T, E ) = a2

∑
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where a2 is a normalization factor arising from the weighting, a0 = a1a2h̄2π/(nc) is a constant, being roughly temperature
independent in this work, and the parameters δCB and δVB are included in the integral limits for expository purposes, as detailed
below. For a closed-form solution, we substitute zi = (E–Eph )/(h̄ωE,i ) into Eq. (5) and the result into Eq. (6) to give
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where a Taylor series expansion was applied to the expo-
nential function in the integrand of the second expression
to form the final expression. In general, the absorption co-
efficient can be computed via numerical integration, using
Eq. (6), or closed-form computation, using Eq. (7) and the
recursion relations for the functions Hj (·) and I j (·) in the Ap-
pendix. Theoretically, the contributions from all states would
be summed by driving the upper limit to infinity, via δCB →
∞, and the lower limit to zero, via δVB = Eph. In reality,
however, the limits can be truncated by making δCB and δVB

only sufficiently large to have further increases yield negli-
gible contributions to the result. Our validations of Eqs. (6)
and (7) suggest that δCB can be as low as zero, when the con-
duction band edge and photon energy are well separated, i.e.,
Eg(T ) –Eph � E0(T ), as the absorption coefficient here is
dominated by the Urbach tail states below Eg(T ). In addition,
δVB should be kept well less than Eph, to avoid integrating over
states near the valence band. These lower states contribute
little to the result, but they can be a concern in computing the
closed-form expression in Eq. (7). They yield extremely large
values for the Airy functions, which must be dampened by
an equally strong and well-resolved exponential function, and

this can only be done by including many terms in its expansion
(with j potentially spanning into the hundreds).

III. EXPERIMENT

Measurements were carried out on the field-induced
changes in absorption coefficient for an iron-doped SI-InP
sample having a resistivity of 108 
 cm, an orientation
of (100), a thickness of 600 μm, and a refractive index
of n = 3.4. The SI-InP sample was mounted between two
175-nm-thick indium tin oxide (ITO) films, on polyethylene
terephthalate (PET) substrates, onto which voltages were
applied to establish the electric field. This left a thin air
gap between the ITO and SI-InP. The absorption coefficient
was extracted from measurements of power through this
system at a photon energy of Eph, a temperature of T ,
and an applied electric field of E . Given an incident
power on the air-SI-InP interface of Pi(Eph, T, E ) and
a transmitted power out of the SI-InP-air interface of
Pt (Eph, T, E ), the absorption coefficient was computed from
α(Eph, T, E ) = – ln{Pt (Eph, T, E )/[Pi (Eph, T, E )(1–R)2]}/d ,
where R = (n–1)2/(n + 1)2 is the reflectivity and
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FIG. 2. The (a) zero-field absorption coefficient of SI-InP, α(Eph, T, E = 0 kV/cm), as a function of photon energy Eph at a temperature
of T and an applied electric field of E = 0 kV/cm, and the (b) applied-field absorption coefficient of SI-InP, α(Eph, T ≈ 293 K, E ), as a
function of photon energy Eph at room temperature, T ≈ 293 K, and an applied electric field of E . In (a), curves from right to left correspond
to incremented temperatures in steps of 15 K, with results displayed as experimental (red) markers and fitted theoretical (black) curves. In (b),
curves from bottom to top correspond to electric fields of E = 0, 1.00, 1.67, and 2.17 kV/cm, with results displayed as experimental (red)
markers and fitted theoretical (black) curves. The photon energy for 980 nm radiation is marked by a dotted vertical line.

d = 600 μm is the thickness. Such an expression is valid
given that cascaded internal reflections, i.e., etalon effects,
only lessen the transmitted power by a few percent, e.g.,
less than 4% at 980 nm. The temperature and electric
field were varied by a heat source and DC voltage source
(Stanford Research Systems, PS350), respectively, while
the temperature was monitored by a thermal camera (FLIR
ONE Pro). The above measurements were made versus
photon energy by a spectrometer (Thorlabs, CCS200)
with a broadband light source, and at a single photon
energy with a 980-nm laser diode module (Newport,
LQD980-220E) operating at 5 mW, silicon photodiode
(Thorlabs, DET36A/M), and preamplifier (Stanford Research
Systems, SR570).

IV. RESULTS

Results are shown in this section for the absorption coef-
ficient versus photon energy, temperature, and electric field.
Figure 2(a) shows results for the zero-field absorption coef-
ficient of SI-InP, α(Eph, T, E = 0 kV/cm), as a function of
photon energy, Eph, spanning 1.24 to 1.30 eV, at a tempera-
ture of T and an applied electric field of E = 0 kV/cm. The
curves correspond to temperatures increasing in 15-K steps
from right to left, with experimental (red) markers and fitted
theoretical (black) curves from the unified Franz-Keldysh and
Einstein model. The absorption coefficients in the displayed
range rise for increasing photon energy and / or temperature,

as expected, with good agreement between the experimen-
tal and theoretical results. Absorption coefficients below and
above this range grow exceedingly small and large, respec-
tively, yielding increased systematic error (not shown) and
random error (shown by error bars), respectively.

Figure 2(b) shows results for the applied-field absorption
coefficient of SI-InP, α(Eph, T ≈ 293 K, E ), as a function
of photon energy Eph spanning 1.25–1.28 eV, at room
temperature, T ≈ 293 K, and an applied electric field of
E . The curves from bottom to top correspond to applied
electric fields of E = 0, 1.00, 1.67, and 2.17 kV/cm, with
experimental (red) markers and fitted theoretical (black)
curves. Overall, we see the absorption coefficient rise for
increasing photon energy and / or applied electric field, as
expected, with good agreement between the experimental and
theoretical results. These best-fit curves are generated with
the established parameters of SI-InP, listed earlier, and the
multiplicative constant of a0 = 1.28 × 1016 J s3/2/(m kg3/2)
as the sole fitting parameter. (The fitting uses δCB = 1.35 eV
and δVB = 1.34 eV, but larger values can be used for
these parameters with negligible change to the theoretical
results). At the extremes of low and high photon
energies, the results show weak and strong field-induced
changes in absorption coefficient, respectively, as the
separations between the photon energies and band-gap
energy, Eg(T ≈ 293 K) = 1.352 eV, are large and small,
respectively. At an intermediate photon energy of Eph =
1.265 eV (980-nm radiation), the applied- and zero-field
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FIG. 3. The (a) applied-field absorption coefficient of SI-InP, α(Eph = 1.265 eV, T ≈ 293 K, E ), at a photon energy of Eph = 1.265 eV
(980 nm radiation) and room temperature, T ≈ 293 K, as a function of applied electric field E and the (b) change in absorption coefficient of
SI-InP, �α(Eph = 1.265 eV, T ≈ 293 K, E ), at a photon energy of Eph = 1.265 eV (980 nm radiation) and room temperature, T ≈ 293 K,
as a function of applied electric field E . The results are displayed as experimental (red) markers and fitted theoretical (black / grey) curves:
black curves denote the characteristic width of E0(T ≈ 293 K); grey curves denote characteristic widths reduced to 0.95 E0(T ≈ 293 K),
0.90 E0(T ≈ 293 K), and 0.85 E0(T ≈ 293 K).

absorption coefficients are α(Eph = 1.265 eV, T ≈ 293 K,

E = 2.17 kV/cm) = 8.35 cm–1 and α(Eph = 1.265 eV,

T ≈ 293 K, E = 0 kV/cm) = 6.61 cm–1, respectively, with
the change in absorption coefficient, �α(Eph =
1.265 eV, T ≈ 293 K, E = 2.17 kV/cm) = 1.74 cm–1,
depending on the applied electric field, as detailed next.

Figure 3(a) shows results for the applied-field absorption
coefficient of SI-InP, α(Eph = 1.265 eV, T ≈ 293 K, E ), at
a photon energy of Eph = 1.265 eV (980 nm radiation) and
room temperature, T ≈ 293 K, as a function of applied elec-
tric field E . The results are displayed as experimental (red)
markers and fitted theoretical (black) curves. The absorption
coefficient rises for increasing field, as expected, with good
agreement between the measured data and fitted curves for
the fitting parameter defined above. Through these analyses,
we found that the temperature was raised slightly as the field
increased, and it was necessary to include the temperature de-
pendence to obtain a precise fit. This dependence is discussed
in the following section. More importantly, we find that the
above trends could not be realized without considering the
continuum of Urbach tail states into the band gap and their
manifestation in the Einstein model.

Figure 3(b) illustrates the role of the Einstein model by
showing results for the applied-field absorption coefficient,
α(Eph = 1.265 eV, T ≈ 293 K, E ), at a photon energy
of Eph = 1.265 eV (980nm radiation) and room tempera-

ture, T ≈ 293 K, as a function of applied electric field E .
The results are shown as experimental (red) markers and
fitted theoretical (black) curves at a characteristic width,
E0(T ≈ 293 K), scaled by 1.0, 0.95, 0.90, and 0.85. We see
here that the Urbach tail states encroaching into the band
gap play a critical role in absorption. For example, at an
applied electric field of E = 2.17 kV/cm, we see relatively
small reductions of the characteristic width, by 0, 5, 10, and
15%, which greatly reduce the absorption coefficient, by 0,
47, 74, and 88%, respectively.

V. DISCUSSION

The experimental and theoretical results in the preceding
section show good agreement for the field-induced absorption
of SI-InP, with dependencies on photon energy, temperature,
and electric field that are well explained by the unified Franz-
Keldysh and Einstein model. Nonetheless, the experimental
results do show some deviations from the theoretical results,
largely in Fig. 3, and these are worthy of discussion.

The deviations seen between the experimental and theo-
retical results could potentially be attributed to the ignoring
of Coulomb (exciton) interaction in our unified model, which
only considers the density of states (Urbach tail) distribution.
With this in mind, we have used the control parameters δCB
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and δVB to truncate the integral limits in Eq. (6) and explored
the contributions from energy states within and above the band
gap. In doing this, we found that the greatest contributions
from the density of states (Urbach tail) distribution arise from
energy states near the photon energy, Eph. This suggests that
the significant damping at these energy states from the expo-
nential function in the integrand is outweighed by stronger
growth of the neighboring αi(E , Eph, E ) function, due to the
small separation between E and Eph in the Franz-Keldysh
effect. In contrast, contributions from the Coulomb (exciton)
interaction arise from energy states near the conduction and
valence band edges. These contributions manifest as a linear
trend in absorption coefficient versus energy, within roughly
10 meV of the band-gap energy, which transitions to the
above-defined exponential function at energy states further
from the band-gap energy [15]. (Note that these contributions
also modify the density of states, and thus the absorption
above the band-gap energy). Given the narrow range of en-
ergies over which Coulomb (exciton) interaction manifests,
within 10 meV of the band-gap energy, Eg(T ≈ 293 K) =
1.352 eV, we believe that this interaction will be weak at the
photon energies of our work, Eph = 1.24–1.30 eV. Moreover,
the interaction would be nondispersive, i.e., independent of
photon energy, and so its effects would be encompassed in
our multiplicative fitting parameter.

The deviations seen between the experimental and theoret-
ical results could also potentially be attributed to the accuracy
of the (simple) Einstein model in characterizing the band
edge. With this in mind, we have repeated the fitting in this
work with the (more common) Varshni model, as it often
shows better agreement between experimental and theoretical
results [13,16]. The Varshni model is a simple empirical rela-
tion that assumes an average phonon energy, and so it is best
used with semiconductors exhibiting little phonon dispersion
at temperatures above 100 K [17]. In comparing the fitting,
we found that the Einstein and Varshni models yield similar
root-mean-square percentage errors for Fig. 3(a), at 0.6% and
1.3%, respectively, and Fig. 3(b), at 8.8% and 9.2%, respec-
tively. Thus, the Varshni model, while accurate for others,
does not lessen the deviations seen between the experimental
and theoretical results.

Ultimately, we believe the deviations seen between the
experimental and theoretical results can be attributed to an
observed dependence of the SI-InP temperature T on the
applied electric field E . We used a Taylor series expansion
to characterize this dependence of T on E , with constant
coefficients in the terms populated by fitting. The fitting gave
negligible first-order and third-order terms, with the remain-
ing (constant) zeroth-order and second-order terms showing
a temperature increase in proportion to the applied electric
power, i.e., electric field squared. Such a finding is physically
sound, as it conveys power conservation. When we incorpo-
rated this field-dependent temperature into our model, as T ≈
293 K + [0.647 K (kV/cm)–2]E2, we found that it greatly
improved the fit between the experimental and theoretical
results, even though the field-induced increases in temperature
were small (at less than 3 K). It also became evident that the
coefficient of the second-order term scaled with the incident
optical power. Such a finding is physically sound, given that
the high resistivity of SI-InP (108 
 cm) cannot sustain cur-

rent. The incident optical power is needed to generate charge
carriers, conduction current, and Joule heating.

In characterizing the dynamics of temperature, we found
that its dependence on the applied electric field and Franz-
Keldysh effect together could lead to fluctuations in the
absorption coefficient about metastable states. According to
the Franz-Keldysh effect, an increasing electric field increases
the absorption coefficient and absorbed optical power, which
increases the temperature. The increased temperature then
further increases the absorption coefficient and temperature—
with the cycle continuing towards a metastable state. We
observed the effects of such fluctuations about metastable
states within the experimental results, with the greatest effects
seen at high optical powers and applied electric fields. As
such, we set the optical power and applied electric fields to
values that balance our desires for relatively weak metastabil-
ity and fluctuations (at sufficiently low powers and fields) and
for relatively strong signals (at sufficiently high powers and
fields). The effects of metastability were then encompassed
into the model via the above T versus E expression and the
remaining fluctuations were portrayed by error bars in the
figures. Such a procedure gave a good fit between the experi-
mental and theoretical results with an accurate understanding
of the remaining deviations.

VI. CONCLUSION

In this work, we applied the foundational Franz-Keldysh
and Einstein models to characterize semiconductor band-
edge absorption—and its departures from ideality. Our unified
model characterized absorption under field-induced tunnel-
ing of photoexcited electrons from degenerate heavy- and
light-hole valence bands to the conduction band, with en-
croachment into the band gap in the form of an Urbach tail.
The theoretical results showed strong agreement with our
experimental results, for SI-InP, under a wide range of photon
energies, temperatures, and electric fields. Such findings sug-
gest that the Urbach tail and its manifestation via the Einstein
model can be important in characterizing the field-induced
changes in absorption brought about by the Franz-Keldysh
effect.

It is hoped that the proposed work will give deeper in-
sight on light and field interactions within semiconductors
and their growing application to electroabsorption modu-
lators. Electroabsorption modulators are often implemented
with multi-quantum-well layers [18–20] to establish band
edges with energies slightly above the photon energy and yield
appreciable modulation depths. Nonetheless, there is a desire
to implement electroabsorption modulators with existing laser
wavelengths and nonepitaxial semiconductors [21,22]. The
combination of a 980-nm laser (having Eph = 1.265 eV) and
SI-InP (having Eg(T ≈ 293 K) = 1.352 eV) suggests that
this is possible. While the separation between these energies,
87 meV, would be considered too large to overcome according
to the idealized Franz-Keldysh effect, our work shows that the
Urbach tail states encroaching into the band gap can bring
about the desired strong electroabsorption. The unified Franz-
Keldysh and Einstein models support this interpretation and
effectively characterize the dependencies on photon energy,
temperature, and electric field.
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APPENDIX

The two integral functions defined in Eq. (7) can be in-
tegrated using the identities in [23] and computed for each
integer j via recursion relations. The I j (zi) function and its
recursion relations are defined by

I j (zi) =
∫

z j
i Ai2(zi )dzi, (A1)

I1(zi ) = (1/3)[Ai′(zi )Ai(zi ) − ziAi′2(zi) + zi
2Ai2(zi)], (A2)

I2(zi ) = (1/5)
[
2ziAi′(zi )Ai(zi ) − Ai2(zi )

− zi
2Ai′2(zi ) + zi

3Ai2(zi)
]
, (A3)

I3(zi ) = (1/7)
[
3zi

2Ai′(zi )Ai(zi ) − 3Ai′2(zi )

− zi
3Ai′2(zi ) + zi

4Ai2(zi )
]
, (A4)

I j>3(zi) = [ 1/(2 j + 1)]
{

jz j−1
i Ai′(zi )Ai(zi )

− j( j − 1)
[
z j−2

i Ai2(zi) − ( j − 2)I j−3(zi)
]
/2

− z j
i Ai′2(zi) + z j+1

i Ai2(zi)
}
. (A5)

The Hj (zi) function and its recursion relations are defined
by

Hj (zi ) =
∫

z j
i Ai′(zi)

2dzi, (A6)

H0(zi) = (1/3)
[
2Ai′(zi)Ai(zi) + ziAi′2(zi ) − zi

2Ai2(zi )
]
,

(A7)

H1(zi) = (1/5)
[
3ziAi′(zi )Ai(zi ) − 3Ai2(zi)/2

+ zi
2Ai′2(zi) − zi

3Ai2(zi )
]
, (A8)

H2(zi ) = (1/7)
[
4zi

2Ai′(zi)Ai(zi ) − 4Ai′2(zi )

+ zi
3Ai′2(zi ) − zi

4Ai2(zi )
]
, (A9)

Hj>2(zi ) = [1/(2 j + 3)]
{
( j + 2)z j

i Ai′(zi )Ai(zi)

− j( j + 2)
[
z j−1

i Ai2(zi) − ( j − 1)I j−2(zi)
]
/2

+ z j+1
i Ai′2(zi) − z j+2

i Ai2(zi )
}
. (A10)
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