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We compute the renormalisation factors of the quark mass and wave function using IMOM (In-
terpolating MOMenta) schemes. The framework is the Rome-Southampton non-renormalisation
method, but the momentum transfer in the quark bilinears is not restricted to zero or to the symmet-
ric point. We study the scale dependence, infrared contamination and lattice artefacts for different
values of this momentum transfer and for two different kinds of projectors. For the numerical
simulations, we use data generated by the RBC-UKQCD collaborations, with 𝑁 𝑓 = 2 + 1 flavours
of Domain-Wall fermions, and inverse lattice spacing of 1.79 and 2.38 GeV.
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Figure 1: Left: a quark bilinear with incoming momentum 𝑝1, outgoing momentum 𝑝2 and momentum
transfer 𝑞 = 𝑝1 − 𝑝2. Right: relationship between 𝜔 and the angle 𝛼 between the incoming and outgoing
momenta.

1. Kinematics

In the framework of the Rome-Southampton method [1], one imposes a set of renormalisation
conditions on composite operator Green’s functions computed non-perturbatively on the lattice.
We consider here a generic flavour non-singlet quark bilinear 𝑂Γ = �̄�𝑖Γ𝜓 𝑗 , where 𝑖 ≠ 𝑗 and Γ is a
Dirac matrix. We suppress the flavour indices 𝑖 and 𝑗 for simplicity. Traditionally the momentum
transfer is chosen is to be either zero or such that 𝑝2

1 − 𝑝2
2 = (𝑝1 − 𝑝2)2, where 𝑝1 and 𝑝2 are

the incoming and outgoing momenta, respectively (see Fig. 1). The former is known to lead to
exceptional kinematics and therefore potentially large unwanted infrared contributions; the latter
is referred to as the symmetric point and defines a so-called RI/SMOM scheme [2, 3]. The main
purpose of the RI/SMOM kinematics is to suppress the unwanted low-energy contributions. Here
we want to generalise this choice of kinematics. As usual, the renormalisation scale is called `, but
we define an additional parameter 𝜔 such that

(𝑝1 − 𝑝2)2 = 𝜔`2 , (1.1)
`2 = 𝑝2

1 = 𝑝2
2 . (1.2)

It follows that 𝜔 = 0 corresponds to zero-momentum transfer and 𝜔 = 1 corresponds to the
RI/SMOM kinematics. Although it makes sense to fix 𝜔 to either of these values in order to be left
with only one scale in the game, in general the parameter 𝜔 can take any value between 0 and 4.
One can define an angle 𝛼 between 𝑝1 and 𝑝2 and we find that 𝜔 = 2(1 − cos𝛼), as illustrated in
Fig. 1. It is clear that the extreme values of 𝜔 where 𝑝1 and 𝑝2 are parallel or anti-parallel can lead
to collinear singularities. Letting 𝜔 vary as a free parameter defines the RI/IMOM schemes (we
will now drop the “RI” to ease the notations). The interested reader can find more details in [4].
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2. Definitions

2.1 Z-factors

We study 𝑍𝑚 and 𝑍𝑞, the renormalisation factors of the quark mass and wave function,
respectively. The are defined in the chiral limit (𝑚 represents the quark mass) through

𝑍
(𝑋 )
𝑞 (`, 𝜔) = 𝑍𝑉 lim

𝑚→0

[
Λ
(𝑋 )
𝑉

]
IMOM

, (2.3)

𝑍
(𝑋 )
𝑚 (`, 𝜔) =

1
𝑍𝑉

lim
𝑚→0

[
Λ𝑆

Λ
(𝑋 )
𝑉

]
IMOM

. (2.4)

On the right-hand-side of Eqs. (2.3) and (2.4), Λ𝑆,𝑃 represent the amputated and projected vertex
functions computed on Landau-gauge fixed configurations, at finite quark mass 𝑚 = 𝑍𝑚𝑚𝑏𝑎𝑟𝑒

(we take all quark masses to be same for simplicity). The values of 𝑍𝑉 are known from previous
work [5]. The choice of projector is denoted by 𝑋 ∈ (𝛾`, 𝑞/), more explicitly:

Λ𝑆 =
1
12

Tr[Π𝑆] , (2.5)

Λ
(𝛾`)
𝑉

=
1
48

Tr[𝛾`Π𝑉 ` ] , (2.6)

Λ
( /𝑞)
𝑉

=
𝑞`

12𝑞2 Tr[/𝑞Π𝑉 ` ] , (2.7)

where ΠΓ, Γ = 𝑆,𝑉 ` represents the amputated vertex function:

ΠΓ = 〈𝐺−1(−𝑝2)〉𝑉Γ(𝑝2, 𝑝1)〈𝐺−1(𝑝1)〉 , (2.8)

and

𝑉Γ(𝑝2, 𝑝1) = 〈𝜓(𝑝2)𝑂Γ�̄�(𝑝1)〉 , (2.9)
=

∑︁
𝑥

〈𝐺𝑥 (−𝑝2)Γ𝐺𝑥 (𝑝1)〉 , (2.10)

𝐺 (𝑝) =
∑︁
𝑥

𝐺𝑥 (𝑝) . (2.11)

Finally, within our conventions, 𝐺𝑥 (𝑝) represents an incoming quark propagator with momentum
𝑝, where the Fourier transform is computed at space-time point 𝑥, explicitly:

𝐺𝑥 (𝑝) =
∑︁
𝑦

𝐷−1(𝑥, 𝑦)𝑒𝑖 𝑝.(𝑦−𝑥) . (2.12)

In order to assess some systematic errors, we also implement the vertex function for Λ𝐴 and Λ𝑃.
They are defined exactly in the same way, with 𝑉 −→ 𝐴 and 𝑆 −→ 𝑃 in the previous equations

2.2 Running

We compute the non-perturbative scale evolution of 𝑍𝑦 , 𝑦 ∈ (𝑚, 𝑞), we define Σ𝑚 as:

Σ
(𝑋 )
𝑦 (𝑎, `, `0, 𝜔, 𝜔0) = lim

𝑚→0

𝑍
(𝑋 )
𝑦 (𝑎, `, 𝜔)

𝑍
(𝑋 )
𝑦 (𝑎, `0, 𝜔0)

, (2.13)
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Figure 2: As a measure of chiral symmetry breaking effects we show (Λ𝑆 − Λ𝑃)/Λ𝑉 for the 𝛾`-projector,
as a function of 𝜔, for a fixed value of `. The unwanted low energy contributions decrease quickly as 𝜔

increases.

where as above 𝑋 can be either 𝛾` or /𝑞. We take the continuum limit :

𝜎
(𝑋 )
𝑦 (`, `0, 𝜔, 𝜔0) = lim

𝑎2→0
Σ
(𝑋 )
𝑦 (𝑎, `, `0, 𝜔, 𝜔0) . (2.14)

We also compute this running in perturbation theory at Next-to-Next-to-Leading Order (NNLO).
We note that for 𝑍𝑚, the corresponding anomalous dimensions have been recently computed in [6]
and [7] at N3LO in the case 𝜔 = 1. In MS, they can be found in [8], together with the one of the
quark wave function for the 𝑞/-projector.

3. Results

As it is often the case for a NPR study, the choice of the lattice discretisation is of crucial
importance. The good chiral-flavour properties of the Domain-Wall fermions are essential to
disentangle physical infrared contributions from artefacts due to the choice of fermionic action. In
absence of chiral symmetry breaking, we should findΛ𝑆 = Λ𝑃. In Fig. 2, we show (Λ𝑆−Λ𝑃)/Λ𝑉 as
a function of𝜔, for ` = 1.5 GeV (we divide byΛ𝑉 to cancel the quark wave function renormalisation
factor). We find that this quantity is much smaller for 𝜔 ≥ 2 than for 𝜔 = 1: ∼ 0.03 vs. ∼ 0.10 .
This could be important for four-quark operators such as (𝑆 − 𝑃) × (𝑆 − 𝑃) and (𝑆 − 𝑃) × (𝑆 + 𝑃)
which can also mix due to chiral symmetry breaking effects.

In Fig.3 we show the non-perturbative scale evolution for 𝑍 (𝑞/)𝑞 at finite lattice spacing and in
the continuum, for different values of 𝜔 = 𝜔0. We expect this quantity to be 𝜔-independent due to
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Figure 3: Example of continuum extrapolations for 𝜎 (𝑞/)𝑞 (`, `0, 𝜔, 𝜔0).

the vector Ward-Takahashi identity. Although after continuum extrapolation this quantity is indeed
𝜔-independent (to a good approximation), this is clearly not the case at finite lattice spacing. Using
this quantity as a measure of the discretisation effects, Fig.3 suggests that the region 𝜔 ∼ 2.0 − 2.5
is less affected by lattice artefacts (for this quantity).

We show the running of the quark mass in Fig. 4 for the 𝛾`-scheme: both the non-perturbative
scale evolution 𝜎

(𝛾`)
𝑚 (`, `0, 𝜔, 𝜔0) and the perturbative prediction 𝑢

(𝛾`)
𝑚 (`, `0, 𝜔, 𝜔0). We fix

𝜔 = 𝜔0 = 0.5, 1.0, 1.5, . . . , 4.0 and let ` vary between 1 and 4 GeV. We find a good agreement for
intermediate values of ` and 𝜔, where both perturbation theory and lattice artefacts are expected to
be under control. There is also a good agreement for small values of ` (within our statistical and
systematic uncertainties) where we would have expected non-perturbative effects to be more visible.
We also find that out of the two projectors, perturbation theory and lattice results agree best in the
𝛾`-scheme. On the other hand, the lattice artefacts for large values of ` and 𝜔 become relevant
for 𝑞2 & 25GeV2. This becomes particularly visible for large values of 𝜔 = 4, where perturbation
theory also becomes less reliable.

The only significant (relative) discrepancy we found is for 𝑍
(𝑞/)
𝑞 , the quark wave function in

the 𝑞/-scheme. However, this quantity should be 𝜔-independent (up to lattice artefacts) and has no
`-dependence at leading order (in the Landau gauge). We show our results in Tables 1 and 2. In
this case the perturbative prediction is known at N3LO. As we can see from these tables, the series
converges very poorly in the sense that the relative difference decreases very slowly as we increase
the order of the expansion. The difference between the non-perturbative result and the N3LO
prediction, namely ∼ 1.0195 − 1.0113 ∼ 0.0082, could then be explained by higher corrections.
On the other hand, for 𝑋 = 𝛾`, we find a much better convergence of the perturbative expansion
and a good agreement between the perturbative and non-perturbative running after conversion to MS.
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Scheme LO NLO NNLO NNNLO NP
MS 1.0 1.0048 1.0062 1.0064

MS← 𝛾` 1.0 1.0069 1.0078 N.A.
MS← 𝑞/ 1.0 1.0195 1.0175 1.0146

𝛾` 1.0 1.0017 1.0020 N.A 1.0037(20)
𝑞/ 1.0 1.0048 1.0081 1.0113 1.0195(25)

Table 1: Running between 2 and 2.5 GeV for the quark wave function in MS and in the SMOM schemes
𝛾`(𝜔 = 1) and 𝑞/. In this case the running is known at NNNLO.

Scheme NLO-LO NNLO-NLO NNNLO-NNLO
MS 0.0048 0.0013 0.0003
𝛾` 0.0017 0.0003
𝑞/ 0.0048 0.0033 0.0032

Table 2: Study of the convergence of the perturbative series for running of the quark wave function between
2 and 2.5 GeV in MS, SMOM-𝛾` and 𝑞/.

4. Conclusions and outlook

We have implemented several IMOM schemes defined via two different projectors and deter-
mined the renormalisation factors and non-perturbative scale evolution functions of the quark mass
and wave function. We find that the non-pertubative and perturbative results agree very well as long
as we stay from the corner of the𝜔, ` plane, with one exception, namely 𝑍

(𝑞/)
𝑞 . There, we argued that

the reason for this relatively bad agreement is the poor convergence of the perturbative expansion.
We have shown some cases where𝜔 ∼ 2.0−2.5 lead to substantially reduced infrared contamination
and better control over the discretisation effects, compared to standard SMOM kinematics.

We used two lattice spacings in this proof of concept study, clearly adding a finer lattice could
potentially allow us to probe the Rome-Southampton window even further. It will also be interesting
to extend this study to the case of four-quark operators where the infrared contaminations due to
chiral symmetry breaking are significantly more sizeable. The hope is that increasing the value of
𝜔 will reduce these contaminations (compared to 𝜔 = 1) as it does for the bilinears.
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Figure 4: Comparison of the non-perturbative and perturbative running for 𝑍 (𝛾`)𝑚 . Note that for 𝜔 = 1 the
perturbative running is known at N3LO.
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