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A B S T R A C T

Malware refers to software that is designed to achieve a malicious purpose usually to benefit its creator. To
accomplish this, malware hides its true purpose from its target and malware analysts until it has established a
foothold on the victim’s machine. Malware analysts, therefore, have to find increasingly sophisticated methods
to detect malware prompting malware authors to increase the number of evasive techniques employed by
their malware. Dynamic malware analysis has been framed as a potential solution as it runs malware in
its preferred environment to ensure that it observes its true behaviour. However, it is usually a restricted
form of the preferred environment and malware may only be run for two minutes or less. This means that
if malware does not demonstrate its malicious intent within that time frame and environment, the behaviour
observed and subsequently learned may not be the behaviour that needs to be prevented. There is a risk that
classifiers trained using the standard dynamic malware analysis process will only recognise malware by its
evasive behaviour rather than a mix of behaviours. In this paper, we study the extent to which classifiers
are dependent on evasive behaviour when identifying malware. We achieve this by training them on real
ransomware and benignware and then testing their ability to detect carefully crafted simulated ransomware.
The simulated ransomware gives us the freedom to create samples with different levels of evasive and malicious
behaviour. The simulated samples, like the real samples, are run in a sandboxed environment where data is
collected at a user- and Kernel-level. The results of our experiments indicated that, in general, the classifiers
were more likely to label the simulated samples as malicious once the amount of evasive behaviour present in a
sample went beyond a threshold. Generally, this threshold was crossed when the simulated ransomware waited
2 s or more between each file it encrypted. Additionally, the classifiers trained on the user-level data were not
as robust against small changes in system calls made. Whereas, when trained on system calls gathered at a
Kernel, system-wide level, the classifiers’ results were less variable. Finally, in attempting to simulate malware
for our experiments, we discovered that the field of malware simulation is relatively unstudied despite its
potential and therefore provide recommendations for simulating malware for system-call analysis.
. Introduction

Malware analysis refers to the study of malicious software (mal-
are) to understand its behaviour and identifying traits. There are

wo techniques that can be used to analyse malware — static analysis
nd dynamic analysis. In static analysis, the binary (malicious file) in
uestion is studied without ever running it. Therefore much of the
nalysis involves examining the binary’s code in order to understand
ts behaviour. Dynamic analysis (also known as behavioural analysis)
efers to actually running the binary in its preferred environment and
bserving it for any signs of malicious behaviour. Dynamic analysis
s favoured over static analysis since it is not as easily hindered by
vasion tactics such as obfuscation [1,2] and polymorphism [3]. Studies
ave also shown that Dynamic analysis is more effective for detecting

∗ Corresponding author.
E-mail address: nunesma@cardiff.ac.uk (M. Nunes).

malware [4,5]. While it is also possible to combine features from static
and dynamic analysis to perform ‘‘Hybrid Analysis’’, it tends to achieve
a similar performance to dynamic analysis [4].

A popular method for detecting malware in dynamic analysis is to
collect all the calls made by the binary to the Operating System (OS)
(sometimes referred to as system calls or API calls) [6]. This is because
any program that wants to do anything noteworthy on the system needs
to interact with the OS. Therefore, by capturing the system calls, it
is possible to have a detailed understanding of the behaviour of the
binary.

Once system calls have been gathered, the patterns within them
can be extracted and converted into rules that can be used to distin-
guish malicious from benign. While this can be performed manually
by experts, the sheer volume of malware being produced makes this
vailable online 18 May 2022
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infeasible. To obtain complete coverage over all malware samples
produced, an expert would have to analyse each new malware sample
within 1.6 s [7]. Therefore, rather than manually extracting patterns to
identify malware from system calls, the process can be automated using
Machine Learning (ML). ML refers to the process by which a machine
automatically learns how to perform a task (such as distinguishing
malware from benignware). Classification is the ML process in which an
algorithm is provided with input data and it predicts the category that
the data belongs to based on patterns within the data. In this case, the
input data could be API calls made and the output from the classifier
is the label, ‘malicious’ or ‘benign’. The trained classifier can then be
tested against system calls gathered from running completely unseen
samples. This technique has produced promising results [6,8].

However, dynamic analysis is not without weaknesses. Malware
uses the fundamental properties of dynamic malware analysis to mis-
lead analysts. When malware is run, it will first seek to identify the
environment it is running in before exhibiting malicious behaviour. If
malware detects that it is being analysed, it will not display its true
malicious behaviour and instead show benign behaviour. One method
by which malware detects it is being analysed is by looking for evidence
that it is running in a virtualised or emulated environment [9–11].
Virtualised or emulated environments are preferred when conducting
dynamic malware analysis since, among other things, it is trivial to
restore a virtual machine to a previously saved clean state after running
malware. Furthermore, these environments provide an analyst with
a number of options when it comes to instrumenting a machine to
glean information regarding a sample’s behaviour. Unfortunately, these
environments cannot perfectly recreate a real environment. Malware
can look for these inconsistencies to determine the type of environment
it is being executed in. If malware suspects that it is running in a virtual
environment, it might assume it is being analysed and choose not to
run. In response, analysis environments are sometimes instrumented to
trick malware into thinking it is running in a real environment forcing
malware authors to find increasingly sophisticated methods to evade
analysis.

Such evasive behaviours have become so prevalent in malware
that Chen et al. [11] proposed a protection mechanism against malware
that added artefacts to normal environments to make them appear to
be analysis environments. This discouraged malware from executing in
these environments and thereby essentially protected them. A study
of 4 million malware samples found that 72% of the samples con-
tained techniques to detect that they were being run in a VM [12].
Previous work [13,14] also observed the prevalence of anti-vm/anti-
debug properties in malware and has been the inspiration for this work.
Yet, the majority of the existing literature on the development of ML
to detect malware uses data collected from virtualised or emulated
environments. This poses the question of how sensitive ML malware
classifiers are to evasive malware? If the majority of samples are
actually refraining from demonstrating malicious behaviour, then how
much of their behaviour are the ML models actually being trained
with? In practical terms, are these models actually learning to detect
malicious behaviour — or are they actually learning how to detect
evasive behaviour? For real world applications, this presents the risk
that when malware is running on ‘‘real’’ systems rather than VMs, they
will exhibit different behaviours that the ML model will not be able to
pick up.

The concern over ML models being evaded is already growing in
the literature in the form of adversarial attacks. An adversarial attack
s a technique in which confidently classified samples are altered using
mall, but tactical perturbations in order to cause the classifier to incor-
ectly classify the sample with confidence. Adversarial attacks work by
stimating the decision boundaries of the classifier and then selectively
ltering input samples using the smallest number of perturbations
ecessary so that they fall outside the decision boundary.

Adversarial attacks have also been used in the context of mal-
are classification to make previously detectable samples go unde-
2

ected [15–17]. However, this paper takes a different approach to
adversarial attacks. Rather than attempting to produce adversarial
samples, we focus on questioning the limitations of ML models built
in constrained testing environments. In this case, the evasion is not
deliberately crafted to confuse an ML model — rather it exists as
a function of malware detecting it is in a virtualised or emulated
environment, and not exhibiting the same behaviour as it would on
a real system.

In this paper we hypothesise that ML classifiers trained using data
from dynamic malware analysis conducted within virtualised environ-
ments (as in much of the literature) are largely recognising malware
by its evasive behaviour, rather than malicious behaviour. While there
is nothing inherently wrong with classifiers using evasive traits to
identify malware, an over-emphasis on these traits could be problem-
atic and our aim is to understand the amount of evasive behaviour
a sample needs to possess to be classified as malicious. To test our
hypothesis we train a selection of state of the art classifiers in this
field on data collected from running 2500 ransomware samples and
2500 benign samples in a sandboxed Windows environment. We collect
data at both a user-level and kernel-level to determine if one is better
suited to creating more robust classifiers. We then test the trained
classifiers against ransomware containing adjustable levels of evasive
properties. To obtain ransomware samples with changeable levels of
evasive behaviour, we create simulated ransomware samples using a
number of tools and test the trained classifiers against data collected
from running them. The simulated ransomware simulates the malicious
behaviour of ransomware, that is, file encryption as well as an evasive
technique. The evasive behaviour chosen is idleness. This behaviour
is chosen since it is a platform independent evasive technique that is
highly effective and easy to implement [18]. It also means that the
rate at which encryption occurs can easily be altered by increasing
or decreasing the sleep between each successive encryption which
allows us to determine the level of evasiveness at which ransomware is
detected or undetected. We use four sets of 1500 simulated ransomware
samples, one set is written in Java and the other three are written
in C. Each of the sets all accomplish the same tasks (encrypting and
sleeping), they only differ in how this is implemented in the source.
This allows to verify the results but also determine if the manner
in which the malware implements an evasive or malicious technique
affects the classifier’s ability to recognise it. This allows us to determine
the level of evasiveness at which ransomware is detected or undetected.
This will not only help us to understand the effect of evasive malware
on ML classifiers produced from dynamic malware analysis, but also
shine further light on the extent of the problem with evasive malware.
In summary, the contributions made in this paper are the following:

1. We determine the extent to which evasive features within mal-
ware contribute to a classifier’s ability to recognise malware
analysed within dynamic malware analysis.

2. We evaluate how the detection capability of classifiers trained
on Kernel-level (privileged) data compare with classifiers trained
on user-level data with regards to the level of evasion present in
malware and the manner in which it is implemented.

3. We analyse the results produced by the classifiers to understand
the actual system calls that influenced decisions, and explain
what these calls are doing.

4. We evaluate the effectiveness of high-level languages such as
Java when it comes to simulating malware to use within dy-
namic malware analysis and show the potential benefits from
employing simulated malware when evaluating classifiers.

2. Related work

2.1. Evading detection

Our contributions do not fall into a single category within the
literature, therefore we have reviewed the work in each related cat-

egory. The two general categories that our work falls into relate to
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methods designed to evade detection, and the simulation of malware.
With regards to evading detection within dynamic malware analysis,
there are two categories that the various techniques fall into. The first
category consists of those techniques that attempt to evade the data
capturing component of the malware analysis tool to render the data
captured regarding the malware’s behaviour inaccurate. The second
category consists of the methods that focus on deceiving the machine
learning classifier otherwise known as adversarial learning. On the
other hand, malware simulation is an underdeveloped field consisting
of very few working solutions.

2.1.1. Evading data capture
Methods attempting to evade the data capturing component focus

on identifying hallmarks of the dynamic malware analysis process.
These include looking for properties specifically present or absent from
analysis environments as compared to real environments [9–11,19–21].
For example, the Storm Worm is able to detect that it is running in
VMware by querying the I/O communication port for a magic number
not found on real systems [11,22]. Malware can also look outside
the system for indicators that it is in an analysis environment. The
Wannacry ransomware checks for a valid internet connection before
executing [23]. This works because it is quite common for an anal-
ysis environment to contain a simulated to no internet connection
to prevent malware from spreading unintentionally. This is just a
small proportion of the number of techniques available to malware
to evade detection. There are many more techniques used to evade
the data capturing component that are extensively documented in the
literature [10–12,18,24–26]. As a result there are also many techniques
that are used to detect evasive behaviours [27–31] and even counter
them [32,33].

In addition to these methods, a few methods have been proposed in
the literature that take advantage of the way calls are gathered during
dynamic malware analysis. Ramilli et al. [34] noticed that most anal-
ysis tools classified processes as malicious or benign one process at a
time. Therefore, they divided a chosen malicious sample into a number
of processes that individually would not be malicious, but together,
these processes could cooperate to achieve the malicious outcome. They
analysed the divided malicious sample using 43 different anti-viruses
and seven dynamic analysis tools (including Anubis [35], JoeBox [36],
and Norman Sandbox [37]) and found that it evaded detection in every
case. Ma et al. [38] automate the theory of the technique employed
by Ramilli et al. [34] by producing a tool that when given the source
of a malicious sample is able to split it into a number of samples,
specifically splitting the source whenever a potentially incriminating
system call is used. The tool then added the required communication
code between the samples created. The resulting malware produced by
their tool was tested on CWSandbox [39] and Norman Sandbox [37]
and succeeded in evading analysis. Srivastava et al. [40] evade system
call analysing tools by only ever calling a single system call from their
malicious process that tells a custom-made driver the actual system call
the process wants called. Since the driver runs at Kernel mode, it can
then call the system call directly (bypassing any monitoring tools). In
doing this, any tools gathering system calls only observe a single system
call coming from the malicious process.

2.1.2. Evading classifiers
The second category of evasive techniques is focused on evading

the machine learning classifiers. This is commonly referred to as ad-
versarial attacks. Adversarial attacks first emerged in the field of image
recognition, where the alterations made to images were so slight that
there was no human-observable difference between the original and
altered images. Despite that, state of the art classifiers incorrectly
classified them with extremely high confidence [41]. To perform an
adversarial attack, the decision boundary of the classifier being at-
tacked must first be determined. Once that is known, the attacker
3

can tactically determine the minimum number of features of the input
sample to alter so that it falls outside the decision boundary despite no
change in the sample’s behaviour. Adversarial attacks can be classed
as white-box attacks in which the attacker has complete access to the
classifier, its hyper-parameters, and the input samples it was trained on.
Alternatively, they can be black-box attacks where the attacker does not
have access to the internals of the classifier but can still view the final
classification decision it makes [42,43]. With white-box attacks, it is
relatively trivial to find the classifier’s decision boundary due to all the
information available to the attacker. However, with black box attacks,
the attacker must create a surrogate classifier that is trained on the
classification decisions made by the original classifier being attacked.
Samples are then modified to evade the surrogate classifier in the
hope that they will also evade the classifier being attacked [42]. These
attacks have been quite successful as adversarial samples have been
found to be transferable between classifiers trained to make the same
decision [44]. The success of adversarial attacks in general is attributed
to the linear behaviour of some classifiers in high dimensions [45].

Within the field of image recognition, adversarial attacks are per-
formed through the use of minor perturbations to pixel values in
images. In malware analysis, the general trend is to alter the API-
calls called. Attackers must take care when altering API-calls made by
malware as they could unintentionally alter the behaviour such that it
no longer executes. Therefore, most of the literature does not subtract
or remove system calls made, rather they only add calls to avoid
altering any of the malware’s existing behaviour. However, attackers
still need to be vigilant when adding calls to the feature space, as
if a call to ExitProcess is added, for example, it would immediately
end execution when called thereby significantly altering the malicious
sample’s behaviour. Despite these limitations, there is still a significant
amount of literature within the field of adversarial learning.

Biggio et al. [15] perform adversarial attacks against Linear SVMs
and Neural Networks using malware embedded in pdf files. They
consider two attack scenarios, one in which the attacker has perfect
knowledge of the model being attacked and one in which the attacker
has a limited knowledge of the model being attacked. They use gradient
descent as their attack strategy but they bias it by adding a ‘mimicry
component’. They found that regardless of the information available to
the attacker regarding the target model, they were able to evade it with
near identical probability.

Grosse et al. [16] attack classifiers trained on a well-known dataset,
the DREBIN dataset [46]. After training a neural network to obtain the
current state-of-the-art performance on the dataset, adversarial samples
are crafted by adding features, that, when modified, produce the most
change in the classifier’s output. These are identified using the method
employed by Papernot et al. [47] who take the derivative of the trained
neural network with respect to its input features. Through this they
manage to make 63% of the previously detectable malware samples
undetectable.

Hu and Tan [17] propose MalGAN, an adversarial neural network,
which takes malware samples and produces adversarial samples that
can evade classifiers. They differ in that they perform a black box at-
tack, assuming that access to the machine learning classifier’s internals
are not available. They tested MalGAN on a number of classifiers and
manage to alter malware samples such that the accuracy of many of
the classifiers fell from within 90% to 0%.

It is clear that an attacker has plenty of options to choose from when
adding evasive techniques to their malware. However, now that it is
commonplace for malware to contain evasive behaviour, it is not clear
what effect this is having on the data collection within dynamic mal-
ware analysis. In order to get a better understanding of that, we assess
classifiers’ ability to detect malware with varying levels of evasiveness.

To obtain such malware, we had to use malware simulators.



Journal of Information Security and Applications 67 (2022) 103202M. Nunes et al.
2.2. Simulating malicious behaviour

When choosing a malware simulator, there are very few modern
solutions available. The Rosenthal Virus Simulator [48] was the first
solution proposed. It is capable of producing harmless programs that
contain virus signatures. Trojan Simulator [49] goes slightly further,
simulating a property of malware that ensures it is run every time
the machine is powered on. However, as with previous solutions, it
simulates no malicious symptoms. More recently, MalSim [50] was pro-
posed. MalSim, written using the Java Agent DEvelopment Framework
(JADE) [51], is capable of simulating a rich set of malware variants in
addition to generic behaviours seen in malware. However it is careful
not to do any actual harm to the system. Unfortunately malware simu-
lators that do not do any harm to the system are quite limiting since the
full extent of a malware detector cannot be tested. The solution chosen
in this research is Amsel [52], an open-source, Java-based malware
simulator. Amsel is capable of doing actual harm to the system and is
easily extensible allowing users to ‘plug-in’ additional behaviours that
are not provided that they want to simulate. This makes it a good fit
for our needs.

The literature surrounding malware simulators shows that Java [53]
is a common choice as a programming language [50,52,54,55]. Java is
a general purpose programming language that is platform independent.
Every Java application runs inside the Java Virtual Machine (JVM)
(with a new instance created for each application) [56]. Java and the
JVM allow the programmer to focus on implementing the functionality
of the program without having to worry about the minutiae of how that
functionality is achieved.

While Java may provide convenience for programmers and lead to
fewer errors in code [57], there are questions around its suitability to
simulate malware for the dynamic malware analysis process. This is
because, when using Java, the developer has very little control over the
exact system calls being made. Therefore, though Java can be used to
faithfully reproduce the effects of a malware infection, the developer
has little control over how the effects are executed. This is essential
when monitoring solutions are monitoring at a low level of abstraction.
Furthermore, besides the lack of control on how the specifics of the
functionality are executed, the calls made by the JVM are also mixed
in with the calls made by the program being monitored (simulated
malware in this case). This means that calls made for benign purposes
are mixed in with calls made for a malicious purpose. For example, the
garbage collector must periodically check for any memory to free. This
can throw off a machine learning classifier trained on system call data.
Conversely, in the C programming language, this must be performed
manually by the developer. As a result, the developer can minimise the
amount of interference from tasks such as these. Therefore this research
also tests the robustness of using Java to create a malware simulator.

2.3. Conclusion

The number of options available to malware when it comes to
evading detection are clearly innumerable. It is also clear that there
are high percentages of malware using evasive techniques [11,12,18].
Dynamic analysis of such malware is largely conducted using data
obtained from Cuckoo Sandbox [13]. Therefore, we intend to determine
how the current state of malware and the dynamic malware analysis
process is affecting the way classifiers recognise malware. We intend
to achieve this by training classifiers on real ransomware and benign-
ware and then observe how their performance changes when detecting
simulated ransomware with different levels of evasiveness. If classifiers
use solely evasive traits to recognise ransomware then the simulated
ransomware showing largely malicious activity (or activity in general)
will be labelled as benign and vice versa. In the next section we detail
4

our experimental method.
3. Method

3.1. Malware selection

The class of malware that we focus on for this paper is ransomware.
Ransomware is a class of malware that prevents a user from accessing a
core component on their machine and demands a payment, or ransom,
for the release of that component. Our focus in this paper is on crypto
ransomware. Crypto ransomware encrypts the files typically in a user’s
home directory and demands a payment from the user in exchange
for the decryption key. Ransomware is still remarkably popular as evi-
denced in the recent report from Sophos which found that over a third
of the organisations they surveyed were hit by a ransomware attack in
2020 [58]. We chose ransomware as it is relatively straightforward to
simulate its main malicious symptom since it is consistent and visible.
Coupled with this, ransomware provides the benefit of containing a
continuous stealth-efficiency trade-off which is easily parametrised by
altering the rate of encryption. This is particularly important for this
study.

3.2. Experimental setup

To begin with, we trained classifiers on real ransomware and be-
nignware as is commonly the case when creating a tool to detect
malware [59,60]. To do this, we collected 2500 ransomware samples
from VirusShare [61] and 2500 benign files from SourceForge [62] and
FileHippo [63]. The ransomware we used is from a dedicated dataset
provided by VirusShare. Most of the samples were written between (and
including) 2008 and 2016. The collection of the benign files is described
in more detail in [13]. Each sample (benign and malicious) was then
run for two minutes as recommended by Willems et al. [39] and Küch-
ler et al. [64] in a virtual machine with Windows XP SP3 installed. We
chose to use Windows XP due to the relative ease with which it can
be instrumented thanks to the large amount of documentation (official
or otherwise) available. We do not feel this affects the validity of our
results or their applicability to newer, 64-bit versions of Windows since
currently, all 64 bit systems are backwards compatible with 32 bit
binaries [65]. Additionally, the most commonly prevailing malware
samples in the wild are 32 bit [66]. To increase the probability of each
sample running, real files (such as documents, presentations, images,
and videos etc.) were placed in the user’s home directory to make the
environment seem more realistic. For each sample, the system calls it
made whilst running were extracted at both user-level and Kernel-level.
To gather system calls at user-level, we used Cuckoo Sandbox [67].
To gather calls at Kernel-level we used our own custom-built Kernel
driver that hooks the System Service Descriptor Table (SSDT). The
implementation details of our driver are provided in [13].

After gathering the system calls made by a sample, they were repre-
sented as a frequency vector that showed how many times each system
call was called as is commonly the case in malware literature [68–
72], and ransomware literature [73,74]. These vectors were then used
to train and test the classifiers. We used a number of popular classi-
fiers to observe how the performance varied with each classifier. The
classifiers we used were: AdaBoost, Decision Tree, Gradient Boosting,
Linear SVM, Nearest Neighbours, and Random Forest. The reason for
choosing AdaBoost, Gradient Boosting, and Random Forest was that
ensemble methods obtained impressive performance in the literature
on ransomware [75–77]. Similarly, Linear SVMs and Decision Trees
are also widely used [75–79]. Nearest Neighbours was chosen for its
simplicity as a baseline.

Initially, we performed 10-fold-cross-validation on the data col-
lected from the ransomware and benignware samples to determine
how effectively the classifiers are able to detect real ransomware.
The measures we use to assess a classifier’s performance are: AUC,
Accuracy, F-measure, and Precision. These are well known measures,

however, to understand them in this context, it is important to define
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a few basic terms. We interpret True Positives (TP) as ransomware
samples that are correctly labelled by the classifier as ransomware.
False Positives (FP) are benign samples that are incorrectly labelled as
ransomware. True Negatives (TN) are benign samples that are correctly
classified as benign. False Negatives (FN) are ransomware samples that
are incorrectly classified as benign. Regarding the actual measures
used, AUC relates to ROC curves. ROC curves plot True Positive Rate
(TPR) against False Positive Rate (FPR). Accuracy refers to the correct
predictions divided by all the predictions. Precision is defined by the
formula TP

TP + FP and Recall is defined by the following formula TP
TP + FN .

3.3. Malware simulator experiments

After assessing the classifiers’ performance in detecting real ran-
somware, we test the trained classifiers’ ability to detect simulated
ransomware. In our experiments, the simulated ransomware is treated
similarly to an unseen test set. This means that rather then using 10-
fold cross-validation to obtain results, we train the classifiers on all the
real ransomware and benignware and then make the classifiers predict
the class of the simulated ransomware. Unlike traditional test sets, our
test set only contains simulated ransomware and no benignware. It is
important to note that this is not the equivalent of creating a test set
comprised solely of ransomware since there are some important dif-
ferences between a real dataset and simulated dataset. Our goal when
constructing the simulated dataset is to determine where classifiers
draw the line between malicious and benign. Therefore the samples
in the simulated dataset vary with regards to the amount of malicious
symptoms they display. While some samples may be overtly mali-
cious, others behave more ambiguously. Therefore, the simulated set
is not equivalent to a test set simply containing ransomware but much
more complex and better viewed as a different type of dataset. When
assessing the classifiers’ performance on the simulated set, the only
summary statistic we present is the percentage of simulated samples
that are classified as malicious, which we usually refer to as ‘Accuracy’
for brevity. However, we are more interested in how different levels
of evasion affect a classifier’s result and therefore devote more space
to analysing the results for each simulated ransomware sample. This
provides a much clearer (and more nuanced) picture of each classifier’s
performance than the summary statistic. We use two categories of
simulated ransomware, the first type is produced by an existing tool
written in Java. The second type we implemented ourselves in C.

3.3.1. Java-based malware simulator experiments
Amsel [52] is a tool written in Java that is designed to simulate

malware for research purposes. Amsel is essentially composed of two
libraries, the symptom injectors and the models. The symptom injectors
library consists of various malicious symptoms that a user may want to
simulate. Potential symptoms range from the generation of suspicious
network traffic to the encryption of files on the host. Symptom injectors
do not have to be used in isolation but can be combined to create
a complete attack chain. For example, a complete attack chain may
consist of connecting to a server, stopping a running process, running
a new process and then reconnecting to a server. The models library
consists of stochastic models, in particular, Continuous Time Markov
Chains (CTMC). The purpose of this library is to decide how long
Amsel should spend in each stage/symptom of the attack chain. It also
determines how long to wait between each symptom. Each symptom
in itself may have random elements controlled by the model library.
For example, if one of the symptoms is to send network traffic to a
server, the models library can be used to define the size of the traffic
in each iteration. Amsel provides a user with complete control when
creating a kill chain; nevertheless, a user may choose to relinquish some
of that control if the addition of randomness makes for a more accurate
representation of an attack. The user can specify the exact order of
symptoms in an attack chain, or the user can assign a probability with
5

which each step may be taken and then leave it to Amsel to create p
the final kill chain. This has the advantage of adding an element of
randomness each time Amsel is run, as, in some cases, Amsel may skip
a step, or change the order in which steps are taken for each run. This
allows a user to thoroughly test the robustness of their security system
and determine if it can detect an attack regardless of the sequence.
It is this mix of structure with controlled randomness that allows for
very realistic modelling of actual attacker behaviour. More information
regarding the use of Amsel can be found at [80–82].

The functionality required of Amsel for our experiments is relatively
simplistic to reduce the possibility of the classifiers being biased by
additional behaviours. The only symptom we have used is the file
encryption symptom since that is the main malicious symptom of
ransomware that solutions want to prevent. The behaviour of this
symptom is to encrypt files in the directory specified (including all
sub-directories). The encryption algorithm used by default is an XOR
operation which works by XOR-ing the byte stream of each file with a
secret key. There are several parameters within the symptom’s settings
that can be altered; however, for our experiments, only one parameter
is altered between each run, the interarrival time. This parameter
determines how long the simulated malware sample should wait be-
tween encrypting two successive files in the directory specified. The
interarrival time was gradually incremented from 1.0 × 10−6 to just
elow 60 s. The size of the increment was 0.01 initially. After reaching
s, the size of the increment was increased to 2 s. The reason for only

ltering a single parameter is that it makes it a lot easier to interpret
he results from the classifiers (since there is only one variable). The
eason the interarrival time in particular was chosen is that it is the
ne parameter that can navigate the trade-off between malicious and
vasive behaviour.

When the time between encrypting each file, a.k.a the interarrival
ime, is set to a lower value, the simulated ransomware is encrypting
ore frequently and thereby exhibiting its malicious symptom much
ore frequently. Whereas when the interarrival time is at higher val-
es, the simulated malware is idle for longer periods which, when
bserving system calls, would look very similar to evasive malware.
hen the time between encrypting files is set to its highest value (57 s),
msel will only encrypt two files at most before analysis is complete.

While it is true that all evasive behaviour cannot be described by
dleness, it achieves the goal of a wide variety of evasive behaviours,
hich is to stall or halt execution. Another reason we chose idleness
s our evasive behaviour is that it is quite pervasive in malware and
latform independent [18]. It is also difficult to detect and compatible
ith all dynamic analysis techniques [18]. Examples of malware within

he real world employing evasive techniques of this nature includes
uqu [83], Kelihos [84], Trojan DelfInj [85], Rombertik [86] and
arbanak [87]. In practical terms, one example of a method by which
alware can achieve idleness is through using the system call NtDe-

ayExecution to delay executing its payload [22,88] as seen in Trojan
ap [89].

To ensure that the results obtained are not due to chance, each
nique simulated sample (unique with regards to its interarrival time)
s replicated ten times. This provides more than enough samples per
nique time value to ensure that the results are consistent rather than
ccidental. It is also not so high that the experiments become infeasible
ue to the constraints of time. Finally, as with the traditional dataset,
ach simulated sample is run on the same virtual machine, and the
ystem calls it makes are recorded by Cuckoo and the Kernel driver,
nd converted into histograms. Since the goal of these experiments
s to evaluate how well classifiers trained on real ransomware and
enignware can detect malicious symptoms, the simulated ransomware
ataset is treated as an unseen test set. As a result, the classifiers are
rained on all the real ransomware and benignware data, and then those
ame classifiers are made to classify the simulated ransomware. Since
ome of the classifiers used have a random element (such as Decision
rees), each classifier is trained and tested 1000 times on the same
ataset and the mean accuracy is reported. The overall experimental

rocess described so far is summarised in Fig. A.13.
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3.3.2. C-based malware simulator experiments
We repeat the experiments performed using Amsel, but

re-implement the functionality of Amsel in C to determine the in-
tegrity of the results. The only difference here is that the simulated
ransomware samples are written in C. The theory behind using C is that
C provides more control over the system calls made by the program. It
allows us to specifically choose the system calls made.

Using C we create three different types of simulated ransomware
samples. The first two types are exact replicas of the simulated ran-
somware written in Java. They differ from one another in that they use
different methods to implement the delay between each file encryption.
The third type of simulated ransomware differs from the simulated ran-
somware written in Java in that it uses a much more robust encryption
methodology.

Much of the implementation for the first two types of simulated
ransomware is quite straightforward, as the programs simply encrypt
files in a specified directory and wait a specified amount of time
between encrypting each file. However, to test the robustness of the
trained classifiers, and avoid a bias, the delay between encrypting each
file was implemented in two different ways. The first set of simulated
ransomware used the time function provided by C. This function
eturns the number of seconds since January 1, 1970. The source code
or this is shown in listing 1.

1 delay = time(0) + secondsToWait;
2 while(time(0) < delay);

Listing 1: Delay implemented using a standard C method

The function time() is defined in time.h. Behind the scenes, time
calls

GetSystemTimeAsFileTime when run on Windows. The return
value when time(0) is called is the number of seconds since January 1,
1970 at that point in time. The variable secondsToWait contains the
user specified time to wait. This is added to the current time. After that,
on line 2, a while loop is used to prevent progress until the current
time exceeds the time in the future that it needs to wait until. As a
result, this is considered to be a ‘busy wait’.

The second set of simulated ransomware was implemented using
the delay function provided by Windows. In C, this function is called
Sleep and it goes on to call the Windows system call NtDelayEx-
ecution. Implementing a delay with this is very straightforward as
shown in listing 2.

1 Sleep(millisecondsToWait);

Listing 2: Delay implemented using a recommended Windows method

The use of NtDelayExecution by malware is already well docu-
mented [3,90]. However, GetSystemTimeAsFileTime has not been en-
countered as much [12], although it is the standard method in C for
achieving the functionality required. Despite the fact that both system
calls can be used to implement the same functionality, there is a
possibility that the difference in behaviour of these calls will affect the
classification accuracy of the simulated ransomware.

The third set of simulated ransomware written in C uses much more
complex encryption provided by the functions in the Windows API
as opposed to XOR encryption. This is to determine the significance
attached to the encryption method by the classifiers in identifying
ransomware. The source code for this simulated ransomware is much
more complex, however, it is very similar to that shown in [91]. The
encryption algorithm used is the same as that used by CryptoLocker
since it is the most common ransomware family in our dataset and the
world [92]. The exact algorithms used are RSA and AES 256.

The experiments carried out in this section are identical to those
carried out in the previous section. As with Amsel, 1500 simulated
ransomware samples using the C time function were generated and 1500
simulated ransomware samples using the Windows Sleep function were
6

Table 1
Complete dataset breakdown.

Dataset type Dataset name Number of samples

Real Benignware 2500
Ransomware 2500

Simulated

Amsel (Java-based) 1500
C-time Ransomware 1500
Windows Sleep Ransomware 1500
Windows Encryption Ransomware 1500

generated with the same spread of time delays as Amsel. Likewise, 1500
simulated ransomware samples using more complex encryption were
also generated. The classifiers were trained on the real ransomware
and benignware and then separately tested on each group of simulated
ransomware. These experiments were conducted for the Cuckoo and
Kernel data. The breakdown of the dataset used within the paper is
shown in Table 1.

3.4. Feature ranking

To determine the features contributing the most to the results,
we ranked them by importance using each classifier’s inbuilt feature
ranking mechanism. This ranking mechanism works in different ways
depending on the classifier used. For Decision Trees scikit-learn uses the
Gini importance as described in [93] to assign a value to each feature.
The same is true for Random Forest, AdaBoost and Gradient Boost since
they are composed of a multitude of Decision Trees. The only difference
being that as they are composed of multiple Decision Trees, the Gini
importance is averaged over each tree. Finally, with Linear SVMs, the
coefficients assigned to each feature is used to rank them. In the case
of K-Nearest Neighbour, there is no inbuilt feature ranking mechanism,
therefore, we do not include it in this measure. To understand how
it values features, we use an independent feature ranking approach. In
this method, all the data from a single feature is fed to the classifier and
its ability to differentiate ransomware from benignware using only that
feature is recorded. This is done separately for every feature after which
the features are ranked according to their classification scores. Both
feature ranking methods are discussed in much more detail in Nunes
et al. [13].

3.5. Misclassified samples

An important aspect of the experimental process is to determine the
rate of encryption at which simulated ransomware goes undetected and
to ascertain if that value differs depending on whether Cuckoo or the
Kernel data is used. We calculated this using the prediction results that
were obtained from the classifying the simulated ransomware. Since
the classifiers were tested against all simulated ransomware samples
1000 times, the mean prediction value for each simulated ransomware
sample can be found separately for each classifier. The reason that
the mean value must be used is that some classifiers show slightly
different results on every run due to the fact that they make use of
a random element (Random Forest, for example). Therefore, if the
mean prediction value for a sample is below 0.5, that sample can be
considered incorrectly classified (since ‘1’ represents malicious and ‘0’
represents benign). Once the incorrectly classified samples have been
found, they can be linked to their interarrival time (i.e. time between
encrypting each file). This will allow us to understand the amount of
evasive behaviour a sample must possess to be labelled as malicious.

4. Results

In the following subsections, we first analyse the ability of classifiers
to differentiate real ransomware from benignware. After training the
classifiers on real ransomware and benignware, we also test them
against the various types of simulated ransomware. We perform these
experiments both for the data from Cuckoo and the Kernel driver to
determine whether that affects the results.
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Table 2
Classification results of real ransomware and benignware using Cuckoo data. The last column contains the accuracy from
classifying the data obtained when running Amsel after training the classifiers on all the real ransomware and benignware.
Machine learning algorithm Ransomware Amsel

AUC Accuracy (%) Precision Recall F-measure Accuracy (%)

AdaBoost 0.992 96.4 0.963 0.968 0.965 72.1
Decision Tree 0.952 95.2 0.951 0.958 0.954 56.3
Gradient Boost 0.996 97.3 0.969 0.980 0.974 100
Linear SVM 0.850 75.3 0.753 0.826 0.788 2.80
Nearest Neighbour 0.972 91.5 0.939 0.896 0.917 1.07
Random Forest 0.994 96.7 0.977 0.977 0.977 62.9
Table 3
Classification results of real ransomware and benignware using data from the Kernel Driver. The last column contains the
accuracy from classifying the data obtained when running Amsel after training the classifiers on all the real ransomware and
benignware.
Machine learning algorithm Ransomware Amsel

AUC Accuracy (%) Precision Recall F-measure Accuracy (%)

AdaBoost 0.992 95.8 0.958 0.963 0.960 29.0
Decision Tree 0.957 95.6 0.957 0.960 0.958 97.4
Gradient Boost 0.997 97.6 0.978 0.975 0.976 28.8
Linear SVM 0.553 55.5 0.556 0.997 0.714 32.7
Nearest Neighbour 0.975 91.6 0.923 0.915 0.919 4.08
Random Forest 0.994 96.6 0.978 0.972 0.975 58.1
4.1. Java ransomware simulator

Tables 2 and 3 show the results from performing 10-fold cross-
validation using the real ransomware and benignware samples. The last
column in both tables shows the percentage of Amsel samples (Java-
based ransomware simulator) that were classified as malicious by the
classifiers when trained on all the real ransomware and benignware.
For the sake of brevity, this has been referred to as ‘Accuracy’ in the
table.

The results in Tables 2 and 3 indicate that Gradient Boost is the best
performing classifier for distinguishing real ransomware from benign-
ware. It obtains an accuracy of 97.6% and 97.3% for the Kernel Cuckoo
data. Similarly to the results in previous work [13], the difference in
results is quite small but still significant. Based on that data alone,
Gradient Boost would ordinarily be the recommended classifier to use
for this scenario alongside data from the Kernel Driver. However, we
are also assessing how dependent the classifiers’ results are on evasive
features through the use of simulated ransomware.

The percentage of Amsel samples classified as malicious paints a
different picture (shown in the last column of Tables 2 and 3). When
using data from Cuckoo, Gradient Boost classified all the samples as
malicious, whereas, when using the Kernel data, Gradient Boost only
classified 28.8% of the simulated ransomware as malicious. When using
the Kernel data, Decision Tree classified the most Amsel samples as
malicious (97.4%). However, classification results this high are not
necessarily desirable since it means that the classifiers are also likely to
label benignware as malicious as they are also labelling the simulated
ransomware with no evasive features as malicious.

The classification accuracy obtained by the remaining classifiers
when labelling the simulated ransomware is considerably lower. Im-
portantly here, the data from Amsel is being treated as a test set and
so the results cannot simply be reversed if below 50%. Regardless, it
is not the overall accuracy that we are using to assess the classifiers’
performance in detecting the simulated ransomware, but the manner in
which the accuracy changes when the evasiveness within the simulated
samples is increased. The method by which this is achieved is described
in Section 3.5.

The performance of each classifier per simulated ransomware sam-
ple is illustrated in Fig. 1 as a histogram. The histogram has been drawn
in a form similar to a bar chart to make it easy to compare the pro-
portion of samples per time value that were classified as malicious or
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benign. Fig. 1 is separated into two subfigures to show the classification
results using the Kernel data (Fig. 1(a)) and the Cuckoo data (Fig. 1(b)).
These subfigures consist of two plots per classifier. The first plot shows
the results for samples with interarrival times of 2 s or less and the
second plot shows the results for samples with interarrival times above
2 s.

The results of Fig. 1(a) show that for three of six classifiers (Ad-
aBoost, Gradient Boost and Linear SVM), when using the Kernel data,
once the time between each encryption (interarrival time) is approxi-
mately beyond 10 s, the simulated ransomware is consistently classified
as malicious. However, before that, it is labelled as benign. The op-
posite occurs with Gradient Boost as once the interarrival time goes
beyond two seconds, the classifier largely classifies the simulated ran-
somware as benign. The majority of the classifiers in Fig. 1(a) classify
the simulated ransomware as benign when the interarrival time is 2
s or less. Decision Tree classifies the most samples as malicious with
only a small fraction classified as benign. Whereas Nearest Neighbours
largely classifies the samples as benign. The results from the Amsel data
collected at a Kernel level suggest the majority of the classifiers trained
on this data see ransomware as containing largely evasive behaviour.

Fig. 1(b) shows how the classifiers label Amsel when using the
data from Cuckoo. There is not as clear a pattern as compared to
when the Kernel data was used suggesting that the correlation between
interarrival time and classification accuracy is not as strong for this set
of simulated ransomware. Decision Tree and Random Forest tend to
label the simulated ransomware samples as benign as the interarrival
time or evasive behaviour increases. However, both those classifiers
along with AdaBoost do not seem to be particularly robust since for
many of the interarrival time values, the classification result of the
same sample alternates between benign and malicious. On the other
hand, Linear SVM and Nearest Neighbours label all samples as benign
while Gradient Boost labels all as malicious (neither of which are
particularly desirable).

To gain a better understanding of the reasons behind the results,
the features of the simulated ransomware that were used to relate it to
malware, we analyse the top ten features of the classifiers that obtained
the highest accuracy on the Amsel samples.

4.1.1. Feature ranking results

Cuckoo data
Fig. 2 shows the top ten features (from left to right) for the Cuckoo

data as determined by Gradient Boost. It also shows the relative fre-
quency with which those features were called by the ransomware,

benignware, and simulated ransomware.
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Fig. 1. Classification results per Amsel sample represented as a histogram. On the x-axis the time between each encryption for each sample is plotted. The y-axis shows the
proportion of samples classified as malicious (red) and benign (blue) for those time values. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 2. Normalised frequency (y-axis) of the most influential features (x-axis) of Gradient Boost using the Cuckoo data.
The most prominent call (with regards to frequency) in Fig. 2 is
NtReadFile, which, as expected, is used considerably by the simulated
ransomware. Although, it is not called as frequently by ransomware as
it is by benignware on average. Therefore, the frequency with which
its called by benignware is closer to that of the simulated ransomware.
8

The next most prominent feature is LdrGetProcedureAddress. This fea-
ture is commonly used by malware (particularly obfuscated malware)
as it allows it to import methods at runtime [22], thereby evading
static analysis. LdrGetProcedureAddress is also called by simulated
ransomware quite frequently despite not actually being used in its
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source code. This is due to the Java Virtual Machine (JVM) which
performs dynamic loading at runtime.

The top ten features for which the relative calling frequency of
simulated ransomware is closer to that of ransomware are NtProtectVir-
tualMemory, CreateDirectoryW, NtOpenSection and CreateActCtxW.
NtProtectVirtualMemory can be used by malware to detect a debugger
by creating what is known as guard pages, that, when accessed raise an
EXCEPTION_GUARD_PAGE. If a debugger is present, the exception is in-
tercepted by a debugger [94]. In the case of the simulated ransomware,
its presence is due to the JVM since it was not explicitly called in its
source code. The same is true for CreateDirectoryW as its presence
in the simulated ransomware is due to the JVM creating temporary
folders. The feature NtOpenSection is used to access ‘sections’, which
are shared memory regions. This is used by ransomware and to a
lesser extent by the simulated ransomware. Malware is known to use
NtOpenSection in conjunction with NtUnmapViewOfSection (also in
the top ten) to inject its code into a legitimate process and execute it
from there to avoid detection. However, its presence in the simulated
ransomware is also an artefact from how the JVM manages memory.

Some of the remaining features further highlight the tendency of
classifiers favouring evasive features when differentiating ransomware
from benignware. WriteProcessMemory, for example, can be used to
write malicious code into an external process’ memory space [22].
NtTerminateProcess can be used to terminate other processes running
on the system. This can be used by malware to stop any antivirus
solutions from running [95].

Therefore, the top ten features within the Cuckoo data ranked by
Gradient Boost seem to suggest that the evasive properties of malware
are favoured by classifiers. Though the simulated ransomware was
written to simulate the malicious properties and one evasive property
of ransomware, this did not translate in the features used due to
interference from the JVM. Therefore, the main reason the simulated
ransomware was detected so confidently by Gradient Boost was due to
the use of evasive features by the JVM. This also further explains the
reason for the lack of a visible relationship between interarrival time
and classification accuracy.

Kernel data
The classifier that obtained the highest accuracy relating the sim-

ulated ransomware to real ransomware using the Kernel data was
Decision Tree. Therefore, its top ten features and their relative frequen-
cies are displayed in Fig. 3. Due to the large differences in frequencies
of features, the 𝑦-axis is represented as a logarithmic scale to aid with
visualisation.

Two prominent features in Fig. 3 are NtReadFile and NtWriteFile.
Unlike the Cuckoo data, the frequency with which they are called
by the simulated ransomware is closer to that of real ransomware,
suggesting that they assist with the classification of simulated ran-
somware. On the other hand, NtYieldExecution is called considerably
more by simulated ransomware than benignware and ransomware.
NtYieldExecution serves to stop the execution of the current thread and
start the execution of another. The high frequency of this call is a side-
effect of the simulated ransomware ‘‘sleeping’’ for a certain amount of
time as NtYieldExecution is used to stop executing the current thread
and start executing a new one. In addition, its frequency is further
elevated by the JVM which uses it to juggle the many tasks it performs
(such as garbage collection). The call, NtDelayExecution, is commonly
used by malware to prevent executing its malicious payload until a
specified time period [90]. As can be seen, it is used marginally more
by malware than benignware. It is also used to a lesser extent by the
simulated ransomware. As with the real ransomware, the simulated
ransomware uses it to implement the sleep.

Of the less prominent features, NtOpenMutant is particularly in-
teresting. ‘Mutants’ is the name given to ‘mutexes’ in Kernel mode.
Mutexes are used to control access to shared resources. Malware au-
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thors tend to use them to ensure that only one instance of their malware
is running on the machine at a time (to avoid re-infecting the machine).
This could explain the relatively high frequency with which it is called
by ransomware as opposed to benignware.

The other feature of note here is NtOpenThread. Again, this is called
significantly more by malware as opposed to benignware. Malware
frequently uses threads to run the code it has injected into another
process [22,30].

As the Kernel data captures calls made from all processes running on
the system, it is not as easy to interpret the reasons for the differences
in the frequencies of the calls made. However, it can be concluded that
a mix of file-handling and evasive features played a part in assisting
with the detection of the simulated ransomware (as well as real ran-
somware). Unlike the Cuckoo data, the classifier trained on Kernel data
is not looking largely at evasive behaviours to detect ransomware, but a
greater variety of behaviours. This accounts for the clearer link between
frequency of encryption and classification accuracy when observing
classifiers trained on data from the Kernel.

Discussion
The classification results per simulated ransomware sample seem

to indicate that, in general, the Kernel data is causing classifiers to
focus more on evasive behaviour rather than malicious behaviour.
The classifiers trained on Cuckoo data do not seem to show as clear
a connection between the classification accuracy and the frequency
of encryption which is most likely because they are overwhelmingly
using evasive behavioural traits to detect ransomware. More evasive
traits than were intentionally included in the simulated ransomware.
Therefore the frequency of encryption and even encryption itself does
not matter as much as the variety of evasive features present in a
ransomware sample. Analysis of the top ten features shows that the
simulated ransomware is using more evasive features than it has been
programmed to which Gradient Boost utilises to detect the simulated
ransomware when using the data from Cuckoo. The additional calls
within the simulated ransomware are largely due to the calls made by
the JVM during the execution of Amsel.

To understand how much influence the JVM has had over the
results, and to get a better picture on the importance classifiers place on
evasive behavioural traits when detecting malware, we rerun the tests
with simulated ransomware written in C. This will give us complete
control over the calls made and will also allow us to determine the
effectiveness of utilising malware simulators written in Java for system
call based analysis.

4.2. C-based malware simulator

4.2.1. Standard C time method
As discussed in Section 3.3.2, there are three methods by which we

implemented simulated ransomware in C, the first two implementations
are identical to Amsel in functionality, and the final method employs
more complex encryption. The first two methods use XOR encryption
but differ in the manner through which the evasiveness is implemented
as there are two common methods to do this within C. One uses the
Windows-specific Sleep function. The other method (and the method
discussed in this section) uses the standard method in C to implement
the sleep. Table 4 shows the accuracy obtained by the classifiers when
trying to classify simulated ransomware using the standard C time
function.

The results in Table 4 are vastly different from those obtained using
simulated ransomware written in Java. The classifier that identified
the most simulated ransomware samples as malicious using the Kernel
data is Gradient Boost, with an accuracy of 89.9%. Of the remaining
classifiers, Decision Tree and Random Forest still obtain an accuracy
above 50% with 74.9% and 73.6%. Whereas, using the Cuckoo data,
the classifier that classified the most simulated samples as malicious
is Nearest Neighbours, obtaining an accuracy of 42.6%. The remaining
classifiers experience sharp drops in accuracy with both Decision Tree
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Fig. 3. Normalised frequency on a logarithmic scale (y-axis) of the most influential features (x-axis) of Decision Tree using the Kernel data.
Table 4
Classification accuracy of simulated ransomware with C time function using data from
Cuckoo and the Kernel driver.

Machine learning algorithm Kernel driver accuracy (%) Cuckoo accuracy (%)

AdaBoost 40.4 3.09
Decision Tree 74.9 0.0
Gradient Boost 89.9 0.0
Linear SVM 33.0 2.99
Nearest Neighbour 27.9 42.6
Random Forest 73.6 12.7

and Gradient Boost (the best performing classifier against the Java
simulated ransomware) classifying all simulated sample as benign. As
before, more important than the overall performance is the level of
evasion at which the simulated ransomware is considered benign. This
is illustrated in Fig. 4.

Fig. 4(a) shows the performance per sample of each classifier using
the Kernel data. As with Amsel, Nearest Neighbours and Linear SVM
identify the simulated ransomware as malicious once the interarrival
time is greater than 10 s. Whereas, with Decision Tree and AdaBoost,
here is not as clear a connection between interarrival time and clas-
ification accuracy. This also shows a lack of robustness in the two
lassifiers since in essence the same sample is occasionally classified
s malicious and occasionally as benign (showing just how fragile the
ules used by the models are). Gradient Boost and Random Forest clas-
ify the simulated ransomware as malicious in the majority of instances
p until the delay reaches one second at which point it is classified
s benign. After the time between each encryption goes beyond two
econds, the simulated ransomware is, once again, classified as mali-
ious in almost all instances with these two classifiers. This suggests
hat these classifiers have developed quite a specific understanding of
ansomware with regards to its ratio of malicious to benign behaviour.

Fig. 4(b) shows the performance per sample of each classifier us-
ng the Cuckoo data. As suggested in the results, other than Nearest
eighbours, every classifier has performed poorly. It seems that the use
f the C-time function does not fit with many of the classifiers’ model
f typical ransomware behaviour. With Nearest Neighbours, however,
hen the frequency of encryption is high (and thus the amount of
vasive behaviour low), the simulated ransomware is classified as
enign. However, as the time spent sleeping between each encryption
10
exceeds 1 s, Nearest Neighbours classifies the simulated ransomware as
malicious. This suggests that when using the Cuckoo data, ransomware is
recognised more from its evasive behaviour than malicious behaviour. To
better understand the results from the Kernel and Cuckoo data, the
most influential features for the classifiers with the highest accuracy
are analysed.

Feature ranking results
Analysing the top ten features for the best performing classifiers

should also help reveal whether anything outside the intended be-
haviour impacted the results. The classifier with the highest accuracy
using the Cuckoo data, Nearest Neighbours, does not have an inbuilt
feature ranking mechanism, therefore, we use an independent feature
ranking mechanism described in Section 3.4 to determine the most
influential features. Essentially, the mechanism works by giving the
classifier data from one feature at a time and recording the classi-
fication score. The features are then ranked from highest to lowest
classification score. The top ten features of nearest neighbours and their
relative frequency are shown in Fig. 5.

The benefits of using C over Java to simulate malware are immedi-
ately obvious from Fig. 5. The simulated ransomware is not showing
any behaviour not programmed into it. In fact, the only features in
Fig. 5 that record any behaviour from the simulated ransomware are
NtReadFile and NtWriteFile. The frequency with which NtReadFile and
NtWriteFile are called by the simulated ransomware is significantly
more than that of benignware which exceeds that of ransomware.
This shows why simulated ransomware is only detected by classifiers
using the Cuckoo data when the file activity shown by simulated
ransomware is low since then the file activity resembles the file activity
of actual ransomware more closely. The preference given to evasive
features by classifiers is also evidenced by the rest of the features in
the top ten for Nearest Neighbours. Of these features, LdrGetProce-
dureAddress, NtTerminateProcess, SetUnhandledExceptionFilter, Ldr-
GetDllHandle, LdrLoadDll and NtUnmapViewOfSection are all known
to be used by malware for evasive purposes [11,22,95,96].

Fig. 6 shows the top ten features of the classifier with the highest
accuracy relating real ransomware to simulated ransomware (Gradient
Boost) on the Kernel data. To aid with visualisation, the 𝑦-axis is
represented as a logarithmic scale.

As with Fig. 5, in Fig. 6, the most prominent features are NtReadFile
and NtWriteFile. While some of the other features show some activity
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Fig. 4. Classification results per C-time simulated ransomware sample represented as a histogram. On the x-axis the time between each encryption for each sample is plotted. The
y-axis shows the proportion of samples classified as malicious (red) and benign (blue) for those time values. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Normalised frequency (y-axis) of the most influential features (x-axis) using the Cuckoo Data with Nearest Neighbours.



Journal of Information Security and Applications 67 (2022) 103202M. Nunes et al.
Fig. 6. Normalised frequency (y-axis) of the most influential features (x-axis) of Gradient Boost using the Kernel Data from the simulated ransomware using C time.
Table 5
Classification accuracy detecting simulated ransomware using Windows Sleep function
(NtDelayExecution) using data gathered by Cuckoo and the Kernel driver.

Machine learning algorithm Kernel driver accuracy (%) Cuckoo accuracy (%)

AdaBoost 44.2 32.1
Decision Tree 47.8 0.0
Gradient Boost 36.1 6.54
Linear SVM 34.0 31.4
Nearest Neighbour 18.8 28.5
Random Forest 40.0 31.2

in the simulated ransomware, this is simply because the activity of
the entire machine is being recorded by the Kernel driver. As with
the Cuckoo data, the file calls are being called more frequently by
benignware as opposed to ransomware. Therefore, the implication is
that the simulated ransomware is being detected largely through the
features both it and regular malware do not use (or do not use as
frequently). It is their lack of complexity that they have in common.

4.2.2. Windows sleep method
The results from the previous section suggest that Java is not

suitable as a language to simulate malware when it is being iden-
tified at a system call level. It also highlighted the importance that
classifiers place on evasive features of malware when identifying it.
The results also hinted at a limitation of the data gathered at a user-
level in that classifiers trained on it have a very narrow understanding
of what constitutes evasive behaviour. This is evident from the fact
that only one classifier trained on the data from Cuckoo was able
to classify the simulated samples as malicious. To further test the
robustness of the classifiers we must observe their performance against
different implementations of the simulated ransomware. In this section,
we adapted the implementation of the simulated ransomware to use
the recommended method from Windows (Sleep function) to delay
execution. This is of particular significance since there is a possibility
that malware writers favour Windows specific functions since it is
generally the targeted OS. Beside this, the behaviour of the simulated
ransomware has not been altered. Table 5 shows the accuracy obtained
by each classifier classifying the simulated ransomware using data from
Cuckoo and the Kernel driver.
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Table 5 shows that altering one system call can have a remarkable
effect on the classification ability. This is particularly noticeable in
the results using the Cuckoo data. When classifying the simulated
ransomware using C-time, all but one classifier trained on data from
Cuckoo had a classification accuracy less than 15%. Whereas now,
as seen in Table 5, only two classifiers (Decision Tree and Gradient
Boost) obtain an extremely low classification accuracy. The classifier
with the highest accuracy using the Cuckoo data, is AdaBoost (32.1%).
For the Kernel data, Decision Tree obtains the highest accuracy (47.8%)
relating simulated ransomware to real ransomware. The performance of
the remaining classifiers using Kernel data does not differ as strongly
from the best performing classifier as it does with the Cuckoo data
suggesting that the Kernel data encourages more robust and consistent
classifiers. We further analyse the results by looking at the actual
samples that were classified as malicious and benign. This is shown
in Fig. 7.

Fig. 7(a) shows the performance of each classifier per sample for
the Kernel data from running the simulated ransomware using the
Windows Sleep method. Four of the classifiers consistently label the
samples with an interarrival time less than 2 s as benign (Gradient
Boost, Linear SVM, Nearest Neighbours and Random Forest). Five
classifiers generally label simulated ransomware samples with an in-
terarrival time greater than 10 s as malicious (the previous four and
AdaBoost). This suggests that there needs to be a certain level of
evasiveness before a sample is recognised as malicious by the classifiers.
However, once that threshold is reached, it would seem that classifiers
continue to label samples as malicious regardless of how far above
the threshold the quantity of evasive behaviour has reached. Nearest
Neighbours differs from the others in that it does not show a clear
relationship between interarrival time and classification accuracy once
the interarrival time goes beyond 10 s suggesting a lack of robustness in
the classifier. AdaBoost and Decision Tree generally label samples with
interarrival times below 2 s as benign and those above as malicious.
However, for samples with really low interarrivals (between 1.0 × 10−6

and 0.25 s), both classifiers label the samples as malicious suggesting
they have developed a more precise model of what constitutes ran-
somware. In general, the classifiers seem to be identifying malware
more from their evasive traits than their malicious traits particularly
since, for most of the classifiers there needs to be a minimum of

2 s between each encryption. Additionally, there is a much clearer
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Fig. 7. Classification results per simulated ransomware sample using Windows Sleep represented as a histogram. On the x-axis the time between each encryption for each sample
is plotted. The y-axis shows the proportion of samples classified as malicious (red) and benign (blue) for those time values. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
relationship between interarrival time and classification accuracy for
more of the classifiers as compared to the C-time simulated ransomware
suggesting that this strain of simulated ransomware more accurately
reflects the real ransomware seen by the classifiers.

Fig. 7(b) shows how the classifiers labelled the simulated ran-
somware with the Windows Sleep function using data gathered by
Cuckoo. Unlike the results with the simulated ransomware using C-
time, the results in this instance are more balanced, with at least three
classifiers obtaining an acceptable performance. The results show a
preference towards simulated ransomware with a considerable amount
of evasive behaviour as all the classifiers labelled the simulated ran-
somware as benign when the interarrival time was below 10 s. The clear
relationship between interarrival time and classification accuracy for
every classifier in this stage suggests that the simulated ransomware
using the Windows Sleep function has more in common with real
ransomware (with regards to evasive technique) as understood by
classifiers trained on data from Cuckoo. The main difference between
each classifier in Fig. 7(b) is the threshold after which the simulated
ransomware is labelled as malicious. Decision Tree is the only classifier
that classifies all the simulated ransomware samples as benign. This is
particularly worrying given that its accuracy against real ransomware
was 95.6%. The only other anomaly is Gradient Boost which only clas-
sifies simulated ransomware samples with interarrival times between
9 and 17 s as malicious. This would imply that it has obtained a very
specific understanding of what constitutes ransomware and potentially
over-fitted on the real ransomware.

Feature ranking results
Fig. 8 shows the top ten features of AdaBoost using the Cuckoo

data and the relative frequencies with which they were called by
ransomware, benignware and simulated ransomware.
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In Fig. 8, the only feature that is used by the simulated ransomware
is NtDelayExecution. This is the feature that is eventually called by
the Windows Sleep function used in the simulated ransomware. In fact,
there are no file-handling related calls in the top ten for AdaBoost. This
explains why AdaBoost classified the simulated ransomware as benign
when the time between each encryption was short as the frequency
with which NtDelayExecution was called is closer to that of benignware
than ransomware. This also explains why AdaBoost was unable to
detect the simulated ransomware using the C time functions since it
was looking for this specific evasive call in malware.

Fig. 9 shows the top ten features for Decision Tree using the data
from the Kernel driver for simulated ransomware using the Windows
Sleep function. To aid with visualisation, the 𝑦-axis is plotted on a
logarithmic scale.

There are three features in the top ten that are frequently called
by simulated ransomware, NtReadFile, NtDelayExecution, and NtWrite-
File. In prioritising the evasive call being used in the simulated ran-
somware, Decision Tree identifies the simulated ransomware as ma-
licious provided its behaviour is either largely malicious or largely
evasive. However, in between the two extremes of sleep times, the
frequency with which all three features are called by the simulated
ransomware is closer to that of benignware than malware. Unlike
AdaBoost when trained on the Cuckoo data (Fig. 8), Decision Tree,
when trained on Kernel data, is using more than one dimension to
detect simulated ransomware since its focus is not just the evasive trait,
but the features relating to file-handling.

4.2.3. Windows encryption method
The results from the previous experiments show just how much the

results can change from just altering a single system call to implement

the same behaviour in malware. In addition, it further highlights the
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Fig. 8. Normalised average frequency (y-axis) of the most influential features (x-axis) according to AdaBoost when trained on Cuckoo data.
Fig. 9. Normalised average frequency (y-axis) of the most influential features (x-axis) according to Decision Tree when trained on Kernel data.
mphasis the classifiers place on evasive features when identifying
alware. Our last set of experiments seek to determine the extent to
hich the encryption method used affects the results. In our previous
xperiments, the encryption method was written from scratch since
t was just using an XOR function. This time, however, we use the
ncryption functions supplied by Windows to encrypt files with AES-
56 and use the Windows Sleep function to implement the evasive
ehaviour so that all of the main components of the ransomware use
he Windows API. The results for this are shown in Table 6.

The results in Table 6 show quite a dramatic change. Uniquely, the
lassifier with the highest accuracy using Cuckoo data is Linear SVM
btaining an accuracy of 100%. In addition, it is the only classifier that
as a higher accuracy when using Cuckoo data as opposed to Kernel
14

ata to detect the simulated ransomware. All the other classifiers obtain
Table 6
Classification accuracy detecting simulated ransomware using Windows Encryption
routines using data gathered by Cuckoo and the Kernel driver.

Machine learning algorithm Kernel driver accuracy (%) Cuckoo accuracy (%)

AdaBoost 55.3 32.1
Decision Tree 43.6 26.4
Gradient Boost 73.5 25.9
Linear SVM 22.2 100
Nearest Neighbour 0.4 0.0
Random Forest 67.9 31.0

a higher accuracy using the Kernel data further cementing the notion
that Kernel data creates more robust ad consistent classifiers. The clas-
sifier with the highest accuracy using the Kernel data is Gradient Boost
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Fig. 10. Classification results per simulated sample using Windows encryption functions represented as a histogram. On the x-axis the time between each encryption for each
sample is plotted. The y-axis shows the proportion of samples classified as malicious (red) and benign (blue) for those time values. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
(73.5%). Compared to the results from using XOR encryption and Win-
dows Sleep (Table 5) three classifiers (Decision Tree, Gradient Boost
and Linear SVM) show an increase in accuracy here using the Cuckoo
data, suggesting a greater inclination to classify samples as malicious if
they are using encryption methods provided by Windows. Interestingly,
with AdaBoost (the classifier that had the highest accuracy with the
Windows Sleep method) the accuracy has not changed at all showing
how little emphasis it places on the actual encryption method used.
With the Kernel data, three classifiers (AdaBoost, Gradient Boost and
Random Forest) showed a significant increase in accuracy as compared
to when XOR encryption was used (as seen in Table 5). This suggests
that the choice of encryption method does have an effect on how the
classifier sees a sample. However, it is likely to be an indirect effect
since there are not any explicit encryption calls in the Kernel, therefore
it is likely that it is through the file calls (or rate of those calls) made by
the simulated ransomware that they were identified. To better assess
the results, we visualise the results for each simulated ransomware
sample. This is shown in Fig. 10.

Fig. 10(a) shows the performance of the classifiers per sample of
the simulated ransomware with complex encryption using the data
from the Kernel driver. AdaBoost, Decision Tree and Gradient Boost
developed a more specific understanding of what constitutes malware.
Rather than there being one time value after which samples are classi-
fied as malicious, the classifiers fluctuate between malicious and benign
classifications as the interarrival time is changed. However, this is
not the case for Linear SVM which classifies simulated ransomware
samples that sleep for 20 s or longer as malicious. In fact, the results
of Linear SVM have been quite consistent across all sets of simulated
ransomware using the Kernel data. Unusually, Random Forest classifies
all samples with an interarrival time of 2 s or less as malicious and
15
samples with interarrival times between 2 and 25 as benign. However,
after that point, the classifier’s results show a lack of robustness since
the same sample is classified differently in different runs. This also
suggests that the focus shifts to other features beyond this time value.
Finally, Nearest Neighbours stands out as the only classifier to label
all samples as benign. Generally, there is less agreement amongst the
classifiers as to what is considered malicious as compared to when the
other simulated ransomware samples were used. However, for the most
part, the classifiers produced are fairly robust.

Fig. 10(b) shows how the classifiers using data from Cuckoo label
each simulated ransomware sample using complex encryption func-
tions. Aside from Linear SVM and Gradient Boost, the classifiers largely
label the samples as benign. The accuracy values reported in Table 6
for the Cuckoo data hid the fact that the samples classified as malicious
by all but two classifiers are not consistent but scattered amongst
different time values. This shows just how fragile the majority of the
classifiers created using the Cuckoo data are. This suggests that if the
encryption functions within the Windows API are used to implement
the encryption mechanism, the classifiers trained on Cuckoo data are
more likely to label the sample as benign. Gradient Boost differs from
the other classifiers in that samples with interarrival times above 20 s
are classified as malicious. This is an improvement on its performance
when only XOR encryption functions are used suggesting that Gradi-
ent Boost is using encryption functions within the Windows API to
detect ransomware. In contrast, Linear SVM labels all the simulated
ransomware samples as malicious. However, a 100% accuracy is not
desirable since it is likely that benignware will also be classified as
malicious. To make more sense of the results, the top ten features of
the classifiers that were able to relate the most simulated samples to
ransomware are dissected.
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Fig. 11. Normalised average frequency on a logarithmic scale (y-axis) of the most influential features (x-axis) according to Linear SVM when trained on Cuckoo data.
Feature ranking results
Fig. 11 shows the top ten features of Linear SVM using the data from

Cuckoo. For this graph, the 𝑦-axis is logarithmic due to the tremendous
differences in frequencies.

One call in particular stands out in Fig. 11, the call CryptEncrypt.
As its name suggests, this call is used to encrypt data. This explains
why Linear SVM classifies all the simulated ransomware as malicious
since it is using a feature related to encryption provided by Windows to
differentiate ransomware from benignware. In fact, CryptEncrypt is the
only call within the top ten that is used by the simulated ransomware.
This also explains why Linear SVM did not perform as well with the
previous versions of simulated ransomware since it was looking for
ransomware specifically using the functions provided by Windows to
encrypt files. Of the remaining features in the top ten some relate to
evasion. For example, some of the calls are frequently used to detect
virtualization (GetDiskFreeSpaceExW, CreateToolhelp32Snapshot [88]
and GetUserNameExA [10]).

Fig. 12 shows the top ten features of Gradient Boost using the
Kernel data from running the simulated ransomware using Windows
encryption functions. As before, to aid with visualisation, the 𝑦-axis is

logarithmic scale.
Fig. 12 shows that Gradient Boost places importance on

ile-handling features. Unlike the Cuckoo data, however, there are no
xplicit features pertaining to encryption at the Kernel level on this
teration of Windows. Therefore the classifiers trained on Kernel data
re not as significantly affected by the encryption methodology used.
his has the advantage of preventing overfitting. From the top ten
eatures, it is clear that there is not just one or two features contributing
o the detection of the simulated ransomware. This is a good sign since
t means the classifier is not placing too much importance on a single
roperty. What can also be seen is that the simulated ransomware is
etected partially by the features that it and real ransomware do not
se.

.3. Discussion

The experiments in this paper have shown that classifiers trained
sing the traditional dynamic malware analysis process do tend to
dentify malware through its evasive properties. This is a common
16

bservation throughout most of our experiments. As the time spent
sleeping was increased and the amount of malicious activity of sim-
ulated ransomware was reduced, the classifiers started classifying the
simulated ransomware as malicious. There were exceptions to this,
however, but they did not weaken our conclusion. For example, the
classification results from the simulated ransomware written in Java
using data gathered by Cuckoo did not suggest much of a link be-
tween evasive behaviour and classification accuracy, particularly when
considering the best performing classifier’s results (100% accuracy).
However, analysis of the top ten features showed that, in actuality,
many of the calls made by the JVM were interpreted by the classifier as
evasive features. This abundance of evasive behaviours led the classifier
to label all the simulated ransomware samples as malicious, highlight-
ing just how easily these systems can be deceived. The other notable
exception to our conclusion was Linear SVM’s results on the simulated
ransomware using Windows encryption functions. When using data
from Cuckoo, Linear SVM managed to obtain a 100% accuracy against
the simulated ransomware using Windows encryption functions. Once
again, study of the top ten features revealed that this was down to the
overemphasis Linear SVM was placing on one encryption call in the
Windows API. As a result anything using that call was immediately
labelled as malicious. However, generally the evidence pointed to the
fact that classifiers recognised malware by both evasive and malicious
traits. Given that classifiers generally required a sample to wait for 2
s or more between each encryption before they classified a sample as
malicious, it can be argued that a considerable portion of a sample’s
behaviour needs to be evasive before it is recognised as malicious.

Another conclusion that can be drawn from our experiments is that,
in its raw form, the Kernel data is better suited to creating robust
classifiers than the Cuckoo data. There were a number of observations
that led to this conclusion. To begin with, the difference in results
between the best performing classifier and the remaining classifiers
was not as considerable for the classifiers when using Kernel data. This
was true for all sets of simulated ransomware except for the simulated
ransomware written in Java. However, those results were tampered by
the interference from the JVM and even so, they showed the Kernel
data and Cuckoo data to be equally matched with three classifiers
performing better on Kernel data and three performing better on data
from Cuckoo. For the rest of the simulated ransomware, the classifiers
trained on Kernel data did not show as considerable changes in results
(even between different sets of simulated ransomware) as those using
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Fig. 12. Normalised average frequency (y-axis) of the most influential features (x-axis) according to Gradient Boost when trained on Kernel data.
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data from Cuckoo. An obvious reason for this is that the Kernel driver
operates at a higher level of abstraction and therefore the data fed to
a classifier is likely to be less specific and more critical. Less specific
because many user-level calls feed into a single Kernel call meaning that
a classifier trained on data from the Kernel is less likely to focus on fine-
grained details. More critical because a call that makes its way to the
kernel is likely to be crucial to the proper functioning of the program
or OS. We saw an example of the dangers from the Cuckoo data when
comparing the change in results between the standard C-time simulated
ransomware and the Windows Sleep simulated ransomware. With the
standard C-time simulated ransomware only one classifier obtained an
accuracy greater than 15%, whereas with the Windows Sleep simulated
ransomware three classifiers achieved that using the Cuckoo data.

Another sign of the lack of robustness in the classifiers trained
on data from Cuckoo is that for three out of four of the simulated
ransomware types, the best performing classifier on the training data,
Gradient Boost, was not the best performing classifier for the simu-
lated ransomware. The only case where Gradient Boost was the best
performing classifier for the simulated ransomware was when using
the simulated ransomware written in Java. This was largely due to
the interference the JVM had on the system calls made meaning that
the simulated ransomware was showing more evasiveness then it was
designed to. The Kernel data tells a slightly different story. The best
performing classifiers for the simulated ransomware fluctuated between
Decision Tree and Gradient Boost, both of which performed well against
the training data. The two classifiers differed only on three features
within their top ten. However, the crucial feature was NtDelayExecu-
tion. While Decision Tree included it in its top ten, Gradient Boost
did not. As a result, Decision Tree performed better when detecting
simulated ransomware written in Java and the simulated ransomware
that used Windows Sleep as both of these made extensive use of that
call. This slight disagreement between the classifiers suggests that the
classifiers need to be fine-tuned somewhat.

The main problem with using system calls at user-level as features
is that they result in classifiers learning to recognise specific calls as
opposed to behaviours of malware (as was seen in Linear SVM). One
possible remedy is to group calls into categories that are then used as
features, or alternatively use features such as CPU and memory usage
as recommended by [97] to ensure that classifiers learn to identify the
17

effect that malware has on a system rather then specific calls it makes. r
With regards to the Kernel data, it was the classifiers with the
highest accuracy on the simulated ransomware that showed interesting
behaviour consistently for all the simulated ransomware written in
C. Rather then there being a specific interarrival time value beyond
which samples were classified as malicious or benign, the samples
classified as benign were sandwiched between malicious classifications.
For example, the C-time simulated ransomware was classified as benign
when the time between each encryption was 1 s and greater but less
than 2 s. Outside of that range, Gradient Boost classified all simu-
ated samples as malicious. This was similar for Decision Tree with
he Windows Sleep simulated ransomware and Gradient Boost for the
imulated ransomware using Windows encryption functions. Given that
he ransomware was detected confidently at both extremes (high rate
f encryption and low rate of encryption), it would suggest that these
lassifiers are looking for behaviour differing significantly from the
orm to identify ransomware.

Finally, our research also found that there is scope for additional
tudy into malware simulators, as carefully researched and crafted
imulators could provide a useful means by which to further evaluate
lassifiers and determine how they are recognising malware. While
ava is not a suitable language for simulating malware if it is being
tudied at a fine-grained, system-call level, it can still be useful if
alware is being studied at a higher level of abstraction.

. Future work

Our research is far from complete, the main scope for additional
ork is with regards to the feature representation technique. We em-
loyed a frequency histogram as the feature representation method
ue to its widespread use, however, there are many other methods by
hich system calls can be represented. For example there is the n-gram
pproach whereby each unique sequence of system calls of length ‘n’
re bundled together to create features. Additionally, some approaches
lso encode arguments and return values of system calls to pass to the
lassifier. This research represents a starting point into future work in
hich we would like to test more feature representation methods and
etermine how they affect the types of behaviours that classifiers use
o identify malware.

Also in relation to the data collected, one of the aspects of our
esearch was to compare whether the manner in which the data was
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Fig. A.13. System diagram.
collected affected the classifiers’ ability to detect ransomware. We
compared data collected using one user-level method and one kernel-
level method. However, as documented in our previous paper [13],
there are a number of methods by which system-call data can be
collected from a machine that may yield different results. Furthermore,
using alternative kernel-level methods may allow us to repeat the
experiments on different versions of Windows. Therefore, future work
will explore the effectiveness of different data gathering techniques
with regards to producing robust classifiers.

Finally, we looked at one form of malware using one type of evasive
behaviour, however, there are many other families of malware (such
as worms, Trojans, rootkits etc.) as well as evasive behaviours [94].
There is also malware that does not fit into a neat category and
employs a variety of behaviours (for example, a Trojan that also has the
capability to act like ransomware). Therefore we would like to further
our study into more complex malware and behaviours to determine if
our results here are consistent across the spectrum. For us to conduct
a study of that scale, more sophisticated malware simulators need to
be developed. Therefore, we hope that this paper will encourage the
field to create such simulators with us so that we can conduct further
research.

6. Conclusion

The aim of this paper was to assess whether classifiers trained
within the dynamic malware analysis process were being biased by
the volume of evasive behaviour present in modern-day malware. This
was tested by training state-of-the-art classifiers on real ransomware
and benignware and then assessing their ability to detect simulated
ransomware with varying levels of evasive behaviour. Four types of
simulated ransomware were used for our experiments, one type was
written in Java, while the other three were written in C. Of the three
written in C, two differed by the function they used to sleep while
the last one differed from the rest by using Windows’ own encryption
functions instead of the XOR encryption functions that were used by
the other sets of simulated ransomware.

The experiments and detailed analysis revealed that the classifiers
are generally more likely to classify ransomware as malicious if a
significant proportion of its behaviour consists of evasive techniques.
This was true for both the data from Cuckoo and the Kernel driver. The
best performing classifiers using the Kernel data, however, classified
simulated ransomware as malicious only when its behaviour differed
significantly from the norm and therefore tended to classify the sim-
ulated ransomware as benign when it contained a small amount of
evasive behaviour. We also found that the Cuckoo data discouraged
the creation of robust classifiers due to how fine-grained it is. Unlike
the Kernel data, the classifiers trained on Cuckoo data tended to
recognise malware through specific calls rather then behaviours. We
therefore discourage the use of user-level data (such as that gleaned
from Cuckoo) without further processing (such as the grouping of calls
into categories).

There are still many things we were unable to study, such as how
different feature selection methods affect the behaviours learned by
classifiers and how the results change with each family of malware.
Our intention is that this work is a starting point into further analysis.
However that will only be possible if more sophisticated and powerful
malware simulators are created.
18
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