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Abstract

The sequential actions that children and adults perform regularly if not daily (e.g.,
preparing for and going to school/work, preparing meals, and so on) are often un-
der routine control in that they appear not to require overt attention. The study
of routine action control in adults has benefited from influential theories, such as
the Norman and Shallice’s (1986) dual-systems theory, supported by comprehensive
computational models. Drawing on the latter theory, and comparing it with other
existing accounts of sequential action selection, this thesis aims at improving our
understanding of the development of routine action control throughout the school-
age years. It investigates how children control complex action sequences, at several
levels, and with the involvement of various supervisory functions (including in-
hibitory control and monitoring functions). It furthermore explores the interaction
between the two hypothesised action control systems in children under the lens of
the dual-systems theory, but also under the lens of the so-called model-free and model-
based types of reinforcement learning. This is done by designing child-friendly tasks,
developing a computational model, and proposing novel analysis methods for kine-
matics data.

The findings in this thesis support the view that children use two modes of con-
trol which may follow different developmental trajectories, with a supervisory sys-
tem following a more protracted development. The results furthermore suggest that
the development of inhibitory control throughout the school-age years might reduce
children’s propensity to interferences from environmental distractors, and might im-
prove their abilities to select the appropriate action in an ambiguous context (e.g.,
when an action needs to be related more strongly to the overarching goal than to the
preceding’s action) or under increased cognitive load.

In conclusion, this thesis shows that by 5 or 6 years old, children readily use
conjointly two modes of action control and are able to control action sequences in a
routinised fashion, yet the supervisory mode of control seems to substantially im-
prove throughout mid-childhood. It furthermore brings evidence for the fact that
changes in executive functions underlie improvements in sequential action control
with age.
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Chapter 1

The Control of Action Across
Development: Theoretical and
Methodological Foundations

Abstract

This Chapter starts by introducing the relevance of studying the development of se-
quential action control and presents the domain of action of concern (the so-called
intermediate domain of action). It then presents key concepts in action control, breaking
it down into small components and laying out the developmental trajectories of such
separate aspects of action control. This leads to the introduction of integrative the-
oretical accounts of sequential action control. The most influential of them involves
two systems working together (Norman and Shallice, 1986, Cooper et al., 2014) or
in competition (Daw et al., 2005) to select actions. The accounts are then compared,
and the gap in our understanding of the interactions of two systems for action con-
trol throughout development is highlighted. Finally, important methods to study
action control are presented before giving an overview of the thesis Chapters.

1.1 Introduction

Picture a 7-year-old, on a Monday morning, walking into the kitchen for breakfast.
She heads to the bottom right cupboard to pick up a bowl, then to the cutlery drawer
to fetch a spoon, avoiding the fork that has been placed in the wrong slot. She picks
up her favourite cereal box, frees her hand by placing all items on the table, now
heads towards the fridge where she pauses an instant facing the temptation of her
favourite chocolate bar (knowing she would be told off for eating it at this time rather
than as an afternoon snack), and successfully picks up the milk instead. She fails to
locate the orange juice thus turns around to find it is already on the kitchen table.
Having in front of her a full array of objects for breakfast, she reaches for the cereal
box while hearing her mum’s reminder to wear warm clothes for the cold day ahead.
A few seconds later she realises that she has been pouring the cereal into the glass
instead of the cereal bowl- she thus corrects this by transferring the cereal from the
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glass to the right recipient. She then helps herself to some orange juice, and finally
goes on to lift the bottle of milk that she unexpectedly finds empty- a consequence
of her sibling’s sneaky passage through the kitchen. She decides to eat the cereal dry
instead of getting up to get a new bottle of milk.

This scene embodies many aspects of the control of daily-life activities that will
be recurrent in this thesis: achieving one’s goal, selecting a target among surround-
ing objects, sequencing actions while collecting external information, maintaining
a goal in mind, inhibiting unintended actions, monitoring the environment, updat-
ing plans, and so on. This thesis explores the development of action control in the
context of routine or routine-like daily action sequences.

1.1.1 Routinisation or modularisation starts early in development

Bruner (1973) introduces the importance of routines and subroutines in the develop-
ment of goal-directed skilled action, in particular in infancy. He presents modular-
isation, the process by which an act or a serially ordered sequence of acts are mas-
tered, as an essential phenomenon to construct more and more complex behaviour.
In a modularised subsequence, the component acts are well-mastered and thus do
not require to be controlled at the individual level. Thus, less attention is needed
for controlling such a sequence. The freed-up attention resources consequently al-
lows the incorporation of acts into higher-order sequences and the regulation of such
sequences. Bruner (1973) highlights two ways in which such constituent acts or sub-
routines develop through practice in early childhood. One is through play (espe-
cially when the action consists in physically altering states of the world, e.g., Schiller,
1952), the other is through modelling adults action, which can also be a form of play.

Similarly, the skill theory of Fischer (1980) underlies that cognitive development
happens through the mastery of simpler skills that are integrated together to build
progressively more complex skills. This theory tackles motor skills as well as en-
compasses other domains such as cognitive, social and language skills in a unified
framework. Both early accounts of the development of skilled action highlight the
relevance of studying routines, or well-mastered action sequences, in childhood.
When fewer resources are needed to perform constituent subroutines, the execu-
tion of more complex higher-order acts, or goal-directed sequences, becomes possi-
ble. Greater resource availability when executing daily-life routine action sequences
also has the advantage of leaving attentional resources. Such resources may be allo-
cated to multitasking or planning subsequent activities, which contributes to build-
ing more complex daily behaviours.

1.1.2 School-aged children control numerous action sequences in their
daily life

Once acquired, the action sequences must be consistently and efficiently controlled
in the face of a sometimes distracting or changing environment. Hence, beyond the
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mastery of basic motor acts and learning conceptual sequence order, it is essential
to understand how action sequences are controlled (initiated and executed until the
end of a sequence) with respect to goals and in accordance with the state of the
environment. In adults, the control of action has been widely studied. Although
school-aged children already partake efficiently in many routine activities, the study
of action sequencing in children has traditionally been geared towards learning, and
less towards the control of known sequences. The latter is the focus of this thesis.

When reaching school-age, i.e., around 5 or 6 years old, children already need
to complete several routine sequences such as preparing breakfast, getting dressed,
brushing their teeth, packing their backpack for school, etc. (Weisner, 1996). Further-
more, attending school requires acquiring a concentrated amount of novel knowl-
edge, meaning that children will benefit from freed-up attentional resources when
executing action sequences if these are routinised. Additionally, multitasking abili-
ties appear to develop between the age of 7 and 12 (Yang et al., 2019), presumably as
a consequence of efficient routine control abilities.

Finally, throughout the years, a set of core processes called executive functions
(domain-general control mechanisms responsible for modulating many cognitive
subprocesses) are known to improve greatly (e.g., Karr et al., 2018, T. Maldonado
et al., 2020). These subprocesses will be described in more detail in Section 1.3.2.2.
Such executive functions are also thought to be important for efficient action con-
trol. Pooling together the vast knowledge in the executive functions literature about
changes throughout childhood together with studying action in children can further
our understanding of the developmental changes underlying action control.

For these reasons, this thesis will particularly focus on the traditional primary
school ages, i.e. around 5 to 11 years old. Nonetheless, the developmental trajectory
observed may expand to preschool years and adolescence.

1.1.3 The intermediate domain of action is of particular interest

Action can be studied at several levels. The lowest level of analysis (the execution of
action) considers the biomechanics of movements: that is, measuring the movement
kinematics as well as the forces behind posture, body configurations, speed of action
and fine-grained adaptations to objects’ physical properties (Jensen, 2005, Thorough-
man and Shadmehr, 2000). This thesis is not directly concerned with this level of de-
scription, and a review of the developmental changes in movement biomechanics,
including the biomechanics of interaction with objects (reaching, grasping, holding)
is given by Adolph and Berger (2011).

At the highest level of analysis, we encounter what Schank and Abelson (1977)
referred to as scripts or Memory organisation packets (Schank, 1982). For example,
visiting a restaurant entails an overall script that includes greeting the staff, taking
place at the restaurant table, ordering food, eating, and paying the bill. The sub-
actions for each goal are not specified precisely. For example, the bill may be paid by
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card or cash (Cooper and Shallice, 2000). Moreover, the duration of the entire script
can be highly variable from one execution to the next.

In between the two levels lies a level of its own as defined by Cooper and Shallice
(2000): the intermediate domain (or level) of action. The intermediate level is the
focus of this thesis. Contrary to the higher, script level, the intermediate level defines
sub-actions more precisely and their selection is critical to carrying out the goal as
intended (e.g., the sequence ’paying the bill by cash’ will include the sub-actions
’fetching the wallet’, ’taking and counting notes’, ’handing them to waiter’, and so
on). Furthermore, at the script level the action timing is generally more variable than
at the intermediate level. Unlike at the lowest level of action, at the intermediate
level the local physics of the environment (e.g., the reachability of objects, the status
of objects such as ’the wallet is already open’) only need to be defined at a coarse
grain. At the lowest level, the physical properties of the objects that are subject to an
action are defined at a fine level which encompasses the biomechanics of movement,
contrary to the intermediate level. The intermediate domain of action encompasses a
wide range of routine activities as presented in the introduction: dressing, preparing
one’s school bag, preparing coffee, washing one’s hand, starting a car, etc.

1.1.4 The development of action can be studied separately from motor
skills

The level of action and the age range that are of interest in this thesis allow us to
investigate developmental changes in action without considering the fact that motor
skills are still changing across school-age years. Although body size and strength
are still significantly changing, by school age children are largely proficient in basic
motor acts such as reaching, grasping, holding and manipulating objects. In fact,
such a motor competence is already present in 12- or 18-month-old toddlers (e.g.,
opening a bottle of water, using a spoon) and are well-mastered by the third year of
life (e.g., Konczak and Dichgans, 1997, Adolph and Berger, 2007, Kahrs et al., 2013).
Motor skills continue to evolve beyond school age (e.g., becoming more accurate
and consistent Kahrs et al., 2012, Kahrs et al., 2014), but within our level of action of
interest (intermediate) it is sufficient that the basic motor acts are proficient enough
so that cognitive developmental changes may be studied independently from motor
developmental changes.

Another important distinction to be made is that studying routine actions differs
from studying motor skills, although there is a considerable overlap. Indeed the
automatisation process is most likely carried out by the same areas: motor learning
has been found to engage parietal areas (Kelly and Garavan, 2005, Jenkins et al.,
1994), and more recent work has described the role of the striatum and the associated
corticobasal ganglia loops in the production and regulation of movement sequences
(Graybiel, 2008, Desmurget and Turner, 2010).

Yet the precise interest of this thesis can be distinguished from activities that rely
more heavily on motor skills with a very specific movement pattern, such as typing
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on a keyboard, or sports such as dancing. Such skill learning is typically studied in
the lab with tasks such as the serial reaction time task (Willingham, 1998) or the Dis-
crete sequence production task (Karni, 1995), involving repeating a fixed sequence
of button presses, responding to cues or by memory. Skill learning refers to gaining
accuracy and/or speed when repeatedly performing such tasks and is reviewed by
Diedrichsen and Kornysheva (2015). A simple way to define what types of action
sequences fall in the scope of this thesis is to think of routine action sequences that
are naturally repeated in everyday life (e.g., preparing meals, grooming, etc.), that
can be tied together to an overarching goal and typically involve several objects.

1.1.5 Learning a sequence is different from routinisation

The process of acquisition of a novel goal-directed action sequence can be broken
down into two phases (Anderson, 1987, W. Schneider and Detweiler, 1988): a first,
initial learning phase, that consists in the rapid acquisition of knowledge about the se-
quencing of individual actions needed to achieve the goal, and a second, consolidation
phase, that consists in establishing routinisation more gradually through repetition.

This thesis is mostly interested in how control occurs in routinised sequences, i.e.
a phase where the sequence has been practised enough such that the involvement
of prefrontal resources is substantially less than at the start of learning a sequence-
at least for some steps or under easy conditions, as will be detailed later on. The
acquisition process also needs to be considered for that purpose, and in particular
the second, consolidation phase.

If one is to compare tasks where children and adults have received similar amounts
of training, a methodological concern is whether age influences the speed of se-
quence acquisition. It remains unclear whether there are sensitive periods in ac-
quiring motor skills, due to the methodological challenges posed by such studies
(Thomas and Johnson, 2008, White et al., 2013, Solum et al., 2020). When consider-
ing learning in non-motor tasks, learning rates do not follow a clear developmental
trajectory from childhood to adulthood as they have been found to remain similar
(e.g., Javadi et al., 2014), increase (e.g., Master, Eckstein, Gotlieb, Dahl, Wilbrecht,
and Collins, 2020) or decrease (e.g., Decker et al., 2015). Thus, the speed of learning
is unpredictable and probably highly dependent on the task at hand.

The amount of time and training needed to routinise a sequence will necessarily
depend on the sequence complexity and be subject to inter-individual differences.
Nonetheless, to give an order of magnitude, Lally et al. (2010) found that participants
took between 18 and 254 days to reach a plateau in automaticity when performing an
activity incorporated at the beginning of their day (the automaticity was measured
by a questionnaire including items such as ’I do it automatically’, ’I do it without
thinking’ and ’I would find hard not to do it’).

In this thesis, action sequences are studied in conditions allowing one to assume
similar degrees of mastery or routinisation across age groups, or that such differ-
ences in routinisation are negligible compared to the fundamental developmental
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differences on action control systems.

1.2 Key empirical findings and theoretical concepts

In this Section, we review key features of action selection, that are critical when
actions are integrated together in a sequence.

1.2.1 Affordances

While it is possible to study action control without considering the level of motor
control, it is important to mention in what ways perception can directly affect ac-
tion execution. Actions are influenced by the visual environment, a consequence
of the direct coupling between perception and action (Allport, 1987). A wealth of
evidence indicates that information can be transmitted automatically along visuo-
motor pathways (Meegan and Tipper, 1999a). For example, healthy participants will
grasp a target object more quickly if the presentation of the object is preceded by the
presentation of a task-irrelevant but grasp-compatible object, a phenomenon called
visuomotor priming (Craighero et al., 1996). Additionally, patients with frontal lobe
damage can exhibit utilisation behaviour, where they are unable to withhold a mo-
tor response such as picking up an object irrelevant to their current intentions (Lher-
mitte, 1983, Shallice et al., 1989). The anarchic hand syndrome is another example
of behaviour triggered by visual stimuli without intention to perform the act (Della
Sala et al., 1991, Goldberg et al., 1981).

Gibson (1977) introduced the concept of affordance, that is, that the visual at-
tributes of an object indicate its potential for action. For example, a cup affords
grasping. Affordances are determined by the intersection of the skills of the per-
ceiver and the environment’s characteristics. Thus, when body dimensions and mo-
tor skills change across development, affordances change as well (Adolph, 2008).
Such a coupling between perception and action undergoes a long period of devel-
opment (Plumert et al., 2007). The sensitivity to affordances starts to appear in the
first year of life: 4-month-olds will remember better (Mareschal and Johnson, 2003)
an object image that is graspable compared to a non-graspable item (image of face
or flat cartoon). Before they even have the motor ability to grasp, 5-month-olds will
shape their hand correctly as a function of the grasp afforded by an object (Barrett et
al., 2008). 6.5-month-olds will adapt the use of one or two hands to the size of an ob-
ject (Clifton et al., 1991). The imitation behaviour exhibited by 12- to- 18-month-olds
grasping of a tool depends on their familiarity with the tool.

By school-years, children’s perception of action patterns is remarkably similar
than that of adults: actions are affected by affordances the same way in adults and
6-year-olds, and similar grasp-related areas of the brain are activated when 6-year-
olds or adults look passively at tools (Dekker et al., 2010).
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1.2.2 Goal-directedness

Together with the bottom-up (environmental) influences on action just presented,
top-down processes must be at play to select actions that achieve the intended goal.
A goal-directed action can be defined as an action that is organised or directed to-
wards a specific observable end-state, such end-state achieving an intended goal
(Lutkenhaus et al., 1987, Hofer et al., 2005, Von Hofsten, 2004, Von Hofsten, 2004).

The goals in children’s goal-directed sequences may follow predefined task goals,
either instructed (e.g., being told "prepare your school-bag for tomorrow") or belong-
ing to daily-life routines (e.g., preparing breakfast after waking-up). The goals may
also be related to play. Play can be goal-directed in a visible manner (e.g., complet-
ing a jigsaw puzzle) or look like random exploration but may satisfy curiosity, which
can be considered a goal in itself.

From 18 months of age, toddlers are able to modify their actions with respect
to an overarching goal by complying to the commands of adults (e.g., Kagan, 1981,
Kopp, 1991) and are capable of choosing the most efficient means to their goal (Paulus
and Sodian, 2015). From this age, they rapidly become better at selecting an action
amongst competing actions and at correcting an action to meet a goal (Bullock and
Lutkenhaus, 1988, Vaughn et al., 1984). Regarding behaviour sensitive to valuation
of outcomes, or reward-driven behaviour, the sensitivity of children’s goals to ob-
jects’ value seem to appear between 19 and 24 months of age, as evidenced by a
button-pressing frequency dependent on the value of an outcome in 24-month-olds
but not in 19-month-olds. (Kenward et al., 2009). Similarly, from the age of two,
children spontaneously select actions that allow them to obtain the most desirable
outcome (Klossek and Dickinson, 2012). By the age of one and a half, toddlers en-
gage with proximal goals, but they only engage with more distal goals from the age
of two and a half (Jennings, 2004).

The development of action processing (the creation of action representations
centred around a higher-level goal) is thought to be important for the later goal-
directed action representations used in action production (Sommerville and Wood-
ward, 2005). As early as 6 months of age, infants can interpret the individual actions
of an actor as goal-directed (Hofer et al., 2007). At 7 months of age, infants can ef-
fectively link actions to their effects (see Hommel and Elsner (2009) for a review on
action-effect learning). At 12 months of age, infants appear capable of interpreting
different individual actions within a sequence as directed towards an overarching
goal (Woodward and Sommerville, 2000).

1.2.3 Action planning

To efficiently achieve one’s ends, it is useful to not just improvise the means (that is,
goal-directed actions) at the moment when a situation is faced, but to plan actions
ahead in time (whether it is planning for the next seconds, the next half hour, the
next day or next year).
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When reaching for an object, infants under 8 months already exhibit prospective
motor control (Hofsten, 1993). Indeed, they adjust their speed prior to contacting the
object (Clifton et al., 1994), adjust their hand orientation to the object grasp (Lockman
et al., 1984, McCarty et al., 2001) and by 13 months of age they adjust the size of their
grip (Hofsten and Ronnqvist, 1988) to object size. Furthermore, from 10-month-
old infants will modulate their speed of reaching as a function of their intended
subsequent action after picking up the object (Claxton et al., 2003). By 12 months of
age infants have the cognitive substrate for controlling action sequences (Verschoor
et al., 2015).

At 14 months of age, toddlers are able to plan their movement as a function
of future difficulties (Gottwald et al., 2017). 21-month-olds show early planning
of a subsequent action (precise or imprecise manipulation) in their earlier move-
ment (Chen et al., 2010). Between 2 and 3 years of age, children start adjusting their
dominant/non-dominant hand choice to goal-related information when using a tool
(Cox and Smitsman, 2006). Finally, during preschool years, children are able to plan
actions on a larger time scale and according to more complex rules such as the ones
required in pretend play (Fenson and Ramsay, 1981, Fein, 1981, Hudson and Fivush,
1991) or in daily routines (e.g., Hudson et al., 1995).

1.2.4 Multiple levels and hierarchy

We now turn to longer action sequences such as the daily sequences that school-age
children take part in.

Action sequences are hierarchical: they can be broken down into subgoals, and
the subgoals themselves can be broken down into sub-actions. This breakdown may
be conceived at a progressively finer grain to span a large number of levels (for ex-
ample, preparing breakfast may contain the subgoal making coffee, which itself con-
taining the sub-action adding sugar, itself containing the sub-action taking a spoon-
ful of sugar).

The simplest hierarchical organisation is to consider the individual actions in
a sequence as tied to an overarching goal. There is evidence that infants readily
represent action with respect to a higher-level goal from the first year of life, as seen
in Section 1.2.2. During preschool years, children are able to represent and attend to
goals at any of a higher- or lower-level level (Freier et al., 2017,Yanaoka and Saito,
2017).

The hierarchy of everyday life action sequences often spans more than two lev-
els: at the highest level sits the overarching goal, and at the lowest level, the details
of the actions to be executed (e.g., picking up an item, unscrewing a bottle cap). In
between, sub-actions can often be grouped together as achieving subgoals. For ex-
ample, the sequence with the higher-level goal preparing a lunch box could be broken
down into the subgoals making a sandwich and making a fruit salad. The subgoal mak-
ing a sandwich can itself be broken down into the subgoals preparing the bread, adding
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butter, adding tomato and adding cheese. The adding butter subgoal can be further bro-
ken down into the lower-level actions fetching a butter-knife, getting butter with the
knife, spreading butter onto the bread and discarding the knife.

The view of the hierarchical control of action dates back from the study of neuro-
logically-damaged patients (Duncan, 1986, Schwartz et al., 1991) and is now widely
accepted. Evidence from cognitive neuroscience strongly suggests the existence of
a mapping between the hierarchical organisation of neural systems and the hierar-
chical structure of action sequences (Dehaene and Changeux, 1997). Different task
structure levels are thought to be represented at different levels of hierarchically-
organised cortical areas (Fuster, 1990, Koechlin et al., 2003, Courtney, 2004), with the
frontal cortex acting upon the highest level of the hierarchy (Luria, 1966, Botvinick,
2008). However, studies based on computational work argue that an explicit neural
hierarchical structure is not needed to perform hierarchically-structured action seq-
uences (Botvinick and Plaut, 2004), and the debate is still ongoing (Botvinick, 2007,
Botvinick, 2008).

Action can be controlled at diverse levels of this hierarchy (Heckhausen and
Beckmann, 1990, Cooper and Shallice, 2000). Adults are able to execute a very well-
learnt routine sequence by attending only to the higher level of the hierarchy. It is
always possible to control at lower levels, up to the level of each individual action.

1.2.5 Branch points

A consequence of the hierarchical organisation of action is that transitions among in-
dividual actions that together achieve a subgoal (or within-sequence actions) are more
strongly linked since actions within a subgoal are more frequently repeated together,
compared to transitions between actions from different subgoals. Experimental data
support this view, where transitions from one action to the next are more vulnera-
ble to errors and/or take longer between-subgoals than within-subgoals (Ruh et al.,
2008, Ruh et al., 2010). Similarly, Arnold et al. (2017) have shown more difficulties
in adults’ action selection in building a brick wall at critical decision boundaries. Fur-
ther evidence for the hierarchical structuring, reviewed in Rhodes et al., 2004, comes
from motor tasks such as typing (Logan and Crump, 2011), hand writing (Cheng
and van Genuchten, 2018) or ’discrete sequence production’ tasks (Karni, 1995).

1.2.6 Goal maintenance

To execute the appropriate actions at the lowest level of the hierarchy, a represen-
tation of the overarching goal must be maintained throughout the sequence. Thus,
maintaining the higher-level goal contributes to eliminating inappropriate actions.
When compatible but inappropriate actions compete (e.g., when distractors visually
similar to a target are present), top-down selection processes come into play. The
ability to maintain a goal improves significantly during pre-school and school years
and is strongly related to other supervisory functions (Towse et al., 2007, Marcovitch,
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Boseovski, et al., 2007, Rueda et al., 2004, Jones et al., 2003). This will be detailed in
Sections 1.3.2.1 and 1.3.2.2.

1.3 Theories of action control

1.3.1 Dual-systems theory

1.3.1.1 The theory

The dual-systems theory (Shallice, 1972, Norman, 1981, Norman and Shallice, 1986),
originally termed theory of attention to action was developed to account for sequential
action selection in the intermediate domain of action. Comparable to the commonly ac-
cepted distinction between automatic and controlled processes (Shiffrin and Schnei-
der, 1977), and related distinction between implicit and explicit knowledge in devel-
opment (Karmiloff-Smith, 1986), the theory of Norman and Shallice (1986) posits the
existence of two systems involved in action control: the Contention scheduling and
the Supervisory system, in original terms. This thesis will more generally call them
routine/non-routine system or routine/supervisory systems.

The contention scheduling or routine system is held to be responsible for and
able to carry out autonomously very well-practised action sequences (or routines). It
can nonetheless be modulated by the supervisory system when required, i.e., when
a sequence is novel or not routine enough, when the environment causes a challenge
(e.g., unexpected consequence of an action), in case of error, distraction, or when a
strong habit must be inhibited.

The dual-systems framework has been specifically developed to account for a
wide range of phenomena in the control of action. A first source of data at the origin
of the theory is the lapses in action performed by healthy adults. Diary studies (Rea-
son, 1979, Reason, 1984, Reason, 1990, Norman, 1981) have allowed a systematic cat-
egorisation of action slips, including: capture errors (when instead of the intended
sequence, an unintended yet appropriate to the environment sequence is executed,
such as taking one’s socks off when intending to only take one’s shoes off), omis-
sion errors (omitting an intended action or subsequence, e.g., omitting to add coffee
grounds to the machine when making a cup of coffee), anticipation errors (carrying
out an action earlier than intended, e.g., pouring water from the tap before opening
the lid of a kettle), perseveration error (unintentionally repeating an action or sub-
sequence, e.g., adding too many spoonsful of sugar to coffee) or object substitution
(executing an intended action but not with the intended object, e.g., using shaving
cream instead of toothpaste when brushing one’s teeth). Such action slips happen
only occasionally in healthy patients and are found frequently in patients with the
action disorganisation syndrome (Humphreys and Forde, 1998, Schwartz et al., 1991,
Schwartz, Montgomery, et al., 1998).
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Other neurological impairments mentioned previously, such as the anarchic hand
syndrome (Della Sala et al., 1991, Goldberg et al., 1981) and utilisation behaviour (Lher-
mitte, 1983, Shallice et al., 1989) are relevant in how they affect the control of actions.
Indeed, this type of syndrome reveals that action can be elicited by the environment
without the participants’ intention to act. For example, patients exhibiting utilisa-
tion behaviour will pick up objects in a way that is appropriate to the object features
(e.g., grasp an apple with the appropriate opening of the hand) but subsequently
report they did not want to perform the action.

1.3.1.2 The Interactive Activation Network (IAN) model of Cooper and Shallice
(2000)

The dual-systems account is supported by the computational model of Cooper and
Shallice (2000) which successfully explained critical aspects of healthy and disor-
dered action control. The original theory of Norman and Shallice (Norman, 1981,
Norman and Shallice, 1986) proposed that routine action sequences are controlled
by schemas, representation units which may perform operations towards achiev-
ing a goal or subgoal. Importantly, schemas are organised according to an explicit
hierarchical structure, that mirrors the hierarchical structure of behaviour.

The schema hierarchy is implemented in the Cooper and Shallice (2000) model
(referred to later as IAN model) with an Interactive Activation Network (a type of
model used by McClelland and Rumelhart, 1981, Rumelhart and Norman, 1982, Mc-
Clelland, 1992). As shown in Figure 1.1, the model comprises of a central schema
network, that interacts with a resource network and an object network, and that car-
ries out action selection. The schemas may receive multiple sources of activations
and activations are passed on through the hierarchy of schema components. Nodes
in the schema network represent actions at different levels: at the highest level, com-
plex goals (in the example simulated in the original study, preparing instant coffee),
at intermediate levels, subgoals (e.g., add milk into coffee) and at the lowest level,
direct action (e.g., pick up implement).

In essence, the nodes are linked together such that the superordinate schemas in
the hierarchy may send excitation to the lower-level schema that achieves the su-
perordinate goal. Additionally, schemas have arguments that connect them with the
object representation network. The links between the schema and object representa-
tion networks are such that nodes that have overlapping requirements are mutually
inhibitory; on the contrary schema and objects that are routinely used together are
mutually excitatory. Together with the effector network and the completion of pre-
conditions and postconditions, activations flow within this network to select actions
sequentially. An action is held to be performed when a schema activation reaches the
selection threshold. Consequently, the model represents important sources of activa-
tion of behaviour mentioned previously: influences from the environment (bottom-
up influences), and from intentions (top-down).
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The model successfully simulates a routine sequence of coffee making. Crucially,
it is able to simulate a range of error patterns that are characteristic of the slips of ac-
tion in healthy participants or patients with the disorders mentioned previously. It
does so by modifying the weights of different sources of activations. For example,
omission or anticipation errors arise when top-down or environmental influences do
not have enough weight for the omitted schema to be activated. Perseveration errors
are simulated when self-activation in a schema is too large or if lateral inhibition be-
tween mutually incompatible schema is too low, consequently failing to resolve the
competition in the network thus not deselecting a schema at the right time. Fur-
thermore, utilisation behaviour (Lhermitte, 1983, Shallice et al., 1989) is reproduced
when the relative influence of external (environmental) influences is too high com-
pared to internal influences. A final example is action disorganisation syndrome,
that is simulated by increased noise in the schema network.

A limitation of the model is that it does not provide a mechanism for the learning
and routinisation of the sequences.

Fig. 1.1: Main components of the contention scheduling implemented in
Cooper and Shallice (2000). The schema network represents goals and their
hierarchy. The resolution of competition within this network leads to the
selection of action. The object network contains activation-based internal
representation of objects. The resource network is analogous to the object
network and takes charge of solving resource allocation (for example, if the
right hand is taken, one should either wait or use the left hand). Figure

adapted from Cooper and Shallice (2000).

1.3.1.3 The Simple Recurrent Network (SRN) model of Botvinick and Plaut (2004)

Botvinick and Plaut (2004) proposed an alternative model to the IAN model (Cooper
& Shallice, 2000), which consists in a Simple Recurrent Network and will be referred
to as the SRN. The SRN model challenged the need for a localist approach with
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explicit hierarchical schema organisation and proposed instead a recurrent connec-
tionist network (Jordan, 1986, Elman, 1990, Elman, 1991) with distributed represen-
tations.

Within the model (shown in Figure 1.2), perceptual input units encode environ-
mental features (object representations) and output units encode actions upon the
object. In between, internal units with recurrent connectivity allow forming dis-
tributed representations of the task context and of temporal information. The model
was able to reproduce sequences of the same complexity as coffee making in Cooper
and Shallice (2000), and to simulate error patterns characteristic of action disorgani-
sation syndrome by increasing noise in the network. However, the SRN model can
not account for as many phenomena as the Cooper and Shallice (2000) model (see
the comparison in Cooper and Shallice, 2006). Since the dual-systems remains the
most plausible account, it is the framework used throughout this thesis.

Nonetheless, the SRN model generated behavioural predictions that have led to
interesting experimental work, including with children, that we detail hereafter. Ac-
tion selection within the SRN relies on the model’s internal representation of task
context. For sequences with overlapping then diverging sequences (e.g., making cof-
fee always involves coffee and cream, but can be with or without sugar), the diverg-
ing point (or branch point; here the moment before adding sugar) necessitates a strong
representation of the context or goal (e.g., make a coffee with sugar) at the end of the
preceding subsequence. If that representation is not strong enough at that time (e.g.,
at the end of adding cream), the subsequence adding sugar may fail to be added. How-
ever, within a subsequence, the task context is less relevant since the subsequence
(that is, the actions required for adding cream) is consistently performed the same
way. Thus, the context is represented more robustly towards the end than the mid-
dle of a subsequence. Consequently, the context may be more easily disrupted in the
middle, where it is less strongly represented. A prediction that follows is that, when
subject to a distraction, errors are more likely to occur if the distraction occurred
towards the middle of a subsequence than if it occurred at the end of a subsequence.

This model prediction was tested experimentally in adults performing real coffee-
making sequences (Botvinick and Bylsma, 2005). As predicted, participants made
more errors after being interrupted midway through a subsequence than after being
interrupted at the end of a subsequence. Such results were replicated in preschool-
ers (Yanaoka and Saito, 2019), indicating that task representations in children are
qualitatively identical to that of adults.

1.3.1.4 The Goal Circuit Model (GCM) of Cooper et al. (2014)

A shortcoming of the IAN (Cooper and Shallice, 2000) was that it does not model a
routine sequence acquisition process nor explicitly implement the supervisory func-
tions. In the original dual-systems theory, the supervisory system is held to inter-
vene to modulate the operations of the routine system when needed (e.g., resisting
a habit or dealing with a non-routine situation).
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Fig. 1.2: Architecture of the model of Botvinick and Plaut (2004). Each line of
white disks represent units grouped in a layer. Arrows denote connections

between group of units.

Cooper et al. (2014) address this problem by proposing a novel model, the Goal
Circuit Model (GCM) which implements an interface of the supervisory system with
the contention scheduling system. In that model, the contention scheduling system
is a variation to the SRN of Botvinick and Plaut (2004). The SRN is interfaced with a
bank of goal units, representing the supervisory system, that exerts control over the
contention scheduling system.

The GCM architecture is presented in Figure 1.3. A bank of inputs units rep-
resent the objects (fixated and held), and another bank of input units represent the
current goal. In order to generate an action and a representation of the following
goal (denoted as predicted goal), all input units feed through a hidden layer with re-
current connections. When the model progresses through the task, the hidden layer
forms an implicit representation of the context. Thus, the GCM model simulates the
learning process of action sequences, whereby the repetition of sequences leads to
a distributed representation within the SRN, which ultimately renders the biasing
from the supervisory system optional.

Through this architecture, multiple pathways may direct or contribute to action
selection. The first, direct pathway (panel A of Figure 1.3), is the direct influence of
the representation of the external environment. It reflects the affordances of Gibson
as presented previously (Gibson, 1977). The second, context pathway (panel B), rep-
resents the influence of well-learned action sequences, which have been represented
in the context layer. The third and last, goal circuit route, represents the influence of
intention on action in the supervisory system.

The input from goal units (supervisory system) is particularly needed at subtask
boundaries, or branch points, where the environment is insufficient to predict the
successor action. It occurs by providing additional activations to the appropriate
schemas.

The GCM model thus addresses how a routine (contention scheduling) system is
able to produce complex action sequences autonomously in sufficiently well-learned
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situations, while being supported by a supervisory system when needed.

Fig. 1.3: Architecture and different pathways of action control within the
Goal circuit model. Panel (A) illustrates the direct pathway, (B) the goal
pathway and (C) the goal circuit. Figure adapted from Cooper et al. (2014).

1.3.2 Development of action control and development of Executive Func-
tions (EF)

1.3.2.1 The role of supervisory functions in action control

The supervisory functions involved in the Norman and Shallice (1986) account are
held to be located in the prefrontal cortex. Indeed, disorders of action selection men-
tioned previously such as the utilisation behaviour (Lhermitte, 1983) and anarchic
hand syndrome (Goldberg et al., 1981) have their roots in prefrontal damage. The
prefrontal location of supervisory functions is a view widely accepted (see Burgess
and Stuss (2017) for a recent review). A range of supervisory processes are involved
in the control of action, we summarise the ones that are relevant given their devel-
opmental trajectories.

A key role attributed to the prefrontal cortex, and similarly a central supervi-
sory function, is the inhibition of prepotent responses (e.g., Perret, 1974). Following
this view, behaviours triggered by the environment or over-learnt routines must be
inhibited to allow the selection of appropriate actions.

Working memory has been postulated to be crucial in carrying out routine seq-
uences, because it allows one to maintain information related to the goal in mind
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throughout the operation of an action sequence (e.g., Goldman-Rakic, 1987). No-
netheless, the goal maintenance may not only rely on working memory per se, as
suggested by the phenomenon of goal neglect where one may have knowledge about
the rule and the appropriate response but fail to execute it (Duncan et al., 2008). The
development of inhibitory control and working memory will be tackled in the next
Section.

Attention is a critical component of supervisory functions, albeit its definition
varies according to context. It plays an essential role in monitoring for potential
errors and thus in error correction mechanisms. In the GCM model (Cooper et al.,
2014), the attentional system and supervisory system are considered interchange-
ably. Attention can also be taken in its broader sense, i.e., any task-direction infor-
mation pick-up (Schwartz, 1995). To investigate the development of attentional net-
works, Fan et al. (2002) have divided attention into networks in charge of alerting,
orienting and executive control. Such networks appear to have independent devel-
opmental trajectories, with the alerting network changing between the tested range
of 6 to 9 years old, and further until adulthood, while the orienting and executive
networks did not appear to change in that range (Rueda et al., 2004).

An influential partition of the supervisory system (e.g., Shallice et al., 1996, Shal-
lice et al., 2008) identifies the following separable processes: goal generation, strat-
egy generation, and monitoring and checking. Supervisory functions are also grou-
ped and referred to as Executive Functions (EF). The development of such processes
has been widely studied under the lens of executive functions, which will be used
in the rest of the thesis.

1.3.2.2 Executive functions and development

A partition of EF into switching, working memory and inhibition components, stem-
ming from the work of Miyake et al. (2000b), is widely used in the literature, includ-
ing the developmental literature. Miyake et al. (2000b) picked the most commonly
used executive functions among tasks that seemed to tap into independent com-
ponents as much as possible: switching (shifting of mental sets), working memory
(monitoring and updating of working memory representations) and inhibitory con-
trol (inhibition of prepotent responses) to verify how separable the components ac-
tually were.

Miyake et al. (2000b) selected multiple tasks that have ben postulated to involve
the functions of interest and applied two complementary analyses. The first, a con-
firmatory factor analysis, aimed at extracting the common latent variables behind
tasks, held to represent the executing functions and further measure the degree of
commonalities among executive functions. The second, a structural equation mod-
elling analysis, aimed at testing whether the tasks were actually measuring the ex-
ecutive functions they were intended to measure. The fourteen tasks used were the
original tasks, or adaptations of: the antisaccade (Roberts et al., 1994), number-letter
(Rogers and Monsell, 1995b), keep track (Yntema, 1963), stop-signal (Logan, 1994),
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local-global (Navon, 1977), Stroop (Stroop, 1935), and letter memory (N. Morris and
Jones, 1990), plusminus (Jersild, 1927), tone monitoring (Larson et al., 1988), opera-
tion span (Turner and Engle, 1989), Random Number Generation (RNG), (Tower of
Hanoi, TOH; Humes et al., 1997), dual-task (the Maze tracing speed test, Ekstrom
et al., 1976 and a word generation task), and Wisconsin card sorting task (WCST;
Kimberg et al., 1997). The results have shown that the switching, WM and inhibition
components could indeed be separated, but not perfectly. They have also shown
that executive functions are not uniquely composed of these three components.

EF components and development

A line of research stemming from Miyake et al.’s (2000b) confirmatory analyses has
observed that early on, EF components are indistinguishable, and that through de-
velopment the EF components gradually differentiate from each other (e.g., Brydges
et al., 2014). However, research is not clear yet about the precise age when this
transition operates. Using 9 different tasks adapted from the original set of tasks of
Miyake et al. (2000b), Brydges et al. (2014) observed that the separability, from one
unitary EF to a two-factors (inhibition/shifting)EF model, increased between 7 and
9 years old. Shing et al. (2010) used 5 different tasks and have found inhibitory con-
trol and memory maintenance to separate later in 9.5- to 14-year-olds compared to
4- to 7-year-olds. Consistent with this finding, Lehto et al. (2003) found 8-to 13-year-
olds to present distinguishable (yet still correlated) inhibition, working memory and
shifting components, using 9 tasks. However, Klauer et al. (2010) found inhibition
and working-memory to be hard to separate.

Although it is difficult to get a definitive answer about the separability, and na-
ture of the different developmental trajectories for each component with the method-
ology of Miyake et al. (2000b), it is interesting to look at the trends of the develop-
mental trajectories. Such trends can be examined by pulling together numerous sin-
gle task studies. A meta-analysis of 401 studies (T. Maldonado et al., 2020) found
that all tested subcomponents of EF (inhibition, shifting, and updating, following
the University-Diversity model of Friedman and Miyake, 2017) varied equally with
age except from updating.

When looking at the school-age range more specifically, Carver et al. (2001) mea-
sured inhibition with a stop-signal task (where one should respond to a stimulus,
or withhold responding to the same stimulus when it changes into a stop stimulus
after a more or less long delay, sometimes after response initiation). They found im-
provements in inhibitory control before 5 years old as well as between 5 and 7 years
(but have not tested beyond this age range). Mehnert, Akhrif, Telkemeyer, Rossi,
Schmitz, et al. (2013) assessed inhibitory control changes throughout the school years
and beyond, in relationship with protracted frontal cortex development, with a Go-
NoGo task. In this task, a prepotent response is built by successive trials with stim-
ulus requiring a response, typically a key press (Go trials), followed by a mixture
of Go trials and NoGo trials, the latter requiring to withhold the response. The 4 to
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6 years old range was the most sensitive period for the development of inhibitory
skills. Such improvements continued gradually until 7 years old, and to a lesser
extent throughout adolescence. Macdonald et al. (2014) found improvements in in-
hibition with one of three versions of a Stroop task, but not the others, between 5
and 7 years of age, with performance plateauing at 8 years old.

Nevo and Breznitz (2013) found improvements in working memory between a 5-
6 and a 6-7 years old groups, with 11 tasks (9 from the Automated Working Memory
Assessment test suite of Alloway et al. (2008), that includes phonological and visuo-
spatial working memory tests, and 2 episodic buffer tests). Michalczyk et al. (2013)
also found gains in working memory from 5 to 12 years old, with three different tasks
(phonological, visuo-spatial and central executive). Let us note that if one considers
memory span broadly, steep increases are seen between 4 and 8 years old, slower
increase until 12 years old after which they are thought to plateau at adults’ level
(Gathercole, 1999).

In a task and response set-switching task, 10- to 12-year-olds had less switch cost
than 7- to 8-year-olds (Crone et al., 2006). Cragg and Nation (2009) found improve-
ments in switching between decisions rules when comparing 9- to 11-year-olds to
5- to 8-year-olds. Finally, Huizinga and van der Molen (2011) found 7-year-olds to
have less good task-switching abilities than 11-year-olds.

What is clear is that executive functioning as a whole significantly improves
throughout childhood until early adulthood (Karr et al., 2018, T. Maldonado et al.,
2020). This is very plausibly linked to protracted prefrontal cortex development
(Casey et al., 2005a, Lenroot and Giedd, 2006, Mehnert, Akhrif, Telkemeyer, Rossi,
Schmitz, et al., 2013).

EF tested in relationship with action sequences

A series of studies have related performance on routine actions to standard EF mea-
sures such as inhibition, working memory and switching components to better un-
derstand which specific top-down processes are critical in children’s action control.

In a study where 4- to 6-year-olds repeated sequential actions such as making
toasts, children who had higher switching ability as measured by the advanced Di-
mension Card Change Sort (DCCS; Chevalier and Blaye, 2009) were more able to
recover from an end-of-task interruption (Yanaoka and Saito, 2019). Such a link
between action control and switching as measured by the advanced DCCS were
partially replicated in Yanaoka and Saito (2020). This study had similar action seq-
uences as Yanaoka and Saito (2019), performed by 4- to 6-year-olds, and in addition
a condition providing visual reminders to test how the reminders would impact the
interruption recovery. Interestingly, they found that reminders erased individual
differences in goal maintenance capacity before a branch point.

In a Lego house-building task, Schröer et al. (2021) found that 3- to 5-year-olds
with higher updating skill (one of the scores of the auditory reverse digit span task;
Carlson et al., 2002) were more able to follow the subgoal order of the sequence.
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Schröer et al. (2021) propose that updating skill may help maintain the ongoing sub-
goal in mind as well as maintain the temporal information about the previously
executed steps and access to the subsequent action. In the same study, children with
higher inhibitory control, as measured by a variant of the Go-NoGo task (the BAT
tasks, Kaller, Rahm, Spreer, Mader, and Unterrainer, 2008), were less vulnerable to
distractors in their sequence execution. Working memory, as measured by the main
score of the auditory reverse digit span task (Carlson et al., 2002), and set-shifting
were not found to correlate with the action planning measurements of the study.

In a naturalistic everyday routine tasks, Perone et al. (2020) measured individual
differences in EF with the Minnesota Executive Function Scale (Carlson and Zelazo,
2014) which is built around the DCCS task but with an adaptive level of complexity.
Individual differences in EF in 6- to 10-year-olds predicted some accuracy features
regarding actions order, as well as the correctness of the incorporated items, above
and beyond age (Perone et al., 2020). The authors interpret the importance of EF to
maintain in mind instructions and subgoal information, as well as to ignore distrac-
tors when executing routine tasks.

Taken together, the developmental findings indicate important changes in exec-
utive functions (in particular, inhibitory and switching components) throughout the
school years that may explain changes in sequential action skill.

As discussed previously, it is to some extent possible to measure distinct de-
velopmental trajectories for distinct components of supervisory or executive func-
tions (Miyake et al., 2000b). The separation can be compromised by the strong inter-
dependence between components, which can be overcome with a large number of
tasks administered together. We will occasionally consider the particular role of a
given component (e.g., inhibition) with a ’one task, one component’ approach, given
the widespread investigation of the three components via unique tasks in the devel-
opmental literature, and because looking at separate processes gives a better under-
standing of the developmental mechanisms at play. Nonetheless, we acknowledge
the limitations of separating components by using single standard tasks, and our
primary interest and conclusions will be the development of executive functions as
a whole.

1.3.3 Reinforcement Learning (RL)

1.3.3.1 General reinforcement learning framework

A last line of research contributing to the understanding of sequential action control
is the one of reinforcement learning (RL; Sutton and Barto, 1998). Reinforcement
learning has been extensively used to study reward-based learning. It has been
successful in generating new computational theories of value-based learning and
choice and has identified neural correlates of the underlying components (see Daw
and Doya (2006) and Dayan and Niv (2008) for reviews). Although RL is tradition-
ally framed in terms of learning and decision-making, it is equally useful to study
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action selection. First, even if our focus is not on learning itself nor the generation
of novel sequences, the framework remains relevant because it also tackles the con-
trol of sequences that have been previously learnt. Second, the same set of systems
are responsible for making a decision or choosing an option (in decision-making
terms) and for selecting an action. In fact, what studies refer to as making a decision
(or choosing an option) is analogous to selecting an action because choosing involve
making the choice apparent (whether by pressing the corresponding key and thus
selecting the action ’press key x’, or by vocalising the response, or by performing
any action that enacts the choice).

RL describes how an agent explores an environment and learns by trial-and-
error to select the actions that will lead to rewards and avoid punishments. The RL
accounts used in decision-making traditionally involve three steps: predicting the
values of candidates’ actions, selecting the action that maximises the predicted val-
ues, and learning from experience to improve future predictions. A RL environment
is formally defined as follows: an agent can find itself within a set of states S; at
each state, the set of actions A is available, actions lead from one state to another as
defined by the transition function T, and after each transition an outcome or reward
R is obtained. The agent has the goal of finding a policy π that maximises its cu-
mulative long-term reward. The policy is a function that describes the probability
of taking each possible action in every possible state. To do so, the agent predicts
an action value, that isn the sum of expected future rewards that would follow each
action taken in the state it finds itself. The value of action a in state s is denoted
Q(s, a).

Although the agent may select the action that maximises Q(s, a), animal and
human choices are commonly modelled by a softmax decision rule. This rule imple-
ments a choice guided by a mixture of the maximal Q(s, a) and some randomness.
The mixture is such that the highest valued action is given the highest selection prob-
ability and the other actions are weighted according to their valuation. Accordingly,
action a is chosen in state s with the probability:

P(a | s) =
exp β · Q(s, a)

∑a′ exp β · Q(s, a′)

where β is the inverse temperature parameter. Decreasing the value of β leads to
more equiprobability of choice among actions.

A common implementation of RL is the actor-critic approach. In such architec-
ture, an agent is divided into an actor and a critic part, as shown in Figure 1.4, panel
A. The actor follows the policy, denoted π(s), while the critic stores a value function
denoted V(s) that estimate the cumulative long-term reward that can be expected
after visiting the state s. Both the policy and the value functions are learned from
experience. Notably, after collecting a reward, the critic computes the prediction er-
ror δ. At the neural level, a central finding is that midbrain dopaminergic neurons
seem to encode the reward prediction error δ (Schultz et al., 1997, Berns et al., 2001,
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Haruno et al., 2004).

Fig. 1.4: Actor-critic implementation of standard RL (panel A) and HRL
(panel B). PI: policy, R: reward function, V: value function, δ: reward predic-
tion error. O: option being executed. The o subscript indicates an option-
specific function. Image reproduced from Botvinick et al. (2009) with per-

mission of the rights holder, Elsevier.

1.3.3.2 Model-free and model-based classes of reinforcement learning

We will consider two classes of reinforcement learning, model-free and model-based
RL, that operate the value optimisation in different ways. With model-free RL, an
agent estimates the action values from experience and stores them in memory. The
agent does not form a representation of the transition function T. In the model-free
Q-learning algorithm (Watkins and Dayan, 1992), this is formalised as follows. The
value of action a in state s estimated by a model-free agent QMF(s, a) is updated at
each stage proportionally to a reward prediction error δ via a certain learning rate α:

QMF(s, a) = QMF(s, a) + α ∗ δ with: δ = r + maxd′∈A QMF(s′, a′)− QMF(s, a)
where r is the outcome (reward) obtained and s′ the subsequent state.
In contrast, a model-based agent both learns from experience and constructs an

internal model of the transitions between states and actions (referred to as internal
model). The agent selects action by using this internal model of the environment. In
general terms, this is formalised by considering the reward function R (i.e., continu-
ously updated by trial-and-error) and the transition function T:

QMB(s, a) = ∑s′ T′ (s, a, s′) ∗ (R′ (s, a, s′) + maxa′∈A QMB (s′, a′)

1.3.3.3 Model-free / model-based reinforcement learning approaches mapped onto
habitual / goal-directed behaviour

An influential body of work has considered two forms of control working together,
habitual and goal-directed control, and related them to the model-free and model-
based RL algorithm (Daw et al., 2005). The notion of goal-directed control used within
the RL framework is used to oppose to habitual, and differs from the general defini-
tion of goal-directed action introduced in Section 1.2.2.
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The precise separation and definition of habitual and goal-directed behaviour
varies and is reviewed in Dolan and Dayan (2013). This thesis will consider the fol-
lowing definition. Habitual control (modelled by model-free RL) consists in trial-by-
error learning where a reward expectation guide choices, and is updated following
the discrepancy between an obtained outcome and an expected reward (that is, a
reward prediction error), which in turn guides subsequent choices. Goal-directed
control (modelled by model-based RL) uses a more sophisticated evaluation process
to guide choices. It assumes the use of an internal model of the environment (e.g.,
how actions prior to the final ’outcome action’ are connected to states which have a
higher or lower probability of reward) and computes prospective evaluation of all
the possible paths within that model of the environment to select the action that will
later lead to the best outcome. The search throughout the path of the internal model
has been compared to mental simulation (e.g., Doya, 1999, Schacter et al., 2012).

Following the distinction between habitual and goal-directed control, studies
have looked into the interaction or competition between the forms of control. In-
deed, it has been found that even simple tasks incorporate both types of control
to some extent (Collins and Frank, 2012). To evaluate the relative involvement of
model-free and model-based types of control, a "two-stage stage" was introduced
by Daw et al. (2011). The task will be described in Chapter 3. The task has been
extensively used to characterise behavioural implications and influences over such
modes of control in healthy adults (e.g., Eppinger et al., 2013, Otto et al., 2013, Otto
et al., 2014, Kool et al., 2017a, Keramati et al., 2011b) and clinical populations (e.g.,
Sharp et al., 2015, Voon et al., 2014, Voon et al., 2015, Gillan et al., 2016).

There is evidence that the two forms of action evaluation used for model-free
and model-based types of control are subserved by distinct neural systems. The
prefrontal cortex is held to be used to evaluate the potential consequences of ac-
tions (Owen, 1997), as used in model-based RL. The dorsolateral striatum is held
to support stimulus-triggered responses (Yin et al., 2004) as used in model-free RL.
Additionally, brain imaging studies found correlations between dorsal and ventral
striatum regions and the reward prediction error in model-free learning (Berns et al.,
2001, Haruno et al., 2004).

1.3.3.4 Hierarchical reinforcement learning

A challenge posed by traditional RL methods is that they do not scale well. That is,
when the task domain (i.e. the set of states and/or actions) becomes too large, the
time required to reach a stable policy can become excessively large to be feasible.
Hierarchical reinforcement learning (HRL) is an approach that tackles this issue. It
has been proposed that the brain might deal with the scaling issue in an analogous
way (Botvinick et al., 2009, Botvinick, 2012).

In HRL, the RL framework is augmented with options (Sutton et al., 1999). Op-
tions are a set of interrelated actions that are grouped together under a higher-level
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action (for example, the higher-level action buttering toast groups together the ac-
tions grasping a butterknife, collecting butter and spreading it onto the toast). Options
thus carry out temporal abstractions over a sequence of lower-level actions.

An actor-critic implementation of HRL is shown in Figure 1.4, panel B. It extends
the standard RL actor-critic architecture from panel A. First, it adds the representa-
tion of the option o currently maintained by the actor. The actor also maintains a
separate policy for each option πo. The prediction errors are no longer computed
after each action, but at the end of an option. Therefore, the actor must send the
critic the information of when an option termination occurs. Finally, to compute
the prediction error for an option, the critic must also keep track of the rewards ob-
tained throughout the option execution, as well as the state in which the option was
initiated.

The selection of options, and the execution of actions within an option may be
linked to the dual-systems framework by considering that the start of an option is
like a branch point, thus requires supervisory influence, while the execution of in-
dividual actions within an option can be carried out by the routine system, without
extra supervisory influence. Relatedly, a computational problem to solve is the dis-
covery and acquisition of useful options (i.e., what actions binds together to form an
option), as highlighted by Botvinick et al. (2009). Solving the problem in a general
case is beyond the scope of the thesis. Nonetheless, in a simple task with a hierarchi-
cal structure, we can hypothesise that what constitutes an option may be discovered
by using transition probabilities between actions: actions that follow each other with
certainty or very high probability may be bound together to form an option, while
low transition probabilities would constitute the end of an option.

Although to our knowledge HRL has not been used to study development, the
options as defined in HRL resembles the subroutines and the modularisation process
proposed by Bruner (1973).

1.3.3.5 Reinforcement learning and development

Applications of the reinforcement learning framework across development have fo-
cused greatly on the exploration/exploitation balance (e.g., Schulz et al., 2019) or
on the learning side. For example, it has investigated the sensitivity to negative or
positive reward prediction error (e.g., Bos et al., 2012), or social learning (Bolenz et
al., 2017). Additionally, a reinforcement learning analysis of the Tower Of London
(TOL; Shallice, 1982) task suggested that the worse performance of 3- to 4-year-olds
compared to 5- to 6-year-olds may be due to a greater tendency of younger children
to be influenced by the perceptual similarity of an ongoing state compared to the
goal state, at the expense of efficient planning (Mitsopoulos et al., 2015).

Despite the success of the approach of the model-free/model-based distinction,
there have been few studies tackling the development of the two types of control
and their interaction in children. One of them, which will be discussed extensively in
Chapter 3, found overall that model-based use increases with age from 8 years old to
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adulthood. Eppinger et al. (2013) have found that in adults, model-based choice de-
creased with age, even after controlling for working memory which also decreased
with age. Together with neural evidence (e.g., Eppinger et al., 2012, Frank and Kong,
2008), the authors suggest that age-related changes are linked to under-recruitment
of the PFC for integrating the expected rewards into model-based decisions.

Janacsek et al. (2012) studied the development of implicit learning across the
lifespan, between 4 and 85 years of age, and related it to the model-free / model-
based RL framework. The authors used an adjusted Serial response time task, with
probabilistic transitions of both high and low frequencies. The rationale is that im-
plicit statistical learning based on raw probabilities (such as measured by the task)
may be important in developing new abilities and skills (Hikosaka et al., 2002, Keele
et al., 2003). Janacsek et al. (2012) found that the sensitivity to raw probabilities de-
creases after 12 years old. The authors connected the finding to the development
around the same age of cortical areas underlying the capacity to build internal mod-
els, which are the basis of model-based learning (Giedd et al., 1999, Blakemore and
Choudhury, 2006).

Based on this, they propose that a developmental shift occurs around 12 years
of age (see Figure 1.5). Before the shift, skill learning relies mostly on the detection
of simple raw probabilities while after the shift, it relies more on complex internal
models. Accordingly, this shift is driven by the experience-driven maturation of the
model-based system, which makes possible the efficient use of internal models, and
simultaneously accompanied by a neglect of model-free computations. The view of
Janacsek et al. (2012) matches closely the one of Decker et al. (2016), whereby a shift
between a model-free-dominant strategy to model-based-dominant strategy occurs
between a group of 8 to 12 years old children and adolescents.

1.3.4 Two diverging views of the interaction between two systems for the
control of action

In the picture depicted by Janacsek et al. (2012) and Decker et al. (2016), and sum-
marised on diagram 1.6 (A), model-free and model-based types control are compet-
ing, and development occurs not only via maturation of the model-based system,
where more complex internal model building abilities drives increase in model-
based use, but also via the decrease of the model-free involvement (e.g., via a de-
crease in the ability to use raw probabilities as suggested by Janacsek et al. (2012)).

The dual-systems account, proposed by Norman and Shallice (1986) and imple-
mented in the GCM (Cooper et al., 2014), uses a similar dichotomy between a more
implicit, procedural type of system (routine) and a system with explicit represen-
tations of goal (supervisory system). Nonetheless, the functioning of the two sys-
tems as proposed by Norman and Shallice (1986) is not a competition but rather
an experience- and action-dependent combination of involvement of each system.
The routine system is held to be able to carry highly-practised sequences almost
autonomously, and benefit from biasing of the supervisory system when needed
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Fig. 1.5: Developmental shift in the use of model-free and model-based
types of skill learning, proposed by Janacsek et al. (2012). (a) Before ado-
lescence, skill learning is mostly driven by detection of raw probabilities,
defined as model-free learning. (b) Later in adolescence, internal models
have developed, making possible the use of more complex relations from
the environment, resulting in model-based type of learning. Adapted from

Janacsek et al. (2012).

(e.g., at branch points where many compatible actions compete for selection, when
the transition probability in the sequence is low). The view is summarised on dia-
gram 1.6 (C).
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Fig. 1.6: Summarised view of two systems interaction in the model-free/-
model-based reinforcement learning framework (panel A and B) and in the
dual-systems framework (Norman and Shallice, 1986, Cooper et al., 2014).
The bottom panels (B and C) represent the adult stage of development,
while the top panel (A) represents the child (before 12 years old) stage of
development proposed by Janacsek et al. (2012). In the view proposed by
Janacsek et al. (2012), there is a developmental progression where children
rely mostly on the model-free system, and adults presumably rely more
on model-based system after the necessary component for model-based
computations have developed, while model-free type of computations may
regress. The dual-systems framework only specifies the adult stage, where
the two systems work in cooperation, with the supervisory system biasing

the routine system at the points where it is most needed.

The HRL view is most similar to the latter collaborative view. Indeed, in that
HRL view the selection of options may be related to the selection and maintenance
of an overarching goal at punctual points (branch points), like in the supervisory
system of Norman and Shallice (1986), while the sub-actions within an option can
be carried out by the other system.

A last distinction between the existing accounts is that the GCM account includes
a direct pathway of environmental influences on action, but this is missing from the
model-free/model-based reinforcement learning account. In the latter, the environ-
ment only indicates what options are present in a given state but it does not influence
the action selection mechanism.
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1.4 Methods

1.4.1 Paradigms to study action control in adults and children

The investigation of routine action control in children has focused on different levels
than the level of action we are concerned with, or on the relevant level of action but
with very little practice (whether in real-life or in the lab). For example, Yanaoka
and Saito (2019) had children make toy toasts (for a mouse or a cat character) for 4
practice trials and 12 test trials. Although the study led to interesting insights (pre-
sented in Section 1.3.1.3), 4 practice trials are not sufficient to study routinised action
control. Perone et al. (2020) had children perform in the lab some routines typical
of daily life (making a sandwich, packing lunch, packing homework, and packing
snow gear). However, children performed each task only once and the study focused
on information gathering and prospective memory (from the instruction phase) as
well as the link with executive functions, rather than the level of action control we
are interested in.

In adults, reports of real-life errors from daily routines of healthy participants, or
observed in neurological patients, have been among the firsts methods of investiga-
tion. Errors in daily-life executions of routine action systems provide insights into
the operation of the system. Common routines such as preparing coffee are often
taken as a subject of study. For example, objects errors (such as adding butter into
coffee), as observed by brain-damaged patients (Schwartz et al., 1991) or reported in
healthy patients diaries (Reason and Mycielska, 1982), have contributed to the view
that multiple action plans may be activated in parallel. An object error thus results
from a blend of the arguments of an ongoing action plan. Relatedly, the Multi-level
action test (MLAT) standardises the study of such routine action errors in an exper-
imental setting (Schwartz et al., 1999). It consists in the primary tasks of making a
slice of toast with butter, wrapping a present, and packing a lunch box; in the pres-
ence or absence of distractor objects. It classifies the errors according to taxonomy
presented in table 1.7.

Giovannetti et al. (2007) studied routine performance by healthy participants of
a real-life coffee-making task containing 18 steps, over 12 experimental trials. The
rate of errors was manipulated by adding time pressure and distractors objects. The
task appeared promising to study naturalistic action, nonetheless it was limited to
10 practice trials which may not be enough to tap into routine performance. Arnold
et al. (2017) approached the question of hierarchical action control by a Lego blocks
building task. Participants were asked to learn to build and to build two block walls
that had similar and dissimilar chunks. The start of a dissimilar chunk constituted
a decision point thus allowed measuring differences in action selection latency at
decision compared to no-decision points.

The study of Ruh et al. (2010) was designed to provide direct empirical support to
the dual-systems account of routine action, by analysing errors and response times
on a very large number of trials of a well-routinised task performed by real adult
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Fig. 1.7: Summary of the error taxonomy used in the Multi-level action test
in Schwartz et al. (1999). Reproduced with permission from Elsevier.

participants. A first version of the task consisted of a computerised version of a
coffee-making task, like the initial simulations of the model of Cooper and Shallice
(2000). Nonetheless, the coffee-making task suffered some limitations that impaired
interpretability, so we will focus on the second version of the task, virtual gardening.
The task implied drag-and-dropping icons on a screen with the computer mouse to
achieve actions (e.g., moving a tool to stir a mixture). The task had a variant of six
overarching goals that were achieved by an ordered sequence of 6 subgoals, each
subgoal constituted of several steps. Each resulting sequences had a total of 48 to 69
steps. The set of sequences reproduced key features of real-life actions sequences,
such as a set-up subsequence at the start and a clean-up subsequence at the end
of each full sequence. Additionally, some actions constituted branch points: the
task involved variants of sequences (with overlapping subsequences followed by
diverging actions) such that, at a diverging point, the transition to the next action
was ambiguous. These were compared to non-branch points, comparable action
after which there was only one legitimate option. Together with the use of a task
taxing supervisory resources, analyses of response time and errors brought support
to the dual-systems framework, for example with longer latencies at branch points,
as well as further slowing down by a secondary task, indicating local modulation of
action control by the supervisory system.

The design of the Ruh et al. (2010) inspired the last experimental study of this
thesis. The advantage of a computerised task such as Ruh et al. (2010) is the elicita-
tion of a substantial amount of data on highly-practised action performance, which
is hard to obtain in other situations. The main limitation is the artificial nature of the
task. Nonetheless, results obtained via this computerised task are consistent with
the types of errors obtained in laboratory studies with real-objects (e.g., Giovannetti
et al., 2007) or in real-life diary reports (e.g., Reason, 1979).
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Given the scarcity of studies that may or may not support the dual-systems the-
ory in child action control (as opposed to adult action control), there is a need to test
the appropriateness of the dual-systems approach to study development. This must
be done by striking the right balance between the ecological nature and the controlla-
bility of a paradigm to measure and test precisely predictions from the dual-systems
theory with methods that have been validated in adults.

1.4.2 Kinematics

Hand-movement tracking methods (mouse-tracking, touchscreen finger-tracking,
3D Motion capture etc.) have been of increasing interest in the psychological lit-
erature in the past decades, possibly facilitated by the rise of open-source software
that democratised experiment development and analyses, in particular online with
mouse tracking (for example MouseTracker Freeman and Ambady, 2010; or mousetrap
Kieslich and Henninger, 2017). Numerous methodological studies (Hehman et al.,
2015, Kieslich et al., 2020, Schoemann et al., 2019, just to name a few) presented im-
portant considerations and recommendations about design such as starting proce-
dures (self-paced or not), target sizes, mouse hardware setup (sensitivity), response
type (hover vs. click), stimulus positions (centred vs. edged), and so on. How-
ever, to our knowledge there is no consensus on what approach is the best across all
experiments, nor there is a standard that most researchers follow.

While some kinematic analyses are constrained or emerge naturally from a spe-
cific paradigm (e.g., Dotan et al., 2018), others have a wide margin of manoeuvrer.
Part of the problem is idiosyncratic to studying movement in 3D space. Indeed,
in each experimental paradigm the specific start points, end point, trajectories etc.
will differ (we will call this problem spatial specificity). The diversity of approaches
can be explained by two challenges of such data: its spatial specificity and its high-
dimensionality. Kinematics is highly-dimensional data because it includes x, y (and
sometimes z) coordinates at each sampled point of a trial and several derivatives
(commonly speed and acceleration). Another difficulty is that that kinematic anal-
yses must be adapted to each task, since the spatial arrangement of the stimulus
and responses will affect how the trajectory can vary (e.g., how much space there
is, whether there is there a single optimal path, whether there are there obstacles,
etc.) and what is the volume in which actions are to be performed, and thus the
kinematics data itself.

A widespread approach, found applicable across various studies, is what we call
single feature approach where particular measures such as ’maximal deviation from a
straight path’ are computed on trajectory, speed or acceleration data (for example,
see Figure 1.8 reproduced from Wirth et al., 2020).

With this approach, a broad type of measures is commonly used for similar con-
structs but there is notable heterogeneity in the choice of precise measure definition
for similar constructs. For example, for constructs related to co-activation of multiple
targets, measures of curvature are often used, but the features can be: the area under
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Fig. 1.8: Multiple kinematics features commonly used in the psychology lit-
erature analysing movement data. The grey circle at the bottom represents
the start area, the red and grey circles at the top represent the target areas.
Figure reproduced with permission from Wirth et al. (2020), licensed under

CC BY 4.0.

the curve (Wifall et al., 2017, Miles and Proctor, 2011), maximal deviation (Desmur-
get et al., 1997, Song and Nakayama, 2006 Erb et al., 2018), distance travelled in
pixels (Dale et al., 2007), and proximity of a target relative to a distractor (Spivey et
al., 2005). To get better cumulative evidence in the mapping between cognitive pro-
cess and kinematic signatures, it would be desirable to use common features across
tasks when investigating overlapping or similar processes. On the other hand, by
limiting oneself to features defined in past lines of research, one finds oneself at risk
of missing out on crucial information in their own paradigm (that would not be
captured by features used in other paradigms). To our knowledge, within this single
feature approach, there is no consensus on the approach for the features selection. This
means that there is a heterogeneity of choice of feature for a cognitive construct, i.e.,
even if a feature is well-suited to a given single study, the choice of that feature may
not allow one to get cumulative evidence for which cognitive signatures a feature is
characteristic of. This also means that there might not be a set of best practices and
caveats associated with the implementation of a given feature (although there exist
general methodological guidelines such as Schoemann et al., 2019) and that one may
miss factors that could influence a feature in one design but not another. For exam-
ple, the value of a feature such as maximal angle may be dependent on the instructed
speed of reply. There is also a problem of multiple comparisons if one explores too
many features without a-priori selection. Given the high-dimensionality of kine-
matics data and the multiple ways in which one can imagine how kinematics may

https://creativecommons.org/licenses/by/4.0/
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be affected by cognitive processes, it might be tempting to explore a large number
of features but then eventually be ensure on the probability that a significant result
is a false positive. Thus, without the existence of commonly accepted best practices,
the single feature approach might suffer from features being affected by subtle design
change or from the multiple comparisons issue.

Another type of approach was used by M. Maldonado et al. (2019) who used a
machine learning classifier on mouse-tracking data. Specifically, they created a first
’artificial’ experiment in which they induced a ’change of decision’ by changing the
cue that indicated a previous answer (that required for example clicking a box on the
right-hand side of the screen) to a cue that indicated another answer (for example
click on the left-hand side of the screen). They used kinematics data points (with
dimensionality reduced to 13 principal components with a Principal Component
Analysis) to train a supervised classifier (Linear Discriminant Analysis, LDA) that
would indicate how likely data were to come from an artificial ’change of mind’
or ’no change of mind’ condition. They then collected data on their main study
(looking at linguistic processing of double-negation) and applied the classifier to
infer whether the experimental conditions looked rather like a ’change of mind’ or
’no change of mind’ condition. This approach was fruitful for the study given that
the question related to whether processing of double negation included a ’change of
mind’. However, the LDA does not describe the kinematics beyond their similarity
to one or the other artificial experimental condition. The LDA classifier training on
this dataset is also not usable for any experiment that does not have a similar design.
This machine learning approach can thus be powerful but not generalisable.

We propose that the machine learning approach just mentioned and the single fea-
ture approach lie on two opposite sides of a spectrum. One extremity of that spec-
trum uses a maximal amount of information from the kinematics at the expense of
generalisability and interpretability. The other extremity has generalisability and in-
terpretability at the risk of not exploiting all the information captured by kinematics
data. In this thesis, we will propose a novel approach hybrid between the machine
learning approach and the single feature approach that attempts to maximize generalis-
ability while taking advantage of a maximum of information in the kinematics data.
In brief, this new approach consists in a first step in using a dataset such as a pilot
dataset (or any dataset collected with the paradigm of interest, but on different par-
ticipants than the target study) and implement a very large number of interpretable
features (including features used in the literature). In a second step, it consists in de-
riving a dimension reduction technique to select the features that capture the most
variance, and finally applying the pre-selected features on the target study.
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1.5 Research questions and thesis overview

1.5.1 Summary of existing findings and open research questions

There is a significant amount of evidence for the early emergence of goal-directed ac-
tions as soon as the first year of life. Infant and child actions are highly influenced by
the environment affordances – like adults, if not even more strongly. We also know
that toddlers can anticipate a few steps ahead, and that by school age children are
capable of planning and executing daily-life routines. Some work has addressed the
learning of routines, or the interaction between habitual and goal-directed learning
in school-aged children. We also know that the development of EF throughout child-
hood has a considerable influence on the development of many social and cognitive
faculties.

Much less is known about the nature and mechanisms underlying sequential
action control such as in daily-life routine sequences. Sequential action control has
been extensively tested and theorised in adults, notably with the dual-systems frame-
work of Norman and Shallice (1986); but little or even no previous work has formally
investigated the existence and use of two systems of action control in children as de-
fined by the dual-systems framework. Critically, there is evidence suggesting that
the development of executive functions is involved in improvement in action con-
trol throughout childhood. However, the role of executive functions as measured
by standard tasks and its relationship with the action modes from the dual-system
framework has never been tested in children and is a central aim of this thesis. To
address such theoretical questions, there is a need for new experimental paradigms.
It would be desirable that such paradigms are able to link children’s action control
to theories of adult action control, in order to benefit from the extensive computa-
tional and empirical support about adults’ action control theories. Developing such
research methods is a parallel goal of this thesis.

Finally, this thesis aims to unify developmental findings obtained from the dual-
systems perspective of Norman and Shallice (1986) and from the Reinforcement
Learning (RL) perspective. Specifically, there has been developmental work on the
trajectories of habitual and goal-directed control modes as defined in the RL tradi-
tion, but not from the dual-systems of Norman and Shallice (1986). This thesis also
attempts to bridge the gap between dual-systems mode of action control and RL
modelling and the related empirical data, by developing a mechanistic model that
makes closer contact to child data.

1.5.2 Thesis overview

Chapter 2 investigates the role of environmental, bottom-up influences of objects
when reaching for a target among distractors. It reveals that the process of resolving
the competition from distractors when selecting a target is still developing through-
out childhood, as evidenced by interference effects from distractor objects in 6 - 12
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years old but not in adults, and possibly decreasing interference effects within this
age range. The Chapter provides evidence that the development of inhibitory con-
trol abilities is crucial in the development of action control performance throughout
school years.

Chapter 3 looks at action selection at a higher level. It proposes a novel compu-
tational model to account for the interaction between two systems of action control
in children’s and adults’ repeated two-actions sequential selection. The two sys-
tems are modelled, following the reinforcement learning literature, as model-free
and model-based types. The novel model is tested against pre-existing experimental
data, and appears more informative than the original study’s reinforcement learn-
ing model in that the novel model is able to make contact with response time data
and consequently distinguish between various mechanistic accounts of the balance
between model-free and model-based modes of control. Specifically, it suggests that
the increasing use of model-based control from childhood (8-12 years old group) to
adulthood may either result from a change in an externally-arbitrated recruitment
balance, or result from a reduction in noise in the model-based system with age.

To further understand the development of the action control systems within the
span of school years, the subsequent two Chapters rely on newly designed studies
and newly acquired data.

Chapter 4 tackles the acquisition, performance and adaptability to unpredictable
changes of short action sequences between 5 and 9 years of age. It uses a touchscreen-
based task requiring the performance of action sequences and incorporating unpre-
dictable environment changes (or, probabilistic transitions) requiring one to update
an ongoing action sequence. The use of probabilistic transitions is inspired by the
pre-existing reinforcement learning task modelled in the previous Chapter 3 (that
used probabilistic transitions to dissociate between model-free and model-based
control strategies). However, the task in Chapter 4 has been substantially adapted to
measure the recruitment of routine and supervisory modes in a task tapping more
concretely into life-like action control and suited to study development within the
school-age years. Chapter 4 reveals that action sequence performance following cer-
tain types of transitions can be updated equally well across the age range, but that
other types of transition cause a decrease in performance of the youngest age group.
The findings also indicate that the monitoring and/or updating processes, which
belongs to supervisory functions, undergo developmental changes between 5 and 9
years of age.

Chapter 5 pursues the investigation of routine-like action sequence performance,
by 7- to 12-year-olds and adults, this time with longer action sequences that capture
essential features of real-life sequences. It consists of two studies using a computer-
based mouse-tracking task, with two sequence variants, containing actions that have
particular irregularities (called branch points), and that are compared to more reg-
ular actions. It also uses a secondary task to tax supervisory resources and thus
clarifies the role of supervisory control functions, which have been highlighted in



Chapter 1. The Control of Action Across Development: Theoretical and
Methodological Foundations

34

previous Chapters, in longer action sequences. Chapter 5 finds that children have
a higher cost than adults at the irregular sequence points, and that 7- to 8-year-olds
might have a higher cost than 9- to 12-year-olds. Together with the result that the
secondary task impairs performance more specifically at branch points, the chapter
reveals that when children execute (partially) routinised action sequences, supervi-
sory control is most needed for resolving the selection of actions at branch points.
Furthermore, it finds that this ability to successfully engage supervisory control at
the most crucial parts of a sequence improves during and beyond school years.

Chapter 6 discusses all the experimental findings and models together to form
a comprehensive view of the complex interactions between various influences and
modes of action control and their change across development. In this chapter, we
also challenge the view that the routine (model-free) system becomes less impor-
tant with development, or that the system loses ground on the competition because
supervisory (model-based) abilities become more mature and prominent. We pro-
pose instead that, throughout development, the supervisory system does mature
and consequently gains more importance in controlling skilled behaviour, but only
at the levels where supervisory influence is needed; and furthermore that the routine
system keeps playing an important role throughout life.

In summary, the thesis first lays out the key action selection challenges that
children face when executing sequences – from the lower-level inhibition of task-
irrelevant distractors to the appropriate selection of actions that are partly compat-
ible with the context. Secondly, it provides an account of how two action control
systems resolve action selection challenges and what their specificity is, notably in
routinised action sequences. Thirdly, it describes changes in action control perfor-
mance throughout the school-age years, and provides converging evidence towards
the development of inhibitory control being an important driver of change in ac-
tion skill. Finally, it proposes a broader view of the developmental trajectory of the
interaction of the two systems supporting action control.
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Chapter 2

Reaching in the Face of Distractors:
A 3D Motion Capture Study

Abstract

This chapter investigates the susceptibility to distractor interferences when selecting
an action, and changes in the extent of distractor interferences across development.
It presents new analyses on previously collected kinematics data about the interfer-
ence effects caused by distractor objects when reaching to a target in an ecological
3D environment.

It reveals that distractors, regardless of their semantic or perceptual properties,
affect reaching duration and kinematics parameters in children between 6 and 12
years old, and affect the youngest children to a larger extent. The chapter suggests
that mechanisms of action-based inhibition are recruited to resolve the competing
activations generated in selecting the appropriate action, and that such mechanisms
improve with age, supporting more accurate and efficient (less susceptible to in-
terference) reaching actions throughout development. Therefore, it suggests that
development of inhibitory control plays a central role in the improvement of action
control skills throughout the school-age years.

2.1 Introduction

2.1.1 The importance of objects in action selection

Action can be studied from different perspectives. On the one hand, it is possible
to study action by abstracting away the relationship between motor commands and
the physical properties of objects, and focusing more on the hierarchical relationship
between goals and subgoals. For that reason, action control can be investigated us-
ing computerised tasks (as it will be in chapters 3, 4 and 5). On the other hand, it
is not always possible to isolate an action from the physical possibility relative to
the action (e.g., if one wants to pick up a kettle, one needs to have a hand free, but
one may be able to hold both a cup and a cube of sugar in the same hand). Before
studying action at a level of abstraction that ignores objects’ physical properties (in
chapters 3, 4 and 5), this chapter looks into what extent the physical, perceptual and
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semantic properties of a target and its surroundings affect action selection processes.
As mentioned in the Chapter 1, subtle kinematic features between the start and end
of a movement can reveal precious information about the processes underlying ac-
tion control as action unfolds in real-time, and this study takes advantage of it by
measuring the kinematics of reaching and grasping.

The experimental data in this chapter was collected by Livia Freier who designed
the study, presented in Freier (2016). In the present chapter, we re-used the data from
Freier (2016), on which we performed new analyses from scratch (only re-using the
time stamps previously determined manually, as described in the Section 2.2). In
addition to the analyses, the current literature review, methods and discussion in
this chapter are all novel outputs of this thesis.

We first review the theoretical background of selection-for-action. We then ex-
pand on experimental studies revealing what features of reach-to-grasp can be sub-
ject to interference, and review what object properties may lead to such interference
on reaching-to-grasp a target among distractors. We also specify the developmental
findings related to these factors.

2.1.2 Theories of selection-for-action

Tipper et al. (1992) observed that reaching properties differed as a function of the
surroundings of a target, in particular distractor objects. A number of theories have
proposed explanations of the causes of such interferences on reaching to a target.
The premotor theory (Rizzolatti et al., 1987) postulates that when attending to a loca-
tion, goal-directed spatially coded movements are prepared through spatial selec-
tive attention processes. Relatedly, the visual attention model (W. X. Schneider, 1995)
advances that target selection is performed by common mechanisms for selection-for-
action (located in the dorsal pathway) and selection-for-perception (ventral pathway).
Accordingly, motor programs are prepared towards attended objects, whether they
are the intended target or not.

In both the premotor theory (Rizzolatti et al., 1987) and the visual attention
model (W. X. Schneider, 1995), the processing of objects and preparation of actions
happen together and motor activations occur for action regardless of whether the ac-
tion will be executed. An alternative hypothesis held in the late 1990s, the visuospatial
hypothesis claimed that interference was solely dependent on the spatial location of
distractors. Meegan and Tipper (1999a) refuted this. Instead, they found that in-
terference depended on the nature of actions afforded by distractors. Supported by
the identification of vision-for-action neurons (e.g., Ottes et al., 1987), they proposed
the visuomotor processing hypothesis which states that distractor objects elicit action
representations even in absence of intention to act upon the objects.
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Multiple evoked action activations

In all three theories there is the common view that when acting on a target sur-
rounded by other objects, the visual inputs from the target and non-target objects
evoke motor activations or action representations. Multiple possible motor action
representations can be elicited in parallel, and such activations exist even for objects
that are task-irrelevant, independently of the participant’s awareness or intention to
act (Castiello, 1996).

Before performing an action, a process of selection must therefore occur. Thus,
prior to and during the executing of an action, interference may be measured in
neural and behavioural data which reflects the competition of multiple activations
competing for action.

Inhibition of competing actions

Following the encoding of multiple actions, Tipper (1985) (see also Howard and Tip-
per, 1997) proposed that action-based inhibitory selection mechanisms are required
to facilitate selecting a target. Such inhibitory processes, which suppress the com-
peting activations of (some) objects in the visual field, are reflected in the kinematics
of action initiation or execution. For example, Tipper et al. (1998) further proposed
that the amount of inhibition determines if a trajectory will deviate away from or
towards a distractor.

Interference in response time and kinematics

Before focusing on the parameters of distractors that interfere with reaching actions,
we specify how such interference can manifest itself and be detected in behavioural
measures. Reaction time studies have found the presence of distractors (even task-
irrelevant) to slow down responses (e.g., Bradley, 1969, Pratt and Abrams, 1994,
Jackson et al., 1995, Simone and Baylis, 1997, Gnanaseelan et al., 2014). Other studies
have found distractors to affect trajectory paths when reaching for a target: Welsh
et al. (1999) or Welsh and Elliott (2004) found that the reaching path deviated away
from distractors. On the contrary, Chang and Abrams (2004) found distractors to
attract the path towards them.

According to Tipper et al. (1998), deviations towards or away from distractors
depend on the amount of inhibition required. Deviations towards a distractor are
caused by residual activations that have not been sufficiently inhibited. However,
if the distractor requires greater inhibition, the path may deviate away from the
inhibited distractor. A last possibility is that the level of inhibition is intermediate so
that no deviation occurs.
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2.1.3 Distractor properties affecting reach-to-grasp actions

We saw that the competition between target and distractor representations can gen-
erate interference in reaching actions. We now turn to the factors (properties of the
stimulus, appearance, relevance, and their relative location to the target) that influ-
ence the extent of interference.

Spatial parameters

A multitude of factors have been found to modulate the presence and the extent of
distractor interference on reaching: the object’s (target or distractor) size (Jervis et al.,
1999, Castiello, 1996), the object’s shape (Castiello, 1996), the distance between target
and distractors (Keulen et al., 2004), the hand starting position (Tipper et al., 1992),
the object’s being in reachable space or not (Gallivan et al., 2009). The distances,
hand start position and reachability are held constant in the study reported here in
order to concentrate on the affordance, semantic and set size factors, whose roles
are still unclear and can be expected to have different influences on reach across
development.

Perceptual

According to the affordance hypothesis or perceptual hypothesis, interference occurs due
to conflicting activations by incompatible affordance representations between dis-
tractors and the target (e.g., Gazzaniga et al., 1962). Consistent with the affordance
theory of Gibson (1979), the affordance or perceptual hypothesis predicts that a dis-
tractor will compete with, and thus affect the kinematics of reaching to a target, only
if the target and distractor afford different actions.

Semantic

Jervis et al. (1999) investigated the role of semantic relatedness between a target and
a distractor in reaching interference. Kinematics were measured in adults reaching
for an apple placed alone (control condition), placed with a compatible distractor ob-
ject (other apple; semantically compatible condition) or placed with an incompatible
distractor object (box the same size as the apple; semantically incompatible condi-
tion). The semantic compatibility modulated the grasp but not the reach kinematics.
The reaching duration did not vary with compatibility but the peak acceleration of
finger opening in grasping was found earlier with a semantically incompatible dis-
tractor than with a semantically compatible distractor (and earlier with any distrac-
tor than when no distractor was presented). However, the apple and box distractors
differed not only in their semantic compatibility but also in their grip affordance (per-
ceptual compatibility). In a complementary study, Jervis et al. (1999) controlled for
the role of perceptual compatibility on interference and found that only semantic
compatibility affected the interference.
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Set size

A key contrast between the studies of Jervis et al. (1999) and those of, for exam-
ple, Tipper et al. (1992) is that in the former the target object was always located at
the same position, while in the latter there was an element of visual search. To our
knowledge, no study has explored whether the number of distractor objects affects
reach-to-grasp actions when the target object is in a fixed location. In visual search
studies (e.g., Beck et al., 2010, and Treisman and Gelade, 1980), and studies of mul-
tiple object tracking (e.g., Bettencourt and Somers, 2009), increasing the number of
distractors (ranging from 1 to 16) typically increases response times with each added
distractor item. This increase is not (solely) due to serial processing of distractors.
For example, Baldauf et al. (2006) provided behavioural evidence that more than
two reaching actions can be prepared in parallel rather than serially, and neuro-
physiological data supports the simultaneous representation of target and multiple
distractors’ representations (e.g., Basso and Wurtz, 1997, Cisek and Kalaska, 2005,
Cisek, 2006). Given these considerations, it is unclear whether one should expect the
presence of multiple distractors to lead to more interference than one distractor in
the absence of visual search.

2.1.4 Development of action-based selection mechanisms

If the distractors elicit activations that must be suppressed via inhibitory mecha-
nisms, then different age groups are expected to face different degrees of interfer-
ence. Indeed, inhibitory control is known to improve throughout childhood until
late adolescence (e.g., Luna, 2009, Davidson et al., 2006, Blaye and Chevalier, 2011).
Along with other executive functions, changes in inhibitory control have been linked
to the protracted maturation of the prefrontal cortex (e.g., Lenroot and Giedd, 2006,
Diamond, 2002). More precisely, inhibitory control appears to change very intensely
around 4-6 years old, relatively less until 7 years old (Mehnert, Akhrif, Telkemeyer,
Rossi, Schmitz, et al., 2013) and, albeit possibly at a slower rate, throughout adoles-
cence (Casey et al., 2005a, Klenberg et al., 2010). At the earliest stage of develop-
ment such low inhibitory control results in the incapacity to resist the most activated
response at a given time (Diamond, 1990a). Throughout development, gains in in-
hibitory control may lead to quicker conflict resolution.

A variety of tasks are used to measure the inhibition of prepotent responses.
These tasks commonly face the task impurity issue (Burgess, 1997, Phillips, 1997):
they often measure a variety of processes rather than a pure inhibition component.
We may distinguish two broad types of tasks held to measure response inhibition. A
first type includes tasks like the Stop signal (Logan, 1994) or the Go-NoGo (Shapiro
et al., 2013), where, depending on the stimuli, a response must be given or with-
held. Importantly, there is only one possibility of response (e.g., the task requires to
press a specific key, or to withhold responding). The second type of inhibition task
involves more than one possible responses (e.g., both left and right keys), where one
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response may be prepotent but need to be inhibited to give the other, appropriate
response. This is the case in the Flanker task and Stroop tasks (Eriksen and Eriksen,
1974, Stroop, 1935). We will focus here on the second type of task, which is rele-
vant to the current chapter’s. Indeed, the reaching paradigm used in this chapter
task investigates the development of inhibitory control applied to conflict resolution
among more than one possible responses.

Erb et al. (2018) used a variation of the Eriksen flanker task (Eriksen and Eriksen,
1974). This classical version of the Flanker task requires participants to respond to
a central stimulus ’flanked’ by distractors stimuli on the sides. On congruent trials,
the target and distractor stimuli cue the same response (e.g., all arrows pointing
leftwards, and the leftward key must be pressed) while on incongruent trials they
cue competing responses (e.g., a central arrow pointing rightwards and the others
leftwards, and the rightward key must be pressed). Inhibitory control is held to be
recruited to override the response evoked by the distractor cues. Thanks to a reach-
to-touch adaptation of the Flanker task, Erb et al. (2018) were able to measure within-
trial changes in reach curvature hypothesised to index the co-activation between
response alternatives during the movement, whereby greater curvature indicates a
less efficient conflict resolution process (Erb et al., 2016). The results of Erb et al.
(2018) suggest that there might be improvements in the conflict resolution process
from 8 to 10 years of age and until adulthood.

The Stroop task (Stroop, 1935) has been proposed by some as an indicator of
inhibitory control, either because it indexes the ability to inhibit prepotent represen-
tations (Cepeda et al., 2001, Diamond et al., 2005) or the ability to inhibit task sets
(Mayr and Keele, 2000). A child-friendly version of the Stroop task, the Day/Night
task (Gerstadt et al., 1994) has been used widely. In the Day/Night task, partici-
pants must say ’day’ when presented with a black card with a moon and stars, and
say ’night’ when presented with a brightly-coloured card with a sun. Performance
on the Day/Night task has been found to improve across preschool and school years
(Gerstadt et al., 1994, Hughes et al., 2009, Willoughby et al., 2012).

Thus, diverse tasks that presumably recruit inhibitory control (among other pro-
cesses) have found that improvements in inhibitory control with age led to more
accurate or faster selection among competing options. Drawing on these findings,
we predict that such developmental changes in inhibitory control will result in re-
duced effects of distractors on reaching with development.

2.1.5 The current study

The present study was designed to better understand the roles of distractor prop-
erties (number, semantic and perceptual compatibility) and the maturation of in-
hibitory control on reach-to-grasp interference. It was built on the reaching task
used by Jervis et al. (1999) and presented above. Here, children at 6, 9 and 12 years
of age, as well as adults reached for a target object placed in the centre of the table
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and flanked either by one or two distractors that had various perceptual and seman-
tic relationships to the target object, or no distractor. This constituted a total of seven
conditions described below and illustrated in Figure 2.1:

• (A) no distractor object condition,
• (B) perceptually incompatible / semantically incompatible condition,
• (C) perceptually incompatible / semantically compatible condition,
• (D) perceptually compatible / semantically incompatible condition,
• (E) perceptually compatible / semantically compatible condition,
• (F) perceptually compatible and semantically incompatible condition,
• (G) perceptually incompatible and semantically compatible condition.
Thus, conditions differed in the combination of the semantic and perceptual com-

patibility between the target and distractor and in the number of distractors pre-
sented simultaneously (set size). For example, in condition (D) perceptually compati-
ble / semantically incompatible condition, the distractor was a tennis ball which afforded
the same grip as the target apple but belonged to a different semantic category; and
in condition (E) the distractor was an orange which offered the same grip and be-
longed to the same semantic category (all objects are shown in Figure 2.1).

As interference in reaching actions can be revealed either with temporal or spatial
parameters, we measured the reach and grasp movement durations as well as the
spatial kinematic features of the reach movement.

2.2 Methods

2.2.1 Participants

Sixty-five participants (9 left handed / 56 right handed) were included in the final
sample. Participants constituted four age groups as follows: seventeen 6-year-olds
(M = 6.4 year, SD = 0.3 years; 7 females), twenty-one 9-year-olds (M = 9.3 years,
SD = 0.3; 10 females), eighteen 12-year-olds (M = 12.7 years, SD = 0.4 years; 6 fe-
males) and nine adults (M = 29.2 years, SD = 8.3 years; 7 females). Only participants
for whom there was sufficient data was included in the final sample, as described
hereafter. Six 6-year-olds, four 9-year-olds and two adults who were tested but had
excessive marker occlusion were excluded from the final sample (not counted in the
above). Three 6-year-olds and one 12-year-old were excluded as well because they
failed to consistently bring, as instructed, their reaching hand back to the start lo-
cation at the onset of trials. Participants were tested individually. They were naïve
to the purpose of the study and had normal-to-corrected vision. Written consent
was obtained from the parents or caregiver, and verbal consent to participate was
obtained from the children. The study had ethical approval from Birkbeck’s institu-
tional Ethics Committee and the study sessions were conducted in accordance with
the declaration of Helsinki. All the participants were offered travel reimbursement
and children were given small thank-you gifts.
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2.2.2 Materials

The stimuli were a combination of one to six different objects: three round objects of
equal diameters (6 cm), each part of a different semantic category (an apple, a tennis
ball and a tea-ball infuser); and three common objects that varied in shape, size as
well as semantic category (a banana, grape and scissors). Before the testing session
children and adults were able to identify all objects and were given an opportunity
to touch them.

2.2.3 Procedure

The experimental sessions took place indoors under normal lighting conditions. Par-
ticipants were sat with their dominant hand in front of them, place on a 50cm x 50cm
table. The start location was marked by a line on the table. Participants were sat with
the midline of their body aligned to the start location. They were instructed to place
their dominant (reaching) hand at this start location with their middle digits touch-
ing the line without crossing it. This hand placement was practised before recording
the trials. To control for the visual processing time prior to reach onset, a screen was
placed on the table such that it was hiding the placement of stimuli at the start of
each trial.

Behind the screen, the target apple was located in the centre of the table, 30cm
away from and aligned with the hand start location. One or two distractor objects
(as indicated in Figure 2.1) were located also at 30 cm and at a 20°angle from the line
between hand and apple. Consequently, distractors appeared closer to the start loca-
tion relative to the target, and were well within reach of participants, without being
obstacles to reaching the target. The location of distractors was counterbalanced to
the left and right hand side of the target.

Participants were instructed to reach for the central apple in a way that felt nat-
ural, to then pick up the apple and finally place it back on the table. They were also
instructed to ignore all other objects. Each participant carried out three practice trials
before the test trials.

Each condition was presented 10 times, except the No distractor condition which
was presented 30 times. The resulting 90 trials were randomly ordered. At the start
of a trial, participants were reminded to place their reaching hand at the start loca-
tion, and a new trial began only when this was confirmed. The onset of each trial was
the moment when the screen was lifted. The reach-to-grasp actions were recorded
throughout with an optical motion-capture camera system as described below.

2.2.4 Motion-capture setup

Spherical reflective markers (diameter: 4 mm) were attached to the participants’
reaching hand with skin-safe double-sided adhesive tape, at four points. The first
three points followed the placements used in Jervis et al. (1999), that is: (1) on the
wrist - radial styloid process, (2) on the index finger dorsal side of the tip of the
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Fig. 2.1: Experimental setup: stimuli across conditions. The target ob-
ject (apple) always appeared in the centre, 30cm away from the hand
starting position (black rectangle). (A) No distractor condition (alone),
and with (B) one perpetually incompatible/semantically incompatible
distractor condition (pair of scissors); (C) one perceptually incompati-
ble/semantically compatible distractor (banana); (D) one perceptually com-
patible/semantically incompatible distractor (tennis ball); (E) one perceptu-
ally compatible/semantically compatible distractor (apple); (F) two distrac-
tors, one of which is perceptually compatible and the other semantically in-
compatible (tennis ball and tea infuser); (G) two distractors, one of which is
perceptually incompatible and the other semantically compatible (banana

and grape).

second finger and (3) on the thumb - dorsal side of the tip of the index finger. The
last (4) marker was attached to the first knuckle of the index finger. The latter was
chosen following previous motion-capture studies with children (e.g., Coluccini et
al., 2007, Jaspers et al., 2011). A marker was also attached to each object to record
their location.

The movements of the markers were tracked by a five-camera optical motion
capture system (from Qualisys Inc., Sweden: 4 x Oqus 1 cameras to track the mark-
ers and 1 x Oqus 210c camera to record and synchronize colour video). The marker
tracking worked through the emission by each camera of near-infrared light spec-
trum (800nm wavelength) by strobe-emitting LEDs. Data was sampled at 100 Hz.
The marker-tracking cameras were placed on tripods around the table, arranged in a
quarter-circular fashion from 1 to 1.5 m to the closest edge of the table, and 0.3 to 1 m
apart from one another. Calibration was made so that cameras would record within
a volume 1.5 m long x 1 m wide x 1 m high, via a calibration wand with two markers
299.3 mm apart. The coordinate system origin was given by a static, L-shaped frame
with four coplanar markers (one at the junction; one on the short side at 200 mm
distance from the junction marker; two markers on the long side at 90 mm and 300
mm distances from the junction marker) placed on the table during calibration.

Data was acquired via the Qualisys Track Manager (QTM) software package
(version 2.9). Each session was recorded continuously. The three-dimensional marker
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positions were reconstructed with the QTM software.

2.2.5 Coding

The following coding was performed by the original author of the study (Livia
Freier), and the coded data files were re-used in this thesis. Successful trials were as-
sessed visually to identify the frame at which one of the following events occurred:
(1) reaching start, (2) grasping start and (3) end of the movement (both reaching
and grasping). The reaching start component was coded as the moment at which
the hand was lifted off the table, as reflected by an acceleration in the velocity curve.
The grasping start component was coded as the point at which the arm had its maxi-
mal extension. The end of the movement was coded as the moment when the fingers
closed around the object. The interval from reaching start, (1), to the end, (3), formed
the reach movement, and the interval from grasping start, (2), to the end (3) formed
the grasp movement. Three independent coders carried out the visual coding. They
first checked the video for correct placements of the hand at the start of trials. Coders
also screened the velocity curves for signal failures, shown by discontinuous signal.
All coders were trained similarly for the manual coding procedure, and the final
Krippendorff’s Alpha coefficient of inter-coder reliability was 0.90 or higher. Trials
with signal failure (caused by marker occlusion), as well as trials with wrong hand
placement at the start were excluded.

2.2.6 Processing of kinematics data

From this Section and on, the analyses were done (or replicated) anew for this thesis.
The kinematics data was smoothed with a second-order Butterworth filter (lowpass,
10 Hz cuttoff frequency). We analysed separately the two-dimensional motion paral-
lel to the table workspace and the movement perpendicular to the table workspace.
Trials were filtered as follows. Individual trials were retained if the knuckle marker
data was available, or alternatively the wrist marker (analyses on data where both
markers were available indicated that wrist and knuckle markers yielded similar
path deviation features, with Spearman correlation coefficient of 0.62, p < 0.001).
Subsequently, a condition was deemed sufficiently represented when more than 4
trials remained (more than 8 for condition (A) No distractor). Indeed, except for the
No distractor condition, at least two conditions contribute to each level of the pre-
dictors (semantic, perceptual, set size) which means at least 8 trials per level per
participant were available. Thus, the average number of trials per participant in-
cluded in the final analyses were: 60 trials for the 6-year-olds, 63 for the 9-year-olds,
72 for the 12-year-olds, and 62 for the adults.

In the retained trials, we computed the following features: (a) reach movement
duration (from the reach start event to the end of the movement), (b) grasp move-
ment duration (from the time of the maximal extension of the limb to the time that
the target is moved from its initial location), (c) the maximal lateral deviation from
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a straight path in the horizontal plane, referred to as ’maximal x-deviation’, and (d)
maximal deviation in the vertical plane (i.e., maximal altitude above the table), re-
ferred to as ’maximal z-deviation’. The kinematic parameters were derived from the
position data of the knuckle or wrist markers. The temporal parameters were indi-
vidually computed for reach and grasp components, and the deviation parameters
only for the reach component. The maximal x-deviation and maximal z-deviation
trajectory features were log-transformed prior to averaging to meet normality as-
sumptions. Preliminary analyses did not reveal any significant effects of gender
handedness.

Further kinematics other than response time were not derived for the grasp com-
ponent because contrary to the knuckle or wrist marker, the index and thumb mark-
ers suffered from excessive occlusion thus we did not have enough data for that
purpose.

2.2.7 Mixed models and Bayes Factors

To investigate the difference between conditions across age groups, we conducted a
series of linear mixed-effects regressions with the lme function of the nlme package
(Pinheiro et al., 2020) for the R software environment (Version 3.6.0; R Core Team,
2019), fitting the models by maximizing the restricted loglikelihood (REML method).
We defined a random intercept per participant to account for the repeated measures
(Steele, 2014), and defined the following fixed effects: semantic compatibility and
perceptual compatibility as categorical predictors (coded as 0 if incompatible, 1 if
compatible), set size as a continuous predictor (1 in condition A, 2 in B, C, E and
G, 3 in D and F), and age as an ordered categorial predictor. In addition to the
main effects, we entered all combinations of 2-ways interactions because this model
was more parsimonious than a model which included both all 2-way and all 3-way
interactions. For the ordered categorical predictor (age), we tested for linear trends.

Additionally, we computed Bayes Factors (BF) using the R package BayesFac-
tor (Morey and Rouder, 2018). For each age group and each predictor P (semantic
compatibility, perceptual compatibility and setsize), we generated a BF10 comparing
the Bayes Factor of model H1 over the Bayes Factor of model H0, where H1 was a
mixed model (function lmBF) which had all three predictors and a random subject
intercept, and H0 the same without the predictor P. We used the recompute func-
tion with 1,000,000 Monte Carlo samples, so that the proportional error on the Bayes
Factor all fell under 1%. We use the classification scheme proposed by van Doorn
et al. (2020) to interpret the Bayes Factors strength, where a BF10 from 1/30 to 1/10
is taken as Strong evidence for H0, from 1/10 to 1/3 as Moderate evidence for H0,
from 1/3 to 1 as Weak evidence for H0, from 1 to 3 as Weak evidence for H1, from 3
to 10 as Moderate evidence for H1 and from 10 to 30 as Strong evidence for H1.
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2.3 Results

2.3.1 Reach movement duration

Unsurprisingly, response times decreased with age and this held across all condi-
tions (main effect of age, linear trend: β = -0.117, SE = 0.042, t(61) = -2.818, p = 0.007,
95% CI [-0.201, -0.034]). However, young children’s movement durations were sen-
sitive to condition, unlike that of the adults.

As is apparent in Figure 2.2 (right panel), across the one-distractor conditions
there was no significant effect of either semantic (β = 0.014, SE = 0.008, t(293) =
1.701, p = 0.09, 95% CI [-0.002, 0.03]) or perceptual compatibility (β = 0.008, SE =
0.008, t(293) = 1.003, p = 0.317, 95% CI [-0.008, 0.024]) on reach movement duration.
Moreover, the Bayes Factors provide moderate to weak evidence for the absence of
an effect of semantic (BF10 = 0.27, 0.25, 0.46, and 0.31 for the 6-, 9-, 12-years old and
adult respectively) or perceptual compatibility (0.23, 0.23, 0.35, 0.52 for the 6-, 9-,
12-years old and adult respectively) on reach movement duration.

Fig. 2.2: Reach movement duration as a function of age and set size (left
panel), or age and compatibility (right panel). Setsize 1 corresponds to the
No distractor condition, Setsize 2 to conditions with one distractor and Set-
size 3 to conditions with 2 distractors). Error bars represent one standard

error from the mean.

In contrast, the effect of set size was significant (β = 0.039, SE = 0.006, t(293) =
6.187, p = <0.001, 95% CI [0.027, 0.052]), as was the interaction between age and set
size (linear trend, β = -0.048, SE = 0.014, t(293) = -3.462, p = 0.001, 95% CI [-0.076,
-0.021]). As shown in Figure 2.2 (left panel), the younger the children, the higher the
effect of set size, with adults not showing this effect. The entire regression results
are also presented in table 2.1.

The Bayes Factors provide further insight into the developmental changes in the
set size effects: there is moderate evidence for a set size effect in the 6-year-olds (BF10

= 3.62), weak evidence for this effect in the 9-year-olds (BF10 =1.50), and (in contrast)
weak evidence for the absence of such an effect in 12-year-olds (BF10 = 0.60), and
adults (BF10 = 0.34).
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Table 2.1: Results of the Linear Mixed Model on Reach movement duration
with the predictors Age, CatSem (Semantic compatibility, baseline: Incom-
patible), CatPer (Perceptual compatibility, baseline: Incompatible), Ndis-
tractors (number of distractors) and their interactions. β’: Estimate (regres-
sion coefficient), ’CI (l)’: Confidence Interval (lower bound), ’CI (u)’: Confi-
dence Interval (upper bound), ’SE’: standard error, ’DF’: degrees of freedom,
’t’: t-value, ’p’: p-value, ’sig.’: significance levels: *: p < 0.05, **: p < 0.01,

***: p < 0.001. )

Predictor β CI (lower) CI (upper) SE DF t p-value sig.
(Intercept) 0.750 0.712 0.787 0.019 293.000 39.323 <0.001 ***

Age -0.117 -0.201 -0.034 0.042 61.000 -2.818 0.007 **
CatSem 0.014 -0.002 0.030 0.008 293.000 1.701 0.09
CatPer 0.008 -0.008 0.024 0.008 293.000 1.003 0.317

Ndistractors 0.039 0.027 0.052 0.006 293.000 6.187 <0.001 ***
Age:Ndistractors -0.048 -0.076 -0.021 0.014 293.000 -3.462 0.001 ***

Age:CatPer 0.010 -0.026 0.046 0.018 293.000 0.539 0.591
Age:CatSem -0.018 -0.053 0.017 0.018 293.000 -1.021 0.308

2.3.2 Grasp movement duration

For grasp movement duration (Figure 2.3 and table 2.2), the effects were different
than for reach movement duration. The effect of age was significant (linear trend, β =
-0.037, SE = 0.012, t(61) = -3.094, p = 0.003, 95% CI [-0.061, -0.013]); however, the other
effects and interactions were not significant (Semantic compatibility: β = -0.009, SE
= 0.008, t(290) = -1.198, p = 0.232, 95% CI [-0.024, 0.006], Perceptual compatibility: β

= -0.006, SE = 0.008, t(290) = -0.762, p = 0.447, 95% CI [-0.022, 0.01], set size: β = 0.004,
SE = 0.004, t(290) = 0.869, p = 0.385, 95% CI [-0.005, 0.012]), interaction between age
and set size: linear trend, β = -0.007, SE = 0.005, t(290) = -1.44, p = 0.151, 95% CI
[-0.016, 0.002]).

Fig. 2.3: Grasp movement duration as a function of age and set size (left
panel), or age and compatibility (right panel). Setsize 1 corresponds to the
No distractor condition, Setsize 2 to conditions with one distractor and Set-
size 3 to conditions with 2 distractors). Error bars represent one standard

error from the mean.
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Table 2.2: Results of the Linear Mixed Model on Grasp movement duration
with the predictors Age, CatSem (Semantic compatibility, baseline: Incom-
patible), CatPer (Perceptual compatibility, baseline: Incompatible), Ndis-
tractors (number of distractors) and their interactions. β’: Estimate (regres-
sion coefficient), ’CI (l)’: Confidence Interval (lower bound), ’CI (u)’: Confi-
dence Interval (upper bound), ’SE’: standard error, ’DF’: degrees of freedom,
’t’: t-value, ’p’: p-value, ’sig.’: significance levels: *: p < 0.05, **: p < 0.01,

***: p < 0.001. )

Predictor β CI (l) CI (u) SE DF t p sig.
(Intercept) 0.124 0.112 0.135 0.006 290.000 21.737 <0.001 ***

Age -0.037 -0.061 -0.013 0.012 61.000 -3.094 0.003 **
CatSem -0.009 -0.024 0.006 0.008 290.000 -1.198 0.232
CatPer -0.006 -0.022 0.010 0.008 290.000 -0.762 0.447

Ndistractors 0.004 -0.005 0.012 0.004 290.000 0.869 0.385
Age:Ndistractors -0.007 -0.016 0.002 0.005 290.000 -1.440 0.151

Age:CatPer 0.007 -0.005 0.019 0.006 290.000 1.145 0.253
Age:CatSem -0.005 -0.017 0.007 0.006 290.000 -0.839 0.402

CatPer:Ndistractors 0.007 -0.005 0.019 0.006 290.000 1.110 0.268
CatSem:Ndistractors 0.009 -0.003 0.021 0.006 290.000 1.436 0.152

CatSem:CatPer 0.007 -0.006 0.019 0.006 290.000 1.080 0.281

2.3.3 Summary of movement duration results

In all conditions (i.e., regardless of distractor presence or type), the reaching compo-
nent of younger children was slower than older children, who were in turn slower
than adults. These main effects of age are not surprising. The more interesting effects
relate to compatibility and set size. The compatibility of distractors (semantic or per-
ceptual) did not affect the movement time of the reach and grasp components. That
is, the reach and grasp time were similarly unaffected by the perceptual or semantic
features of distractors. This null effect is supported by the Bayes Factors cited above.
When analysed in terms of the number (rather than type) of distractors, however, a
different pattern was apparent. Reach time (but not grasp time) was significantly af-
fected by the number of distractors in the younger groups, while older participants
were less affected by set size.

2.3.4 Kinematics variables

Analyses of the movement trajectories (i.e., the maximal deviation in the horizontal
and vertical planes) revealed that the maximal lateral deviation (in the horizontal
plane) was only affected by age. However, the maximal deviation in the vertical
plan mirrored the duration results, with a larger deviation as a function of set size
for children but not for adults.

Linear mixed-effects regressions on the maximal lateral deviation (Figure 2.5)
showed a main effect of age (linear trend, β = -0.521, SE = 0.126, t(61) = -4.153, p
= <0.001, 95% CI [-0.772, -0.27]), but no other effect nor interaction (see table 2.3).
More interestingly, the maximal vertical deviation (Figure 2.4 and table 2.4) showed
a significant effect of set size (β = 0.051, SE = 0.022, t(307) = 2.34, p = 0.02, 95% CI
[0.008, 0.093]) and a significant interaction between age and set size (linear trend, β
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= -0.039, SE = 0.019, t(307) = -2.096, p = 0.037, 95% CI [-0.076, -0.002]). This mirrors
the pattern of set size effects and interactions found for reach movement duration.

Fig. 2.4: Maximal vertical deviation: maximal deviation in the vertical plane
(i.e. altitude) as a function of age and set size (left panel), or for conditions
with exactly 1 distractor as a function of age and compatibility (right panel).
Setsize 1 corresponds to the No distractor condition, Setsize 2 to conditions
with one distractor and Setsize 3 to conditions with 2 distractors). Error bars

represent one standard error from the mean.

Fig. 2.5: Maximal lateral deviation: maximal distance in the horizontal plane
from a straight path (that is, direct path from start position to target location)
as a function of age and set size (left panel), or for conditions with exactly
1 distractor as a function of age and compatibility (right panel). Setsize
1 corresponds to the No distractor condition, Setsize 2 to conditions with
one distractor and Setsize 3 to conditions with 2 distractors). Error bars

represent one standard error from the mean.

To test whether reaching time might derive directly from longer trajectories (in
the horizontal or vertical plane), we performed correlational analyses across sub-
jects. The maximal x-deviation had a small but significant correlation with reach
movement duration (Spearman correlation coefficient: r = 0.308, p = 0.012), but the
maximal z-deviation was not correlated with reach movement duration (r = 0.187,
p = 0.135). This suggests that the effects revealed in reach duration and the vertical
deviation measures are capturing partly independent processes.
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Table 2.3: Results of the Linear Mixed Model on Maximal horizontal de-
viation with the predictors Age, CatSem (Semantic compatibility, baseline:
Incompatible), CatPer (Perceptual compatibility, baseline: Incompatible),
Ndistractors (number of distractors) and their interactions. β’: Estimate (re-
gression coefficient), ’CI (l)’: Confidence Interval (lower bound), ’CI (u)’:
Confidence Interval (upper bound), ’SE’: standard error, ’DF’: degrees of
freedom, ’t’: t-value, ’p’: p-value, ’sig.’: significance levels: *: p < 0.05, **:

p < 0.01, ***: p < 0.001. )

Predictor β CI (l) CI (u) SE DF t p
(Intercept) 3.027 2.910 3.143 0.059 307.000 51.204 <0.001 ***

Age -0.521 -0.772 -0.270 0.126 61.000 -4.153 <0.001 ***
CatSem -0.111 -0.251 0.029 0.071 307.000 -1.562 0.119
CatPer -0.002 -0.144 0.139 0.072 307.000 -0.031 0.975

Ndistractors 0.018 -0.063 0.098 0.041 307.000 0.434 0.664
Age:Ndistractors -0.036 -0.122 0.049 0.044 307.000 -0.835 0.404

Age:CatPer 0.037 -0.073 0.146 0.056 307.000 0.653 0.514
Age:CatSem 0.030 -0.079 0.138 0.055 307.000 0.535 0.593

CatPer:Ndistractors 0.001 -0.113 0.115 0.058 307.000 0.017 0.986
CatSem:Ndistractors 0.069 -0.044 0.182 0.058 307.000 1.200 0.231

CatSem:CatPer 0.012 -0.103 0.126 0.058 307.000 0.199 0.842

2.4 Discussion

2.4.1 Distractor interference effects

We found that the presence of task-irrelevant distractors changes the kinematics of
reach-to-grasp action to a target. This is consistent with a large body of evidence
(e.g., Tipper et al., 1992, Castiello, 1996, Baldauf and Deubel, 2009) that underlies
theorising that processing of a scene with multiple objects generates action represen-
tations in parallel, prior to a selection process. The selection process then consists in
suppressing unwanted responses by inhibiting their representation and thus select
the action to the target object.

Specifically, we found that reaching duration increased with the number of dis-
tractors, for the children’s group. There were age differences in the extent of that
duration interference within the children group. This was the case specifically for
the reach component duration but not the grasp component. The Bayesian analyses
provide evidence for a slowing in the younger age group reaching when more dis-
tractors are present. Additionally, they suggest an absence of an effect of distractors
on reaching duration in the older age groups, although the low Bayes Factors call
for further studies to test this absence of effect more fully. The duration interference
was corroborated by interference on the vertical path.

Another important finding was that the distractor compatibility (semantic, per-
ceptual, incompatible) had no effect on reaching and grasping durations, nor on the
vertical and horizontal deviations measures. The Bayes factors provide moderate
to weak evidence against the effects, pointing towards the complete absence of an
effect of distractor compatibility.
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Table 2.4: Results of the Linear Mixed Model on Maximal vertical deviation
with the predictors Age, CatSem (Semantic compatibility, baseline: Incom-
patible), CatPer (Perceptual compatibility, baseline: Incompatible), Ndis-
tractors (number of distractors) and their interactions. β’: Estimate (regres-
sion coefficient), ’CI (l)’: Confidence Interval (lower bound), ’CI (u)’: Confi-
dence Interval (upper bound), ’SE’: standard error, ’DF’: degrees of freedom,
’t’: t-value, ’p’: p-value, ’sig.’: significance levels: *: p < 0.05, **: p < 0.01,

***: p < 0.001. )

Predictor β CI (l) CI (u) SE DF t p
(Intercept) 4.530 4.439 4.620 0.046 307.000 98.962 <0.001 ***

Age 0.162 -0.035 0.360 0.099 61.000 1.642 0.106
CatSem 0.067 -0.007 0.141 0.038 307.000 1.772 0.077
CatPer -0.022 -0.097 0.053 0.038 307.000 -0.582 0.561

Ndistractors 0.051 0.008 0.093 0.022 307.000 2.340 0.02 *
Age:Ndistractors -0.039 -0.076 -0.002 0.019 307.000 -2.096 0.037 *

Age:CatPer 0.005 -0.053 0.064 0.030 307.000 0.186 0.853
Age:CatSem -0.006 -0.063 0.052 0.029 307.000 -0.201 0.84

CatPer:Ndistractors 0.003 -0.058 0.063 0.031 307.000 0.087 0.931
CatSem:Ndistractors -0.051 -0.111 0.009 0.030 307.000 -1.686 0.093

CatSem:CatPer -0.017 -0.078 0.043 0.031 307.000 -0.567 0.571

When looking at interference in terms of the number of distractors, the condition
with two distractors was also characterised by having opposite perceptual and se-
mantic compatibly. From the results on the one-distractor conditions, it is unlikely
that compatibility was more relevant when having two distractors. Consequently,
interference effects plausibly arise from the number of distractors in itself.

While it has been found by many that objects present around a target generate
automatic processing even of task-irrelevant objects and task-irrelevant properties
of an object (Diamond, 1990b, Castiello, 1996, etc.), it remains unclear which spe-
cific properties of distractor objects (affordance, semantic relatedness to target) are
responsible for interference in reaching actions. By manipulating the perceptual and
semantic compatibility of distractors when children and adults reached for a tar-
get object, we observed that the interference was solely dependent on the presence
and number of distractors, independently of their perceptual or semantic properties.

The response time interference was present in the reaching but not in the grasp-
ing component. In previous studies, distractors also had a different effect on reach
compared to grasp. For example, Jervis et al. (1999) measured changes in the grasp
kinematics as a function of distractor semantic compatibility, while reaching mea-
sures remained unaffected. However, contrary to Jervis et al. (1999) who had kine-
matics measures such as the opening rate of the fingers or the time of maximum grip
aperture, our analyses were limited to grasp duration due to excessive occlusion of
the thumb and finger markers. It is possible that we would have measured changes
in grasp kinematics as a function of setsize or perhaps compatibility if we had ac-
cessed to finer-grained measures of the grasp movement. As a consequence of the
occluded markers, unlike Jervis et al. (1999) our grasp component was not defined
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based on the movement of the thumb or of the index finger, but was based on the
extension of the arm. This further limits the direct comparison between this study
and the one of Jervis et al. (1999). We also note that the visual control of grip aperture
evolves between early childhood and 12 years of age (Kuhtz Buschbeck et al., 1998),
a change relevant to consider for future studies not suffering from marker occlusion
problems.

The distractors affected not only response times but also measures of the unfold-
ing kinematics (maximal deviation). This is consistent with prior findings where
interference from distractors appeared in response time (e.g., Pratt and Abrams,
1994) and/or trajectory features (e.g., Chang and Abrams, 2004). In terms of tra-
jectory, studies have observed deviation of the reaching path in the plane formed by
the hand start position, the target and distractors locations (e.g., Tipper et al., 1997,
Welsh et al., 1999, Chang and Abrams, 2004). A novelty of our analyses is that we
found traces of interference in the vertical plane of reaching, even if the distractors
were placed in a way that did not physically require any change of trajectory from
the condition without distractors (as would have been the case if obstacles had been
placed on the no-distractor trajectory). To our knowledge, this vertical dimension of
trajectory has never been investigated in studies on interference to reaching and is an
interesting phenomenon to further explore to understand more precisely its cause.
Within the context of action-based inhibitory mechanisms, we suggest that the ver-
tical deviation may result from residual inhibition that creates avoidance, that is,
keeping an ’excessively cautious’ distance away from any object until reaching the
target.

As argued by others (e.g., Tipper, 1985, Howard and Tipper, 1997), in the face
of multiple objects, the selection of a target requires action-based inhibitory mech-
anisms to suppress non-target representations. Although inhibition will typically
result in slowing down or deviating away from a distractor (e.g., Tipper et al., 1997),
very strong inhibition, such as required by salient distractors, may lead to reduced
interference compared to less salient distractors (Mohler et al., 2015). This counter-
intuitive finding is not unlike the fact that enhanced conflict on a task may result in
the recruitment of higher levels of cognitive control, resulting in better performance
(Botvinick et al., 2001). From this perspective, reaching speed and path straightness
may positively benefit from highly conflicting visual input surrounding a target.
However, our findings do not support this view: a distractor both perceptually and
semantically incompatible did not produce more interference than a distractor both
perceptually and semantically compatible. Thus, the movement duration and path
deviation variables do not suggest a processing advantage for fully incompatible
distractors compared to more compatible conditions. At the same time, the efficient
suppression of salient distractors may become relevant only when actions precede
other forthcoming actions, as suggested by Mohler et al. (2015). In other words, it is
possible that the evidence or interference in single reach actions would not fully ap-
ply to the action part of a bigger sequence, and thus should be studied in the context



Chapter 2. Reaching in the Face of Distractors: A 3D Motion Capture Study 53

of action sequences.

2.4.2 Methodological differences to previous studies

A key difference with many previous studies is that the present task did not require
target identification per se. The target location was known in advance and con-
stant throughout the experiment, and the distractors were never potential targets.
Given the low difficulty level of the task, it is possible that participants’ encoding
of the task requirements was loosely defined by its action and location (’reach for
the central object’), ignoring the target identity (e.g., the semantic features of the ap-
ple) or the specific affordance (e.g., reach and hold with a large grip). Indeed, the
grasping action may initially be encoded at a gross-grained resolution in which the
affordances across objects would be similar. In other words, at each level of set size,
all types of distractors evoked reaching plans that differed only by their location,
thus requiring the same degree of inhibition regardless of their relationship (seman-
tic or perceptual) to the target apple. This is consistent with Tipper et al. (2000) who
advance that target and distractors may evoke reaching actions to a location without
other properties being represented. Other studies with a single, fixed-location tar-
get and in which distractors were not potential targets (e.g., Tipper et al., 2000), also
found that the distractor interfered with reaching as revealed by path deviations.
This brings additional support for the view that even non-target objects may evoke
action representations.

We should note that across studies distractor interference manifests itself in dif-
ferent ways: deviation away from distractors as in Chapman and Goodale (2008),
deviation towards distractors as in Chang and Abrams (2004), or prolonged reach-
ing time, as in our study. These differences have been attributed to differences in
designs, that is the distance between target and distractors or their relative position,
and consequently whether the distractors were possibly encoded as obstacles (as in
Tipper et al., 1997). Crucially, all types of interference have been taken to reflect the
potentiation of action-related representations.

The novel finding, that interference was a linear function of set size (comparing
not only 0 distractor to 1 distractor, but also 2 distractors to 1), is consistent with neu-
rophysiological findings. Empirical data indicate there is some overlap in the neural
substrates for reaching and saccadic control (e.g., Meegan and Tipper, 1999b). In the
latter domain, Basso and Wurtz (1997) found that the activity of neurons respon-
sible for saccadic responses is a function of the number of visual targets. P. Smith
and Ratcliff (2004) review evidence indicating that the neural firing rate of sensory
cells encoding stimulus and target representations build up more slowly for more
difficult decisions, resulting in increased response time. Hence, it is possible that
each added distractor adds neural activity that needs to be suppressed for selection
of the target response, resulting in longer RT with each additional distractor. An
alternative but related possibility is that the greater spatial angle occupied by the
extra distractors causes the observed interference effects (Bock and Eversheim, 2000;
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Ellis et al., 2007). According to this view, the increased spatial angle with increased
set size would be the driver of the interference observed in younger children. Ei-
ther way, improvements in inhibitory control and selective attention processes with
age remain plausible explanations of the observed developmental pattern of set size
interference.

2.4.3 Response inhibition and the reduction of distractor interference

Inhibiting the distractors appear key in performing the reaching action without in-
terference, and the youngest children (6 years old) struggled most to do so. This
suggests a central role of the development of inhibitory control on efficiently carry-
ing out low-level actions such as reaching for a target object.

Inhibitory-based mechanisms have been identified in a variety of paradigms
where the worst performance of the younger age group appears at least partially
due to low inhibition. For example, a reduction in interference in a Day/Night vari-
ation of the Stroop task has been observed with increasing age during preschool and
school years (e.g., Gerstadt et al., 1994). Furthermore, the reach-to-touch task of Erb
et al. (2018), which unlike the present chapter’s task used visual cues and not phys-
ical objects, found gains in the conflict resolution process between 8 and 10 years of
age.

It can be argued that in this reaching task, as well as in the Day/Night Stroop
task and reach-to-touch Flanker task, school-aged children’s changing performance
with age is mainly linked to changes in inhibitory control because the demands of
such tasks on other processes (e.g., rule understanding, goal maintenance) are not
too elevated for children above 6 years old as is our target sample. We propose that
the process that places different demands within this age range is the inhibition of
the inappropriate cues (distractor objects in the present chapter’s task, incongruent
arrows in the Flanker task or description of the image in the Day-night task) to allow
one to execute the appropriate response. Therefore, the development of inhibitory
control is a very likely explanation for the reduction of interference effects.

This finding is important given that most daily-life goal-directed sequences in-
volve the selection and manipulation of targets among a number of objects irrelevant
for the task (e.g., picking-up a toothbrush on a bathroom sink or cupboard, or pick-
ing up one’s jacket on a coat rack). To develop action competence, children must be
able to inhibit distractors to efficiently pick up the objects relevant to their goals.

2.5 Conclusion

This chapter found that distractor interference in a reaching action, as measured
by response time or kinematic variables, depended on the number of distractors
regardless of the type of compatibility between the target and distractors (perceptual
or semantic). The strength of the interference effect depended on age in the range
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tested (6, 9, 12 years of age and adults), where the younger children showed the most
marked increase in response time with the increase in the set size.

Our findings are consistent with theoretical views (premotor theory, visual atten-
tion model, visuomotor theories) advancing that when facing a target and distractor
objects, multiple motor actions are represented and competing representations must
be suppressed to select the target action. Our results further add that the competition
is not the sole product of semantic, nor the sole product of perceptual object com-
patibility. Such properties appear to be considered simultaneously. The fact that the
trajectory path is also affected reflects that action planning is not a sequential process
where the preparation would occur prior to the start of the movement (measurable
in response time only)- instead this is consistent with the view that a non-negligible
part of motor planning is carried out on-line and that unfolding cognitive processes
flow into motor outputs (e.g., Song and Nakayama, 2009, Freeman et al., 2011, Erb
et al., 2018).

Importantly, we only found an interference (by increasing set size) in the child
participants and not the adults, and the intensity of the interference on reaching du-
ration decreased with age in children. This is consistent with the trends of improve-
ments with age in resolving conflicting activations (e.g., reduction of the Stroop in-
terference with age: Roy et al., 2018, Leon-Carrion et al., 2004). It highlights the
crucial role of the maturation of executive functions, in particular inhibitory control,
in supporting better action control with development.
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Chapter 3

A Mechanistic Account of the
Model-Free / Model-Based
Trade-off: A Computational Study

Abstract

This chapter proposes a new model of value-based action selection via the interac-
tion of two systems within the reinforcement learning framework, known as model-
free and model-based systems. The chapter models pre-existing experimental data,
via an alternative account of a proposed model of this experimental data. Specifi-
cally, the original study (Decker et al., 2016) argued that young children select actions
using a mixture of habitual (model-free) and goal-directed (model-based) systems. It
furthermore argues that the development of adult competence involves an increas-
ing influence of the model-based system. After exploring the data and replicating
the original study’s model, the chapter proposes an interactive activation model that
operationalises the combination of model-free / model-based influences on action
selection and simulates response time in addition to choice data. The novel model
also considers four competing developmental hypotheses that are modelled and pit-
ted against each other. The model reproduces key behavioural patterns, like the
reinforcement learning model of the original study of Decker et al. (2016), but also
allows one to discriminate more precisely between several possible developmental
mechanisms by leveraging response time data.

The findings point towards the idea that the difference in performance between
the child and adult groups may be due to either greater noise in children’s than
adults’ model-based system, or to a differing trade-off in children’s and adults’ re-
cruitment of the systems. Nonetheless, further evidence is needed to separate both
accounts and to exclude other accounts.

3.1 Introduction

Action selection by humans can be informed by past actions. The outcome (positive
or negative) of an action taken in a given environment modulates the probability of
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repeating the action in a similar situation. The influence of an action’s outcome on
subsequent action selection to maximise expected future rewards has been success-
fully modelled using reinforcement learning (RL; Sutton and Barto, 1998). At the
same time, many accounts of action control draw upon the distinction between two
systems, whether they be routine and non-routine (e.g., Cooper and Shallice, 2000)
or goal-directed and habitual (e.g., Daw et al., 2011).

Within the RL tradition, a dominant approach is to consider two systems that to-
gether direct action selection, with each system modelled by a particular reinforce-
ment learning algorithm (Daw et al., 2011). The habitual system, implemented as
model-free (MF) RL, attributes values to an action in a given environmental state
following the action’s final outcome. The goal-directed system, implemented as
model-based (MB) RL, uses both outcomes and knowledge about how actions af-
fect the environment to inform action selection. While most researchers seem to
agree on the existence of two distinct systems, there remains some debate about
how these systems combine to guide action selection. For example, the two systems
have been proposed to compete based on speed-accuracy trade-offs (Keramati et al.,
2011a, Kool et al., 2017b) or to be arbitrated by combined probabilities based on un-
certainty (Daw et al., 2005). Yet these accounts are purely mathematical in nature.
To our knowledge, there is no mechanistic account that satisfactorily explains how
the values computed by the systems are effectively integrated.

3.1.1 The two-stage decision task

A standard task introduced by Daw et al. (2011) has emerged to quantify the relative
contribution of each system to decision-making (the so-called two-stage Markov de-
cision task, or two-stage task as will be referred to later). Each trial of the task consists
of two successive stages, in which one must select one of two options (see Figure 3.1).
The first stage of the task always starts in the same state (i.e., the same two options
are presented). One of the first-stage actions (action A) leads to one second-stage
state (state A) with a probability of 0.7 (common transition), and to another second-
stage state (state B) with a probability of 0.3 (rare transition). The probabilities are
swapped for the first-stage action (action B), as indicated in Figure 3.1. In the second
state, there are two further possible actions. Each of the four second-stage actions
(two actions per state) has a certain probability of reward. The reward is given for
each second-stage action according to a slowly-drifting probability (between 0.25
and 0.75).

The task is designed to explore the trade-off between habitual / model-free and
goal-directed / model-based systems. The key dependent variable is the probability
of staying with the same first-stage choice on consecutive trials, as a function of state
outcome and reward on the preceding trial. The two systems may be modelled using
standard RL techniques as in Daw et al. (2011). The trade-off between the systems
can then be quantified in terms of a weighted average between the systems’ outputs,
with the weight potentially varying by participant. We are specifically interested in
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Decker et al.’s (2016) developmental study which uses the standard task to explore
potential changes in the trade-off from childhood to adulthood. First, this chapter
presents exploratory and replication work based on the original study (Section 3.2).
Second, this chapter explores an alternative model of Decker et al.’s (2016) data (Sec-
tion 3.3). The novel model provides a mechanistic account of the trade-off based on
an interactive activation model in which the two systems activate, to varying de-
grees, the potential responses at each stage. The primary advantage of the model is
that it addresses the time-course of the assumed trade-off between model-free and
model-based systems. We fit our model to Decker et al.’s (2016) data and explore
three mechanistic hypotheses underlying developmental changes in the trade-off be-
tween habitual / model-free and goal-directed / model-based systems. It is shown
that, at a mechanistic level (i.e., Marr’s algorithmic and representational level; Marr,
1982), all three hypotheses are consistent with the behaviour observed by Decker et
al. (2016). It is furthermore argued, however, that additional empirical work might
differentiate the hypotheses.

3.1.2 The study and model of Decker et al. (2016)

3.1.2.1 The task and model

The study of Decker et al. (2016) used a child-friendly version of the standard two-
stage task to study developmental changes in action selection from childhood to
adulthood. The narrative involved choosing between two spaceships (the first-stage
options) leading to two possible planets (the second-stage states), where the choice
was then between two aliens (the second-stage options) that had their own propen-
sity to offer coins (the probability of reward) — see Figure 3.1. Three age groups
(n=20 children between 8 and 12 years old, n=20 adolescents between 13 and 17
years old, n=20 and adults between 18 and 25 years old) performed 200 trials of the
task.

Decker et al. (2016) were concerned with a variation of the standard ’hybrid rein-
forcement learning model’ introduced by Daw et al. (2011). The critical aspect of the
model (see Decker et al. (2016) for details) is that action selection at stage 1 involves
computing both model-free and model-based values (QMF and QMB) for each ac-
tion. Actions are then selected based on a weighted average of QMF and QMB, with
the contribution of each system determined by inverse temperature parameters, βMF

and βMB.

The model-free values are updated at each step via to the temporal difference
algorithm according to the formulas:

QMF (si,t+1, ai,t+1) = QMF (si,t, ai,t) + αδi,t where α is the learning rate, si,t is the
state i at the start of trial t, and ai,t is the action i taken at trial t;

and with δ the reward prediction error calculated as:



Chapter 3. A Mechanistic Account of the Model-Free / Model-Based Trade-off: A
Computational Study

59

Fig. 3.1: Structure of a trial of the standard task introduced by Daw et al.
(2011) and used in Decker et al. (2016): options and consequences of op-
tions’ selection at each stage (transitioning and receiving outcome). The ac-
tions ax are denoted with different letters because they bring about different
outcomes, but they all consisted of a left or right key press. By selecting the
action ax, there was a 0.7 probability to reach the state sx (common transition)
and a 0.3 probability to reach sx′ (rare transition). By selecting the action a′x,
there was a 0.7 probability to reach the state s′x (common transition), and
a 0.3 probability to reach sx (rare transition). Prew(ax) is the probability of

reward of the action ’selecting option ax’.

δi,t = [ri,t + QMF (si+1,t, ai+1,t)] /α − QMF (si,t, ai,t) where r is the reward (0 at
stage 1, 0 or 1 at stage 2);
and for the first stage only:

QMF (s1,t+1, a1,t+1) = QMF (s1,t, a1,t) + λδ2,t where λ is the eligibility trace which
is carried over stages for one trial.

The model-based values at stage 2 are the same as for model-free. At stage 1,
they are updated according to the formula:

QMB
(
sA, aj

)
=P

(
sB | sA, aj

)
max

a∈{aA,aB}
QMF (sB, a)

+ P
(
sC | sA, aj

)
max

a∈{aA,aB}
QMF (sC, a)

where sA is the unique state at stage 1, sB and sC are the two possible states at
stage 2, aA and aB are the possible actions at stage 1, and the probability of state ac-
cording to the action taken follows the 70/30-transition structure illustrated by the
arrows in Figure 3.1.

The probability of choosing action a at trial t, being in the first-stage state s1,t,
given QMF(s1,t, a) and QMB(s1,t, a) is calculated as:
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P(a1,t = a|s1,t) =
exp[βMF · QMF(s1,t, a) + βMB · QMB(s1,t, a) + p · rep(a)]

∑a1
exp[βMF · QMF(s1,t, a1) + βMB · QMB(s1,t, a1) + p · rep(a1)

(3.1)

where rep(a) is 1 if a is the same as the action on the previous time step and 0 oth-
erwise; βMF (resp. βMB) is the inverse temperature parameter for MF (resp. MB)
valuation; and p is the perseveration bias.

At stage 2, the probability of choosing action a is computed simply with one term
QMF(s2,t) and one temperature parameter β2:

P(a2,t = a|s2,t) =
exp[β2 · QMF(s2,t, a) + p · rep(a)]

∑a2
exp[β2 · QMF(s2,t, a2) + p · rep(a2)

(3.2)

Larger values of β (βMF, βMB or β2) favour exploitation of the corresponding
system, while the perseveration bias reflects the tendency to repeat the same action
regardless of the outcome.

Decker et al. (2016) fit the model to their participants’ data to estimate the value
of the six parameters: βMF, βMB, alpha, p, β2, λ.

3.1.2.2 The characteristic patterns of choice or stay patterns

To observe the type of control (MF/MB balance) used by an agent in the task, a stan-
dard approach is to plot the aggregated proportions of stay choices (i.e., repetition
of the preceding choice) as a function of the preceding trial’s outcome and the pre-
ceding trial’s transition type, as in Figure 3.2. Indeed, under MF control an agent
is more likely to repeat a previously rewarded action than an unrewarded one, re-
gardless of the second-stage state that led there (i.e., ignoring the transition type),
as the left panel of Figure 3.2 shows. Under MB control, an agent will integrate the
information provided about the second-stage state that was rewarding, and thus be
more likely to repeat a rewarded action if it followed a common transition, or an un-
rewarded action if it followed a rare transition, than the two other cases, as shown
in the right panel of Figure 3.2. Fitting a hybrid RL model trial-by-trial, Decker et
al. (2016) found a significant increase in the contribution of the model-based system
(βMB) with age, but no significant change in the contribution of the MF system (βMF)
with age.
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Fig. 3.2: Proportion of stay as a function of age and transition (stay pat-
terns) from Decker et al.’s (2016) data. The figure shows the proportion of
stay (repeating the preceding trial’s action) at first stage as a function of the
preceding trial’s reward and preceding trial’s transition type, and age. Error

bars represent the standard error of the mean.

3.1.3 An alternative approach

Despite the apparent empirical success of Decker et al.’s (2016) account, there are
several limitations of the work. For example, the conclusions are valid only if the
hybrid RL model is valid for all age groups. Yet, Decker et al. (2016) do not report
goodness-of-fit measures by age group, nor do they compare their model to alter-
native models. Thirdly, the use of separate inverse temperature parameters for each
system, rather than a single parameter controlling the balance between MF and MB
contributions, complicates the interpretation of the results. Fourthly, as others have
pointed out (e.g., Ballard and McClure, 2019, Shahar et al., 2019), the identifiabil-
ity and recoverability of parameters in such models is often problematic. Indeed,
we have found similar problems in our attempt to replicate the parameter estima-
tion with the same hybrid RL model specification as Decker et al. (2016) (cf. Section
3.2.2). Therefore, and combining these last two concerns, accounts other than chang-
ing the MB temperature parameter may explain the results equally well if not better.
Furthermore, Decker et al.’s (2016) model provides a mathematical account of action
selection in the task but does not provide a mechanistic or process-level account, or
a way to generate response time data. The model we report in Section 3.3 attempts
to do just this.

In addition to proposing a process-level account that makes contact with re-
sponse time data, the new model will implement and test four developmental hy-
potheses to account for the changing model-free/model-based balance across the
age groups in Decker et al.’s (2016) study. A first hypothesis is that the recruitment of
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the model-free and model-based systems is externally arbitrated and favours model-
based more and more with age (recruitment hypothesis). In the other three hypothe-
ses, the model-based system is assumed to be recruited at the same level throughout
development while another mechanism explains the apparent increase in contribu-
tion of model-based with age. According to the second (noise) hypothesis, this mech-
anism is a reduction in the noise in model-based computations with age. According
to the third (bias) hypothesis, the mechanism is an increase in speed of the model-
based system computations. According to the last (learning rate; lr) hypothesis, the
mechanism in an increase of learning rate with age. The background of each hypoth-
esis will be presented in Section 3.3.2.3. The simulations according to the different
hypotheses will be compared against choice data and response time data.

In order to prepare the design of the new model and attempt to obtain suggestive
evidence for the developmental hypotheses, work was carried out on the original
data and model and is presented in the next Section.

3.2 Original data and model: Exploratory work and replica-
tion

3.2.1 New analyses - RT first stage

This Section presents our exploration of the response times at stage 1 of Decker et
al.’s (2016) task with the aim to gain information on the mechanisms underlying
choice and build a more precise model of the task. Stage 1 was chosen given the
central role of choices at stage 1 and the fact that such data did not appear in the
original publication. Only analyses of stage 2 response times were present in the
original publication but all the data was kindly made available to us by the authors.

3.2.1.1 Methods

We ran analyses guided by four different assumptions about potential processes un-
derlying choices at stage 1.

(1) The reward at stage 1 may have been affected by the type of transition in
the previous trial. Indeed, the rare transitions led to slower response time at stage 2
compared to the common transitions (as proposed by the author, reflecting surprise),
and we assumed that that such effect might be carried on to the next trial. Thus, we
explored response times at stage 1 (RT_stage1) as a function of the transition type of
the preceding trial.

(2) A phenomenon known as post-error slowing (response time decrease following
an incorrect trial) is commonly found in adults and children (e.g, Smigasiewicz et al.,
2020). This has been explained as an adjustment in decision criteria (Laming, 1979)
or longer processing of unexpected events (Wessel et al., 2012). If we assume that a
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rewarded trial is perceived by participants as a correct trial, we could expect a slow-
ing after low rewards compared to higher rewards. We thus examined RT_stage1 as
a function of reward on the preceding trial.

(3) Another hypothesis is that the response time increases with increasing con-
flict between the preference (i.e., Q-value) provided by the MF and the MB pathways.
Indeed, it is well-known that response times increase with the difficulty of the deci-
sion (e.g., Ratcliff and McKoon, 2008). For example, if in the MF system the Q-value
is much larger for option A than option B, but in the MB system the Q-value is much
smaller for option A than option B, the preferences for both options go in opposite
directions. This is what we will call conflict. We thus examined RT_stage1 as a func-
tion of the normalised amount of conflict (normedConflict), which was computed as
follows:

con f lict = |QMF_optionA − QMF_optionB + QMB_optionA − QMB_optionB|

normedCon f lict =
con f lictPre f

QMB_optionA + QMB_optionA + QMF_optionB + QMB_optionB

(4) The last hypothesis is that response time depends on the amount of involve-
ment of the MB system. To evaluate this, we computed a score of degree of MB
recruitment based on choice patterns, MB score, as follows:

MBscore = |prewarded,common − prewarded,rare| + |punrewarded,common − punrewarded,rare|,
where p are the individual proportions in each condition.

We created this MB score to approximate the degree of model-based recruitment
for an individual participant’s stay pattern, for the purpose of this response time
analysis. For an ideal MF learner, there is no difference according to transition type,
so this score will be 0. For an ideal MB learner, the amount of probability difference
between common and rare transitions in the rewarded case is equal to the (absolute)
amount of difference in the unrewarded case. Thus, using this approximation, the
MB score will increase when model-based involvement increases. As an example,
the values of MB score computed on the replication of the participants’ data shown
in Figure 3.2 was 0.018 for the children, 0.142 for the adolescents and 0.192 for the
adults.

Finally, we sort the data into four categories based on their MB score and we
examine the RT_stage1 as a function of the score category and age for the children’s
and adults’ data (the age group with the most extremes scores).
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3.2.1.2 Results

Figure 3.3 displays RT_stage1 as a function of transition of the preceding trial. Fig-
ure 3.4 shows RT_stage1 as a function of reward on the preceding trial. The response
time at stage 1 appears unaffected by the preceding trial’s transition type (unlike re-
sponse times at stage 2). It also appears unaffected by the preceding trial’s reward.

Fig. 3.3: Response time at stage 1 as a function of transition of the preced-
ing trial’s transition (prevTrans) using data not presented in Decker et al.
(2016) but made available by the authors. The error bars represent the 95%

confidence intervals. Ado = adolescents.

Figure 3.5 represents RT_stage1 as a function of normedConflict. Figure 3.6 presents
RT_stage1 as a function of the category of value of the MB score. Unsurprisingly, the
response times are longer in children than adults. However, the response time differ-
ences between conditions (within a given age group) do not seem to differ between
children and adults. Thus, the inspection of the response times at stage 1 did not
reveal any meaningful patterns that could guide our modelling of the task.

3.2.1.3 Discussion

To conclude, the response times at stage 1 did not show any interesting patterns that
provide any insights into the mechanisms underlying task performance in children
or adults. It is likely that such underlying processes are too complex be revealed
by simple assumptions. For example, it may be that there is an interaction of all
factors that we considered separately, although we could still have observed the ef-
fect separately if they were large enough. The data at first stage could also be too
noisy. However, knowledge from sources other than this data can inform the build-
ing of our new model. This is the approach we will take. Following this, further
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Fig. 3.4: Response time at stage 1 as a function of reward on the preceding
trial’s reward (prevReward) using data not presented in Decker et al. (2016)
but made available by the authors. The error bars represent the 95% confi-

dence intervals. Ado = adolescents.

Fig. 3.5: Response time at stage 1 as a function of normedConflict using data
not presented in Decker et al. (2016) but made available by the authors. A
simple regression line is plotted with the shaded area representing the 95%

confidence interval.

analyses using new model-driven variables might be able to uncover some informa-
tion in response times at stage 1 (e.g., by confirming some model predictions on RT
distributions).
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Fig. 3.6: Response time at stage 1 as a function of the value of MB score using
data not presented in Decker et al. (2016) but made available by the authors.

3.2.2 Replication of the RL modelling in Decker et al. (2016)

3.2.2.1 Methods

We aimed to replicate the RL model of Decker et al. (2016) and its fitting to the data.
We built the hybrid model-free/model-based RL model following the methods and
supplementary methods of Decker et al. (2016), as well as the methods and supple-
mentary methods of Otto et al. (2013). Our model-fitting (parameter estimation) pro-
cedure is described below. Contrary to the authors who used hierarchical Bayesian
model-fitting, we used the more straightforward individual fitting approach used
for example in Daw et al. (2011) and Palminteri, Lefebvre, et al., 2017, described
below.

Fitting procedure

We estimated the six free parameters α, λ, p, βMF, βMB and β2 for each participant
separately. Specifically, we found the best-fitting values by minimising the negative
log-likelihood of the data (obtained from the log of equation 3.1 summed over all
trials of the participant). This was implemented with the Python function basinhop-
ping from the module scipy.optimize, which uses the L-BFGS-B method (Byrd et al.,
2006). The basin-hoping algorithm is a stochastic algorithm designed to find the
global minimum of a function by iteratively giving random perturbation of the co-
ordinates and performing local minimisation. The number of iterations was set as 20
or would stop if the global minimum candidate remained identical for 6 iterations
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of the algorithm. Following Daw et al. (2011), we constrained the learning rate α

between 0 and 1, while the other parameters only had a lower bound of 0.

Model recovery

To assess the sanity of the model and reliability of our fitting approach, we ran a
recovery analysis (following for example Ballard and McClure, 2019 and Palmin-
teri, Lefebvre, et al. (2017)). This consists of generating an artificial dataset with
a randomly defined set of generating parameters, applying the fitting procedure,
and comparing the fitted parameters to the generating parameters (i.e., the ground
truth). We repeated this 50 times with a new set of parameters drawn every time
from: a beta distribution B(1.5, 2) for α, λ and p; and a re-scaled beta distribution
B(2, 6) ∗ 10+ 0.5 for βMF, βMB and β2. The distributions were chosen to match the ex-
pected distribution for the entire population following Ballard and McClure (2019).
We also ensured that they included the estimates we found on the real dataset. We
correlated the fitted parameter to the true, generating parameters. We repeated the
procedure with a pure MF agent (i.e., the βMB held fixed at 0) and a pure MB agent
(i.e, the βMF kept at 0).

Replication of behavioural patterns

Finally, following recommendations in Palminteri, Lefebvre, et al. (2017), we veri-
fied that we were able to reproduce the key behavioural patterns in the following
conditions: (1) by re-simulating data with our replicated RL model, (2) while using
the best-fitting parameters found via our estimation procedure. Specifically, we took
the median of the participants’ best-fitting parameters as set of parameters for the
simulations.

3.2.2.2 Results

Model recovery

Figure 3.7 presents the fitted parameters plotted against the generating parameters.
The correlations were high for α and β2 (R=0.78 and 0.63), moderate for βMB and
βMF (R=0.41 and 0.31) and poor for λ (R=0.17).

When holding the βMB or the βMF constant to simulate a pure MB or pure MF
agent (figures 3.8 and 3.9), the recovery is better as evidenced with higher correla-
tions (α, β2 and p above 0.6, βMB and βMF between 0.4 and 0.5) except for λ which is
still poorly estimated in the pure MB case (R=-0.2).
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Fig. 3.7: Original RL model recovery: estimated (fitted) parameters values
against the real, generating values. The value displayed on each scatter plot
is the Spearman correlation coefficient R. The different panels are for the
different parameters as follows: α: learning rate, λ: eligibility trace, p: per-
sistence parameter, β2: inverse temperature parameter at second stage, βMF:
inverse temperature parameter for model-free computations at first stage,
βMB: inverse temperature parameter for model-based computations at sec-

ond stage.
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Fig. 3.8: Original RL model recovery: estimated (fitted) parameters values
against the real, generating values. Pure MF agent (βMB, the inverse temper-
ature parameter for model-based computations at second stage, was held at
0). The value displayed on each scatter plot is the Spearman correlation co-
efficient R. The different panels are for the different parameters as follows:
α: learning rate, λ: eligibility trace, p: persistence parameter, β2: inverse
temperature parameter at second stage, βMF: inverse temperature parame-

ter for model-free computations at first stage.
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Fig. 3.9: Original RL model recovery: estimated (fitted) parameters values
against the real, generating values. Pure MB agent (βMF, the inverse tem-
perature parameter for model-free computations at first stage, was held at
0). The value display in each scatter plot is the Spearman correlation coeffi-
cient R. The different panels are for the different parameters as follows: α:
learning rate, λ: eligibility trace, p: persistence parameter, β2: inverse tem-
perature parameter at second stage, βMB: inverse temperature parameter for

model-based computations at second stage.
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Best-fitting parameters

The values of the individual parameters estimated by our fitting procedure are shown
in Figure 3.10 (all participants collapsed) and in Figure 3.11 (participants split by age
group). For comparison, we overlay the estimates obtained by the hierarchical fit-
ting procedure used in Decker et al. (2016). As can be seen, the parameter estimates
we obtained do not match theirs in terms of median or dispersion. Most of the origi-
nal study’s values are comprised in the inter-quartile range (IQR) of values obtained
by our procedure. However, our IQR is for most parameters an order of magnitude
larger than the original study’s IQR, which is a considerable difference.

Fig. 3.10: Replication of the RL model: parameters estimated by a single-
participants’ fitting procedure on all ages grouped together. The boxplots
follow Tukey’s original definition. The red stars indicate (from bottom
to top): the 25th percentile, the median and the 75th percentile of the
group level estimated obtained by the hierarchical fitting procedure used

in Decker et al. (2016).
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Fig. 3.11: Replication of the RL model: parameters estimated by a single-
participants’ fitting procedure, shown by age group. The boxplots follow
Tukey’s original definition. The red stars indicate (from bottom to top): the
25th percentile, the median and the 75th percentile of the group level esti-
mated obtained by the hierarchical fitting procedure used in Decker et al.
(2016). The different panels are for the different parameters as follows: α:
learning rate, λ: eligibility trace, p: persistence parameter, β2: inverse tem-
perature parameter at second stage, βMF: inverse temperature parameter for
model-free computations at first stage, βMB: inverse temperature parameter

for model-based computations at second stage. Ado = adolescents.
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Replication of behavioural patterns

Figure 3.12 presents the stay patterns simulated by using the median of the fitted
parameters in each age group as an input parameter of our replicated RL model. It
appears that the stay patterns are close to the original value, reproducing the typical
pattern of the model-free/model-based balance in each age group.

Fig. 3.12: Generation of data with the fitted parameters in the three age
groups. The bar indicates the simulated proportion of stay while the black
dots indicates the data’s proportion of stay. The different panels are for the
different parameters as follows: α: learning rate, λ: eligibility trace, p: per-
sistence parameter, β2: inverse temperature parameter at second stage, βMF:
inverse temperature parameter for model-free computations at first stage,
βMB: inverse temperature parameter for model-based computations at sec-

ond stage.

3.2.2.3 Discussion

Our fitted parameters differed greatly from the median of Decker et al.’s (2016) fitted
parameters. Nonetheless, the values of Decker et al. (2016) fall within our range of
values. The large dispersion of our values was notable. However, a larger range of
values for our procedure than for a hierarchical Bayesian procedure is not surpris-
ing. Indeed the hierarchical procedure estimates individual and group parameters
in a mutually constraining fashion (M. D. Lee, 2011). Consequently, individual pa-
rameters tend to be less dispersed away from the group (Ahn et al., 2011).

Such large differences between our estimates and Decker et al.’s (2016) estimates
raise the alarm concerning the sensitivity of findings to different approaches. This
concern is important because the individual-participants fitting procedure used here
has also been used by many in similar tasks. Such a procedure may be appropriate
only when limited to a set of 2-3 parameters.



Chapter 3. A Mechanistic Account of the Model-Free / Model-Based Trade-off: A
Computational Study

74

Some clarification is given by the recovery analysis. Indeed, when generating
datasets with randomly chosen but known parameters, the fitting procedure did not
always return the correct (generating) parameters. As expected, the recovery was
improved when reducing the number of parameters (from 6 to 5). Even then, it re-
mained unsatisfactory.

All in all, the results of our replication attempt raise two concerning points that
are not unrelated. First, the estimates do not match the ones in the original study
well. Second, the recovery procedure is sometimes accurate, but at other times
gives parameter estimates that are too different from the ones used to generate the
data. The recovery procedure indicates that the parameters estimated by the single-
participant approach on the real dataset may not be reliable, which may explain the
mismatch between our results and Decker et al.’s (2016).

The lack of match between the original study’s and our parameter estimates has
most likely one of two, or even both causes: (1) this dataset is too ambiguous and/or
not rich enough to allow reliable estimation by a single-participant fitting procedure
(as opposed to a hierarchical procedure); (2) our attempt at replicating the original
model varies at the level of minor specifications that, even if capable of simulating
similar behavioural patterns, changes the values of the parameters needed to gener-
ate such patterns.

The first cause is plausible given the inaccuracy of the parameter estimation re-
vealed by the model recovery. Such concerns on the identifiability of parameters
have been raised by others (Ballard and McClure, 2019, Nussenbaum and Hartley,
2019, Pedersen et al., 2017, and Toyama et al., 2019). This limitation of the RL model,
to be able to fit only a certain range of behaviours, has been put forward by Daw
(2011). The problem often arises when parameters are correlated. Ballard and Mc-
Clure (2019) showed that there is a trade-off between the learning rate α and the deci-
sion noise β, where numerous combinations of α and β give the same log-likelihood.
That is true even for RL models with 3 to 4 free parameters. The more complex
the model, the more difficult it becomes to get reliable parameter estimates (Peder-
sen et al., 2017). Using additional data such as response times in order to constrain
further the estimation and consequently improve parameter identifiability has been
proposed, for example, by Ballard and McClure (2019).

Decker et al. (2016) used a hierarchical Bayesian fitting procedure. Such proce-
dure is advised when the number of participants is large but their number of trials
is small. It further constrains the estimation by having group trends inform the in-
dividual parameter values (Ahn et al., 2011, M. D. Lee, 2011). It is possible that
parameter identifiability in complex models such as this one can only be resolved
with such procedure. Nonetheless, the choice to use an individual fitting approach
was motivated by the fact that it makes fewer assumptions on the data compared
to the hierarchical fitting approach. Indeed, the latter assumes a common underly-
ing distribution for participants within the same group. Although differences are
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expected when using the two fitting approaches, if the differences remain small, this
indicates robustness of the RL model. If the differences are not small, this warrants
some caution about drawing conclusions from the study alone.

The other possible cause relates to the more general problem of lack of specifi-
cation of models when described in plain language as opposed to making the code
available (see for example Cooper et al., 1996, Cooper and Guest, 2014 and Mikowski
et al., 2018). For example, in our work, we noticed after running simulations that we
were able to produce similar behaviour but with a range of βMF and βMB between
2 and 8, which are similar to the values in Daw et al. (2011), but far off from the
values in Decker et al. (2016) (around 0.2 or 0.5). This was due to a crucial model
specification described in Otto et al. (2013) (supplementary materials) which we ini-
tially missed: the Q-values of the non-chosen action were decayed after each step
by multiplying them by 1 − α. Furthermore, some specifications like the initial Q-
values may appear obvious, and thus writing them may be overlooked. We found
no mention of the initialisation value in Otto et al. (2013) nor in Decker et al. (2016)
but we assumed the default 0. However, while the default might indeed be 0, oth-
ers initialise the Q-values at 0.5 (e.g., Ballard and McClure, 2019). Finally, Da Silva
and Hare (2018) have shown how minor changes in the reward function can funda-
mentally affect behavioural patterns in the two-stage task. The extra specification
(Q-value decay) affects the order of magnitude of βs but not the accuracy of the
recovery. Thus, identifiability with such a large number of parameters remains an
issue.

Small adjustments in the current RL model could slightly improve the fit of the
data and perhaps even refine the developmental pattern. For example, keeping the β

parameters constant assumes that the contribution of each system (plus the β at stage
2) is fixed throughout the task. A single β (per system) does make sense in terms of
the overall balance of system for a given individual at a given age, but if this factor
could vary from trial-to-trial, it might provide better fit. Importantly, this would be
at the expense of the identifiability of the parameters as discussed previously. We
know that children tend to explore more than adults (see Nussenbaum and Hartley
(2019) for a review of reinforcement-learning accounts of exploration). Thus, we
could expect the following developmental patterns on within-experiment change
in β (all three βMF, βMB and β2 indistinctly). Adults may have an initial high β

which then decreases throughout the task (explore at first then exploit), while the
children β may stay more constant (explore throughout). Such adjustments may be
interesting to explore; however, we do not expect them to result in fundamentally
different outcomes.

Rather than seeking to adjust the existing model or to replicate the exact fit-
ting procedure as in the original study (which would retain the identifiability issues
linked to the high number of parameters), we moved on to building a mechanistic
model of Decker et al.’s (2016) task.
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3.3 A novel model

3.3.1 Rationale and methods

3.3.1.1 Model and simulation of choices

Our specific concern is with the integration of the MF and MB systems for action
selection, and in particular with action selection at the first stage of the task (the sec-
ond stage being solely under control of the MF system). We model this integration in
mechanistic terms through interactive activation and competition (IAC). We chose
an interactive activation and competition type of model for its ability to implement
a structure with diverse influences, where the evolution in time of the activation
flow naturally generates a time dimension (number of cycles) that can be taken to
represent the processing time of the system.

Figure 3.13 presents the architecture of our model. The model comprises three
layers, and represents two pathways: the model-free (MF), and the model-based
(MB) pathway.

Fig. 3.13: Architecture of the model. The input units take a fixed value
throughout one trial, determined by ω. The IAC units function according
to IAC principles. Dotted, adjustable weights are initialised to 0. Thick
weights are fixed at 0.7, and thin weights fixed at 0.3. Inhibitory weights are

fixed at −2.

The MF-MB layer, with an MF- and an MB-unit, feeds input to each pathway.
The output layer represents the actions (unit A and B for actions A and B respec-
tively). The MF-unit is connected to the output units by connections whose strength
are adjusted as described below. The MB-unit is connected to an intermediate layer
whose units (state-A and state-B) act as internal representations of the final states,
with their activation rising or falling according to each state’s appraisal. The weight
of the connection from state-A unit to output-A unit is 0.7, and 0.3 from state-A to
output-B (conversely for state-B), to embody the internal representation of the task
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transitions.1 Finally, reciprocal inhibitory connections between state (respectively
output) units facilitate the increase in activation differences (between output units A
and B, or between state units A and B), and model the competition between alterna-
tive states (respectively actions). These lateral connections ensure that one element
will eventually be sufficiently more active than the other so that the threshold is
reached and a selection is performed.

Note that the MF layer is directly connected to the output units, while the MB
pathway has an extra layer (implementing the task structure representation) re-
initialised at each trial. This models the view that the MF system performs sim-
pler and faster computations, while the MB system performs more time-consuming
computations (Keramati et al., 2011a).

The operation of the model proceeds as follows. At the beginning of a trial, a
constant activation is set in the MF-MB layer, shared across the two units according
to a ratio determined by the ω parameter (0 corresponding to a pure MF pathway,
and 1 to a pure MB pathway). The state units are initialised with zero activation.
The output units are initialised with a proportion of activation remaining from the
preceding trial, determined by the carry-over parameter (set to 0.1). This is equiv-
alent to p in the RL model. Activity is iteratively propagated through all units via
the IAC equations of Gilbert and Shallice (2002). At each processing cycle t, the net
input net(t) to each unit is the sum of the activations sent by connected units multi-
plied by the corresponding weight, plus the unit bias (set to −1.5). The unit activity
at time t + 1, act(t + 1), is then calculated as:

act(t + 1) =


act(t) + s · net(t) · (max − act(t)) + η

if net(t) > 0
act(t) + s · net(t) · (act(t)− min) + η

if net(t) < 0

where min = −1 is the minimum activation, max = 1 the maximum activation,
s = 0.0015 the step size (determining the processing speed) and η is a noise term,
drawn from a Gaussian with standard deviation σ = 0.01.

The activations from each pathway are combined at the level of the output units.
A trial terminates when one unit is inhibited below the response threshold (−0.9),
and the action taken is the one corresponding to the unit with the highest activa-
tion. After taking an action, a state was set according to probabilistic transitions
(taking action A led to state A with 0.7 probability and to state B with 0.3 probabil-
ity, whereas taking action B led to state B with 0.7 probability and to state A with
0.3 probability). Each combination of state and action had a probability of reward.
Like in the original study, the probability of reward drifted between 0.25 and 0.75 by
addition of independent Gaussian noise, centred and with standard deviation 0.025.
The trial was rewarded according to the action taken and state reached. The role of

1These are kept fixed, on the assumption that participants know the transitions from the start. A
similar assumption is made in Decker et al. (2016).
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the drifting probability was to encourage participants to keep learning throughout
the task and thus keep a constant learning rate, which would otherwise generate
parametric non-stationarity issues (cf. Daw, 2011).

Given our focus on stage one, we simplified the second part of a trial from the
original task (presentation of the second state followed by the second action and
the outcome) by having the first action leading to the second-stage state and the
outcome simultaneously.

As in the RL conceptualisation, the two pathways independently learn from
feedback. This is implemented by changing the weights within the MF and MB
pathways. On receipt of reward, the weights between the MF unit and the selected
output Oi ∈ {A, B} and between the MB unit and the reached state Si ∈ {sA, sB} are
updated as follows:

wMF−Oi(t + 1) = wMF−Oi(t) + α · (r − wMF−Oi(t))

wMB−Si(t + 1) = wMB−Si(t) + α · (r − wMB−Si(t))

where t is the trial index, r ∈ {0, 1} is the observed reward, and α = 0.6 the learning
rate.

The update for the MF weights resembles the Temporal Difference (TD) learning
implemented in the MF system in Decker et al. (2016). We model the MB system as
learning what state is rewarded rather than what action is rewarded, hence updating
the weights according to both the received reward and the state reached, regardless
of which state unit had stronger activation. In the processing, the weights influence
how much each state is sought.

The ω parameter reflects the overall tendency of an agent to favour one strategy
or another at the beginning of processing. The σ parameter in the output units acts
as decision noise. In contrast to Decker et al. (2016), the noise in the action selection
units (taken to integrate the degree of exploration) is separated from the contribution
of the MF and MB systems. For example, an agent with ω = 0 and σ = 0 would have
the output units’ activations driven purely by the MF connection weight values and
systematically take the action fed by the strongest connection. Increasing σ increases
the tendency to explore.

The above-describe model constitutes the baseline that will be referred to later
as the recruitment variant. In Section 3.3.2.3, we present variants of this model to test
several developmental hypotheses.

3.3.1.2 Model stay patterns evaluation

We evaluate the novel model by examining the stay responses’ pattern to quan-
tify the model’s ability to generate MF or MB prototypical behaviours, in line with
Decker et al.’s (2016) analytical approach. We fit simple logistic regression models
to our simulated data with stay (repeat preceding trial’s action or not) as the depen-
dent variable, and as explanatory variables: reward (rewarded or unrewarded) from
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the preceding trial, transition (common or rare) from the preceding trial, and their
interaction. Thus, the MF signature is present if the coefficient estimate for reward
is significantly different from 0 (indicating a reinforcement effect) but not the other
terms. The MB signature is present if the reinforcement effect is combined with a sig-
nificant interaction between reward and transition. We will report the main effect of
reward first and the interaction first, since they are the key predictors differentiating
between MF and MB signature, followed by the main effect of transition, which is
predicted to be non significant in both cases. The regressions were performed with
the glm function of Python’s package statslearning (Seabold and Perktold, 2010).

3.3.1.3 Response time simulations

As mentioned, we chose an IAC model for its ability to generate response time di-
rectly from its processing (it does not need additional steps to link the model to
response time data such as Drift diffusion modelling; used for example in Seabold and
Perktold (2010)). Response time is expected to hold crucial information about the
MF-MB interaction given the characteristics of each system (Daw et al., 2005, Kera-
mati et al., 2011a). Indeed, the MF is computationally simple so would by itself lead
to very fast responses, while it takes more time for the MB system to simulate or
search within its representation of the world. Furthermore, Dezfouli et al. (2014)
suggested that the type of recruitment of each system directly depends on the time
pressure assigned to a decision.

To generate response time, we first took the number of cycles until reaching re-
sponse threshold at each trial. We then converted the number of cycles into RTs (in
seconds) by regressing individual simulations against individual child distributions.
Specifically, we assumed that for each distribution, the number of cycles and the real
data were linked by a linear regression. We thus estimated the regression coefficients
and transformed the number of cycles into RTs with these coefficients.

We finally fit exGaussians to the RT histograms of individual participants or
the RT histograms simulated by the model variants. An exGaussian (exponentially
modified Gaussian distribution) is the sum of independent normal and exponential
random variables. It is well-suited to account for long tails in RT distribution be-
cause of the exponential component (Heathcote et al., 1991). It has the following
probability density function:

f (x; µ, σ, λ) =
λ

2
e

λ
2 (2µ+λσ2−2x)erfc(

µ + λσ2 − x√
2σ

)

where erfc is the complementary error function: erfc(x) = 1 − 2√
π

∫ x
0 e−t2

dt.
The fit was done with the function annealing from the python module curve-fit2

with the following bounds µ = [−1, 1], σ = [0.01, 1], τ = [0.01, 1]. We will use the
three parameters (µ, σ, τ) of these RT-fitted exGaussians to compare the different

2https://pypi.org/project/curve-fit.annealing/
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simulations to the data (to assess fit to data) and also compare them between each
other (to assess the discriminative power of the simulations).

When looking at Figure 3.21, it seemed that none of the models generates data
sufficiently close to the empirical data. Indeed, the simulated RTs looks more alike
to each other than to the empirical data. Beyond the absolute fit to data, it was
interesting to (1) assess whether the different model variants actually generate dis-
tinguishable RTs, that had the potential to tease the different hypotheses apart, and
(2) see which model variant accounts better for the child data than the others.

To test whether the simulated RT data from the different models are discrim-
inable on the basis of their distributions (1), we tested the differences in estimated
parameters using independent samples t-tests comparing the recruitment model with
the other model variants for each parameter (µ, σ and τ).

To find out which model is the closest to the children’s RT data distribution
(2), we calculated the Euclidian distance between the exGaussian parameters from
the model variants to the exGaussian parameters of the child data in the average-
parameter space.

3.3.2 Results

3.3.2.1 Functioning of the model

Examples of activations evolving in a trial are shown in Figure 3.14. This illustrates
the mechanisms in case of, and in the absence of, conflict. The top panels repre-
sent what we can define as conflicting cases, where the option favoured (i.e., with
the strongest weight) by MF-pathway is opposite to the option favoured by MB-
pathway (approximating the weight from MB-unit to state A as a preference towards
output A). In the bottom panels, both pathways favour the same output. Conse-
quently, the selection threshold is reached more rapidly in the latter, non-conflicting
case, than in the conflicting case. In the bottom examples, the contribution of the MB-
pathway arrives late, due to the time of building up in the state layer. Consequently,
the output unit crossing the threshold is the one favoured by the MF-pathway.

Figure 3.17 presents the simulations of the number of cycles (acting as a proxy for
RTs). The age categories were approximated by different ω parameters, by match-
ing the MB scores (defined in Section 3.2.1.1) of participants to simulated choice pat-
terns. For simulations, the RTs increase with MB contribution, which is not what is
observed in participants (see Figure 3.21). This is because our model currently does
not account for the effect of age on motor responses, which is likely the main reason
why children are slower than adults. Although the fit of our RT simulations to the
data is poor, the primary goal is to show how such process model can (1) generate
response time data, (2) later discriminate between different mechanistic hypotheses
and (3) get a qualitative comparison to suggest the most suited hypothesis among
them.
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Fig. 3.14: Activations time course in four trials with ω=0.5.
The trials were taken from various parts of the task. Dotted lines represent an output unit
or the input to this same unit; plain lines represent the alternatives. The constant inputs
from the MF and MB pathways contribute to driving the evolution of activations in the state
and output units. A trial stops when the activation of one of the two output units (in green)

crosses the threshold.

Fig. 3.15: Activations time course in four trials with ω=0 (i.e., pure MF).
The trials were taken from various parts of the task. Dotted lines represent an output unit
or the input to this same unit; plain lines represent the alternatives. The constant inputs
from the MF and MB pathways contribute to driving the evolution of activations in the state
and output units. A trial stops when the activation of one of the two output units (in green)

crosses the threshold.
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Fig. 3.16: Activations time course in four trials with ω=1 (i.e., pure MB).
The trials were taken from various parts of the task. Dotted lines represent an output unit
or the input to this same unit; plain lines represent the alternatives. The constant inputs
from the MF and MB pathways contribute to driving the evolution of activations in the state
and output units. A trial stops when the activation of one of the two output units (in green)

crosses the threshold.

Fig. 3.17: Simulated RTs (number of cycles) for different ω reflecting the
age groups, each simulated 20 times. Error bars represent 95% confidence

intervals.
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3.3.2.2 Standard behaviour of the model

We first explore the outputs of the model and its fit to the Decker et al. (2016) data.
The model fit was evaluated by its ability to reproduce the MF signature (significant
reward effect and no other effect) or the MB signature (significant reward effect and
significant interaction) accordingly (cf. Section 3.3.1.2).

We started by varying the relative strength of the systems. In the simulations of
the stay patterns shown in Figure 3.18, we reproduced the theoretical behaviour of
an agent under pure MF control. For this and the following simulations, we report
the following statistics: β (current predictor’s regression estimate), SE (standard er-
ror), p (p-values) and 95% CI (95% confidence interval on the regression estimate).
For ω = 0, we obtained a main effect of reward: β = 0.84, SE = 0.14, p < 0.001, 95%
CI [0.55, 1.12]; but no interaction: β = -0.1, SE = 0.1, p = 0.326, 95% CI [-0.31, 0.1];
and no main effect of transition: β = 0.26, SE = 0.17, p = 0.141, 95% CI [-0.08, 0.6]. We
also reproduced the behaviour of an agent under pure MB control (for ω = 1, main
effect of reward: β = 0.37, SE = 0.15, p < 0.05, 95% CI [0.08, 0.66]; and interaction:
β = 0.39, SE = 0.18, p < 0.05, 95% CI [0.04, 0.73]; but a main effect of transition: β

= -0.15, SE = 0.12, p = 0.209, 95% CI [-0.4, 0.09]), similar to Figure 1 in Decker et al.
(2016). Gradually increasing ω led to a graded increase towards the prototypical MB
pattern.

Fig. 3.18: Model simulations of the stay pattern (proportion of stay as a func-
tion of the preceding trial’s reward and transition type) for values of ω be-
tween 0 and 1 increasing by steps of 0.2. Each plot is based on 200 trials
averaged over 20 runs (reflecting the number of participants per age group

in the original study).

We subsequently tested the model fit to Decker et al.’s (2016) data. That is, we ran
the model by setting the parameter ω to reproduce the relative reliance of model-free
and model-based that characterises the three age groups: children rely on model-free
(ω = 0), adolescents rely on a mixture of model-free and model-based (ω = 0.5) and
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adults predominantly rely on model-based (ω = 0.7). Figure 3.19 presents the stay
patterns of three sets of simulations which fit the children’s, adolescents’ and adults’
behaviours (with ω = 0, 0.5 and 0.7 respectively). The MF signature is present for
ω = 0 (main effect of reward: β = 0.84, SE = 0.14, p < 0.001, 95% CI [0.55, 1.12]; but
no interaction: β = -0.1, SE = 0.1, p = 0.326, 95% CI [-0.31, 0.1]; and no main effect of
transition: β = 0.26, SE = 0.17, p = 0.141, 95% CI [-0.08, 0.6]), while the MB signature
is present for the other two ω values (for ω = 0.5: main effect of reward: β = 1.07,
SE = 0.14, p < 0.001, 95% CI [0.8, 1.35]; interaction: β = -0.23, SE = 0.11, p < 0.05,
95% CI [-0.45, -0.01]; and no main effect of transition: β = 0.31, SE = 0.17, p = 0.062,
95% CI [-0.02, 0.65]); for ω = 0.7: main effect of reward: β = 0.41, SE = 0.15, p < 0.01,
95% CI [0.12, 0.7]; interaction: β = 0.47, SE = 0.18, p < 0.01, 95% CI [0.12, 0.82]; and
no main effect of transition: β = -0.18, SE = 0.13, p = 0.175, 95% CI [-0.43, 0.08]). .

As mentioned, the same MF and MB signature were found on Decker et al.’s
(2016) data: for the children’s group, the MF signature only is present (main effect
of reward: β = 0.30, SE = 0.08, p < 0.001 but no interaction: β = 0.02, SE = 0.04,
p = 0.65; and no main effect of transition: β = 0.02, SE = 0.04, p = 0.79). However
for the adolescents’ group, the MB signature is present (main effect of reward: β =
0.22, SE = 0.08, p < 0.01 and an interaction: β = 0.35, SE = 0.10, p < 0.01; and no
main effect of transition: β = 0.09, SE = 0.06, p = 0.13). For the adults’ group, the MB
signature is also present (main effect of reward: β = 0.56, SE = 0.11, p < 0.001 and an
interaction: β = 0.49, SE = 0.13, p < 0.001; and a main effect of transition: β = 0.07,
SE = 0.08, p < 0.05).

In other words, the model reproduces the key stay patterns observed with in-
creasing age by increasing values of ω. We have thus shown that is it possible to
provide a mechanistic account of the dynamic integration between systems and how
this balance changes with age.
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Fig. 3.19: Model simulations of the stay pattern (proportion of stay as a func-
tion of the preceding trial’s reward and transition type) for values of ω fit-
ting Decker et al.’s (2016) three age groups (Recruitment hypothesis). Here
and in all subsequent figures each plot is based on 200 trials averaged over
20 runs (reflecting the number of participants per age group in the original

study), and error bars represent the standard error of the mean.

3.3.2.3 Developmental changes: competing hypotheses

In this Section, we explore additional mechanistic hypotheses of the age effect on
behaviour by leveraging specificities of the model. Clues in Decker et al.’s (2016)
analyses rule out the possibility that the youngest group did not understand the
task transition structure. Indeed, all groups were significantly slower following rare
than common transitions (with no age-transition interaction), and, when prompted,
all groups expressed equal awareness of the task structure. Thus, altering the 0.7
and 0.3 weights of the model is a very unlikely explanation of the changes that occur
across development compared to the most plausible explanations that follows.

We now turn to the meaning of the ω parameter. Adults’ behaviour in simi-
lar tasks fit by a hybrid RL model suggests a form of metacontrol of the MF/MB
balance, e.g., via uncertainty-based competition (Daw et al., 2005) or a cost-benefit
assessment (Kool et al., 2017b). In this vein, the change in MF/MB trade-off with age
may derive from metacontrol mechanisms that vary (through different assessment
and/or bias towards one strategy or the other) with age. We will refer to this as the
’recruitment strategy’ hypothesis.

However, there are alternative explanations for the absence of the MB pattern
in the youngest group, motivated by the MB system being arguably less mature in
childhood. Indeed, the MB system has been proposed to involve prefrontal cortical
areas based on both neuroimaging (e.g., Jueptner et al., 1997) and neuropsychologi-
cal (e.g, Duncan, 1986) evidence, and the prefrontal cortex shows protracted matura-
tion until early adulthood (Lenroot and Giedd, 2006). Our mechanistic approach al-
lows exploration of different hypotheses concerning the fine-grained nature of mat-
uration of the MB system, and we consider three such hypotheses.
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Fig. 3.20: Model simulations of the stay pattern for the different manipula-
tions, each set repeated for two different ω values. A) Noise: increased noise
in the state layer (σ = 0.2); B1) decreased bias in the state layer (−4.5); B2)
Bias decreased bias in the state layer (−4.5) and increased carry-over (0.4);
C) LR: altered learning rates: 0.8 in the MF-pathway, 0.2 in the MB-pathway.
Each plot is based on 200 trials averaged over 20 runs, error bars represent

one standard error of the mean.

First, delayed maturation could be linked to noisier computations in younger
participants. Implementing higher σ in the state layer may, overall, reduce the MB
contribution at the expense of the MF contribution to choice in children. Indeed,
strong noise may partly mask any existing difference in the connection weights in
the MB pathway, hindering the divergence in activation levels of the state units
(where the activation of one unit would normally take over). This would lead to
smaller variation between the state’s input to one compared with the input to the
other output unit. Ultimately, this would limit the MB pathway’s influence on the
output, relative to the MF pathway (because the MF pathway is direct and rapid).

Secondly, and not mutually exclusive with the first hypothesis, MB processing in
adults may benefit from extensive experience (such benefit arguably having reached
ceiling in MF system). Under this scenario, children’s computations would there-
fore start with a disadvantage in MB pathway at each trial, implementable via a
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high magnitude of negative bias in the state layer. Such altered biases would delay
computations in the MB compared to the MF pathway. Such a delay may prevent
the state units’ activations from diverging sufficiently from each other. If the delay
is too big, this may prevent the stats units from influencing the output units before
the end (i.e. before one output unit reaches the threshold for action selection).

A third hypothesis is that children’s MB system learns less efficiently, i.e. that
the system has a lower learning rate. Indeed, there is empirical evidence, although
conflicting, that learning rates change with age (see the review of Nussenbaum and
Hartley, 2019).

3.3.2.4 Developmental changes: simulations

The rationale of the following simulations is that the children stay patterns, initially
assumed to originate from the recruitment of the model-free system only (that is,
with ω = 0 as on the left panel of Figure 3.19), can originate from alternative mech-
anisms. Thus, we implemented the alternative mechanisms (variants) by keeping
the same parameters as for the baseline (recruitment) simulation, except for the pa-
rameters linked to the alternative mechanism, and with both ω = 0.5 and 0.7 which
simulates adolescents’ and adults’ data with the recruitment hypothesis. We thus
compare the results of the variants to the stay patterns obtained with ω = 0 (mim-
icking children’s behaviour; left panel of Figure 3.19), referred to as the pure MF
behaviour.

For the first hypothesis, we increased the noise to σ = 0.02 in the state units
(Figure 3.20.A). For ω = 0.5, the stay pattern closely resembles pure MF behaviour.
The regression analysis confirms the presence of the MF signature (main effect of
reward: β = 1.16, SE = 0.15, p < 0.001, 95% CI [0.87, 1.45]; ; but no interaction: β =
0.27, SE = 0.18, p = 0.133, 95% CI [-0.08, 0.62]; and no main effect of transition: β =
-0.02, SE = 0.11, p = 0.871, 95% CI [-0.23, 0.19]). Similar comments apply for ω = 0.7
(main effect of reward: β = 0.49, SE = 0.13, p < 0.001, 95% CI [0.23, 0.75]; but no
interaction: β = 0.09, SE = 0.16, p = 0.56, 95% CI [-0.22, 0.41]; and no main effect of
transition: β = 0.01, SE = 0.1, p = 0.957, 95% CI [-0.2, 0.21]).

Second, we decreased the bias in the state layer to −4.5 (Figure 3.20.B1). The MF
signature is again present (for ω = 0.5, main effect of reward: β = 0.96, SE = 0.14,
p < 0.001, 95% CI [0.69, 1.22]; but no interaction: β = -0.15, SE = 0.16, p = 0.367,
95% CI [-0.46, 0.17]; and no main effect of transition: β = 0.16, SE = 0.11, p = 0.145,
95% CI [-0.05, 0.37]; for ω = 0.7, main effect of reward: β = 0.52, SE = 0.13, p <

0.001, 95% CI [0.27, 0.78]; but no interaction: β = -0.05, SE = 0.16, p = 0.752, 95%
CI [-0.36, 0.26]; and no main effect of transition: β = 0.02, SE = 0.11, p = 0.855,
95% CI [-0.19, 0.23]). However, the stay proportions are relatively low (cf. left panel
of Figure 3.19). We can raise the model’s perseveration, a behaviour common in
children, with carry-over = 0.4 (Figure 3.20.B2). The results then match the pure MF
plot, with the MF signature (for ω = 0.5, main effect of reward: β = 0.53, SE = 0.14,
p < 0.001, 95% CI [0.26, 0.8]; but no interaction: β = 0.07, SE = 0.17, p = 0.693, 95%
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Table 3.1: Significance levels of the logistic regression predictors of inter-
est (the table presents the full p-value or: ∗ : p < 0.05, ∗∗ : p < 0.01,
∗∗∗ : p < 0.001). The model variants represent the different developmental

hypotheses modelled.

Model variant Recruitment Bias Noise Lr
ω 0 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7

Reward ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗ ∗∗
Reward*Transition 0.326 ∗ ∗∗ 0.693 0.59 0.133 0.56 0.287 0.334

CI [-0.26, 0.4]; and no main effect of transition: β = -0.05, SE = 0.11, p = 0.646, 95%
CI [-0.26, 0.16]; for ω = 0.7, main effect of reward: β = 0.44, SE = 0.14, p < 0.01, 95%
CI [0.17, 0.7]; but no interaction: β = 0.09, SE = 0.16, p = 0.59, 95% CI [-0.23, 0.41];
and no main effect of transition: β = -0.13, SE = 0.12, p = 0.27, 95% CI [-0.36, 0.1]).

Finally, we changed the learning rates to αMB = 0.2 and αMF = 0.8 (Figure 3.20.C).
For ω = 0.5, the pattern presents no prototypical signature. We find a main effect of
reward (β = 0.32, SE = 0.14, p < 0.05, 95% CI [0.06, 0.59]), no interaction (β = -0.11,
SE = 0.1, p = 0.287, 95% CI [-0.31, 0.09]), but also a main effect of transition (β = 0.32,
SE = 0.16, p < 0.05, 95% CI [0.0, 0.64]). The same goes for ω = 0.7: main effect of
reward (main effect of reward: β = 0.39, SE = 0.13, p < 0.01, 95% CI [0.13, 0.66]), no
interaction (β = -0.1, SE = 0.1, p = 0.334, 95% CI [-0.3, 0.1]), but also a main effect of
transition (β = 0.42, SE = 0.16, p < 0.01, 95% CI [0.1, 0.74])

Table 3.1 presents a summary of the findings. All in all, two mechanisms pro-
duced stay patterns indistinguishable from the ’recruitment strategy’ with ω = 0:
noisier computations in the MB pathway (noise variant), and less efficient process-
ing in the state layer with higher perseveration (bias variant).

3.3.2.5 Response time simulations

For the response time simulations, we retain the variants that produced the patterns
of interest as per the previous Section. That is, we kept the four developmental
hypotheses implemented as follows:
• Recruitment: the relative recruitment of the contributions of MF/MB systems for
action selection is externally arbitrated and increasingly in favour of MB with age:
ω increases with age.
• Noise: the MB system is recruited to the same level but computations are nosier in
children than adults: ω held fixed but noise in the state units increased from θ = 0.01
in the recruitment variant to θ = 0.02.
• Bias: the children MB system is less experienced than adults and slower to initiate
computations, and have higher perseveration: ω held fixed but amplified negative
bias in the state layer from −1.5 to −4.5, plus the model’s perseveration is raised
with carry-over from 0.1 in the recruitment variant to 0.4.
• LR: children MB learning is slower (but the MF learning, which is simpler, is at the
adult level): ω held fixed but learning rates decreased from 0.6 in both channels in
the recruitment variant, to αMB = 0.2 (very slow) and αMF = 0.8 (slightly faster).
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Fig. 3.21: Response time of the children and four simulations. Children
refers to the original dataset. The names refer to 4 variants representing
the developmental hypotheses modelled and were generated with the fol-
lowing changes in parameters: in Recruitment, the relative contributions of
MF/MB system ω was modulated (increasing ω represents increased contri-
bution of the MB system); in Noise, ω was held fixed but noise θ in the state
units was increased from 0.01 to 0.02; in Bias, ω was held fixed but the nega-
tive bias in the state layer from −1.5 to −4.5 was amplified, and the model’s
perseveration (consistent with children’s behaviour in general) carry-over
was raised from 0.1 to 0.4; and in lr, ω was held fixed but the learning rates

was decreased from 0.6 (for both channels) to αMB = 0.2 and αMF = 0.8.

Figure 3.21 shows response time distributions for the four model variants’ data
and the real children’s data. The corresponding exGaussians, reconstructed with the
parameters fit to the simulated or real data, are shown in Figure 3.22A. We plot the
fitted parameters of the four model variants in Figure 3.22B. When comparing the
variants against the recruitment model, there were significant differences for two pa-
rameters of the bias model (µ and σ both p = 0.002). Post-hoc pairwise comparisons
between the other models also revealed significant differences, namely between bias
and noise variants, whose µ and σ differ (both p = 0.002). The other comparisons
were not different from each other.

So far, the results suggest that at least a few hypotheses can be distinguished
from each other on the basis of their relative fit to the RT distribution. This ability of
the RT data to discriminate from the model variants at this stage strongly suggests
that the RT contains informative characteristics that can be leveraged via our model
to support the most plausible developmental hypothesis.

Figure 3.22C shows the fitted exGaussian parameters in the 3D parameter space.
The 3D Euclidian distance d3D of the variants to the children’s data were: 0.124 for
recruitment, 0.132 for bias, 0.118 for noise and 0.129 for lr. The lowest value of the
3D distance of noise variant from the child data (d3D = 0.118), combined with the
fact that parameters for noise were significantly different from the ones for bias, in-
dicates that noise hypothesis is more plausible than the bias hypothesis. However
the parameters for noise and recruitment were not significantly different from each
other, and the recruitment variant had the second smallest distance to the child data
(d3D = 0.124). Therefore, at this stage, both hypotheses (noise and recruitment) are
equally likely, but both are better than the lr or bias hypotheses.
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Fig. 3.22: A comparison of child and simulated RT distributions: (a) exGaus-
sian curves generated with the average estimated parameters of the exGaus-
sian distribution (mu, tau and sigma), (b) relationship among distributions
in the exGaussian’s parameters space, (c) estimated parameters (the error
bars are the 95% C.I. on individual participants or simulations, the dotted

line represent the children’s values; lr=learning rate).
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3.4 Discussion

3.4.1 Our model

We have proposed a mechanism for the integration of the MF and MB systems in
the widely used two-stage task, and shown different ways in which the MF/MB
trade-off may emerge across age.

The model offers a level of analysis for understanding action selection different
from Decker et al.’s (2016) study. Indeed, important problems tackled by the RL
approaches, such as the exploration-exploitation dilemma, are fundamentally at the
computational level in Marr’s terms (Marr, 1982). For example, many reinforcement
learning tasks have found that children tend to explore more than adults (e.g., Sum-
ner et al., 2019). Others have looked at the relationship of the MF/MB balance with
stress and working memory (Otto et al., 2013), or the balance of exploitation and
exploration as a function of environment volatility (Speekenbrink, 2015). Such RL
approaches makes contact to some extent with the algorithmic level. Indeed, they
describe the inputs used for computation (outcomes from past choices in given con-
texts, etc.) and the operations performed: essentially learning (e.g., Q-learning) and
the sampling strategy (e.g., softmax choice rule). This approach informs the extent
to which variables of interest (e.g., age) are linked to different RL parameters (e.g.,
learning rate), which can provide insight into what operations of RL the variables
are modulating, but not precisely into the processes by which the variables modu-
late behaviour. Our approach centres on the algorithmic level. We propose a way
in which several RL components (Q-values and probability distributions) are repre-
sented (discrete units with dynamic activation) and connected, as well as how the
within-trial dynamic computations are carried out by each system and subsequently
integrated.

The model accounts for the key behavioural patterns attributed to varying MF/MB
balance. One way to generate such stay patterns is to vary the relative strength of the
input sent to one or the other pathway (via the ω parameter), reproducing Decker et
al.’s (2016) developmental data by increasing the ratio in favour of the MB pathway
with age. In theoretical terms, this is consistent with Decker et al.’s (2016) account,
where the behaviour of children is captured by lower MB inverse temperature than
adults’ (and not by the MF temperature parameter), although our model alters the
trade-off between MF and MB. However, when exploring mechanistic accounts of
the age differences, we found that the model was also able to account for the younger
group’s behavioural patterns through other theoretically-motivated manipulations.
Namely, with values of ω initially associated with adolescents and adults, altering
key processes of the MB pathway (with higher computation noise, or with lower
bias combined to higher carry-over) yielded patterns hardly distinguishable from
children’s pure MF behaviour. Hence, the stay by reward and transition pattern
does not allow us to discriminate between the recruitment strategy hypothesis and
one of the three alternative mechanisms (related to increased noise).
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When using response time, although the fit to the children’s data may not be
sufficient, it does show the ability of the model to simulate both behavioural and
response time patterns consistent with the data, and to discriminate between some
model variants. Further refinement in the model, such as allowing the temperature
β or the learning rate α to vary for a given individual within the task, age may im-
prove both aspects. Relatedly, our simulations of response time have focused on
simulating different mechanisms for the same age group (children). To use response
time simulations for different age groups, the increasing motor speed (and general
processing speed) with age must be integrated into the model.

Another interest of such models, if developed further, would be to inform future
task design. Indeed, the model makes sufficiently distinct predictions for the differ-
ent developmental hypotheses to disentangle them. For example, one could think of
a study with a similar task but two conditions. One condition would include stimuli
that adults are familiar with but the children are not (unfamiliar condition). Another
condition would include stimuli where children are as familiar with the stimuli as
adults (familiar condition). In such a study, the bias (efficiency) hypothesis would pre-
dict that children display less MB contribution than adults in the unfamiliar condition
but not in the familiar condition. Indeed, familiarity would boost the bias in state
units. On the contrary, the noise hypothesis would predict no difference between the
familiar and unfamiliar conditions, i.e. children would have less MB contribution than
adults in both conditions, because noise is independent of the knowledge of or fa-
miliarity with stimulus. Other interesting paradigms may manipulate time pressure
(e.g., by giving a short amount of time to reply). Accordingly, with a shorter time to
respond, the Bias hypothesis would predict that children would increase reliance in
MF but that adults would not or would to a lesser extent. On the contrary, the (Noise)
hypothesis would predict similar effects of time pressure on adults and children. Fi-
nally, the recruitment hypothesis may be tested by using different tasks that measure
the relative recruitment of model-free and model-based in different ways. If such a
recruitment is the same in different tasks, this would be in favour of the recruitment
hypothesis. Moreover, the different hypotheses may not be mutually exclusive.

An important limitation of the present study is that the model space (Palminteri,
Wyart, et al., 2017), or the number of developmental hypotheses explored, may not
represent the entirety of plausible hypotheses. Therefore, it is a first step towards
distinguishing candidate hypotheses, but there may be other candidate mechanisms
that have not been included in this study and should not be discarded.

3.4.2 Response time in classical RL fit

Previous studies have included response time in modelling of RL (e.g., Ballard and
McClure, 2019, Gershman, 2018, and Fontanesi et al., 2019). Shahar et al., 2019 used
response time specifically in the two-stage task, but were doing so for the purpose
of better parameter estimation within the same RL variant. By contrast, our usage
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of response time was not concerned with parameter estimation but was aimed at
separating competing model variants.

Our model has the advantage of having response times generated straightfor-
wardly from the processing of the model (only converting the number of cycles
to response times), without any extra step such as Drift Diffusion Modelling (e.g.,
Fontanesi et al., 2019). Nonetheless, regardless of the aim, all approaches mentioned
here benefit from using response times as additional data. In general, more data pro-
vide additional constraints, and can be any form, such as kinematics, eye-tracking,
or neuroimaging (e.g., Borst et al., 2015).

3.4.3 Model-free/model-based balance and Executive functions

Given the relevance of executive function in the rest of this thesis, it is worth noting
studies that have linked the model-free/model-base balance to executive function
tasks. Otto et al. (2014) have compared the inter-individual differences of adults’
performance on the two-stage task and the same adults’ performance on the Stroop
task (Cohen et al., 1999). They found that the susceptibility to the Stroop interference
was negatively correlated with model-based use in the two-stage task. Although not
on a developmental sample, the finding is compatible with the idea that develop-
ment in inhibitory control may be a key driver of improvement in action selection.
Nonetheless, Otto et al. (2014) further propose that cognitive control may favour
model-based relative to model-free recruitment either by boosting the relevant task
representations or by inhibiting model-free responses. This view puts the role of
inhibitory control as inhibiting model-free representations, that is, state-actions as-
sociations learned by simply caching previous rewards obtained by trial-and-error.
The view in Chapter 2 will be slightly different. There, inhibitory control is applied
on irrelevant distractors, that is on lower-level object representations rather than on
state-actions associations. The view is also slightly different from that of the model
of Cooper and Shallice (2000), where cognitive control or supervisory control influ-
ences the appropriate action schemas rather than inhibits response favoured by a
different system.

Potter et al. (2017) had 9- to 12 year-olds perform the two-stage task as well as
three separate tasks to measure working memory, statistical learning and fluid rea-
soning. Among the three, they found that only fluid reasoning predicted higher-
recruitment of model-based strategy. They propose that the ability to integrate lear-
ned associations is central to the developmental differences found in model-free-
/model-based balance. It is indeed likely that several components (in addition to
inhibition) may be developing and driving change in action control types.

3.4.4 Comparison with other theories

The appropriateness to model the habitual system by model-free RL, and the goal-
directed system by model-based RL, has recently been questioned.
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In the same line as previous accounts (e.g., Kool et al., 2017a, S. Lee et al., 2014),
Miller et al., 2019 argue for a weighted average of habitual and goal-directed sys-
tems which depends on the reliability of estimate or a cost-benefit assessment of the
systems. Their model, however, considers the strength of the habitual system as
proportional to how often an action has been taken, regardless of its outcome. This
is against the classical associative learning account, on which the RL theories are
aligned, where the learning is contingent on the outcome.

In opposition to Miller et al.’s (2019) account, Perez et al. (2020) stand by the
classic learning view where habit strength is modulated by actions’ outcomes. They
argue that the balance of habitual and goal-directed systems is best understood as
their relative strength across training, which follows directly from the linear sum of
their strength. Perez et al.’s (2020) account is partly consistent with our model where
the ’winning’ system is determined by the system providing the strongest activation
early enough (so that its favoured action reaches threshold before the other- in case
of conflict). An important difference between Perez et al.’s (2020) model and our
model is that in our model the combination of outputs is not a linear sum unlike in
Perez et al.’s (2020).

Another view is proposed by a recent strand of research that explains habitual
behaviour in terms of Hierarchical Reinforcement Learning (Dezfouli and Balleine,
2013). Based on a variation of the two-stage task, Dezfouli and Balleine (2013) found
that a hierarchical model fit the data better than the MF-MB hybrid RL model. Specif-
ically, their model explained the choice patterns at first stage just as well as the al-
ternative model, but explained better second-stage choice patterns. Specifically, the
Dezfouli and Balleine’s (2013) model explained the fact that, following a rewarded
trial, and having reproduced the same first-stage action as the previous trial, partic-
ipants also tended to reproduce the preceding second-stage action. The participants
repeated first- and second-stage actions even after rare transitions, suggesting the
execution of a sequence could be insensitive to within-sequence feedback (when, in
that case of rare transition, a flat goal-directed system would have taken a different
second-stage action). Dezfouli and Balleine (2013) concluded that what is taken as
model-free control may be a form of model-based selection of action sequences. A.
Morris and Cushman (2019) used multiple other variations of the two-stage tasks
and found, like Dezfouli and Balleine (2013), that humans employ a form of model-
based control of sequences. However, A. Morris and Cushman (2019) further argue
that humans still show model-free control in addition to model-based selection of
sequences.

3.4.5 The two-stage task in general

After discussing the modelling aspects, we return to the experimental design itself.
The task has been found to show significantly different relative MF/MB contribution
following what may seem as minor changes in the paradigm: changing the range of
possible reward probabilities (Kool et al., 2016), changing the rate of reward drift



Chapter 3. A Mechanistic Account of the Model-Free / Model-Based Trade-off: A
Computational Study

95

(Kool et al., 2016) or changing whether the final probability across all final states do
sum to 1 or not (Da Silva and Hare, 2018).

Consequently, it is possible that the differences observed across age groups are
not due to fundamental developmental changes in the processes underlying the
combination of MF and MB system, but are due to different understanding of the
rules of the task, motivation, and/or valuation of reward (the gamified treasure and
cash reward) of children compared to adults. Beyond basic comprehension checks, it
is difficult to ensure that children have a deep understanding of the task or were exe-
cuting it very well (that is, trying to consider rewards and transitions). Although the
stimuli and the instructions have been adapted to children, such experimental de-
sign (repeated sequential choices by pressing keys) might not be the most engaging,
nor the most ecologically-valid way to assess children’s behaviour. Additionally, the
necessary step of mapping the stimuli on screen to the keys on the keyboard adds
further noise between the action selection process and the response.

Nonetheless, as mentioned earlier, this type of two-stage task is widespread in
the adult literature and its variables have shown significant correlations with neural
correlates (e.g., role of dopamine: Wunderlich et al., 2012) or constructs in multiple
domains (e.g., clinical: Montague et al., 2012) or in various fields. Despite limita-
tions, the replication of findings in multiple studies with variants of the task does
suggest that the task overall taps into a meaningful balance between two forms of
learning and action selection. Furthermore, this allows borrowing further findings
from the task, that even within an adult population, may inform development such
as the earlier-mentioned finding that cognitive control abilities predict recruitment
of model-based control (Otto et al., 2014).

In summary, the results do suggest strongly that there are quantitative chan-
ges of children recruitment of model-based behaviour across development. Such
finding should be corroborated with more tasks, that are child-friendly to ensure
the behaviour of the children on the task reflects the recruitment of model-free and
model-based type of control.

3.5 Conclusions

To conclude, the novel IAC model introduces a mechanism for the dynamic inter-
action between model-free and model-based pathways, where the systems’ relative
contributions can vary from trial to trial. The model successfully reproduced key be-
havioural patterns. It was able to do so when implementing different theoretically-
motivated accounts. As such, it goes a step beyond the standard RL model which is
rather at the computational level (following Marr, 1982’s levels) by allowing one to
implement different algorithmic accounts.

Based on choice patterns alone, it was not possible to discriminate well amongst
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the different accounts (only the learning rate produced choice patterns incompati-
ble with the data and could be excluded on this basis). We further simulated re-
sponse times. First, the response time data allowed good discriminability between
competing models. Second, on the basis of this work, the following hypotheses ap-
peared the two most plausible to explain the apparent increasing contribution of
model-based strategy to choices with age: (a) that computations in the MB system
are noisier in children than adults (but not in the MF system), and (b) that there is
a default recruitment of one system over another with age. Further models should
be developed to explore the many plausible developmental hypotheses and further
experiments should discriminate between the candidate hypotheses. Given the dif-
ference in complexity and speed of computations in model-free and model-based
systems, experimental manipulations of time pressure should be particularly help-
ful in differentiating the systems’ signatures. Furthermore, given the difference in
flexibility between the two systems, manipulations that occur in the middle of the
planning or execution process should impair the systems differentially.

All in all, this model provides a proof of concept of the suitability of modelling
the mechanism by which model-free and model-based control are combined. It also
provides evidence for the novel model’s ability to tease apart candidates develop-
mental hypotheses and/or ultimately to conceive new tasks that can be used to bet-
ter understand changes in children’s use of habitual / model-free and goal-directed
/ model-based strategies. The following chapter further explores the relationship
between habitual / model-free and goal-directed / model-based action selection in
children. Specifically, it looks at how an unexpected change, which requires recruit-
ment of a goal-directed strategy, affects children’s behaviour in a simple routinised
task.
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Chapter 4

Action Sequence Control following
an Unexpected Change: Two
Touchscreen Studies

Abstract

This chapter investigates action control in 5- to 9-year-olds with a touchscreen game
and two executive function tasks. The touchscreen game consisted of making re-
peated action sequences. After a training phase, the game included unexpected per-
turbations mid-sequence to investigate the ability of children to adjust an ongoing
sequence, which presumably reveals model-based or supervisory recruitment. In
order to dissociate between subprocesses of supervisory control (principally moni-
toring and inhibitory control), the unexpected perturbations varied at two different
levels (state or goal) and two types of errors were made possible.

Younger children performed worse than older children when facing certain per-
turbations, which is consistent with the view that a model-based or supervisory sys-
tem improves beyond 5 years of age. Furthermore, the within-trial variability of
speed is proposed to be a kinematic marker of the recruitment of model-based or
supervisory control when required in the task. The younger children also struggled
more when facing a change of goal than when facing a change of state that was a
consequence of their action, suggesting that the ability to monitor high-level goal-
related cues develops across school-age years. A predominant error in both age
groups and both types of transitions was the failure to update an ongoing action
sequence. Taken together with the stronger link between the inhibition score and
the action control optimal selection rate (compared to age and switching score), this
suggests an important role of inhibition in the emergence of model-based type of
control.

All in all, the chapter suggests that monitoring and inhibition of an ongoing se-
quence are both critical skills underlying model-based or supervisory type of control
that develops throughout the school-age years.
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4.1 Introduction

This chapter further investigates children’s use of two systems for action control;
whether conceptualised as ’model-free/model-based’ systems as in Decker et al.’s (2016)
study used in chapter 3, or routine/supervisory systems following Norman and Shal-
lice’s (1986) dual-systems theory. In the previous chapter, Decker et al.’s (2016) task
had the merit of measuring the apparent balance of model-free and model-based sys-
tems in children with a task that can be linked to many other studies with adults
using a similar paradigm (the so-called ’two-stage task’). However, we saw that the
two-stage task was perhaps not well suited for understanding the mechanisms under-
pinning children’s behaviour. Furthermore, the task’s rules and concept are proba-
bly too abstract to use the task with children younger than Decker et al.’s (2016) sam-
ple (8-12 years old). Crucially, as argued in chapter 1, the period around the start of
school (5-6 years old) and beyond is particularly interesting in terms of changes in
sequential action control. This led us to design a new task, that would dissociate
the recruitment of model-free control and model-based control, and be inspired by the
two-stage task while making up for the shortcomings of the latter.

The newly-developed task was engaging for children and more concrete through
gamification and the use of a touchscreen. The touchscreen also had the advantage
of making the task relatively more ecologically relevant than responding on a key-
board. Contrary to Decker et al. (2016), our approach did not aim to find a ’default
balance’ or strategy that children would use across identical trials. Instead, we aimed
to find how much children of various ages would be able to recruit model-based-like
control following unexpected changes in the task, which made a change of action
plan necessary to fulfil the instructed goal. In this task, the goal and how to achieve
it was made explicit, easy to understand, and rewarded throughout the game by
various animations.

4.1.1 Multiple processes interacting in action selection

To investigate action control as a whole, one must consider together multiple un-
derlying processes and their interactions. Firstly, the routine system (contention
scheduling in the original terms Norman and Shallice, 1986) is held responsible for
selecting actions through schemas. A schema is a unit representing a subsequence of
actions, or at a lower level, a motor skill that fulfils an action. We will talk indistinc-
tively about schema selection or action plan, to designate an action or a sequence of
action selected at a given point in time. An action in this computerised experiment
is defined as reaching for a given icon.

The next processes we mention are part of the supervision system, which mod-
ulates the routine system. We ignore the goal generation process, since our task will
have an instructed goal, where the sequence to be generated to achieve the goal will
be explicitly instructed and presumably sufficiently easy to remember for our age
range. The detection/monitoring and inhibition functions are central to our study.
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We know that the perceptual salience of items can affect action selection by captur-
ing attention even if the items are irrelevant to the goal (cf. Chapter 2). Our study
will attempt to control for purely perceptual salience to focus more on detection of
cues as a result of monitoring at various strengths, or differential allocation of at-
tention to specific cues. We use monitoring in a broad sense (e.g., as used in Carter
et al., 1998 and Pouget et al., 2017), which involves (a) anticipating or predicting the
outcomes of action, and (b) comparing such predicted outcome to the response in
order to detect a potential mismatch. We broaden it slightly to include predicting
possible changes of the environment that may not be a consequence of the actions.
Note that the monitoring signal can be described in reinforcement learning terms
(difference between expected and obtained reward) and thus correspond to the re-
ward prediction error used in chapter 3.

Some aspects of monitoring in action production have been found to evolve
around school ages. In a problem-solving task, children as young as 4-6 years old
were able to efficiently anticipate the consequences of potential actions and use this
to guide their choices (Kaller, Rahm, Spreer, and Mader, 2008). Furthermore, to
successfully detect discrepancies from an expected response, one must maintain in-
formation in mind, specifically maintain the goal and the actions to be carried out.
Marcovitch, Boseovski, et al. (2007) has shown that a simple manipulation can disen-
gage 4- to 5-year-olds’ attention from the goal, impairing their ability to maintain the
tasks’ goal in mind. As noted by Stedron et al. (2005), the development of working
memory and selective attention likely share common mechanisms and thus undergo
the same developmental progression, and working memory is known to improve
throughout school-age years (Diamond, 2013). If there are developmental differ-
ences related to maintaining goal-relevant information in mind, the differences may
be when it comes to managing the overarching goal which is more distal rather than
monitoring the perceptual consequences of action (Freier et al., 2017).

Following the successful detection of a mismatch, an ongoing action must be
inhibited in order to be corrected. We therefore hypothesise that inhibitory control
plays an important role in error correction (this is expanded on in Section 4.3.3).
Inhibitory control also undergoes important changes in our age range as shown by
many such as Reck and Hund (2011), Carver et al. (2001), and Lewis et al. (2017).

Finally, following successful detection of a needed update- and successful inhibi-
tion of a previously planned action (schema), a mechanism to select the replacement
action is needed. The strategy needed to correct varies greatly according to a given
task and will thus be discussed in Section 4.4 in the specific context of our experi-
ment.

To our knowledge, no prior study has studied such processes integrated together
within a sequence of several actions in children.
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4.1.2 SuperCook: A novel action control task

4.1.2.1 Aims of the SuperCook task

This study aims to identify the behavioural signature of the two systems of action
control (model-free or model-based following the terms of Decker et al. (2016), or
routine and supervisory following the terms of Norman and Shallice (1986)), and
investigate their interaction in the control of a sequence of actions by young children.
Specifically, it looks at whether children can judiciously recruit one system or the
other, as well as how this varies across school-age years.

We designed a gamified task reproducing key elements of sequential action con-
trol and allowing the investigation of age differences in action control under dif-
ferent degrees of influence of the two systems. Namely, the task involved practis-
ing appropriate sequences of actions varying between one of two goals, practised a
large number of times (during a training phase), proposedly transferring the control
to the routine system. In a second phase (test phase), the task had trials similar to
the training phase (common transitions) as well a small percentage of unpredictable
perturbations (rare transitions) in the middle of the sequence. The perturbation was
designed to change the nature of the second action that would have led to the best
reward in the absence of that perturbation.

We were interested in whether children of different ages would tend to continue
with their (assumed) initial sequence plan, or update the sequence to appropriately
obtain the maximal reward. We propose that such an update of plan requires higher
recruitment of the supervisory system than in the absence of perturbation. By the
rare transition manipulation, we thereby attempt to dissociate model-free/routine con-
trol, which would be mostly responsible for executing sequences after the train-
ing phase and during common transition, from model-based/supervisory control, which
would be needed after rare transitions. The task also goes further than identifying
the relative amount of model-free/model-based control. Specifically, assuming that
lower model-based/supervisory control is observed in younger children, the task at-
tempts to dissociate between the roles of monitoring functions and inhibitory func-
tion in the action sequence update.

Additionally, the task had two subtypes of rare transition (one changing the goal
cue: ’rare_goal’ transition, one changing the action-effect cue: ’rare_state’ transition)
to better understand the developmental change in monitoring the environment and
the overarching goal during the execution of action sequences. Therefore, we can
assess to what extent the supervisory system can regain control when external events
require the replacement of an action after a sequence was initiated; and if so, under
which conditions (e.g., following what kind of environmental change).

4.1.2.2 Description of the SuperCook task

We fully describe the task here because it is fundamentally similar for the two exper-
iments in this chapter (Section 4.2 and Section 4.3). The differences will be described
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in the Methods of each section.

Design of the task

The game was played on a touchscreen. We chose the context of baking, which
would be familiar enough for this age range (indeed, at preschool children are al-
ready familiar with watching meal preparing activities: Freier et al., 2015). This
would facilitate learning of the overall rules, while the combination of goal and ac-
tion sequence was completely arbitrary to limit confound with prior knowledge.

Here we describe the main part of the SuperCook task, that was split into a train-
ing followed by a test phase. In the task, a cat and a rabbit cartoons were to be fed
many cakes, each character having their favourite cake recipe. A recipe was made
of a chocolate bar (black or white chocolate) and a fruit as shown in Figure 4.1.

Fig. 4.1: Mapping of the action sequences (favourite cakes) per goal cue
(character) according to one version (left panel) or the other (right panel),
the versions being randomised across participants. This image was also

used as instruction materials.

The two correct recipes were made of equal intuitiveness (that is, both fruits were
not the most common fruits found on chocolate cakes). The mapping between a
character and its ’favourite’ recipe (e.g., white chocolate with pear for the rabbit,
and dark chocolate with grape for the bunny) was pseudo-randomised across partic-
ipants. A trial’s goal was cued from the start, and throughout the trial, by a character
shown in the centre (e.g., in Figure 4.2 one had to make the cat’s favourite cake). Icons
representing ingredients were also present on screen, as well as a central preparation
bowl which reflected the state of the cake preparation.

Icons were to be collected with a spoon icon then dragged-and-dropped to a
central location on the screen. A sequence consisted of three steps, but we will be
interested in a two-step action plan since only the steps number 1 and 2 required
action selection and the third one acted as a terminating action, as will be detailed
later.
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Fig. 4.2: Training and test phase: Layout of the game at the start of a trial (in
this example, the type of goal is ’make the bunny’s favourite cake’) for steps

1 and 2.

Transitions and reward structure Different types of trials were included in
the test phase. The type of trial occurrence was made unpredictable by pseudo-
randomisation. There were 70 % ’Common trials’, which were the same as trials in
the training phase. There were 15% rare_state and 15% rare_goal. In rare types of
trial, the course of a trial was the same for common trials up to the moment when
the first step was completed (i.e., first icon brought to the table). At this moment,
an unexpected change happened: in rare_state trials, the bowl showed the colour of
the unselected chocolate (e.g., dark chocolate colour when the white chocolate had
been drag-and-dropped; while in common transitions the bowl would have shown
the white chocolate colour), while in rare_goal trials, the character displayed was
swapped with the other one.

The rule was to always try to make the character’s favourite sequence (indicated
by a reward 2 in Figure 4.3) but when an unexpected transition happened, to make
the second favourite recipe of the character (indicated by a reward 1 in Figure 4.3),
which had the raspberry as second action. The entire reward structure is shown
in Figure 4.3 for a given character, and for the other character the structure was
symmetrical starting with dark chocolate as first action.

This third option was introduced to understand better the process behind se-
quence failure. Indeed, when on rare transitions the second-stage action was not
the correct (maximally-rewarded) one, it left out two incorrect options whose selec-
tion would be informative of the process behind the incorrect choice. One type of
error, that we denote as ’failing to update’ error, could be to select the second-step
icon that would have led to the best reward if there had not been a rare transition.
For example, in the case illustrated on 4.3 (the goal cue is the rabbit, the maximal
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Fig. 4.3: Reward according to the three types of transition that may occur
and the sequence carried out. In the illustrated example, the type of goal is
’make the bunny’s favourite cake’, and the random mapping is such that the
best cake is the one with white chocolate, and we display the cases follow-

ing selecting the white chocolate at step 1.

reward sequence has white chocolate and grape), selecting the grape instead of the
raspberry would constitute such error. Another error could be what we will call
’activating the alternative prepotent plan’, that is updating the second-step action by
using the other sequences’ best action. In the case illustrated on 4.3, selecting the
pear instead of the raspberry would constitute such error.

Trials in the training and test phase The course of a trial in the training phase
was the following. To begin with, the spoon icon had to be dragged-and-dropped to
the chosen chocolate icon. To select the spoon, the screen had to be touched within
a radius of 3.8 cm around the centre of the spoon (all selection parameters were
fined-tuned to obtain a good balance between smooth use of the game and precise
touch-trajectory recordings). If the participant released the touch (intentionally or
not) on a given icon, the icon would stay at its location and the movement could re-
sume by touching back and continuing the drag-and-drop action. When the spoon
icon would touch an icon (that is, when the spoon got within the ’selection radius’
of 1.9cm around the icon), the icon would become selected i.e. visually attached to
the spoon (see the right side in Figure A.1) and displaced together with the spoon.
Once selected, an icon would be detached when placed to a target location (which
we describe hereafter). The attached spoon-icon was to be drag-and-dropped onto
the table on the centre (correct target location). Alternatively, a food icon could be
swapped with another food icon by getting into the selection radius of the other icon
(a process repeatable if the touch went more than 7.1 cm away from the swapping lo-
cation and back). When participants brought the spoon and icon to the table (within
3.5cm), the chocolate icon would disappear and a change of bowl state would be
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triggered, representing the colour of the chocolate ’placed in it’ (this, and more il-
lustrations of the appearance of the game being played can be seen on the right side
of Figure A.1). This marked the end of Step 1 and the beginning of Step 2. If the
finger stayed on the touchscreen, the spoon was still selected. At that time the spoon
had to be brought to a fruit icon, which had to be brought to the oven in the centre.
When the spoon with fruit icon reached the radius of the target oven, step 3 would
be triggered, starting with an entire change of screen as described in Section 4.1.2.2
(with an icon of a baked cake in the centre, and the icon of the character on one side,
as can be seen at the bottom right of Figure A.1). There, the baked cake icon had
to be dragged-and-dropped onto the character (’to feed the animal’). This would
terminate the trial and play the feedback for 1000 ms. The feedback showed one the
characters of Figure 4.4 depending on the sequence carried out.

Fig. 4.4: Images of the four possible types of feedback. The mapping be-
tween the goal cue, the sequence carried out and the reward value (which

defined the feedback image as shown) is presented in Figure 4.3.

Although the game allowed participants to select and move any food item at
any point in the sequence, we reduced the degrees of freedom in how the task could
progress. At the start, only the spoon could be selected (not the other icons). Only
placing the chocolate icons on first step would update the bowl’s state, and only a
fruit could be placed in the bowl after a chocolate had been placed. When invalid
actions were attempted, the icons would return to their initial location and the trial
would go back to where it was prior the incorrect attempt. Trials with an incorrect
type of icon selection attempt (chocolate instead of fruit or fruit instead of chocolate)
were flagged for analyses as ’incorrect icon step attempt’. The spoon icon, necessary
to select food items, was designed to be able to record the kinematics of selection of
the food icons. Our interest was to analyse this ’selection’ segments of the game. To
mimic the fluidity of real-life action sequences, we ensured the steps could follow
one another without lifting the spoon or hiding the view of relevant icons, which is
why the first step icons where on the bottom, the target table was below the character
and the selection distance were large enough. To ensure that we captured selection
at the intermediate action level, and not purely at the motor level, the location of
the icons on the screen changed (among their upper or lower half slots) randomly at
each trial. Finally, the sequence of goal presentation was pseudo-randomised.

Trials in the familiarisation phase The familiarisation phase was only aimed
at letting the child get used to the touchscreen (level of pressure needed to act on the
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touchscreen, reactivity, etc.) The start screen for the familiarisation phase is shown
in Figure 4.5, had one spoon, one central area (same as for the non-familiarisation
trials) and a chocolate and fruit that were resembling but different from the non-
familiarisation trials icon. A spoon had to be drag-and-dropped towards the choco-
late icon, which would result in attaching the chocolate to the spoon, then it had to
be brought to the central area and then the spoon to the fruit, which also had to be
brought back to the central area, resulting in finishing the trial.

Fig. 4.5: Familiarisation phase: Layout of the game at the start of a familiari-
sation trial.

Materials

Stimuli The contrast between the colours of the chocolate and the fruits icons,
as well as the overall visual impression were matched among icons (Figure 4.2 rep-
resents the layout during Step 1 and Step 2 of the sequence in the training and test
phases). The position of the icons on the screen was adjusted to get sufficient surface
to travel for richness in kinematic data while allowing comfort of touchscreen use
given the arm length of the shortest participants. More precisely, the three fruit icons
were placed on three possible slots in the upper half, while the two chocolate icons
were placed on two possible slots in the lower half. The locations of fruits on the
three slots, and of chocolates on their two slots were randomised at every trial. We
will give the dimensions in cm, and the display ratio was 1 pixel = 0.026cm. For the
coordinates, we take the centre of the spoon icon as the origin (0,0), with the x-axis
horizontal and pointing to the right and the y-axis vertical and pointing upwards.
The spoon icon’s dimensions were 1.2x2.7cm. Overlaid on the spoon icon was a table
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pictogram of dimension 2.8x2.1cm. The food icons were equidistant from the centre,
with a spacing of 10.9 cm, and there was a spacing of 11.8cm between each pair of
neighbouring items within their lower or top half. Hence the slots for initial start
were located at (in cm): (-10.9,4.55), (0,10.9), (10.9,4.55), (-5.9,-9.2) and (5.9,-9.2). The
moving icons and the bowl were sized 2.5x2.5cm. The character was sized 2.5x2.5cm,
located 2.2cm above the spoon, and 2.4cm below the bowl; both characters and the
bowl were displayed on top of an orange disk of diameter 4.9cm. The close location
of the character and the bowl was an important feature: it allowed us to limit the dif-
ference in perceptual salience between both cues (as compared to having one central
and the other peripheral). Step 3 of the sequence happened on a different screen,
which appeared at the end of step 2. That screen displayed the ’resulting’ baked
cake (as visible in Figure 4.1) in the centre (size 2.9x3.8cm), and the character, of size
3.4x3.4cm, either at the (-10.9,4.55) or the (10.9,4.55) location (pseudo-randomised
across trials).

Apparatus We used a 23-inch (48.77 x 27.43 cm) touchscreen monitor (ProLite
T2336MSC iiyama). The game was programmed in Python, and the interface to the
touchscreen was carried out by embedding the code in OpenSesame 3.2.8 with the
inline_script functionality. The x, y coordinates were sampled at 20 Hz. Participants
sat in front of a child-sized table facing the screen laid at an angle of 30°. The position
of the chair was adjusted so that the alignment of the dominant hand was centred
when reaching towards the screen.

Procedure

The game had three phases: a familiarisation, training and test phase. The famil-
iarisation phase included 4 trials; the training phase 4 practise plus 16 trials; the test
phase 8 practise plus 52 trials.

After the familiarisation phase, the main rules were introduced with a cover story
by pre-recorded instruction videos (cf. script in appendix A.1.1). The video showed
the game’s screen on one side, and a person talking through the game on the other
side. There was an instruction video before the training phase, and another one just
before the test phase. The video script introduced the cover story and the associated
actions to be made, which was illustrated in parallel by a recording of the game
being carried out.

In the familiarisation phase and in the first round of practice trials (after the train-
ing phase’s instruction video), the experimenter would play along with the child
to help them start and invite them to continue by themselves, giving help when
needed. In the second round of practice trials (after the test phase’s instruction
video), the experimenter would only assist, correct or repeat the rules when nec-
essary (after the video for that part had been viewed). The task ended with a final
thumb up screen and congratulating the child on their performance.
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We aimed to encourage the children to do the game not too slowly. This was (1)
to ensure that we could capture within-trial dynamics with kinematics on the touch-
screen, (2) to maximise the chances of observing errors, and (3) to make it possible
for the entirety of the study being carried out in the time frame of a single visit.
Thus, the instructions (cf. appendix A.1.1) encouraged children to go as fast a pos-
sible, and there was a timeout if any step lasted over 15 seconds. A time out screen,
showing a clock watch, was displayed for 500 ms and the same trial (same goal cue)
was repeated.

To facilitate task learning and to speed up automatisation, the correct mapping
was explicitly instructed at the beginning of the task. We verified that the children
had understood and memorised it by asking them to tell us the favourite cake of
each character prior to starting the game. In addition, feedback was given after each
trial (as described previously) so that the children knew how accurate they were. To
ensure that children would stay engaged and keep pursuing the maximal reward (as
instructed) despite the repetitive nature of the task, we supplemented the feedback
character image with 5 different approving cartoon sounds (e.g., ’yipee’) randomly
selected at each trial. In addition, every 5 trials a gif animation of the characters
’dancing’ was shown for 4 seconds while entertaining music was played provided
the preceding sequence was correct, if not correct it would be postponed until the
subsequent correct sequence.

4.2 Experiment 1: A study Of Kinematic Measures in the Su-
perCook task

4.2.1 Introduction

This Experiment had two purposes. The first one was to validate the novel Super-
Cook task (in order to ensure that the children in our target age range would under-
stand the rule and stay engaged with the game, as well as to adjust the task).

The second aim was to identify appropriate kinematic features for experiment 2,
with data independent from the final sample of Experiment 2. Our proposed feature
selection procedure aims at circumventing challenges of analysing kinematic data
while avoiding over-exploration of the dataset which could lead to false positives as
well as keeping interpretable features.

4.2.2 Kinematics measurement

Measurements such as errors and response time may be insufficient to distinguish
among candidate mechanisms involved in sequential action control, given the multi-
plicity of cognitive processes interacting together. Kinematic measures have proven
informative in studies of action control with children as presented in chapter 1. The
SuperCook task was performed on a touchscreen in order to measure the kinematics
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parameters of action selection which holds the potential to be an informative com-
plement to response time and choice data. Apart from providing additional mea-
sures, the touchscreen has the advantage of being more engaging and ecologically
relevant than a task with a computer and keyboard.

To tackle the high-dimensionality of kinematics data, several analytic approaches
can be taken, as presented in Section 1.4.2. We will illustrate how two of the ap-
proaches would work on our data. The machine learning approach involves using all
the data points (unreduced dataset); it is ideal if one wishes to extract a maximal
amount of information from the data and is less concerned by interpretability. Ap-
plied to our study, let us assume that the kinematic features are expected to differ
pre- and post-training (due to quantitatively or qualitatively different modes of ac-
tion control). We will call this theoretical dataset ’training set’. Let us assume we
want to see how a given experimental manipulation, post-training, influences the
mode of action control (embodying our ’test set’). We could use machine learning to
train a classifier on the training set, with instances labelled as pre- and post-training,
and subsequently use it on the test set to classify the experimental conditions of in-
terest (thus allowing to characterize whether the experimental manipulation yields
to one or the other pre-defined action control modes, that matches the pre- and post-
training data). This approach has the advantage of using all the available informa-
tion, but the application of such a classifier would be limited to the exact same ex-
perimental paradigm. Therefore, the approach lacks generalisability. Another draw-
back of such an approach is the lack of interpretability: the mass of data points itself
does not tell us anything about what trajectories are like. The approach would tell
us that some experimental condition resembles pre- and post-training, but not tell
us how they resemble each other (i.e., what kinematic features they share).

Another approach mentioned in Section 1.4.2 is the single feature approach. It
would consist in pre-identifying a few features that we assume would be informa-
tive based on the literature. A drawback is that no study of the kind of SuperCook
has analysed kinematics and thus this approach would risk missing out on very in-
formative features. Aside from the literature, we could imagine that a variety of
features might be informative of the action processes at play in the task. Testing all
of them would cause a multiple comparisons problem.

A data-driven approach to feature selection would be optimal but as mentioned
this faces the challenges that kinematics inherently differ for any different task setup.
This study started with a substantial pilot, which allowed us to circumvent this prob-
lem by using this pilot as a dataset for feature selection for the SuperCook experi-
ment. Our feature selection approach involved defining a large number of features,
based on the literature and based on their potential to capture meaningful effects in
the task, followed by deriving a machine learning approach to perform a selection
of interpretable features.
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4.2.3 Methods

4.2.3.1 Participants

A sample of 13 children aged between 4 and 9 years old took part in this pilot of
the SuperCook task. Children were encouraged to complete all trials but the exper-
imenter would stop the session if the child was not happy to cooperate, or would
wait until the child was bored if the child was not following the rules of the game.
Given that the pilot experiment aimed at assessing the suitability of the task, and
at performing broad analyses on kinematic data indistinctly of the age, every pilot
child’s data was included even if the child had not completed the entirety of trials.

All participants were recruited via Birkbeck’s Babylab database, and were tested
individually at the Babylab. Written consent was obtained from the parents as well
as verbal consent from the children. The experiment was conducted after receiving
approval from the institutional ethics committee according to the principles of the
Declaration of Helsinki. Families received a thank-you gift for taking part in the
study.

4.2.3.2 Materials and procedure

Section 4.1.2 described the latest version of the task and procedure that was used
in the main experiment, benefiting from experience with the version in this Section.
The differences from the task described in Section 4.1.2 are presented below.

In the present pilot version, the upper- and lower-half locations of the fruits and
chocolate icons are swapped compared to the version in experiment 2. Additionally,
in the pilot there is no microwave icon. Finally, all instructions in the pilot were
given verbally by the experimenter (instead of given by a pre-recorded video).

4.2.4 Results

We followed the following procedure of kinematic feature selection. First we trans-
formed the set of (x,y) coordinates at each time point into a set of 43 features (for a
given trial). These features are defined in table 4.1.
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Table 4.1: Kinematic features computed and included in the PCA. Every fea-
ture was computed on single trials’ data. The expression chosen icon desig-
nates the icon that is selected at the end of the trial. The features originated
from the literature or from intuition about potentially relevant metrics. Ta-

ble part 1.

Feature short name Feature definition
maxOrthogDist Maximal orthogonal distance between the trajectory

samples and a straight line between the start and chosen
icon.

spatialDist_atMaxDist Maximal distance between the trajectory samples and a
straight line between the start and chosen icon.

time_atMaxDist Time at the point where spatialDist_atMaxDist is reached.
pathLength Sum of the absolute difference between every pair of

adjacent trajectory samples.
closestPoint Smallest distance to the closest alternative icon (among the

non-chosen icons).
closestPointRel Smallest value of the ratio of the distance to the closest

alternative icon to which the trajectory gets closer (among
the non-chosen
icons) over the distance to the chosen icon.

maxLogRatio Maximal log ratio of distance to the closest non-chosen
icon over the distance to the chosen icon.

proportionPointsQuadrant Proportion of the samples spent in the quadrant of the
chosen icon.

avTrajAngle Average of the instantaneous angle between the trajectory
and the most direct path to the chosen icon.

trajAngle_10 avTrajAngle over the first 10% samples of the trajectory.
angleAtPercentInterpolSample_10 avTrajAngle over the first 10% samples of the

spatially-interpolated trajectory (that is, trajectory
transformed so that it contains 100 data
points spaced evenly)

trajAngle_20 avTrajAngle over the first 20% samples of the trajectory.
angleAtPercentInterpolSample_20 avTrajAngle over the first 20% samples of the

spatially-interpolated trajectory (cf.
angleAtPercentInterpolSample_10).

trajAngle_30 avTrajAngle over the first 30% samples of the trajectory.
angleAtPercentInterpolSample_30 avTrajAngle over the first 30% samples of the

spatially-interpolated trajectory (cf.
angleAtPercentInterpolSample_10).

av2dSpeed Average of the speed’s norm.
varSpeed Variability of the speed’s norm within a trial.
avXSpeed Average speed along the horizontal axis.
avYSpeed Average speed along the vertical axis.
varXSpeed Variability of the horizontal speed within a trial.
varYSpeed Variability of the vertical speed within a trial.
av2dAccel Average acceleration.
avXAccel Average acceleration along the horizontal axis.
avYAccel Average acceleration along the vertical axis.
accelExtrema Maximum of the absolute value of acceleration.
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Table 4.2: Kinematic features computed and included in the PCA. Every fea-
ture was computed on single trials’ data. The expression chosen icon desig-
nates the icon that is selected at the end of the trial. The features originated
from the literature or from intuition about potentially relevant metrics. Ta-

ble part 2.

Feature short name Feature definition
avOrthogDist Average of the signed orthogonal distance the trajectory

samples and a straight line between the start and chosen
icon.

AbsavOrthogDist Average of the absolute orthogonal distance the trajectory
samples and a straight line between the start and chosen
icon.

maxTrajAngle Maximal angle between the trajectory and the most direct
path to the chosen icon.

areaTrajDirectpath Area under the curved formed by the trajectory and the
most direct path to the chosen icon.

nVerticCrosses Number of times that the trajectory crosses the vertical
axis coming through the centre of the screen.

nHorizCrosses Number of times that the trajectory crosses the horizontal
axis coming through the centre of the screen

nChangeXdirection Number of change of direction in the horizontal axis.
epochSpeed_2 Average speed in the first 2 seconds of the trial.
epochXSpeed_2 Average horizontal speed in the first 2 seconds of the trial.
epochYSpeed_2 Average vertical speed in the first 2 seconds of the trial.
epochSpeed_3 Average speed in the first 3 seconds of the trial.
epochXSpeed_3 Average horizontal speed in the first 3 seconds of the trial.
epochYSpeed_3 Average vertical speed in the first 3 seconds of the trial.
rt Response time, i.e. duration of the trajectory from the

centre to the chosen icon.
epochSpeed_percEnd_70 Average speed in the last 70% of the trajectory.
epochSpeed_percEnd_50 Average speed in the last 50% of the trajectory.
epochSpeed_percEnd_30 Average speed in the last 30% of the trajectory.
epochSpeed_percEnd_20 Average speed in the last 20% of the trajectory.

Having considered many potential cognitive processes relevant to the task and
their translation in (x,y,t) space, we did not believe we were discarding important
information at this stage. However, we did not select among the features based on
intuition, to make sure that we made the most of the remaining information.

We extracted the features from the data of step 2 of the test phase (indistinctly
on common and rare transitions), because this will be the main interest in the final
analyses.

Having defined and extracted all the features from the dataset, we sought to
select among them (in other words, further reduce the dimensionality of our data)
using our own variant of a Principal Components Analysis (PCA). Although PCA is
traditionally used to extract and use components that are linear combinations of the
original variables, called Principal Components (PCs), we took a slightly different
approach.
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The first step was the same as the traditional approach; that is, obtaining linear
combinations of the input features (the PCs) such that the PCs are orthogonal (i.e.
uncorrelated) to each other. We then ranked the principal components such that PC1
is the component with the largest proportion of variance explained, PC2 with the
second largest proportion, and so on. Then, still following the traditional approach,
we selected the minimal number of components that accounted for more than 50%
of the overall variance. Hence, looking at the scree plot (Figure 4.8), we decided to
retain 3 first PCs (they together explain 55.9% of the overall variance).

Now we turn to retaining the features that explain as much variance as possible.
If we look at the input features that constitute the 3 PCs: the higher the features’
contribution (loading) to the same component, the higher their correlation together;
and features with high loading in a cluster will be less correlated with features with
high loading in another cluster.

Having kept 3 PCs, we aimed to select 3 features. We wanted them to satisfy two
constraints. The first is explaining a lot of variance, by taking a feature with a high
loading in each PCs; with the rationale that if a feature has a large contribution to
a PC, and we know that this PC contributes a relatively large amount to the overall
variance, then this feature contributes largely to the dataset’s variance (albeit less
than the original PC). This choice was guided by the values shown in Figure 4.6.
Secondly, we wanted these 3 features to be as little inter-correlated as possible. Thus,
among the features that had quasi equal contributions to a given PC, we chose a
combination of 3 features that had as little correlation to each other as possible: this
was done by inspecting Figure 4.7 where features whose lines are perpendicular
are uncorrelated, and the correlation increases with a decrease in angle below 90
degrees (or the negative correlation increases with an increase of angle away from
90 degrees).

Following this procedure, the chosen features were avTrajAngle (Average of the
instantaneous angle between the trajectory and the most direct path to the chosen
icon), varSpeed (Variability of the speed’s norm within a trial) and maxLogRatio (Max-
imal log ratio of distance to the non-chosen icon over the distance to the chosen icon).
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Fig. 4.7: PCA output: correlation among features (an angle of 90°between
two features means they are uncorrelated, acute-angle features have posi-
tive correlation, and obtuse-angled features have negative correlation). For
visualisation purposes, only a subset of the features are shown. The en-
tirety of the features entered in the PCA are listed in table 4.1 along with
their meaning. The highlighted features are the ones that were retained for

further analyses.

Fig. 4.8: PCA scree plot: percentage of explained variance per PC (principal
component) for the first 70 PCs.
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4.2.5 Discussion

This pilot experiment achieved two aims. One aim was the selection of kinematic
features for experiment 2 (section 4.1.2). The 3 kinematic features avTrajAngle, var-
Speed and maxLogRatio hold little redundancy (i.e. they are not strongly inter-correla-
ted), they explain a good amount of variance in this dataset, and they are intuitively
interpretable. Therefore, they will be used to test for the presence of meaningful
developmental changes in the SuperCook experiment 2.

The other aim was to refine the materials and procedure and to find an age range
suitable for the task. From observing the participants during the testing session, it
appeared clearly that 4 year-olds were too young to complete the task while 5 years
old were able to do so. Thanks to this pilot experiment, the age range as well as
minor material changes will be used in the experiment 2.

4.3 Experiment 2: Effects of Unexpected State / Goal Transi-
tions in the SuperCook task

4.3.1 Introduction

This experiment investigates the use of model-free (routine) and model-based (su-
pervisory) types of action control in school-aged children. The dissociation between
model-free and model-based types of control uses probabilistic transition, inspired
from the study of Decker et al. (2016), but goes further in separating the subcom-
ponents of supervisory control that might be at play and developing around that
time. Namely, it investigates the difference in development between monitoring a
cue that is more distal (the goal) versus a cue that arises as a consequence of the
children’s action (the state). It also looks at the different roles of monitoring and
interrupting an ongoing sequence, as well as selecting the appropriate replacement
action. Finally, it relates development in action control together with development
in executive functions.

This experiment involves the final version of the SuperCook task, as described in
Section 4.1.2.2. As a reminder, the SuperCook tasks involves performing two short
action sequences. A training phase is followed by the test phase, which introduces
key experimental manipulations. We analyse optimal action selection, response time
and kinematics. The experiment also includes two separate executive function tasks.

4.3.2 Adjustments of the SuperCook task

The SuperCook task was adapted following observations on the pilot experiment
(section 4.2). Firstly, the lower age bound was changed to 5 years old. Secondly,
in the pilot experiment it appeared that when the chocolate icons (first step) were
on the upper-half of the screen, the hand of participants was sometimes hiding the
bottom-half of the screen, in a way that could interfere with the second stage’s action
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selection. Consequently, one change made was to swap the upper-half or lower-half
location of the fruits and chocolate icons. In this way, the two steps then consisted
of reaching successively to the bottom and then to the top.

Another observation in the pilot experiment was that some participants were
going around the orange disk (cf. Figure 4.2) to drag the second-step icon to the same
bottom-location at step 1 (instead of taking the shortest path directly to the disk).
Even though this section of the trajectory was not analysed directly, we wanted to
standardise this across participants. Thus, in addition to the table icon below the
disk, a microwave icon was added above the orange disk. With this new version,
after dragging the chocolate icon to the centre, participants were prompted to go
towards the table (i.e. the bottom of the disk because the trajectory started at the
bottom), and when dragging the fruit icon to the centre, they were prompted to go
towards the microwave (i.e. the top of the disk).

A last change was to add video-recorded instructions (along with adjustments in
the instructions script) to ensure all participants received the same instructions for
the task.

4.3.3 Executive function (EF)

In this experiment, we aimed to measure EF by using standard tasks in order to relate
the action control processes more specifically to EF abilities and to their changes
across childhood. We chose an inhibition task and a switching task. Each task is
designed to measure more specifically one component, however all EF are known
to be highly correlated (Miyake et al., 2000a). Thus, we do not claim to measure a
’pure inhibition component’ or a ’pure switching component’. Rather, when talking
about inhibition and switching measured by these tasks, what we mean is ’EF with
a dominance of inhibition’ and ’EF with a dominance of switching’.

To fit the main game and EF tasks within the time frame of a single testing ses-
sion, we had to limit ourselves to two EF tasks. We chose inhibition and switching
for the following reasons. Our primary hypothesis was that inhibition would be the
most critical component linked to the use of supervisory control. Indeed, we as-
sumed that one would prepare a three-step action plan at the beginning of the task,
and that this plan would need to be inhibited following rare transitions to allow se-
lection of the alternative action. However, the crucial process to successfully update
the action plan following rare transitions might resemble switching between task
sets more than inhibiting an action plan. Hence, we included a switching task to
assess the separate impacts of developing switching and inhibition abilities on the
SuperCook task’s variables.

It is important to note that there is a variety of tasks aimed at measuring inhi-
bition or switching, and that they may conceptualise the construct differently from
each other. Some inhibition tasks draw on a pre-existing prepotent response. For
example, a child-friendly Stroop-like inhibition task require to respond "big" when
seeing a small circle and "small" when seeing a big circle (e.g., Ikeda et al., 2014).
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Other inhibition tasks build a new prepotent response during the task. For example,
in the Go-NoGo/whack-a-mole types of task (Shapiro et al., 2013, Petitclerc et al.,
2015) that we will use, a first phase trains the participant to respond to a certain
stimulus, making the response prepotent, which must later be inhibited. Because
our sequence production task involves repeating a previously unknown action se-
quence, it more closely resembles this latter type of inhibition task.

Similarly, switching tasks vary. For example, in Chevalier and Blaye (2009), the
Advanced Dimensional Change Card Sort examines switching between rules, while
other tasks such as in Crone et al. (2006) look both at rule switching and response
switching (that is, measuring whether a response is different relative to the preced-
ing trial, compared to a response repeated from one trial to the next). Our switching
task will involve specifically task-switching, that is, switching between stimulus fea-
tures and response rules, as will be detailed in the Methods (section 4.3.5.2).

4.3.4 Hypotheses

For the training phase, we hypothesised that all children would show improvements
in response time with practice. Our key hypotheses concern the test phase. After
completion of the training phase, the rare transitions will require changing what
would have been the maximally rewarded action sequence if there had not been
a rare transition (something that we coin ’initial action plan’). In the framework of
Decker et al. (2016), the rare transitions require the use of a model-based type of
control. We hypothesised that younger children would overall struggle more than
older children to update sequences after a rare transition, following the finding of
Decker et al. (2016) that model-based use increases with age (albeit Decker measured
the change between children and adults, we believe we would find a similar trajec-
tory within a child sample). Similarly, we predicted that all age groups would show
the same level after common transitions, linked to the finding that model-free use
remained constant in Decker et al. (2016).

Furthermore, looking at whether errors (regardless of the type of errors) are more
frequent following one or the other rare transition type will shed light on the relative
importance of higher-level goal information compared to perceptual (state) infor-
mation in driving the correct choice in a developmental population. Following the
findings of Freier et al. (2017), we predicted that all ages may be able to monitor and
react appropriately to a change of state but that the younger children may struggle
more with monitoring the cues for the higher-level goal compared to older children.

Furthermore, having three options of second-step actions leading to two possible
types of errors can shed light on the mechanisms behind the error (that is, the error
pattern can reflect the subprocess(es) of supervisory control that is/are changing
across development and explain the changes in action selection patterns with age).
The possibilities are that, depending on the developmental stage: (1) the change
following a transition is not detected; (2) a sequence that is initiated cannot be in-
terrupted (hence not corrected) due to a lack of inhibitory control; (3) that it can be
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interrupted (as a reaction to events) but the best replacement-action is not always se-
lected, due to less good replacement-action selection process; or (4) that it both can
be interrupted and replaced correctly (indicating both sufficient inhibitory control
and mechanisms of replacement action).

Therefore, the patterns of errors as a function of transition type, and the type
of errors within each transition will be able to support one or more hypotheses. A
possibility is that the error patterns are the same type regardless of the type of rare
transition, which would indicate the presence of developmental differences in the
detection or monitoring processes between transitions (the downstream processes being
unaffected). Another possibility is that error patterns differ according to the type
of transition, which would indicate that the detection or monitoring is the same for
all transitions, but that the downstream processes for action update are differentially
affected. These processes may be inhibitory control (to interrupt the sequence) or the
selection of the appropriate replacement action. There, the type of errors (’failure to
update’ or ’alternative action plan’) may indicate whether inhibitory control or the
alternative action selection processes is more important.

Finally, we hypothesised that the inhibition score would strongly, and more st-
rongly than the switching score, predict action selection patterns and response time,
indicating that improvements in inhibitory control abilities across development are
underlying improvements in the appropriate recruitment of supervisory control in
action sequence update.

4.3.5 Methods

4.3.5.1 Participants

Twenty-three participants took part in the study. Three of them failed to complete
the entire SuperCook task and thus were excluded from the analyses. The 20 re-
maining participants were between 5 years 1 month and 9 years 5 months, with a
median age of 6 years 10 months. The number of participant age by age is shown
in table 4.3. Due to an initial technical problem in the executive function tasks, data
from the first participant is missing for the switching task, and data from the first 3
participants is missing for the inhibition task.

Table 4.3: Participants’ age in the final sample. The younger and older chil-
dren groups are defined as below or above the median (below 6 years 10

months).

Age 5 y.o. 6 y.o. 7 y.o. 8 y.o. 9 y.o. Younger children Older children

N 6 5 5 1 3 10 10

All participants were recruited via Birkbeck’s Babylab database and tested in the
same lab. Written consent was obtained from the parents as well as verbal consent
from the children. The experiment was conducted after receiving approval from the
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institutional ethics committee and conformed with the principles of the Declaration
of Helsinki. Families received a thank-you gift for taking part in the study.

The study originally planned to collect 60 participants, twice the amount of par-
ticipants tested in the study of Decker et al. (2016) because we were interested in
comparison of children age groups while Decker et al. (2016) compared a child group
to another two groups (adolescent and adults). Unfortunately, the data collection for
this study had to be cut short because of the COVID-19 pandemic.

4.3.5.2 Materials

SuperCook task

The experiment materials are fully described in Section 4.1.2.

Executive Functions (EF) tasks

Switching task We developed a child-friendly version of a switching task in
which both stimulus and response sets are changed simultaneously, and the classi-
fication dimension is intrinsically defined by the stimulus. An equivalent version
of the task for adults (Rogers and Monsell, 1995a) requires classifying a number as
odd or even (task set 1), and a letter as vowel or consonant (task set 2). Our task
sets were classifying animals as sea or land animal and classifying objects as sports or
food-items. Thus, the classifying dimension was given by the stimulus (animal or
object). Responses were given by pressing a key on the left or right of a keyboard.
Stickers were placed to indicated the two possible response keys (and the other keys
were disabled). The left/right key response mapping was given by pictograms of
sea/land (task set 1) or sports/food (task set 2) displayed on the left/right sides of
the screen (cf. Figure 4.9). This means that, when the central icon was an animal, a
sea pictogram was always presented on the right while a land pictogram was always
presented on the left. When the central icon was an object, a sports pictogram was
always presented on the right while a food pictogram was always presented on the
left. The tasks included 6 different animals and 6 different objects.

Inhibition task The inhibition task was of the Go-NoGo type introduced by
Casey et al. (1988). Our task was a variant of the whack-a-mole task used by Pe-
titclerc et al. (2015), itself inspired from the task developed and made available on-
line by Sarah Getz and the Sackler Institute for Developmental Psychobiology. We
adapted slightly the number of trials and stimulus presentation time to accommo-
date our study’s age range and constraints. The child-friendly instructions asked
participants to catch the moles in a garden (Go stimuli) by pressing the space key
when a mole was presented on screen, and to not crush the aubergines by not press-
ing the key for the aubergines (NoGo stimuli). The stimuli (the mole exemplary with-
out disguise and the aubergine) are shown in Figure 4.10.
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Fig. 4.9: Example of a display of the Switching task. In this example, the
task set is ’classifying the animal as a sea or land animal’. The icons on the

side indicates that one should press: left for land, right for sea.

To maximise errors on our variable of interest (false alarm rate) and thus not be
at floor level, we varied the Go stimuli (the mole was disguised with different hats)
as suggested by Young et al. (2018). To diminish anticipatory responding, target ap-
pearance was made unpredictable with inter-stimulus intervals randomly selected
among 2000, 2100, 2200, 2300 and 2500 ms.

The stimulus presentation was initially set to 1000 ms. However when observ-
ing the first 6 participants’ performance, the false alarm rate seemed consistently low
hence we feared it would not capture well inter-individual variability in inhibitory
control. The stimulus presentation was thus changed to 750ms (as in Abdul et al.,
2017) to enhance difficulty for the rest of the participants. The age of participants
was not correlated with the order of testing thus this change should not cause a sys-
tematic bias in the data, nonetheless the stimulus presentation variable is included
as an independent variable in the analyses.

Fig. 4.10: Stimuli used in the Inhibition (Go-NoGo/whack-the-mole) task.
Left: go stimulus, right: no-go stimulus.
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4.3.5.3 Procedure

The SuperCook task was always administered first, always followed by the Switch-
ing task and finally the inhibitory control task.

EF Tasks

Switching task The task started with practice trials that introduced the task as
well as each of the 6 possible stimuli, and ensured instructions were understood.
Then a block of 10 trials of the animal task set was presented, followed by 10 trials
of the objects task set (block 1 and 2; non-switch trials), before a block of 20 trials
alternating between each task set (block 3; switch trials).

Inhibition task The task started with 7 practice trials, which were repeated
when necessary to ensure the task was understood. To build up a prepotent re-
sponse, a series of 15 Go trials was administered first. After that, four blocks of 25
trials were administered, with breaks in between each block. Each block contained
6 NoGo trials, with the sequence pseudo-randomised while ensuring that there was
never two successive NoGo.

4.3.5.4 Analyses

In the SuperCook task, we analysed the non-practice trials; that is, 16 trials for the
training phase, 52 trials for the test phase. We excluded the trials flagged as ’incorrect
icon step attempt’ as defined earlier. We also excluded trials with a timeout. The
understanding of the rules was assessed during the experiment with the practice
trials. When analysing the data, to ensure that the participants were playing along
throughout the game (despite the repetitive aspect), we verified that each participant
carried out the maximally rewarded sequence in more than 60% of the trials (chance
level being at 16%) in the training phase and did not have to exclude any on that
criterion.

Dependent variables (DVs)

The response time variables consist of the duration of the action selection portions
of the game (referred to as ’selection portion’): for step 1, the time from the start of
the trial (stimulus display) to the moment when the first icon is selected; for step 2,
from the time when the first icon has been dropped at the central location to the time
when the second icon is selected.

Step 3 was a terminating action, so that the main step of interest (number 2) did
not have the particularity of being the first or last action of the sequence.

Training phase As a measure of performance, we defined optimal selection as
the proportion of correct trials throughout the training phase. We coded trials as
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correct if the sequence was the trial’s maximally rewarded sequence (i.e. correct
combination of icons according to the trial’s goal), and incorrect for any other combi-
nation. We split the trials of the training phase into two halves, that we call early and
late part. We regressed the optimal selection against age, training part (early/late)
and their interaction; unless otherwise specified the regressions we mention in this
chapter follow the mixed model procedure described in the Mixed model Section be-
low. The errors were classified as explained in the Section 4.1.2.2. In all analyses
other than optimal selection (both in training and test phases), we sought to gain
further information in control processes that were not already contained in the error
patterns. We thus excluded the trials in which the sequence carried out was not the
maximally rewarded one. To investigate more closely the type of planning that par-
ticipants use in the task, we also analysed the RT separately for step 1 and step 2. In
particular, we were interested in seeing if there were stronger practise effects on one
step than the other. We regressed the response time against step number, trial and
age (and all the possible interactions).

Test phase To assess the effects of the test phase’s key experimental manipula-
tion (introducing rare transitions) as a function of age, we looked at optimal selection
in trials type: common, rare_state and rare_goal. There, optimal selection was defined
as the proportion of maximally rewarded sequence among the trials that had the
first correct step (which represent 70% of the trials for the lowest-performing partic-
ipant). Note that the maximal reward differed according to the transition type (2 in
common transitions, 1 otherwise). We will refer to the execution of the non-maxi-
mally rewarded sequence as an ’error’.

Given the small number of errors, we will look at them in median-split age
groups (with the median being 6 years 10 months). To investigate the effect of rare
transitions on continuous DVs (RT and kinematic variables), we look at the selection
portion of the trajectory and we focus on step 2 only as the manipulation occurs in
between steps 1 and 2. We regressed each variable against age and transition type.
To assess the effect of the subtype of rare transitions (rare_goal and rare_state) we
additionally ran each model on the subset of data with rare trials.

The kinematic variables were the three selected following the pilot analyses pre-
sented in Section 4.2.4: avTrajAngle (Average of the instantaneous angle between the
trajectory and the most direct path to the chosen icon), varSpeed (Variability of the
speed’s norm within a trial) and maxLogRatio (Maximal log ratio of distance to the
non-chosen icon over the distance to the chosen icon).

EF tasks The switch cost, or EFsw score, was computed as the difference be-
tween the mean response time on switch trials (block 3) and the mean response time
on non-switch trials (block 1 and 2). It represents the additional processing cost of
switching among the task sets, and taken as inverse proxy of switching abilities (a
larger cost indicating less efficient switching abilities).
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The DV of interest for the switch task, that we will call EFwh score was the false
alarm rate. The false alarme rate was computed as the proportion of NoGo trials in
which a response was given (instead of inhibited), in the phases outside the practise.
To account for the differing stimulus presentation durations (750 and 1000ms) across
participants, we included stimulus presentation as a continuous predictor whenever
we included the EFscore. The false alarm rate was used as a proxy for inhibitory
control, with higher false alarm rates indicating lower inhibitory control.

Mixed models

The main analyses consist in linear Mixed Models regressions (MMR) or logistic
Mixed Models regressions (logMMR), also known as mixed-effects regression, with
a random intercept per subject to account for the within-subject design (Steele, 2014).
The other predictors were taken as fixed effects. For the binary DV (optimal selec-
tion), we carried out logMMR with the function mixed_model of the R package GLM-
Madaptive. For all the other DV, that are continuous, we first log-transformed the
DV to correct for asymmetrical distributions. We then ran MMRs with the function
lme of the R package nlme. When describing results, predictors are named as such:
age for the continuous age predictor, trans for the type of transition (levels: common,
rare_goal, rare_state), trial for trial number (ordinal variable), EFwh for the continu-
ous EFwh score, and EFsw for the continuous EFsw score.

For exploratory purposes, we denote the FDR-corrected p-values that fall below
0.1 as notable. Such data is not to be treated as significant results, yet is noted and
considered together with the rest of the evidence. Indeed, such an experiment relies
on crossing information from several dependent variables that bring complementary
information and can better be interpreted when considered as a whole.

Non-parametric tests

To ensure the robustness of our results, we ran additional analyses on the DV show-
ing significant effects in the MMRs. These were non-parametric tests on the raw (not
log-transformed) data summarised at the individual level with the trials’ median,
and discretised to assess age effects. We discretised the data with a median split, re-
sulting in a ’younger’ group (5 years 1 months and 6 years 10 months) and an ’older’
group (6 years 10 months to 9 years 5 months). We used Wilcoxon-Mann-Whitney
test when comparing age groups and Wilcoxon signed-rank test when comparing
transitions. For ease of reading, the text and figures depict the untransformed vari-
ables, as well as show the age difference in median-split group. Such plots match
the non-parametric tests. As mentioned, for the MMR age was entered as a continu-
ous factor, for complementarity of the approaches and thus higher reliability of the
results.
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Relative importance analysis

A preliminary analysis (Pearson correlation) between age and the EF scores indi-
cated that the Switching task score (switch cost) was not significantly correlated
with age (r = −0.353, p = 0.107), but the Inhibition task score (false alarm rate)
had a significant negative correlation with age (r = −0.504, p = 0.024). Hence using
age and EF scores as predictors in a same regression introduces a problem of mul-
ticollinearity (see for example Tonidandel and LeBreton, 2011). Even though only
the Inhibition task score was correlated with age, we treated both tasks’ scores with
the same procedure. When a DV was found to change significantly with age, we
quantified to what extent the differences were attributable to changes in inhibitory
function, switching function or by functions evolving with age other than the two.
To do so, we ran relative importance analyses in complement to the MMR (we took
the same approach as Magimairaj, 2017).

Relative importance analysis partitions the explained variance among correlated
predictors (Tonidandel and LeBreton, 2011). It works by predicting the DV with the
orthogonally transformed predictors, and standardising the regression coefficients
so that we can obtain the contribution of a predictor considering a predictor alone or
combined to the other predictors. We used the metric lmg calculated by the function
calc.relimp of the R package relaimpo. The lmg metric yields the percentage of vari-
ance explained by each predictor so that they sum to 100%. We used the parameter
EFwh_tStim (value = 1000 or 750) as a binary predictor to control for the different
stimulus presentation times across participants. Thus, the predictors entered were
age, EFwh, EFsw. To ensure convergence in the relative importance analyses regres-
sions, we standardised all continuous predictors (EF scores and age). We performed
this analysis only on the participants with entire datasets.

4.3.6 Results

4.3.6.1 Training phase

Optimal selection

The average optimal selection (proportion of trials with the maximally rewarded se-
quence) during the training phase was 0.89. The lowest individual average optimal
selection was 0.69. The details are presented in table 4.4.

Table 4.4: Optimal selection rate in the training phase, for all children com-
bined and by age group.

All Younger children Older children
mean 0.887 0.9 0.875
std 0.094 0.099 0.093
min 0.687 0.687 0.687
max 1 1 1
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We computed the proportion in the first or second half of training (predictor half )
in order to look at the evolution of optimal selection across training. The average
optimal selection did not significantly vary with age or with the training half, as
detailed in table 4.5.

Table 4.5: Results of the logistic Mixed Model Regression on Optimal selec-
tion with the predictors age and half of the training phase (early for the first
8 trials, late for the last 8 trials). The baseline for half of training was the

early-trials’ half, compared against late-trials’ half.

Predictor β CI (l) CI (u) SE p p (FDR) sig
Intercept 0.87 0.57 1.17 0.14 <0.001 <0.001 ***
age 0.00 -0.04 0.05 0.02 0.861 0.861
half(late) 0.18 -0.19 0.55 0.18 0.333 0.444
age:half(late) -0.03 -0.08 0.03 0.02 0.292 0.584
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p:
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on FDR
p-values: ***: p < 0.001.

RTs

For all Mixed Model Regressions, we report the FDR-corrected p-values. When
looking at the RT as a function of age, step and half of training trials (Figure 4.11,
table 4.7), there was a non-significant but notable main effect of age where RT de-
creased with age (p = 0.064). There was a non-significant but notable interaction
trial x step (p = 0.061), as well as a non-significant but notable interaction age x step
x trial (p = 0.090).

From Figure 4.11, it looks like for younger children, the RT in step 1 is larger
early than late in training, suggesting that practise speeds up step 1, and that this
effect of practise is absent in other steps and in older children. We tested this pair-
wise comparison with a non-parametric test. When comparing the RT at each step
between the halves of training, none of the pairwise comparison between the first
and second half were significant (table 4.6).
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Fig. 4.11: Response time (RT) as a function of step, part of the training (first
or second half of trials) and age (left panel: younger children, right panel:
older children). A pair of individual dots joined by a line represents the

data of one participant.

Table 4.6: Wilcoxon signed-ranks test comparing the RT on the first and
second half of trials (excluding practice trials) of the training phase. The
figures in the table are: Statistic (sample size with non-zero difference), p-

value.

Younger Older
Step 1 W(10)=3, p=0.156 W(10)=30, p=0.173
Step 2 W(10)=6, p=0.438 W(10)=48, p=0.808
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Table 4.7: Linear Mixed Model Regression on RT in the training phase with
the predictors age, trial and step number. The baseline for step was the step

1 compared against step 2.

Predictor β CI (l) CI (u) SE p p (FDR) sig
Intercept 9.03 8.20 9.87 0.43 <0.001 <0.001 ***
trial -0.02 -0.07 0.03 0.03 0.421 0.561
age -0.16 -0.29 -0.03 0.06 0.016 0.064 .
step(1) -0.80 -1.72 0.12 0.47 0.088 0.141
trial:age 0.00 -0.01 0.01 0.00 0.517 0.591
age:step 0.02 -0.11 0.15 0.07 0.726 0.726
trial:step 0.09 0.01 0.16 0.04 0.023 0.061 .
trial:age:step -0.01 -0.02 -0.00 0.01 0.045 0.090 .
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI
(u): Confidence Interval (upper bound), SE: standard error, p: unadjusted p-
value, p (FDR): FDR (false discovery rate)-adjusted p-value, sig.: significance
levels based on FDR p-values: .: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

4.3.6.2 Test phase

Optimal selection

The overall optimal selection is shown on the estimated marginal plots in Figure 4.12.
As clearly visible in Figure 4.12, the optimal selection at common transitions was
quite even across ages, while the optimal selection in rare_goal was near the level of
common transitions for the older children but decreased with decreasing age. Con-
sistent with this, the Logistic Mixed Model (table 4.8) showed a main effect of rare
transitions (p < 0.001) and a significant age-by-transition interaction (p < 0.001).
In other words, younger children made more errors at rare_goal than in common
transitions contrary to older children.

Fig. 4.12: Logistic regression’s predicted probability of maximally-rewarded
second choice according to age and type of transition. The shaded area rep-

resents the 95% confidence intervals.
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Table 4.8: Results of the logistic Mixed Model Regression on Optimal se-
lection at test phase, with age and transition as predictors. The baseline for

transition was common transitions.

Predictor β SE z-value p p (FDR) sig
Intercept 2.11 1.38 1.53 0.1251 0.25
age -0.05 0.19 -0.27 0.7881 0.788
trans(rare_goal) -4.60 1.01 -4.34 <0.0001 <0.001 ***
trans(rare_state) -0.69 1.07 -0.65 0.5150 0.772
age:trans(rare_goal) 0.51 0.15 3.54 0.0003 0.001 **
age:trans(rare_state) 0.04 1.45 0.29 0.7750 0.930
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI
(u): Confidence Interval (upper bound), SE: standard error, p: unadjusted p-
value, p (FDR): FDR (false discovery rate)-adjusted p-value, sig.: significance
levels based on FDR p-values: .: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Error types

The types of choice (including correct choices, which shows optimal selection within
the trials with first correct choice) as a function of transition type is shown in Fig-
ure 4.13. As mentioned earlier and shown in the central panel, the errors in common
transitions were infrequent regardless of age, so we will not investigate them further.
When looking at the types of errors made in rare transitions, it seems like the most
common error is the ’failing to update’ error, that is the one where the icon selected
is the one that would have led to the maximal reward if there had not been a rare
transition regardless of the subtype rare_goal or rare_state (grape, purple dots on
the figure). A Wilcoxon signed-rank test on this data (N=20) revealed that indeed
the percent of failing to update error was higher than the other type of error (’activat-
ing the alternative prepotent plan’): W(20)=14.0, p < 0.001. The results still held when
separated by age group (younger children: W(10)=1.0, p < 0.05, younger children:
W(10)=1.0, p < 0.01), although statistics on small sample size (N=10 in each group)
should be taken with caution.

RT

For RT, when looking at the entire dataset (with common transitions as baseline),
there was no significant effect of group or conditions nor interaction between these
variables (Figure 4.14 and table 4.9). When looking at the rare transitions only, there
was a main effect of transition (p=0.010), a main effect of age (p=0.007) and a signif-
icant interaction age x transition (p=0.040) on RT.

When looking at non-parametric tests for the interaction age x transition (ta-
ble 4.10), younger children had significantly longer RT at rare_goal than rare_state
transitions (p=0.0371), but not older children (p=0.8457).
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Fig. 4.13: Percent type of choices at Step 2 following a correct choice at Step
1, as a function of age and transition type. The dots represent the data of

individual participants.

Fig. 4.14: RT as a function of transition type (common, rare_state, rare_goal)
and age group (left panel: younger children, right panel: older children).
The horizontal thick bar represents the median, the vertical light bar repre-
sents the standard deviation and the dots represent individual participants.
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Table 4.9: Linear Mixed Model Regression on RT at test phase, with age and
transition as predictors. Table (a): Entire dataset, with baseline for transi-
tion common transitions. Table (b): Only rare transitions are included, with

transition rare_goal transitions as baseline.

Predictor β CI (l) CI (u) SE p p (FDR) sig

Table (a)

Intercept 8.41 7.90 8.92 0.26 <0.001 <0.001 ***
transition:rare_goal 0.39 -0.01 0.79 0.20 0.054 0.108
transition(rare_state) -0.23 -0.62 0.16 0.20 0.254 0.305
age -0.08 -0.16 -0.00 0.04 0.045 0.135
transition(rare_goal):age -0.04 -0.09 0.02 0.03 0.198 0.297
transition(rare_state):age 0.02 -0.03 0.08 0.03 0.396 0.396

Table (b)

Intercept 8.82 8.29 9.34 0.27 <0.001 <0.001 ***
transition(rare_state) -0.64 -1.08 -0.20 0.22 0.005 0.010 *
age -0.12 -0.20 -0.04 0.04 0.005 0.007 **
transition(rare_state):age 0.06 0.00 0.12 0.03 0.04 0.040 *
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u): Con-
fidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p: (FDR): False
Discovery Rate-adjusted p-value, sig.: significance levels based on FDR-adjusted p-values:
.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 4.10: Wilcoxon signed-rank test comparing the RT on transitions in
the test phase across age groups (median-split). The figures in the table are:

W-value, (N of pairs with non-zero differences), p-value.

Younger Older All ages
Common vs. rare_state W(10)=9, p=0.0645 W(10)=26, p=0.9219 W(20)=75, p=0.2774
Common vs. rare_goal W(10)=16, p=0.2754 W(10)=26, p=0.9219 W(20)=83, p=0.4304
rare_state vs. rare_goal W(10)=7, p=0.0371 W(10)=25, p=0.8457 W(20)=59, p=0.0897



Chapter 4. Action Sequence Control following an Unexpected Change: Two
Touchscreen Studies

131

Kinematics

There were no significant effect of age, of transition or of age-by-transition interac-
tion in avTrajAngle (Figure 4.15 and table 4.11) and maxLogRatio (Figure 4.16 and
table 4.12). Thus, we will not discuss these results further.

Fig. 4.15: Trajectory angle (avTrajAngle) as a function of transition type
(common, rare_state, rare_goal) and age group (left: younger children, right:
older children). The median is represented with standard deviation and the

dots represent individual participants.

Fig. 4.16: Maximal log ratio of distance to the non-chosen icon over the
distance to the chosen icon (maxLogRatio) as a function of transition type
(common, rare_state, rare_goal) and age group (left: younger children, right:
older children). The median is represented with standard deviation and the

dots represent individual participants.
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Table 4.11: Linear Mixed Model Regression on the kinematic feature av-
TajAngle (cf. table 4.1) at test phase, with age and transition as predictors.
Table (a): All the data is included, with common transitions as baseline. Ta-
ble (b): Only rare transitions’ data are included, with rare_goal transitions

as baseline.

Predictor β CI (l) CI (u) SE p p (FDR) sig

Table (a)

Intercept 5.12 3.44 6.79 0.85 <0.001 <0.001 ***
transition(rare_goal) -0.51 -2.22 1.19 0.87 0.556 1.112
transition(rare_state) -0.40 -2.09 1.29 0.86 0.643 0.965
age -0.30 -0.56 -0.05 0.12 0.022 0.066 .
transition(rare_goal):age 0.05 -0.18 0.29 0.12 0.666 0.799
transition(rare_state):age 0.01 -0.23 0.25 0.12 0.955 0.955

Table (b)

Intercept 4.64 2.40 6.89 1.14 <0.001 <0.001 ***
transition(rare_state) 0.10 -1.45 1.65 0.79 0.9 0.900
age -0.25 -0.59 0.08 0.16 0.133 0.266
transition(rare_state):age -0.04 -0.25 0.17 0.11 0.711 0.948
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u): Con-
fidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p: (FDR): False
Discovery Rate-adjusted p-value, sig.: significance levels based on FDR-adjusted p-values:
.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 4.12: Linear Mixed Model Regression on the kinematic feature maxLo-
gRatio (cf. table 4.1) at test phase, with age and transition as predictors. Ta-
ble (a): All the data is included, with common transitions as baseline. Table
(b): Only rare transitions’ data are included, with rare_goal transitions as

baseline.

Predictor β CI (l) CI (u) SE p p (FDR) sig

Table (a)

Intercept -1.37 -2.34 -0.39 0.50 0.006 0.036 *
transition(rare_goal) -0.06 -0.63 0.52 0.29 0.846 0.846
transition(rare_state) -0.32 -0.89 0.25 0.29 0.267 0.401
age 0.10 -0.05 0.25 0.07 0.168 0.504
transition(rare_goal):age 0.02 -0.06 0.10 0.04 0.641 0.769
transition(rare_state):age 0.05 -0.03 0.13 0.04 0.223 0.446

Table (b)

Intercept -1.38 -2.47 -0.29 0.55 0.013 0.052 .
transition(rare_state) -0.34 -1.04 0.35 0.35 0.331 0.441
age 0.12 -0.05 0.28 0.08 0.150 0.300
transition(rare_state):age 0.04 -0.06 0.14 0.05 0.421 0.421
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u): Con-
fidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p: (FDR):
False Discovery Rate-adjusted p-value, sig.: significance levels based on FDR-adjusted
p-values: .: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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For varSpeed (Figure 4.17 and table 4.13), when looking at the entire dataset, there
was a significant effect of age (<0.001) and of rare_state transition (p<0.001). When
looking at the rare transitions, there was also a significant effect of age (p<0.001),
a non-significant but notable effect of transition (p=0.056) and a non-significant but
notable age-by-transition interaction (p=0.059) on varSpeed.

Fig. 4.17: Speed variability (varSpeed) as a function of transition type (com-
mon, rare_state, rare_goal) and age group. The figures shows the median,

std and individual participants.

Table 4.13: LMM Regression on the kinematic feature varSpeed (cf. table 4.1)
at test phase. (a): All the data is included, with common transitions as base-
line. (b): Only rare transitions are included, with rare_goal transitions as

baseline.

Predictor β CI (l) CI (u) SE p p (FDR) sig

Table (a)

Intercept 5.65 5.597 5.69 0.024 <0.0001 <0.001 ***
transition(rare_goal) 0.05 -0.045 1.63 0.053 0.271 0.271
transition(rare_state) 0.19 0.09 0.29 0.051 0.0002 <0.001 ***
age 0.19 -0.29 0.39 0.03 <0.0001 <0.001 ***
transition(rare_goal):age 0.08 -0.06 0.23 0.072 0.261 0.313
transition(rare_state):age -0.09 -0.23 0.05 0.071 0.213 0.319

Table (b)

Intercept 5.7 5.61 5.79 0.047 <0.0001 <0.001 ***
transition(rare_state) 0.13 0.005 0.26 0.065 0.052 0.056 .
age 0.28 0.15 0.41 0.064 <0.0001 <0.001 ***
transition(rare_state):age -0.17 -0.034 0.006 0.089 0.059 0.059 .

β: Regression coefficient, CI (l): Confidence Interval (lower bound), CI (u): CI (upper
bound), SE: standard error, p: unadjusted p-value, p: (FDR): False Discovery Rate-adjusted
p-value, sig.: significance levels based on FDR-adjusted p-values: .: p < 0.1, ***: p < 0.001.
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When looking at non-parametric tests for the age-by-transition interaction in
the entire dataset (table 4.14), the older group had significantly higher varSpeed
at rare_goal than common (p=0.0273), but not the younger group (p=0.4316). When
looking at the non-parametric tests for the interaction between age and rare tran-
sitions, the younger children had a significantly longer varSpeed at rare_state than
rare_goal (p=0.0137) but not the older (p=0.9219). Finally, the significant effect of rare
state was corroborated by the non-parametric test, which showed a significant differ-
ence between common and rare_state transitions in age groups combined (p<.0001).

Table 4.14: Wilcoxon signed-rank test comparing the varSpeed on transitions
in the test phase across age groups (median-split). The figures in the table

are: W-value, (N of pairs with non-zero differences), p-value.

Younger children Older children All ages
Common vs. rare_state W(10)=0, p=0.002 W(10)=7, p=0.037 W(20)=7, p<.001
Common vs. rare_goal W(10)=19, p=0.431 W(10)=6, p=0.027 W(20)=44, p=0.021
rare_state vs. rare_goal W(10)=4, p=0.013 W(10)=26, p=0.921 W(20)=61, p=0.105

Given the significance results in varSpeed, for better understanding of the feature
we illustrate the trajectories and speed profiles of trials as a function of the value of
varSpeed (Figure 4.18). Visual inspection of the bottom panels of Figure 4.18 shows
that both the range of values of speed encountered throughout the trial, and the
variability within this range, are characteristics of the task’s trials that influence the
metric. For example, on the left panel the speed profiles had both very slow and very
fast portions, with about 3 notable peaks, resulting in high varSpeed. The middle
panel show relatively smoother speed profiles, with a medium range of speed values
and mostly two phases (a slow phase followed by a faster phase), resulting in smaller
varSpeed than in the left panel, but higher than in the right panel. The right panel
shows speed profiles each with a relatively small range of values, resulting in smaller
varSpeed values.
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Fig. 4.18: Trajectories (top panels) and corresponding speed profile (bottom
panels) of the second-step selection portion (from the centre of the screen
until the selection of a peripheral icon; trajectories were rotated so that they
end at the top centre). A few trials are taken to illustrate the visual aspect of
trials with relatively high (left), average (middle) and low (bottom) values
of varSpeed. The figure indicated at the end of a speed curve indicates the
value of varSpeed for that trial. The colours identify the corresponding

trials on a pair of top and bottom panel.

4.3.6.3 EF tasks

Switching task

The switch cost was not significantly correlated with age, but the direction of the
relationship was as expected: the older the children, the smaller the switch cost (r =
−0.353, p = 0.107; cf. Figure 4.19).

Inhibition task

As mentioned previously, the stimulus presentation duration in the inhibition task
was 1000ms for the first 6 participants and was later adjusted to 750ms for the 14
remaining participants. If we include the entire dataset regardless of the stimulus
presentation parameter (20 participants), there was a significant negative correlation
between the age and False alarm rate (r = −0.504, p = 0.024; cf. Figure 4.20). If
we exclude the 6 participants who had the unadjusted stimulus presentation time,
the negative correlation between the age and False alarm rate remains significant
(r = −0.634, p = 0.015; cf. Figure 4.20, blue dots).
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Fig. 4.19: Scatter plot: switch cost (in the switching task) against age.

Fig. 4.20: Scatter plot: false alarm rate (in the inhibition task) against age.
The red dots indicate the participants which had a stimulus presentation

time of 1000ms, the others 750ms.

Relative importance analysis (relimp)

Table 4.15 presents the full results of the relimp regression on optimal selection,
while table 4.16 presents the full results of the relimp regression on RT. We focus
on the normalised relative contribution of age, EFsw and EFwh scores. Their values
were 0.044 for age, 0.074 for EFsw and 0.882 for EFwh. For RT, they were 0.825 for age,
0.074 for EFsw and 0.101 for EFwh.

The results indicate an overwhelmingly higher contribution of age to the vari-
ability in RT. A drawback is that this analysis does not fully separate the typical
(’baseline’) changes in RT observed with age from the specific effect of transitions on
RT. When looking at RT as a function of transition, we had found that rare_state
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Table 4.15: Relative importance analysis (at test phase): results of the un-
derlying logistic Mixed Model Regression on Optimal selection with the
predictors age, trans EFsw (switch score in the switching task), EFwh (false
alarm score in the inhibition task) and EFwh_tStim (stimulus presentation
time in the inhibition task). The baseline for transition was common transi-

tions.

Predictor β CI (l) CI (u) SE z-value
Intercept 1.59 0.91 2.35 0.34 4.72
age -0.12 -0.96 0.68 0.37 -0.32
EFsw 0.26 -0.49 1.08 0.36 0.74
EFwh -0.59 -1.53 0.26 0.41 -1.45
EFwh_tStim -0.06 -0.87 0.75 0.37 -0.17
trans(rare_goal) -0.82 -1.28 -0.36 0.23 -3.54
trans(rare_state) -0.55 -1.04 -0.05 0.25 -2.17
β: Estimate (regression coefficient), CI (l): Confidence Interval
(lower), CI (u): Confidence Interval (upper), SE: standard error.

Table 4.16: Relative importance analysis (at test phase): results of the under-
lying linear Mixed Model Regression on RT with the predictors age, trans
EFsw (switch score in the switching task), EFwh (false alarm score in the
inhibition task) and EFwh_tStim (stimulus presentation time in the inhibi-

tion task). The baseline for transition was common transitions.

Predictor β CI (l) CI (u) SE t-value
Intercept 7.85 7.71 7.99 0.08 93.44
age -0.13 -0.29 0.03 0.10 -1.36
EFsw 0.00 -0.15 0.16 0.10 0.02
EFwh 0.08 -0.09 0.26 0.11 0.79
EFwh_tStim 0.04 -0.12 0.19 0.10 0.37
trans(rare_goal) 0.19 0.09 0.30 0.05 3.67
trans(rare_state) -0.00 -0.11 0.10 0.05 -0.05
β: Estimate (regression coefficient), CI (l): Confidence Interval
(lower), CI (u): Confidence Interval (upper), SE: standard error.

and/or rare_goal varied significantly from common transitions within given age
groups. Thus, we corrected for the baseline difference in RT with age, by computing
the scores Delta RT Common − rare_state and Delta RT Common − rare_goal and by
running the same relative importance analysis (table 4.17 and table 4.18) on these
difference scores (the only difference being that we computed the median per par-
ticipant prior to computing the Delta because there were fewer trials in the rare than
common transition conditions by design.)

For Delta RT Common − rare_state, the normalised relative contribution values
were 0.715 for age, 0.065 for EFsw and 0.219 for EFwh.

For DeltaCommon − rare_goal, these were 0.767 for age, 0.175 for EFsw and 0.058
for EFwh.
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Table 4.17: Relative importance analysis (at test phase): results of the under-
lying linear Mixed Model Regression on Delta RT Common− rare_state with
the predictors age, trans EFsw (switch score in the switching task), EFwh
(false alarm score in the inhibition task) and EFwh_tStim (stimulus presen-
tation time in the inhibition task). The baseline for transition was common

transitions.

Predictor β CI (lower) CI (upper) SE t-value
Intercept 0.06 -0.22 0.34 0.12 0.50

age 0.10 -0.25 0.45 0.15 0.67
EFsw 0.03 -0.29 0.35 0.13 0.22
EFwh 0.06 -0.32 0.44 0.16 0.38

EFwh_tStim 0.00 -0.35 0.35 0.15 0.00
β: Estimate (regression coefficient), CI (l): Confidence Interval
(lower), CI (u): Confidence Interval (upper), SE: standard error.

Table 4.18: Relative importance analysis (at test phase): results of the under-
lying linear Mixed Model Regression on Delta RT Common − rare_goal with
the predictors age, trans EFsw (switch score in the switching task), EFwh
(false alarm score in the inhibition task) and EFwh_tStim (stimulus presen-
tation time in the inhibition task). The baseline for transition was common

transitions.

Predictor β CI (lower) CI (upper) SE t-value
Intercept -0.05 -0.22 0.13 0.07 -0.66

age 0.10 -0.12 0.32 0.09 1.06
EFsw 0.01 -0.19 0.21 0.08 0.07
EFwh -0.08 -0.31 0.16 0.10 -0.77

EFwh_tStim -0.19 -0.40 0.03 0.09 -2.02
β: Estimate (regression coefficient), CI (l): Confidence Interval
(lower), CI (u): Confidence Interval (upper), SE: standard error.

4.3.7 Discussion

Children aged 5 to 9 years old successfully understood, learnt and executed the task.
The touchscreen was well-suited for this age range and the game engaging enough
so that the vast majority of participants finished the task.

4.3.7.1 Sequence acquisition

There was no significant improvement in optimal selection from the first to the sec-
ond half of trials. Contrary to our predictions, there was no significant improvement
in response time either. It looked as if there was a reduction in response time at step
1 in the younger children’s group, but this result was not significant nor notable.
Thus, it seems like the task in the training phase was carried out with a good op-
timal selection proportion and at an even speed from the beginning. The lack of
change in optimal selection is not surprising given there were practise trials verify-
ing that the task was understood and given that this phase was easy (compared to
the test phase).
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4.3.7.2 Monitoring and access to a change of state or a distal cue

The optimal selection in the test phase was equally good for both age groups in com-
mon transitions (which corresponded to trials in the training phase). More errors
were performed at rare transitions and the error pattern varied with age. Notably,
younger children made particularly more errors at transitions with a change of goal
(rare_goal) than at transitions with a change of state (rare_state). However, older
children did not have significant differences across the three types of transitions.

The response time patterns partly mirror the optimal selection patterns. The
younger children had a time cost when selecting actions following rare transitions
where there is a change of goal compared to the rare transitions where there is a
change of state. This was not the case later in the older children. This pattern was
consistent with the optimal selection data in rare transitions, where younger children
but not older children had a lower optimal selection at rare_goal transitions than at
rare_state transition.

This indicates an increase in difficulty for the younger children to react follow-
ing the change of goal compared to the change of state. The difference in difficulty
may arise from different difficulties in detection of the change, or after unaffected de-
tection, from different difficulties in updating the action following the change, or a
mixture of both. While we controlled at best for the difference in salience between
the goal cue (character displayed) and the state cue (bowl colour)- by keeping both
in central locations, and controlling for the change in contrast-, we cannot entirely
rule out the possibility that the difference is purely perceptual. However, it is plau-
sible that differences in difficulty are attributable not to difference of salience in cues
due to their perceptual properties but instead to how much children are monitoring
one or the other. We propose that children were monitoring the bowl’s change of
colour more carefully than the goal cue, because the bowl change of state is a direct
consequence of the action they are performing. This difficulty, manifested in longer
RT, to monitor the state cue compared to the goal cue was found in younger children
but not older children. This is consistent with prior evidence that through preschool,
children become less driven to perceptual cues and more capable of relating their ac-
tion sequence to a more distal goal with age (Freier et al., 2017), if we assume that
this developmental trajectory continue beyond preschool.

4.3.7.3 Inhibition of an ongoing sequence and replacement of action

The types of errors made tell us more about the mechanisms behind the lower op-
timal selection. First we note that children in our sample made both type of errors.
Each error type reflects different underlying mechanisms behind the errors. For the
errors that we coined ’failing to update’, we assumed that in the test phase when chil-
dren have practised the task extensively, they form a sequence action planned ahead
(that is, the appropriate fruit icon ’select action’ is already activated before step 1 is
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completed), and that a reason for error can be that a (partially-)prepared action fails
to be replaced by the accurate one.

Although our data is not clear to that respect, the younger children might have a
reduction in time with practice at step 1, but not at step 2, during the training phase.
If that finding was replicated, it would strongly suggest that, indeed, the planning
of the two steps occurs earlier than the time of selecting action at step 2 (otherwise
we would observe a decrease of the selection time at step 2 with practice). What
we call ’sequence action plan’ or schema bears similarities with the ’motor chunks’
in Sternberg et al. (1988), who showed that for rapid sequences of motor responses,
participants compile several actions into a motor chunk before performing the first
action. Thus, within a motor chunk, actions are performed one after another rapidly,
and we assume that here this does not always leave sufficient time for updating
the action following rare transitions. However, one could argue that the strategy of
chunking, or pre-planning of the two actions at the beginning of the sequence would
occur only during training phase, and that the introduction of rare transitions in the
test phase would ’reset’ this strategy. We argue that such a ’reset’ in strategy is
unlikely, because it would imply a reorganisation of motor chunk after an extensive
training phase, and the frequency of rare transitions may be too low for this to occur.

Second, regardless of the type of rare transition and age, ’failing to update’ errors
were significantly more frequent. This suggests that most of the time, the presumed
action plan was not updated. This might be due to a failure of monitoring the cue
(change of state of the bowl, or change of the character representing the goal). Al-
ternatively, this might follow the successful monitoring and detection of the change,
but a failure to interrupt an ongoing sequence. If that is the case, we propose that
inhibition is the key limiting factor in failing to update the sequence. The impor-
tant contribution of the inhibition score of the separate inhibition task (compared to
age and the switching cost) on the performance in the SuperCook task is consistent
with a role of inhibition, albeit not sufficient to conclude as will be discussed in next
section.

Even if they were less frequent, the other errors should also be explained. This
second error type was coined ’activating the alternative prepotent plan’, because we
assume the two sequences practised in the training phase (sequence AA and BB)
have reached a certain level of prepotency when later executed at the test phase. Let
us take the example of the goal where the initially appropriate sequence is AA. At the
time of a rare transition, there might be awareness of an update of plan being needed
that leaves the place for a replacement action (in other words, action A previously
planned is no longer needed), but that does not appropriately select the alternative
action (which would have been action C), leaving the place to the other very-well
practised action (instead of action C, action B from the very-well practised BB). In
terms of competitions of schemas (Schmidt, 1975), it might be that the schema A is
appropriately inhibited, but the action C has too little activation compared to the
prepotent schema B (either or both linked to insufficient activation of schema C or
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over-activation of schema B).
A limitation of the present findings is that the errors were relatively few. Together

with a small sample size, this means that we can not draw clear conclusion from the
error data alone.

4.3.7.4 Role of executive functions

As mentioned, it is possible that the ’failure to update’ type of error at the second-
stage action arises from a failure to inhibit a pre-planned action in the middle of the
sequence.

When looking at the relative contribution of age and executive function task
scores on optimal selection in the SuperCook task, the inhibition score shows an
overwhelmingly high contribution (more than 85%). This suggests that develop-
ment in inhibitory control drives improvement in performing an accurate sequence.
However, when predicting RT, age was the largest predictor, even when using com-
posite scores of RT that tried to take into account individual baseline speed. We
would have expected the inhibition score to predict RT to a larger extent. It might
be that inhibitory control plays a role in optimal selection but is not involved at all
in speed of the processes underlying change in action control following rare tran-
sitions. It might also be that differences with age in the speed of update of action
plans are the largest and thus overtake other differences, consequently hiding the
involvement of differences in inhibitory control. Alternatively, it might be that our
sample size is too small to reliability assess and correlate inter-individual differences
in EF to inter-individual differences in action control.

Regarding the switching task, we first note that our novel child-friendly version
of the task was validated since we found, as expected, switch costs far from zero
in all participants. Our switching score did not correlate with age nor contributed
much to optimal selection or RT variables. The absence of even a small but signif-
icant correlation between switching score with age is surprising given findings on
switching improvement with age in this age range (e.g., Crone et al., 2006). It is pos-
sible that switching does not contribute, or contributes much less than inhibition,
to action control in the task, but this would require more evidence. However, we
note that Yanaoka and Saito (2019) found very similar results where inhibition was
strongly correlated with the control of script execution and not switching.

It is not possible at this stage to draw conclusions about the role of executive
functions in action control, but we will rediscuss the evidence together with the
study in chapter 5.

4.4 General Discussion

Experiment 1 consisted of a pilot task and it helped pre-selecting kinematic features
that, based on the pilot data, would capture a large amount of variance in experiment
2. Experiment 2 studied action control in school-aged children using an improved
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version of the task, and used the features thanks to experiment 1. Here we discus
the interpretation of that feature in the context of the development of action control
and how it relates to the other findings.

4.4.1 Kinematics feature selection

Our kinematic feature selection (experiment 1, Section 4.2) allowed us to use 3 kine-
matic dependent variables, that were defined and selected a-priori and that were
likely to capture variance in the task. By this method, experiment 1 identified three
candidate kinematic features: avTrajAngle (Average of the instantaneous angle be-
tween the trajectory and the most direct path to the chosen icon), varSpeed (Vari-
ability of the speed’s norm within a trial) and maxLogRatio (Maximal log ratio of
distance to the non-chosen icon over the distance to the chosen icon). In experiment
2, varSpeed proved informative, as will be described in Section 4.4.3 .

4.4.2 Error patterns and developmental changes in monitoring and inhi-
bition

In experiment 2 (section 4.3), after a learning phase of two short sequences of ac-
tion, the adaptation of children to varying types of unexpected perturbation in the
action sequence was assessed via the analysis of error patterns, response time and
kinematic variables. Furthermore, the relative contributions of age, inhibition and
switching tasks’ scores to SuperCook tasks’ variables (action selection patterns and
response time) were tested.

The findings were broadly as expected following the results of Decker et al.
(2016), that is: in the absence of perturbation children did equally good across the
age range, proposedly due to an already mature model-free (routine) system, whereas
with perturbation, errors decreased with age, proposedly due to an improvement of
model-based (supervisory) system with age.

Furthermore, we were able to break down the role of some components of super-
visory control. Younger children made less optimal action selection after rare_goal
transitions than after rare_state, while older children performed equally well in both
types of rare transitions, suggesting a difficulty in younger children to monitor or re-
act to more distal change of cue (related to the goal, rather than related to the action
they have just performed).

Additionally, among the two possible actions that were not optimal, the ’failure
to update’ seemed more frequent than the ’alternative action plan’ regardless of the
age and type of transition (nonetheless, the errors are too few to confirm an absence
of effect of age and type of transition on the types of errors). Considered with a more
important contribution of the inhibition task’s score to explain optimal selection rate
(as compared to age and the switching task’s score), the results suggest inhibition
may play a central role in developing model-based control.
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4.4.3 Variability of speed and signature of model-based/supervisory con-
trol recruitment

The kinematic data showed that older children have larger variability of speed (var-
Speed) in both types of rare transitions than in common transitions. Younger children
seem to have identical patterns of varSpeed and RT in common and rare change of
state transitions than older children. Both age groups have higher varSpeed in rare
change of state transitions than in common transition, which was linked to the ab-
sence of significant difference in RT between state transitions and common transi-
tion. Thus absence of difference in RT, together with the identical optimal selection
state and common transition for older children, indicate either that the common and
rare_state transitions do not pose additional difficulty or demand, or that a mech-
anism is able to compensate for the increased difficulty for rare_state compared to
common transitions, such that the optimal selection and RT are identical in com-
mon and rare_state transitions (despite the increased difficulty of rare compared to
common transitions). Given the structure of the task alone, the second possibility
is more likely. In accordance, and if we admit that kinematics data can capture un-
folding cognitive process (e.g., Freeman, 2018), the significant difference in varSpeed
between common and rare_goal transitions suggest that there is a mechanism com-
pensating for the difference in difficulty between rare and common transitions in
older children. Younger children’s RT was longer in rare_goal than in rare_state,
while such a RT cost was not present in the older children’s group. varSpeed was
significantly lower in rare_goal than in rare_state transitions for younger children,
which suggests that the compensation mechanism found in rare_state was not at
play in rare_goal.

Taking the RT and varSpeed results together with the optimal selection data,
where both age groups had equally high optimal selection proportion in common
and rare_state transitions, but the younger children had lower optimal selection
proportion in rare_goal, we propose the following. The hypothesised compensa-
tion mechanism mentioned earlier is the recruitment of model-based control. Such
recruitment is needed to adapt an ongoing sequence following any type of rare tran-
sitions. High values of varSpeed may be a kinematic marker of the recruitment of
model-based control. Indeed, common transitions can be assumed to rely mainly
on model-free control given the design of the task where this type of trial has been
repeated extensively in the training phase, and low varSpeed would be an indicator
of model-free use.

Both age groups seem to be able to use model-free control. This is supported
by good optimal selection on common transitions, and may be reflected the var-
Speed kinematic marker (with low values of varSpeed in common transitions for
both age groups). Older children seem able to recruit model-based control in both
types of rare transitions, as evidenced by their good optimal selection proportion in
all types of transitions, and which we can link to high values of varSpeed. Younger
children seem able to recruit model-based control in rare_state transitions but not in
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rare_goal, as evidenced by their drop in optimal selection at rare_goal compared to
rare_state. This is reflected in their varSpeed at rare_goal transition, which looks as
low as in the common transitions, suggesting that the younger children keep relying
on model-free control at rare_goal transitions.

Note that the varSpeed measure is proportional to the baseline speed for a given
age (the correlation between the per-age average of varSpeed and average 2D speed
is significant: r = 0.2815, p = 0.0392), which explains that varSpeed is always higher
for older than younger children and makes direct between-age groups comparisons
difficult. We thus limit ourselves to within-participants comparisons.

We also note that RT and varSpeed give different results from each other, and var-
Speed allows us to make more precise deductions about the processes responsible
for the change of RT, hence the change in action control capacities with development.
This strengthens the interest of using kinematic measures as a complement to RT.

In summary, our results (better optimal selection, smaller RT cost and finer var-
Speed adaptations found in certain conditions with age) indicate improvements in
supervisory/model-based control with age. This is consistent with the findings of
Decker et al. (2016) yet goes beyond by having two types of rare transition and in-
vestigating of the types of error.

The two-stage task used by Decker et al. (2016) dissociated model-free and model-
based control by using probabilistic transitions and analysing the behavioural pat-
tern (probability of repeating a previous action) at first-stage as a function of the pre-
vious reward and the transition that occurred. The model-based signature was the
integration of the transition information with reward information (i.e., the behaviour
differed according to the type of transition and to the previous reward received). The
model-free signature was identified by the absence of integration of this transition
information, using only reward information (i.e. the behaviour differed according
to the type of reward but not the type of transition). There, model-based control
is essentially the capacity to form and use a probabilistic model of the task tran-
sitions to guide choice. In the SuperCook task, probabilistic transitions were used
to probe whether one would successfully update a sequence following a change in
the middle of its execution. We assumed that common transitions could be carried
out by model-free type of control, and that rare transition would elicit the recruit-
ment of model-based type of control. The SuperCook’s data was consistent with
the view. Therefore, two different tasks, SuperCook and Decker et al.’s (2016), sug-
gest the overall same conclusion that model-based increases with age, although the
time scale differed. Indeed, Decker et al. (2016) compared a 8 to 12 years old group
to adults, while the present study SuperCook compared changes within the 5 to 9
years old range.

Decker et al. (2016) linked the developmental changes in model-free/model-based
balance to the developing capacity for forming model-based computations. The Decker
et al. (2016) does not explain how children become able to use such computations to
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guide their action. In our task, the knowledge and ability to perform the computa-
tions for selecting the correct actions seem present (given a non-negligible propor-
tion of correct responses even in the rare_goal transitions). Difficulties arise possibly
due to poorer ability to monitor, or poorer inhibitory abilities to override an ongoing
sequence. Thus, the SuperCook task goes a step further in allowing to separate the
supervisory processes at play.

4.4.4 Future work

Although the manipulation of icons on a touchscreen is more naturalistic than re-
sponding by key presses, future studies should confirm the findings with more nat-
uralistic paradigms.

Furthermore, more studies should confirm the role of variability of speed as
a marker of model-based control, notably in Decker et al.’s (2016) two-stage task.
To do so, one could think of a touchscreen-based adaptation of the two-stage task,
exactly identical except that an icon must be drag-and-dropped onto the options
(instead of selecting the options with the keyboard). The following results would
strengthen the role of variability of speed as a model-based signature: finding a
high varSpeed when the stay patterns commonly associated with model-based are
found, while finding low varSpeed when the stay patterns commonly associated
with model-free are found.

Finally, the present results are not sufficient to draw conclusions about the rel-
ative importance of monitoring and inhibitory control, but adaptations of the task
could tease them apart. It is possible that in this task children were able to detect
the change of goal but sometimes too late to interrupt the ongoing sequence and/or
update the action plan. Indeed, the supervisory system/model-based computations
are known to be more time consuming (e.g., Hardwick et al., 2019). A variation
of the SuperCook task with two conditions could test this hypothesis. A condition
would encourage the children to take their time (slow condition). Another condition
would encourage speed over accuracy by giving bonuses for faster responses (fast
condition). If the frequency of errors at rare_goal type of transitions of younger chil-
dren is smaller in the slow condition than the fast condition, this would indicate that
the model-based system is too slow or unable to interrupt the ongoing sequence,
presumably due to low inhibitory control capacity. However, if their performance
is identical in slow and fast conditions, this would suggest that it is the monitoring
process that fails in younger children.

4.5 Conclusion

Taking together the frequency of errors according to transition type, the types of
errors, the RT and kinematics, the results suggest that children across the 5 to 9
years old age range use model-free type of control equally, while they increasingly
use model-based type of control with increasing age. The increase in model-based
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use with age is consistent with and extends the findings of the study of Decker et
al. (2016) (who compared 8- to 12-year-olds to adults while this study finds a change
within the 5- to 9-year-old range). The task also allowed us to probe the subprocesses
underlying model-based control.

Manipulating the type of rare transition (modifying the goal cue or the state
following the first action) revealed that younger children struggled more with the
change of goal cue, which may be linked to higher difficulty in monitoring the goal,
a relatively distal cue, while having the capacity to update a sequence following a
change of sate. The errors patterns indicated that the capacity to monitor and/or to
inhibit an ongoing sequence are developing within this age range but were not suf-
ficient to discriminate between the relative importance of the two mechanisms. The
high contribution of inhibition score to predicting optimal selection suggests that
inhibition plays an important role in updating action plans following unexpected
changes of the environment.

All in all, key supervisory subcomponents driving the change in improving ac-
tion control throughout the school years most likely involve both the monitoring of
the environment and inhibitory control to correct an ongoing action sequence before
a pre-planned, no longer appropriate action has been executed. This needs to be
explored with further studies, and the variability of speed kinematic marker would
be a useful tool for that purpose.
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Chapter 5

Hierarchical Control of Action
Sequences: Two Online Studies

Abstract

This chapter presents two related online experiments investigating children’s and
adults’ control of action sequences, in particular action sequences that are routinised
(or partially routinised). A new task was developed for this purpose, involving the
repetition of 7 or 9 step action sequences over a large number of trials spread across
4 different days.

Both experiments replicated the finding that adults use hierarchically-structured
task representations as presented in the dual-systems theory (Norman and Shallice,
1986, Cooper et al., 2014). Crucially, they extended this finding to school-aged chil-
dren. The chapter validates the suitability of the dual-systems framework to inves-
tigate 7-12 years old children’s action control and addresses qualitative and quanti-
tative similarities between adults’ and children’s sequential action control.

Specifically, experiment 3 found a high concentration of errors at subtask bound-
aries, and a trend for higher frequencies of those errors in children. In experiment
4, children had an even more marked increase than adults in selection latencies at
special points (branch points) compared to control points. Together with the effects
of a secondary task varying according to points in the sequence and age, as well
as investigating a kinematic marker (coefficient of variation of speed), the results
highlight the role of developing supervisory functions in the emergence of efficient
sequential routine performance throughout childhood.

5.1 Introduction

We begin by reviewing the key theoretical and experimental elements of sequential
action control which guided the design and analysis of the two studies. Theories
of adult action control use converging evidence from error and response time data.
Experiment 3 focuses more on error data whereas experiment 4 focuses more on
response time and kinematics data.
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Experiment 3 explores the overall representation used when executing routine
sequences. The dual-systems theory (Norman and Shallice, 1986, Cooper et al., 2014,
presented in detail in the General introduction) posits that representations have a hi-
erarchical structure, where actions are organised around subgoals, which themselves
can be part of higher-level subgoals. This structure becomes apparent when looking
at errors produced by participants: the errors are particularly more frequent at the
boundaries between subtasks (that is, subsequences that achieve a subgoal).

Experiment 4 explores special points in the sequence, branch points, that are
particularly difficult given their position at the beginning of a subsequence and re-
quiring a decision between diverse possible subtasks. Let us take the daily-life ex-
ample of sequence ’making a cheese sandwich’. This sequence shares a common
start with the sequence ’making a ham sandwich’: in both cases, one would start
with preparing the bread and then adding butter. At this point, one should either
enter the subtask ’adding cheese or ’adding ham’. This constitutes a branch point.
When executing a routine sequence, branch points have shown to have longer selec-
tion latencies than non branch points (as found in Ruh et al., 2008, Ruh et al., 2010).
The longer selection latencies has been attributed to the need for supervisory con-
trol at branch points whereas non branch point require no supervisory influence for
a very-well practised sequence.

Given the correspondence between supervisory control and executive functions,
we will use one or the other term interchangeably. As mentioned, executive func-
tions are known to improve vastly throughout childhood (e.g., Casey et al., 2005b).
Our core assumptions are grounded in the gradual improvement of executive pro-
cesses throughout childhood which is related to increasing efficiency of action se-
quence performance with age. Such interaction between executive processes and
action sequence performance can be attributed to the role of executive functions in
action control. We will specify predictions in the dedicated section of each study.

5.1.1 Ruh et al.’s (2010) virtual gardener task

We designed a new task to investigate the acquisition and control of action sequen-
ces and its underlying representations in school-aged children (6-12 years old) and
adults, by means of a computerised game. The design of the game was inspired by
Ruh et al.’s (2010) ’virtual gardener’ computer task albeit adjusted to be suited for
children. As mentioned previously, Ruh et al. (2010) investigated routine action con-
trol in hierarchically structured sequences in adults. In this computer-based study,
participants were tasked to make virtual fertilizers for a plant according to an in-
structed goal: the instructed goal was to elicit a given outcome (the plant growing
larger, getting bushier or making flowers), and this was achieved by three differ-
ent action sequences. The action sequences consisted of actions such as picking up
items, placing items on the worktop and so on, which were carried out by clicking
on and moving items with the computer mouse. The sequences comprised at least
10 basic actions. All three sequences had a common structure and an identical start,
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and later varied in the ingredients to be picked up or the number of ingredients to be
added. Some trials were carried out under dual-task conditions (sound counting).
The study was carried out over 3 different sessions and involved 200 trials in total.

5.1.2 The GoGelato task

The game developed for these experiments consisted of a succession of attempts
to achieve one or the other of the two instructed overarching goals by manipulating
icons on screen, and each goal could be completed by distinct but vastly overlapping
action sequences. The goals were ’make a chocolate - wafer - sprinkles ice cream’ or
’make a chocolate - wafer - banana ice cream’. The sequences were designed to
present common features of everyday action sequences, namely:

• the individual actions leading to the main, higher-level goal could be concep-
tualised in terms of several groups of actions that achieve a subgoal (just like
making a lunch box can be broken down into subgoals such as making the
sandwich, preparing a drink, etc.);

• the subsequences used in this game can easily be imagined to serve different
overarching goals, e.g., scooping Nutella can be thought of being part of the
’making a toast’ goal (instead of making an ice cream);

• the subgoals could be used in different sequence variants in this game, and
some sequences share the same beginning (just like making a cheese sandwich
or a jam toast will start by picking-up bread, spreading butter, etc.). Conse-
quently, in the section common between the two goals, actions have higher
transition probabilities than at the point where they differ (at which there is a
lower transition probability for one or the other possible actions at this step).
This consists in a branch point, as will be elaborated on later.

• different actions have different functions: while some of them consist of adding
ingredients onto the ice cream (chocolate, wafer or sprinkles/ banana), others
are ’enabling’ action (e.g., opening the Nutella lid) or ’cleaning-up’ (placing
the spoon back to its slot) actions.

When describing the paradigm, we will use the term ’subsequence’ to designate
a section of the sequence that can be conceived as achieving a subgoal. It is left to be
proven in the data whether participants actually use such hierarchically-structured
representation (where actions are organised around subgoals) to guide their actions.

Besides adding features of real-life action sequences, several aspects were con-
trolled for in order to ensure the interpretability of the results:

• For one of the two goals, the sequence includes using the same implement
(spoon) in two different parts (as can be seen in Figure 5.1): within a subse-
quence (the Nutella subsequence) and at the start of a subsequence (the Sprin-
kles subsequence). Furthermore, a subsequence was inserted in-between the
two usages of the spoon to justify having the participants place the spoon back
to its slot (this ’discarding’ action was instructed like the other actions in the
sequence). Consequently, in both cases the selection of the spoon started from
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the centre to go on a peripheral location. This allowed us to directly compare
the two ’select spoon’ actions, and investigate the differences in selection la-
tencies between a within-sequence and a between-sequence action.

• The two sequences had the same number of actions, and the intuitiveness of
the overall recipe did not strikingly differ in favour of one or the other.

Fig. 5.1: Action sequence: the 9 main actions of the game.

This, along with the controlled parameters (e.g., constant distance between icons,
described in the methods), were chosen to balance the naturalistic aspect of the game
with analysability and interpretability, given that a child sample notoriously leads
to noisier data than adults. Importantly, the complete study had a large number of
trials, spread over 4 sessions on 4 different days, to allow investigating the control of
a very-well practised sequence, which we assume we get to a ’(partially) routinised’
stage, if not fully routinised.

5.1.3 Manipulation of cognitive load through the addition of a secondary
task

Additionally, a hallmark or consequence of routine sequence control is that such ac-
tion sequences demand very little cognitive effort and can be very well executed
under divided attention or cognitive load, such as when multi-tasking. However
this is only true of sufficiently routinised sequence or subsequence, and some points
can remain vulnerable to error under heightened cognitive load. Hence, studying
action performance while simultaneously performing a secondary task can tell us
about the nature of representation underlying performance, even more than under
normal conditions. This is why we introduced a secondary task, that used a dif-
ferent modality (auditory), in the last two sessions where action execution can be
expected to be (partially) routinised. This follows the use of a secondary task in or-
der to compete with higher-level resources as used in, for example, Ruh et al. (2010),
Dunbar and Sussman (1995) or Humphreys et al. (2000). In Humphreys et al. (2000),
a secondary task successfully induced errors in healthy participants by presumably
taxing executive processes resulting in loss of activation over component actions.
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To ensure the secondary task was adapted for children we followed Broadbent
et al. (2018) who used a sound counting dual-task, and found deteriorated perfor-
mance compared to single-tasking. Thus the sound counting is an appropriate way
to heighten cognitive load while allowing multi-tasking in 6- to 10-year-old children.

5.2 Experiment 3: Establishing the Emergence of Hierarchy

5.2.1 Introduction

In this experiment, the errors performed by children and adults on two 9-steps ac-
tion sequences are used as a window into processes underlying action control, and
the development of such processes. With this experiment, we addressed the follow-
ing questions: How well do school-aged children routinise action sequences com-
pared to adults? What representations underlie (partially) routinised sequential ac-
tion control across development? How is such action control affected by a secondary,
attention-demanding task? As a prerequisite to answering the latter questions, we
also asked: is the newly-developed task suited to investigate routine sequential ac-
tion control in school-age children?

5.2.2 Methods

5.2.2.1 Participants

Children (total N=23, 14F) between 7 and 12 years old were recruited mainly through
Birkbeck’s Babylab database (where they were contacted by email), but also via
Babylab’s social media and word-to-mouth. There were no specific inclusion or ex-
clusion criteria beyond having access to suitable computer hardware (see below).

Adults (total N=23, 11F) were aged 20 to 35 years old. Half of the adults was
recruited via word-to-mouth. The other half was recruited via the platform Prolific,
with the following inclusion criteria:

• Use a desktop computer or laptop;
• Age 20-30;
• English-speaking country (among: the UK, the US, New-Zealand, Norway,

Sweden, and the Netherlands);
• Had taken part in a least 10 studies on Prolific, and had had an approval rate

above 97% in previous participation. Such criteria on participation were added
to maximize chances to get all four sessions completed by most participants.

We included adults in this paradigm for three reasons: 1) to replicate and extend
findings on adult sequential action control, with a different context (ice cream mak-
ing) than previous paradigms, 2) to validate the newly-developed task (assuming
that the adult sample would have less noise than the child sample and thus permit
to verify if key findings on adults action control are replicated by our new task),
and 3) to permit a direct qualitative comparison, and (with some caveats developed
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in the discussion) permit a quantitative comparison between adult and children’s
action control.

Adults were compensated £2.5 for session 1, £2 for session 2, £2 for session 3
and £3 for session 4 (the amount was higher at the start because of the extra time it
takes to familiarise with the study, and higher in the end to encourage participants
to come back). Families were offered a gift card of the following amount (for each
child taking part): £4 for session 1, £3 for session 2, £3 for session 3 and £5 for session
4. Adults gave formal consent by ticking the consent form’s box. Children in session
1 gave formal consent verbally and by ticking their consent form’s box, the same
went for their caregiver. On the other sessions, children and caregivers gave consent
by ticking the boxes. The study had ethical approval from Birkbeck’s College Ethics
Committee and was conducted in accordance with the Helsinki declaration.

Table 5.1 shows the number of completed sessions of the recruited participants
per age.

Table 5.1: Sample sizes, broken down by group (adults and children), and
children’s group further broken down by age.

N (sample sizes by group) Adults Children 7 y.o. 8 y.o. 9 y.o. 10 y.o. 11 y.o. 12 y.o.

Took part (started Session 1) 23 23 5 7 3 3 4 1
Included (completed at least S1) 23 22 4 7 3 3 4 1
Completed at least S1 & 2 21 19 4 6 2 3 4 0
Completed at least S1, 2 & 3 18 18 4 5 2 3 4 0
Completed S1, 2, 3 and 4 17 18 4 5 2 3 4 0

For analyses, we median-split the children into two groups (median: 8 years old).
When looking at all children having completed session 1, the age distribution was:
7-8 years old: N = 11, 9-12 years old: N = 11. When looking at children having
completed session 4, the age distribution was: 7-8 years old: N = 9, 9-11 years old:
N = 9.

5.2.2.2 Materials

The study took place entirely online. Participants were required to have a desktop
computer or laptop to complete the study. They were strongly encouraged to use a
mouse over a laptop trackpad, but both were authorised. Devices with only touch-
screen responses (e.g., tablets without external mouse) were not allowed. Partici-
pants also were required to have sound (via headphones or speaker) and a normal
internet connection.

Apparatus

The game was programmed in JavaScript with some help of the library JsPsych, and
hosted on a University server accessed through the software JATOS.

I entirely programmed the game in order to ensure reliable data acquisition,
avoid unexpected biases due to variations in the participants’ devices and ensure
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the game would be suited to measure children’s action control. This allowed fine
control over the behaviour of the game and over the data recorded, which can be a
challenge for web-based experiments and impact the findings if not well mastered
(controlling display, size, speed of the display, fluidity, sampling rate etc., see for
example Tsay et al., 2021).

While developing the paradigm, unsystematic pre-piloting was carried out on
small batches of participants (N<5), and data was partially analysed to develop an
intuition of the usability, the intuitiveness of the game and instructions, its duration,
and help select parameters such as the number of trials and number of sessions.

Action sequences

The task was gamified so that children would stay engaged throughout the entirety
of trials within one session and remain eager to come back for the other sessions.
The sequence (ice cream making) was realistic so that it would be easier to learn than
an abstract sequence of actions and consequently so that participants could reach a
level of routinisation more quickly. However, it was chosen so that it would not be a
very routine sequence in participants’ life (as would have been making a sandwich
for example), which limits the risk of interference with personal knowledge and
varying mastery of the routine with age.

The task consisted of a child-friendly cover story and stimuli, introduced to the
participants in several stages. Participants were instructed that the objective was to
make ice creams to sell them, and that from one time to the next customers could
ask for one of two recipes (which would sometimes change from one customer to
the next and sometimes not): if the background was blue, they had to make the
chocolate, wafer and sprinkles ice cream, and if the background was orange, the
chocolate, wafer and banana ice cream.

To make the ice creams, icons had to be dragged-and-dropped by clicking on an
icon with the computer mouse to select the icon, displacing it to a target location and
releasing the click to drop the icon on that location. There were 9 steps to be made
strictly in the right order. Table 5.2 presents the actions to be taken at each step. The
table describes the action in terms of source icon to target icon and consequently
does not describe the entirety of mouse movements. The complete subsequence of
mouse movements can be deduced from the location of the target icon of the preced-
ing action. For example, Step A involved moving the cursor from the centre (where
the cursor initiates) to the cup, clicking on the cup and drag-and-dropping the cup
onto the ice cream machine; or step E involved clicking and drag-and-dropping the
spoon from the Nutella icon to the centre.

Direct feedback was given each time an icon was dropped (by releasing the
mouse click). If the action was correct (that is, the correct icon was dropped onto
the correct location at the correct step), then the logical consequence was shown
on screen (e.g., the cup was filled with ice cream after being placed onto the ice
cream machine; or the centre was updated as shown on Figure 5.3). If the action
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Table 5.2: Description of the correct action at each step.

Step Correct action

A Get cup and bring to ice cream machine machine
B Cup filled with ice cream to centre
C Get lid and bring to centre
D Get spoon and bring to Nutella
E Spoon with Nutella to centre
F Place spoon back to original slot
G Wafer to centre
H1/H2 Fork/spoon to banana/sprinkles (topping)
I1/I2 Topping to the middle

was incorrect, the game automatically placed the moved icon back to its original
location. At the same time, a ’buzz’ sound was played to indicate the action was
incorrect. In other words, only the correct action enabled continuing the trial, and
consequently actions could not be performed in the wrong order. This was done to
facilitate learning and to get more analysable data (by constraining the range of pos-
sible behaviours). Note that it was still possible to complete incorrect subsequences
at the last step (e.g., fork-banana instead of spoon-sprinkles, or even spoon-banana
or fork-sprinkles) since the action still matched the step.

When an icon had to be dropped onto another icon, the action was valid if the
overlap between the source and target icon was greater than 1100 squared pixels
(i.e., it did not require a perfect alignment of the centre of both icons), for purpose of
fluidity of the game and to avoid distortion due to less fine motor control in children.

As described in the following Section, the appearance of the ice cream changed
when a correct item was added to it, which gave a subtle cue regarding where in the
sequence one was (just like in real-life baking, the dough would change colour after
adding chocolate). This could be used by participants as a cue to disambiguate the
position in the sequence in case of forgetting.

At the end of a trial, feedback was given. The ’correctness’ of goal execution
refers here to doing the right recipe for the given background (e.g., sprinkles ice
cream for the blue background). An upbeat sound indicated correct goal execution,
or a ’buzz’ sound and the display of a red cross indicated incorrect goal execution.
Furthermore, the sound for positive feedback came with:

• for adults, a green thumbs up and an animation of a coin falling on a stack of
coins (the coins accumulated throughout the game);

• for children, an animation of a coin falling into a piggy bank, with a cartoon
pig grunt sound.

For children, every 4 trials another animation was added to encourage them to con-
tinue until the end: the piggy bank broke to reveal the coins accumulated and this
led to adding a part of a new ice cream shop (which they had to build until the end;
a new shop for every session).
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The instructions were phrased to avoid influencing children towards one side or
the other of the speed-accuracy trade-off: ’Try to work as quickly as it’s comfortable for
you’.

Stimuli appearance

The display at the start of a trial is shown in Figure 5.2, left panel. The game area
was delimited by the background colour (the rest of the web page being the user’s
default, most likely white), forming an ’arena’ of dimensions 650 pixels. This repre-
sents 11.5 cm on a 24-inch screen with a 1920x1080 screen resolution. For the follow-
ing dimensions, we also give the equivalent for this setup in cm, between brackets.

Fig. 5.2: Task’s main display a) at the start of a trial, and b) towards the end
of a trial, while the final icon is being displaced.

The background colour was blue or orange. Both colours had the same satura-
tion (100%) and lightness (89%) and their hue was 210°for blue, 26°for orange. In the
centre of this arena was the icon of a plate of diameter 85 pixels (1.5 cm). This icon
could not be moved nor picked-up by clicking (we refer hereafter to such icons as
’static’). Peripheral icons were located within 8 ’slots’ arranged around the centre,
at a 211 pixels (3.8 cm) radius distance from the plate. The slots around icons were
disks of diameter 113 pixels (2 cm). All the peripheral icons had comparable sur-
faces, but their shape inherently varied: in particular the implements such as spoon
or fork had about 29 pixels (0.5 cm) width.

When the spoon was released onto the Nutella, the spoon was updated with
Nutella on it (similarly for the sprinkles, or for the fork onto the banana, or the cup
on the ice cream machine). When a correct icon was released onto the centre, the
icon in the centre was updated to show the progress of the ice cream state as shown
in Figure 5.3.
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Fig. 5.3: Evolution of the middle icon throughout the game, illustrating the
progress in the task. The letters indicate the step at the end of which this

central state appear.

Because the cursor location cannot be controlled on a web browser, there was an
extra page between two successive ice cream trials. The extra page required a click in
the middle of the page to proceed to the next page. It showed a button with a ’play’
symbol, that when clicked on triggered the start of a trial. The location of the cursor
when clicking the ’play’ symbol coincided with the centre of the plate in the next
page, which allowed a normalised start location of the cursor across the ice cream
trials. This also allowed participants to take breaks and thus potentially reduced the
number of within-trial interruptions.

Randomisations

The task is primarily concerned with action selection, mediated by reaching for
icons, unlike tasks such as the SRTT (Serial Response Time Task, Pascual-Leone et al.,
1996) which are more geared towards motor learning. Consequently, to ensure the
task was performed by selecting items and not simply remembering and going back
to a sequence of locations, we randomised the position of items (among the possible
slots on the peripheral circle) at every trial. Note that this introduces a visual search
stage to the task, and thus prevents participants from getting response times as fast
as those that can be found in motor learning tasks with extensive practice. A trial
that had timed out restarted with a new random set of positions.

Each trial’s goal (indicated by the background colour) was pseudo-randomised
with a shuffled sequence of 8 trials of each type (the pseudo-randomised sequence
was different for each participant).

Normalisation trials

Before the ice cream making trials, a different type of trial was administered, which
had two aims: 1) to collect individual motor time, that is the time to go from the
centre to a peripheral icon (red target) when there is no item choice to be made,
and 2) to have participants familiarise themselves with the type of mouse-controlled
drag-and-drop actions used in the game, thus making the instructions of the game
gradual.
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It consisted of an arena and white disks with dimensions and arrangements in
space identical to the main trials (and a grey background with the same lightness as
the coloured backgrounds), as shown in Figure 5.4. A red diamond was the icon to
be selected and to be drag-and-dropped onto a blue diamond. The trial stopped at
this time. Four of these trials were given at the start, and three at the end.

Fig. 5.4: Normalisation trial: (left) at the start, and (right) close to completion
of the trial (where the red target overlaps the blue target).

Demonstration trials

The game was instructed by animated images (GIF) that showed the game to the
participants step-by-step. The demonstration used a direct path in order not to in-
fluence the representation of the sequence that participants might build, nor influ-
encing their cursor trajectory. The demonstration was broken down into units that
correspond to the single steps shown in 5.2. As a consequence, if chunking in the
sequence appeared in the data, it would not be attributable to the demonstration.

Each of the steps was introduced by an animated GIF made of three different
frames with the start location, end location, and a middle point location right in the
centre of a straight path (with several frames to indicate the start/end), as shown in
5.5. The study window was split into two parts: the animation was shown on the
left side and looped until the participant executed that step on the right side.

Secondary task

The secondary task was added to study the role of top-down control in the sequential
action task. Like in Ruh et al. (2010), the secondary task was (1) auditory, (2) required
responding after the sequence execution was over, and (3) was made unpredictable.
These ensured that the task would not become routinised, would not be facilitated
by switching nor would be easy to guess.

The task consisted of counting bird chirp sounds which occurred at random
times during the ice cream making. Participants had to report the count at the end
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Fig. 5.5: Frames used to make the demonstration animation (step B is taken
as example here).

of a trial. For the secondary task, the sentence in the instructions prompted par-
ticipants to give equal importance to the ice cream making task and the bird-chirp
counting task, and importantly not to pause when counting: ’(...) But don’t stop the
game to count- Keep making the ice cream while you are counting.’

The number of sounds varied randomly between 3 and 7 for children, and be-
tween 6 and 11 for adults. The duration of a chirp sound was 170 ms. The interval
between successive sounds varied randomly between 250 and 1500 ms.

Earlier in the study (cf. procedure in Section 5.2.2.3), participants had been fa-
miliarised with the bird chirps sounds in the System set-up stage prior to the main
game, where they had played a recording which had 4 to 7 of these bird chirps and
indicated the counts. The study only went forward if the count was correct.

5.2.2.3 Procedure

Participants completed four sessions over separate days, as shown in Figure 5.6. Day
1, 2, 3 and 4 were consecutive days, except for a few adults who had up to three days
spacing between two consecutive sessions.

One online session had the following structure:
• Introduction and consent form
• Questionnaire (age, preferred hand for using the computer (left/right), pre-

ferred among mouse or trackpad in general, and the one (mouse of trackpad)
used for the study)

• Set-up (verification display and sound)
• Normalisation trials (start round)
• Instructions and demonstration of the main game
• Main trials of the game
• Normalisation trials (end round)
• Debrief
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The overall procedure was the same for children and adults, except that the first
child session involved a video call with the family and the child. After an introduc-
tion, they were taken step by step through the study, with a screen-share to ensure
the instructions were understood. They also had the opportunity to ask questions in
the end and receive instructions for doing the three following sessions on their own
on three different days.

Fig. 5.6: Overview of the multi-day experiment, and the number of trials
and trial type per session.

5.2.2.4 Analyses

In this study, we consider three age groups: the ’younger children’ group 7-8, the
’older children’ group 9-11 and the ’adult’ group ADU.

In all the following analyses, we excluded: (a) the demonstration and practice
trials, (b) the trials with a time-out and (c) the steps which included a ’motor/click
error’ (i.e., a click right next to an icon that failed to select the icon, or a click-release
(drop) right next to another icon but not sufficiently close).

Analyses are separated between (a) an overview of performance and trial dura-
tions across sessions and age groups, and (b) finer-grained analyses in the (partially)
routinised sessions, i.e., sessions 3 and 4.

Trial duration measures started when the stimuli appeared, and stopped when
the last icon was dropped onto the centre. The first analysis evaluates the assump-
tion that sessions 3 and 4 can be considered (partially) routinised: the evolution of
trial duration across sessions was assessed with the Wilcoxon signed-rank test on
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the median response times of participants in each session, within each age group.
Additionally, we tested the proportion of incorrect goal execution across sessions
within each age group with paired samples t-tests for with and without secondary
task comparisons, and independent samples t-test for age group comparisons.

The rest of the analyses are concerned with (partially) routinised performance, and
thus are restricted to sessions 3 and 4. They are also restricted to the trials with cor-
rect goal execution, to minimise noise which would impede the interpretations. We
tested the step errors with paired or independent samples t-test, as for the incor-
rect goal execution. We carried out all comparisons for a given step in a given age
group, or for each step in a given condition (with or without secondary task), either
comparing with to without secondary task, or comparing age groups.

T-tests were chosen because of the high number of participants having an error
proportion of zero. For such comparison, a Wilcoxon test is not sufficiently sensitive.
The statistics were computed with the module scipy.stats in Python. Finally, due
to the high number of comparisons (across all steps), significant results need to be
interpreted with caution.

The error classification in the current task was based on the error taxonomy
from Schwartz, Buxbaum, Montgomery, Fitzpatrick-Desalme, et al. (1998). We trans-
late the type of errors, from the multi-level action test (MLAT) task of Schwartz,
Buxbaum, Montgomery, Fitzpatrick-Desalme, et al. (1998) to the equivalent errors
from the present task:

• Omission: failing to add ice cream in the ice cream cup;
• Sequence Anticipation/Omission: adding the wafer before adding Nutella;
• Sequence Perseveration: making two ice creams (note that this was not made

possible in the present task);
• Object substitution: attempt to pick up sprinkles with the fork instead of the

spoon;
• Action addition: placing the spoon onto the ice cream machine.

We distinguish two types of omissions: ’step omission’ when one step within one
subgoal is omitted, and ’anticipation/omission’ when an entire subgoal is omitted.
Indeed, it is hard to distinguish whether a participant forgot a subgoal or jumped
to the one after. We present the errors that occurred at least two times (in the total
dataset across participants and conditions).

When looking at response time data, we are concerned with action selection la-
tencies, from comparable points across similar groups of actions. These latencies
were either (a) from the centre of the game arena until the step’s icon has been se-
lected (by clicking) or (b) from a peripheral icon to another peripheral icon. Table 5.3
gives the step by step description of these portions of action selection whose latency
we are interested in.

We conducted a series of linear mixed-effects regressions with the nlme pack-
age (Pinheiro et al., 2018) for the R software environment (Version 3.6.0; R Core
Team, 2019), fitting the models by maximizing the restricted log-likelihood (REML
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Table 5.3: Description of the portion of the action whose selection latency is
measured, at each step.

Step Action

A Move cursor from centre to cup
B Move cup onto ice cream machine
C Move cursor from centre to lid
D Move cursor from centre to spoon
E Move spoon onto Nutella
F Move spoon from centre to its original slot
G Move cursor from centre to wafer
H Move cursor from centre to fork/spoon
I Move fork/spoon to banana/sprinkles

approach). The dependent variable (step duration) was unskewed by a log-transfor-
mation. We fitted one model per step, whereby we defined a random intercept per
participant to account for the repeated measures, and included Age group (categor-
ical variable, 3 levels) and secondary task (categorical, 2 level) as fixed effect factors;
as well as all the possible interaction terms.

5.2.3 Results

5.2.3.1 Acquisition phase and overview age differences

Figure 5.7 shows the trial durations across steps and condition (with/without sec-
ondary task; for session 3 and 4) in each age group. When comparing sessions 1-2
against session 3-4 (without secondary task), session 3-4 had significantly shorter
trial duration than 1-2, within each age group (W(N = 19) = 7.0, p = 0.0001 for
7- to 8-year-olds and 9- to 11-year-olds, W(N = 19) = 7.0, p = 0.0001 for adults).
When comparing with secondary task against without (in sessions 3-4), trial dura-
tion was significantly larger with the secondary task than without, within each age
group (W(N = 8) = 5.0, p = 0.0391 for 7- to 8-year-olds and 9- to 11-year-olds,
W(N = 19) = 5.0, p < 0.0001 for adults). Results are summarised in table 5.4.
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Fig. 5.7: Median trial duration across sessions and age groups, with or with-
out secondary task. Error bars show the inter-quartile range. Data from all

participants regardless of their number of completed sessions.

Table 5.4: Wilcoxon signed-rank tests for Trial Duration comparing sessions
(only without secondary task: ST−) or conditions (with secondary task: ST+

against without: ST−; only in sessions 3&4). The table shows: W-value
(Wilcoxon test statistic), N of pairs with non-zero differences, p-value.

ST−, S1&2 vs S3&4 S3&4, ST− vs ST+

7-8 W = 0.0, N = 8, p = 0.0078 W = 5.0, N = 8, p = 0.0391
9-12 W = 0.0, N = 8, p = 0.0078 W = 3.0, N = 8, p = 0.0391
Adults W = 7.0, N = 19, p = 0.0001 W = 5.0, N = 19, p < 0.0001

The Proportion of Incorrect Goal Executions slightly decreased between S1&2
and S3&4 in younger children (t(DF = 7) = 2.15, p = 0.0498). Otherwise, it did
not differ significantly between sessions of between conditions (i.e., with/without
secondary tasks) (Figure 5.8 and table 5.5).

Fig. 5.8: Average Proportion of Incorrect Goal Execution across sessions and
age groups, with or without secondary task. Error bars show the s.e.m. Data

from all participants regardless of their number of completed sessions.

When collapsed across sessions and conditions (see Figure 5.9 and table 5.6), the
age differences on Proportion of Incorrect goal execution were not significant either.
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Table 5.5: Independent samples t-test on Proportion of Incorrect Goal Exe-
cution comparing sessions (only without secondary task: ST−) or comparing
conditions (with secondary task: ST+ against without: ST−; only in sessions

3&4). The table presents t(degrees of freedom) and the p-values.

ST− , S1&2 vs S3&4 S3&4, ST− vs ST+

7- to 8-year-olds t(7)=2.15, p=0.0498 t(8)=-1.00, p=0.3466
9- to 11-year-olds t(7)=-0.94, p=0.3807 t(7)=1.00, p=0.3343
Adults t(18)=0.56, p=0.5765 t(18)=0.00, p=1.0000

Fig. 5.9: Average Proportion of Incorrect Goal Execution across age groups
(collapsed across all sessions and conditions). Error bars indicate the s.e.m.

and individual points represent individual participants.

Table 5.6: Independent samples t-test on Proportion of Incorrect Goal Exe-
cution comparing age groups. DF: degrees of freedom.

test-statistic DF p-value

7- to 8-year-olds vs 9- to 11-year-olds 0.27 15 0.7892
7- to 8-year-olds vs Adults 0.27 25 0.7892
9- to 11-year-olds vs Adults 0.27 26 0.7892

5.2.3.2 Step errors and latencies

Figure 5.10 presents the errors at the level of a single step but summed together to
look at overall age differences. Younger children made significantly more errors at
step-level (summed across steps) than older children (t(DF = 26) = 6, p < 0.0001)
and adults (t(DF = 16) = 2, p = 0.012), as detailed on table 5.7.
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Fig. 5.10: Cumulated step errors (proportion) in sessions 3 and 4 across age
groups. Grey dots indicate the average across participants, error bars indi-

cate the s.e.m. and individual points represent individual participants.

Table 5.7: Independent samples t-tests on the Proportion Cumulated step
errors in sessions 3&4 across age groups. N1: sample size of the group on
the left-hand side, N2 for the right-hand side of the comparison. DF: degrees

of freedom.

test-statistic DF p-value

7- to 8-year-olds vs 9- to 11-year-olds 6 26 <0.0001
7- to 8-year-olds vs Adults 2 16 0.0124
9- to 11-year-olds vs Adults 1 27 0.0726

Figure 5.11 shows the proportion of errors across steps (for all the age groups
and conditions together). The number of errors is not uniform across all steps. The
steps B, E and I all show remarkably few errors (only 2 participants have non-zero
proportion errors in these steps). The errors were concentrated at the other steps,
and a one-sample t-test confirmed that the proportions of errors at all steps but step
B, E and I significantly differed from zero, as reported in table 5.8.
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Fig. 5.11: Proportion of step errors in sessions 3 and 4 (collapsed across age
groups and conditions). Grey dots indicate the average across participants,
error bars indicate the s.e.m. and individual points represent individual

participants.

Table 5.8: One-sample t-tests comparing the errors collapsed across partici-
pants and conditions against 0, in sessions 3&4. The degrees of freedom are

71.

Step A B C D E F G H I

test-statistic 3.09 1.00 2.76 2.01 1.00 2.97 3.13 2.22 1.31
p-value 0.003 0.321 0.007 0.048 0.321 0.004 0.003 0.030 0.194

We now turn to errors at each step shown in Figure 5.12 and Figure 5.13. There
was no significant effect of secondary task as detailed in table 5.9. Although not
significant, the younger children’s group had higher proportion errors at step C with
secondary task than without.
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Fig. 5.12: Proportion of step errors in sessions 3 and 4 across age groups,
without secondary task (ST−; left) or with (ST+; right). Grey dots indicate
the average across participants, error bars indicate the s.e.m. and individ-
ual points represent individual participants. N.B : the y-scales differ across

rows (i.e. age groups).

Table 5.9: Paired-sample t-tests comparing With secondary task against er-
rors Without secondary task, within each step and each age group, all in
sessions 3&4. The degrees of freedom are 8 for each children’s group (7-8

and 9-11), 17 for the adults’ group.

Step A B C D E F G H I

7-8

test-statistic -1.000 -1.0 2.266 -1.961 Both 0 -0.861 0.901 0.371 1.0
p-value 0.347 0.347 0.053 0.086 Both 0 0.414 0.394 0.720 0.347

9-11

test-statistic 1.000 Both 0 -1.000 -1.0 Both 0 0.319 -1.486 1.000 Both 0
p-value 0.347 Both 0 0.347 0.347 Both 0 0.758 0.176 0.347 Both 0

Adults

test-statistic 0.994 Both 0 -1.000 Both 0 1.0 0.654 -0.739 -1.000 -1.0
p-value 0.334 Both 0 0.331 Both 0 0.331 0.522 0.470 0.331 0.331

In the without secondary task condition, the 7-8 group made significantly more
errors than adults at step D (t(DF = 25) = 2.83, p = 0.009). There was no other
significant difference between age groups without secondary task (table 5.10).
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Fig. 5.13: Proportion of step errors in sessions 3 and 4 across age groups,
without secondary task (ST−; left) or with (ST+; right); with identical y-
scales across all rows and columns. Grey dots indicate the average across

participants and error bars indicate the s.e.m.

Table 5.10: Independent samples t-tests comparing Proportion of errors be-
tween pairs of age groups, all Without Secondary Task, in sessions 3&4,
within each step. The degrees of freedom are 16 for the first row’s tests, 25

for the second and 25 for the last.

Step A B C D E F G H I

7-8 vs 9-11

test-statistic 1.512 1.0 0.639 1.284 Both 0 1.386 -0.343 1.0 Both 0
p-value 0.15 0.332 0.532 0.217 Both 0 0.185 0.736 0.332 Both 0

7-8 vs Adults

test-statistic 1.358 1.443 0.634 2.83 Both 0 2.187 0.414 0.816 -0.7
p-value 0.187 0.161 0.532 0.009 Both 0 0.038 0.683 0.422 0.49

9-11 vs Adults

test-statistic -0.7 Both 0 0.0 1.443 Both 0 0.503 0.941 -0.7 -0.7
p-value 0.49 Both 0 1.0 0.161 Both 0 0.62 0.356 0.49 0.49

When comparing errors between age groups this time with secondary task (ta-
ble 5.11), there were differences at Step C, G and H that were not present without
secondary task. At step C, the 7-8 group made significantly more errors than the
9-11 group (t(DF = 16) = 2.45, p = 0.026) and than adults (t(DF = 25) = 3.53, p =

0.002). At step G and H, the 7-8 group made significantly more errors than adults
(step G: t(DF = 25) = 2.46, p = 0.021, step H: t(DF = 25) = 2.10, p = 0.046).
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Table 5.11: Independent samples t-tests Proportion of errors between pairs
of age groups, all With Secondary Task, in sessions 3&4, within each step.
The degrees of freedom are 16 for the first row’s tests, 25 for the second and

25 for the last.

Step A B C D E F G H I

7-8 vs 9-11

test-statistic 0.753 Both 0 2.447 Both 0 Both 0 0.463 1.957 0.877 1.0
p-value 0.462 Both 0 0.026 Both 0 Both 0 0.65 0.068 0.393 0.332

7-8 vs Adults

test-statistic 0.205 Both 0 3.531 Both 0 -0.7 0.907 2.463 2.099 1.443
p-value 0.84 Both 0 0.002 Both 0 0.49 0.373 0.021 0.046 0.161

9-11 vs Adults

test-statistic -0.567 Both 0 Both 0 Both 0 -0.7 0.289 -1.02 1.443 Both 0
p-value 0.575 Both 0 Both 0 Both 0 0.49 0.775 0.317 0.161 Both 0

Table 5.12 presents the details of the actions made by participants in the erro-
neous steps, and their classification among anticipation/omission (of a subgoal),
omission (of a single step), substitution, and perseveration. This table presents the
raw number of errors rather than proportion, given the small numbers.

Figure A.2 in the appendix shows the step-level action selection latencies (with or
without individual participants data points). The corresponding linear mixed model
regressions at each step are presented in the appendix (table A.2 until table A.9 in the
appendix). Figure A.3 in the appendix shows the step-level action selection latencies
in the trials with the ’spoon-sprinkles’ goal only.
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5.2.4 Discussion

5.2.4.1 Task validity

First, the newly-developed task appears to have the right level of difficulty and du-
ration (number of trials per session and number of sessions) for our age range, and
to be engaging enough so that a good number of participants completed all four
sessions of the study. The following sections will discuss 1) the task validity, by ver-
ifying behaviour that can be expected based on previous studies on adults routine
action, and 2) what the task reveals about changes in routine action across develop-
ment.

5.2.4.2 Task acquisition

Our study is concerned with routinised action selection, and we start by overview-
ing trial duration and goal-level performance across sessions. Although age groups
show different baseline trial duration, there is a significant drop in response time
from the first two sessions to the last two, and this in each group. While it is not
possible to rule out that additional sessions would see a further decline in response
time, response times in session 4 are not qualitatively shorter than in session 3. This
evolution of trial duration across sessions supports the proposal that learning occurs
during the first two sessions, and that the last two can be taken to study (partially)
routinised action control in this experiment.

The Proportion of Incorrect Goal Execution shows a small improvement between
the first two and the last two sessions in 7- to 8-year-olds. However, there is no sig-
nificant difference in the proportions between groups, although there seems to be a
slight trend for children to make more Proportion of Incorrect Goal Execution overall
than adults. Moreover, Incorrect Goal Execution errors are infrequent overall. This
suggests that completing the main goal of the task (either keeping track of the trial’s
goal cue - the background colour, and/or retrieving the correct mapping between
the goal’s cue and the appropriate sequence) is not significantly more challenging
for children than adults. Thus, the task seems appropriate to study children’s con-
trol of the sequences. No further pattern appears on this variable and we focus on
the errors at step level in the following section.

5.2.4.3 Routinised action control

Error distribution across steps

When looking at all age groups and conditions together, it is apparent that the er-
rors are not randomly distributed across the sequence. A group of three steps show
remarkably few errors: placing ice cream to the centre, placing Nutella onto the ice cream,
and placing the final topping onto the ice cream. These three steps are all within-subtask
actions. However, the rarity of errors at such steps may not simply be due to their
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within-subtask location in the task. Indeed, the get spoon, that is also located within-
subtask in the Nutella subtask, shows relatively more errors. Given the small num-
ber of errors overall, these comparisons should be taken with caution.

These steps (placing ice cream to the centre, placing Nutella onto the ice cream, and
placing the final topping onto the ice cream) however all have the specificity of achieving
the subgoal they belong to (by updating the state of the centre). They constitute,
according to Schwartz et al. (1991), crux actions. This indicates that participants use
a goal-directed, hierarchical representation of the sequence when executing the task.
That is, instead of a chain of single actions, actions are grouped in terms of subgoals
(e.g., the subgoal prepare ice cream with the sub-actions: get cup, fill the cup with ice
cream and place to the centre; or the subgoal add Nutella, with the sub-actions: remove
the lid, get the spoon, get the Nutella, drop onto the ice cream, discard the spoon). We must
note that the drop the Nutella onto the ice cream is not the last action of that subgoal,
but is still the one that visibly achieves the goal, since discarding the spoon can be seen
as peripheral to that goal.

When broken down by age, the same structure appears in the data of the three
age groups (fewer errors at the crux actions). This suggests that even the youngest
children of the sample use a hierarchical representation of the task like adults do.
This is consistent with Schröer et al.’s (2021) results suggesting that from 5 years of
age, children are able to follow hierarchical goal structures.

Age and secondary task effects

When looking at step-level errors summed across steps, younger children made
more errors overall than the two older age groups. The errors that were more com-
mon when looking at all groups combined seem to be the errors most common in
the younger children’s group.

The effects of the secondary task were not significant in any age group per con-
dition case. In all age groups, the lack of significant difference with and without
secondary task suggests that actions may have been well-learnt, and thus could be
executed without disruption even under cognitive load. It might also be that errors
are so rare in general that the study is unable to detect significant changes, while
response time data might be able to capture more differences. Further studies might
therefore confirm the trend for the secondary task to interfere with the Get lid step,
by measuring errors or by being designed to make controlled response time com-
parisons. If the trend is confirmed, it would indicate that Getting the lid being an
’enabling’ action (that prepares the subgoal of getting the Nutella onto the ice cream), it
is less central thus more susceptible to errors.

When comparing age groups together under cognitive load, younger children
struggled more than one or the other age group in three steps: Getting the lid, Getting
the wafer and Getting the spoon or fork. The step Getting the spoon or fork constitutes
a branch point. The more frequent errors at this branch point in younger children
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compared to adults, together with the higher proportion of incorrect goal execu-
tion in younger children compared to older children, suggests that younger children
may struggle to keep the overarching goal sufficiently activated until the selection
between the spoon or fork. This would be consistent with the theories of competitive
queuing (e.g., Houghton, 1990), according to which the actions in a sequence receive
top-down activation from a goal state unit, initialised at the start of a sequence, and
such activations decrease across later steps. Humphreys et al. (2000) found that er-
rors in normal subjects under secondary task conditions could be explained by the
decrease of activation of actions resulting from the decreasing gradient of activa-
tions from the goal state unit across steps. Therefore, the spoon or fork step may
be more susceptible of errors in younger children because: (1) the step constitutes
a branch point where there might be competition between two compatible actions,
that requires more intense top-down activation (compared to other steps) from the
goal unit to link the ongoing goal’s cue to the appropriate action, and (2) due to
the position of the action late in the sequence, and combined with the presumably
lower supervisory control abilities in younger children (compared to older children
or adults), this top-down activation may not always be sufficient to guide the appro-
priate action selection at this step.

The Getting the lid and Getting the wafer errors were also relatively highly frequent
although they do not constitute a branch point like the Getting the spoon or fork step.
As mentioned earlier, the enabling nature of the Getting the lid action may make it
less central thus less susceptible to errors even without secondary task, and more
clearly under secondary task in younger children. Likewise, the subgoal Getting the
wafer may be considered less central to the overarching goal of making an ice cream
and consequently may be forgotten particularly often. The two types of errors may
be due to a tendency, under cognitive load, to use memory scripts based on real-
life experience (where adding wafers on ice creams is uncommon). It might also
be linked to the temporal proximity of the Wafer subgoal with the final subgoal, that
constitutes a branch point. Indeed, during the steps preceding the branch point, par-
ticipants may anticipate the choice between two alternatives (fork-banana or spoon-
sprinkles). They may prioritize, at the expense of lower-level goals, the higher-level
goal which is differentiated by the last subgoal. Consequently, participants may
over-activate the last subgoal representation, leading to the anticipation/omission
of the Wafer subtask. This explanation of the high errors in younger children at the
Wafter subtask is incompatible with previous explanation, where errors at the sub-
sequent branch point were attributed to the under-activation of the goal state unit.

Another explanation may be that the Wafer step belongs to the Wafer subgoal
and differs from the other subgoals in that it is a single-step subgoal. Being a single
action, it does not benefit from associative support from other actions (that would
belong to the same subgoal). For that reason, it can be harder to remember. Either
way, the cognitive load or divided attention produced by the secondary task reveals
that some of the subgoals’ representation may be more fragile in the 7- to 8-year-olds
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group than in adults.

Methodological considerations

Selection latencies were too ambiguous to be interpreted. The succession of certain
actions and the placement and boundaries had sometimes different starting points
(centre, or side). Consequently, the travel distance on screen limits the possible
comparisons. A pair of actions could have constituted a branch point (BP) and a
comparable non branch point: selecting between the spoon and the fork for the last
subgoal (BP) and selecting the spoon for the Nutella subgoal (nBP). However, a non-
negligible number of errors occurred in the step preceding the branch point (wafer),
adding noise that may impede the direct comparison of BP and nBP latencies. We
therefore adapted the task in the subsequent experiment to allow such action latency
comparisons and interpretations.

5.2.5 Interim conclusion

In conclusion, all age groups appear to use a hierarchically-structured representation
of the task sequences. Instead, it might have been that the younger group used a flat
task representation, i.e. with all actions equal. This would have led to a uniform dis-
tribution of errors across steps. But the opposite was observed. Even the youngest
children structure their acquired task representation, presumably by bringing to bear
knowledge either from other experience (e.g., making other foods) or by identifying
enabling, crux and clean-up actions and chunking actions into super-ordinate mini-
sequences.

Within this non-flat task representation, 7- to 8-year-olds seemed to have certain
action representations weaker than others, resulting in errors at certain steps under
cognitive load. This is consistent with the view that supervisory control is still de-
veloping throughout the school age years and thus may bring insufficient top-down
control at certain challenging steps. This will be investigated further in the next
experiment by making use of response times and kinematic measures.
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5.3 Experiment 4: Studying Branch Points to Probe the Su-
pervisory System

5.3.1 Introduction

This experiment explores further the role of the supervisory system in interaction
with the routine system. It does so by circumventing a limitation of experiment 3,
which was that the response time difference between points would be difficult to at-
tribute either to the pure organisation of the task (placements of icons and succession
of actions) or to the cognitive processes of interest.

In experiment 3, the distribution and types of errors informed us about the hi-
erarchical nature of the representation used for sequence control, in particular at
subtask boundaries. To be able to dissociate and measure clearly the involvement
of the supervisory system and routine system, we focus here on the comparison of
latencies at two types of points. The first type, branch points (BP), is hypothesised
to require maximal modulation from the supervisory system. The second type, non
branch points (nBP) is hypothesised to require less modulation from the supervisory
system (or in case of strong routinisation, no modulation at all), presumably due to
the absence of alternative compatible actions.

5.3.1.1 The GoGelato task version 2

The only conceptual change between the present task and the previous one is the
composition of the action sequences. In experiment 3, it seemed that the frequent
forgetting of the step ’discard the spoon’ and/or the step ’adding the wafer’ resulted
in large variability of behaviour at the action ’select the spoon’ or ’select the fork’.
Indeed, these steps were placed earlier in the sequence than the spoon or fork step,
possibly adding noise which was not there when selecting the spoon in the Nutella
subgoal. In the current task, we adjusted the action sequences in order to reduce the
noise and make possible a cleaner comparison of the branch point’s and the control,
non branch point’s, latencies. Specifically, we deleted the ’discarding the spoon’ and
the ’adding the wafer’ steps.

Following these changes, the differences that characterised the BP and nBP steps
were that the nBP were within-sequence and had a 100% transition probability from
their preceding action, while the BP were between-sequence and had a 50% transi-
tion probability.

5.3.1.2 Stop-signal task

To link the supervisory control in action sequences with executive functions (EF)
measured by standard tasks in the developmental literature, we also administered
a classic EF task. The task was the stop-signal task (Logan, 1994), held to measure
specifically the inhibition component of EF. This was done for the adult sample only,
since including it would make the study too long for children. Nonetheless, the



Chapter 5. Hierarchical Control of Action Sequences: Two Online Studies 175

results in adults would be informative for development: if inter-individual differ-
ences in EF measured in adults correlate with action sequence performance, then
this would give indirect evidence for the changes with age in the link between exec-
utive functions and action sequence performance in children.

Performance on the stop-signal task has been found to indicate age-related chan-
ges in inhibitory control (Carver et al., 2001, Williams et al., 1999). Given that in-
hibitory control is a component of EF, this task was aimed to be a partial indicator
of the role of executive functions as measured by a standard test. We are interested
both in the inhibition component and general executive functioning measured by the
stop-signal; indeed performance on various EF tasks is known to be strongly inter-
correlated (Miyake et al., 2000b), and separating components would have required a
battery of other tasks which would have made the study too long even from adults.

The inhibition component was chosen because we expected it to be important in
this specific task (although, as just mentioned, we believe other EF components may
play an important role as well). There is sparse evidence demonstrating which role
inhibition plays in action sequence control. In Sebold et al. (2016), adults with lower
inhibitory control were argued to rely less on the hypothesised model-based system
in the two-stage task (similar to the task of Decker et al. (2016) that we used for
Chapter 3). In contrast, within the theoretical perspective adopted here, we assume
that at BPs the action from the inappropriate subtask must be inhibited to allow
selection of the appropriate action. Thus, stronger inhibitory control should correlate
with a reduced cost at the BPs, as will be developed in the next Section.

5.3.2 Hypotheses and predictions

5.3.2.1 Hypothesis 1 (H1): Action selection at BPs is slower than at nBPs

Our main hypothesis, and a pre-requisite for the subsequent hypotheses, is that ac-
tion selection at branch points (BPs) takes longer than at non branch points (nBP).
This is because branch points are thought to rely more on supervisory resources
than non branch points do. This has been shown in adults (e.g., Ruh et al., 2008,
Ruh et al., 2010), and we expect it to be the same in children. Alternative accounts
would be that children’s action control does not follow the same principles as for
adults. One could imagine, for example, that the representation of the primary se-
quence production is flat (i.e., non-hierarchical) and that all actions are conceptually
equivalent. This would imply that selection latencies should be identical at BPs and
nBPs.

5.3.2.2 Hypothesis 2 (H2): The secondary task affects latencies

We expect that introducing a secondary task will lengthen the performance of the se-
quence production task (assuming participants are indeed performing both tasks).
Indeed, a secondary task adds demands to higher-level resources that are normally
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allocated to the sequence execution. Specifically, the overall trial duration with sec-
ondary task should be longer than without secondary task. How the secondary task
affects specific points or not is the topic of the next hypothesis.

5.3.2.3 Hypothesis 3 (H3): The secondary task affects BP latencies more than nBP
latencies

We hypothesised that in both adults and children, action selection would be more
slowed by a secondary task at BPs than at nBPs. As mentioned, this is because the
secondary task demands supervisory resources which interfere with the supervisory
resources needed at BPs, resulting in longer latencies at BPs than at nBPs. We will
refer to the difference in latencies between BPs and nBPs as BP cost.

5.3.2.4 Hypothesis 4 (H4): The BP cost changes with age

Furthermore, given that executive functions are known to improve with age, the
longer latencies at BPs than nBPs, and the extent to which the secondary task would
affect action selection at different points, in particular the BP cost (hypothesis 1, 2,
and 3) was expected to be enhanced in children compared to adults, and in younger
compared to older children.

5.3.2.5 Exploratory investigations

There are a number of ways in which the availability and maturation of executive
functions, as well as the degree of routinisation, could affect the kinematics of action
selection. Based on the previous chapters, measures of deviation such as maximal
deviation, and the measure of speed variability, seemed to be the most informa-
tive and least correlated to response time (which is our primary measure). We did
not make precise predictions regarding kinematics but expected, for example, that
the maximal deviation would increase with supervisory demands (at branch points
and/or under cognitive load), and that this would be occur more intensely for chil-
dren than adults and for younger children than older children. We also expected the
speed variability to exhibit different patterns than response time, as was the case in
the SuperCook study of Chapter 4, without a-priori hypotheses on this pattern.

5.3.2.6 Relationship between stop-signal measure and action sequence control
variables

Finally, our predictions regarding the SSRT measured by the stop-signal task, and
some key measures of action sequence control were the following. Our main pre-
diction was regarding the BP cost. We expected a positive correlation between the
SSRT and the BP cost: having a shorter SSRT would reflect better executive function
skills, and this would correlate positively with the BP cost. Indeed, a smaller BP
cost would reflect less difficulty in action execution at BP. On the contrary, the BP
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latency were expected to show a negative correlation with the SSRT. For the Coeffi-
cient of Variability of speed CoV, we expected a positive correlation. That’s because
we expected lower CoV to reflect a better routinisation degree in the task and to be
associated with lower SSRT. We also explored the correlation between SSRT and the
Proportion of incorrect goals, for which we expected a positive correlation. Indeed,
we expected fewer errors in the task to be associated with lower SSRT.

We can think of the SSRT broadly as a measure of EF. Alternatively, we can con-
sider the particular role of the inhibitory control component of EF, as follows. Both
for the proportion of incorrect goals and DeltaBP− nBP, the assumed role of inhibitory
control (measured by the stop-signal task) is that one must inhibit the representation
of the incorrect subgoal in order to select the proper action of the subgoal. Higher
inhibitory control abilities would result in fewer errors (performing the wrong sub-
task hence achieving an incorrect goal), and/or (at least) reduced slow down at the
time of selecting the action at a BP.

5.3.3 Methods

We will outline the aspects of the present task’s version that differ from the task
described in Section 5.2- all the rest were identical. The key conceptual changes in
the present task’s version are the nature and number of actions that make up the
action sequences. On top of this, minor changes were introduced to improve the
reliability and interpretability of the results.

5.3.3.1 Participants

All adults in this study were recruited via Prolific, and all the children via Birkbeck’s
Babylab database. 50 adults (N females = 25) and 69 children (N females = 33) took
part in the experiment. Not all participants completed all sessions, and the total
numbers of participants per age, as well as the number of sessions they completed,
are presented in table 5.13.

Some sessions completed by child participants were lost due to server commu-
nication bugs. We were however confident, thanks to timestamps, and despite the
missing data, about when the sessions had been performed. We were able to include
session i + 1, knowing that session i had been performed, even if the data from ses-
sion i was missing. The data of 12 sessions, performed by 9 different participants,
are missing due to this bug (8 sessions number 1, 2 sessions number 2 and 2 ses-
sions number 3). Importantly, this loss of data does not appear systematically more
in a given age group (three 7-year-olds, one 8-year-old, three 9-year-olds and two
10-year-olds) which meant we could keep the other sessions from these participants.
Another bug happened for some participants where, instead of doing a given ses-
sion, they were brought to the next one. In the cases where, at the time of doing
session 2, participants reached the study for session 3 (meaning they got the sec-
ondary task too soon), that session and all the following ones were be removed from
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the data. Because of this bug, 8 sessions from 4 different participants were discarded
(from one 7-year-old, one 8-year-old and two 10-year-olds).

The two aforementioned bugs never occurred in the adult sample. The bugs
were probably caused by a wrong key combination, by refreshing or closing the web
browser at the wrong times. We assumed that the reason why the bugs did not
happen in the adult’s sample is because the adults were all tested on Prolific, where
they are redirected to the Prolific platform after the study (and are understandably
more experienced with online studies and presumably careful with proceeding until
the final page).

Additionally, 3 sessions each from different participants (aged 7, 8 and 12) were
deleted for having too few trials. However, the sessions that followed them were
kept due to participants’ having completed half of the preceding session (if we con-
sider the demonstration trial) and the concerned sessions and ages not seeming to
have a pattern that would bias the results (session 3 of one 8 y.o, session 2 of one 8
y.o. and session 1 of one 11 y.o.). Participants whose last session had fewer than 6 tri-
als, and who did not attempt to resume the study afterwards, had their last session
not included; their count is merged with the counts of participants who stopped at
the prior session. The number of sessions per age is presented in Table 5.13.

The analyses ensure that equal weight is given to each participant regardless of
the imbalance in the number of sessions available.

Table 5.13: Sample sizes, broken down by group (adults and children), and
children’s group further broken down by age (the integer number indicate

age in years).

N (samples sizes by group) Adults Children 7 8 9 10 11 12 13

Took part (started Session 1) 50 69 15 12 14 14 4 8 2
Included (completed S1) 50 69 15 12 14 14 4 8 2
Completed at least S1 & 2 44 51 11 9 11 8 4 7 1
Completed at least S1, 2 & 3 37 47 11 9 11 6 3 7 0
Completed S1, 2, 3& 4 27 42 10 7 10 6 2 7 0

To simplify the analyses, we aimed to create two groups of children via a split
around the median age. Given the large discrepancy in the participants in session
1 (N = 69) and in session 4 (N = 4), and given that our main hypotheses will be
tested in data from sessions 3 & 4, we carried out the median-split based on the
participants who did at least session 3. The resulting median was 9 years old, with
N = 20 children between 7 and 8 years old (the group will be denoted as 7-8), and
N = 27 children between 9 and 12 years old (the group will be denoted at 9-12). The
adults’ group will be denoted as ADU.

As explained in Section 5.3.1.2, only adults took part in the stop-signal task.
Adults were compensated the same amount as in the previous study, except at ses-
sion 4 where they received £4 because they performed the additional stop-signal
task.
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5.3.3.2 Materials

Novel action sequence

The present version of the game had a different sequence with 7 steps from that used
in Experiment 3, instead of 9. Apart from introducing a knife icon, the other icons,
their dimension and start locations were identical to the previous version icons as
described in Section 5.2.2.2. The number of slots also remained the same since the
wafer icon was no longer present. The sequence of actions to be carried out are listed
and illustrated in Figure 5.14.

Fig. 5.14: Action sequence: the 7 main actions of the game.

The actions ’Get cup’, ’Get lid’, ’Get knife’ and ’Get fork or spoon’ all started
from the centre of the screen. The actions ’Bring cup to ice-cream machine’, ’Get lid’,
’Bring to Nutella’ were all followed by bringing the corresponding object (that is, the
cup filled with ice cream, the lid or the knife with Nutella) to the central location.
The ’Get knife’ action constituted the ’reference’ non branch point against which the
branch point (BP) could be compared. We call it non branch point (nBP) hereafter. The
BP was the ’Get fork’ or ’Get spoon’ (according to the sequence) action.

Within this novel sequence, our BP (branch point) and nBP (non branch point)
were comparable in terms of the distance to be travelled for selection (from the centre
to a peripheral slot, the slots being all equidistant to the centre) and type of object
(implement: fork or spoon at BP, knife at nBP) with comparable colour, broad shape,
and salience, while being distinguishable enough from each other. The first version
of the study had intentionally the exact same object (spoon) at BP and nBP. This was
done to ensure that the differences observed would be uniquely due to the role of
the action in the sequence (BP or nBP) and not to the object itself. A disadvantage
was that the same item was consequently used twice (while all the others were used
once), which could lead to biased latencies (either by facilitating the visual search for
the object, hence the selection latencies, or on the contrary by triggering avoidance
of a previously visited location). Controlling for this would have required designing
a version where the relative order of BP and nBP are reversed in some participants,
thus requiring a larger sample size which was not achievable in the project time
frame.
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Minor changes from the previous task version

In the version of the task used in Experiment 3, the sequence of trial goals (indi-
cated by the background colour) was pseudo-randomised by shuffling a sequence
of 8 trials of each type. We added a constraint to this sequence randomisation: the
resulting sequence had to have fewer than 3 successive identical trials in a row. This
was done to ensure the background colour cue would not risk becoming irrelevant
and be ignored.

At the end of the study, we added a question page asking the participants if they
had technical problems (e.g., game getting blocked or extremely slow, which could
occasionally happen depending on the internet connection). We did not have to
exclude participants for that reason and thus will not mention it further.

The ’buzz’ sound which accompanied incorrect actions in the first version was
reported by some to be frustrating. Given that the feedback for the incorrect na-
ture of the action was clear visually (with the icons moving back to their original
location), we removed the sound.

In the version of Experiment 3, the bird chirp count sequence in a given trial was
pre-programmed (randomly) regardless of the time taken by participants. This had
the risk of occasionally having the sound sequence end relatively early in a partic-
ipant’s performance (in particular for a slow participant). To prevent this, in this
version we programmed the sounds to be contingent on the participant’s progress
(i.e., programmed it relative to the actions completed). The sounds’ occurrence was
still random (randomly spread among the actions, following a given action by a ran-
dom interval of between 100 and 900ms). We verified via informal piloting that the
occurrence of sounds was unpredictable. The pilot participants reported not having
noticed that the sounds were contingent on their performing the actions.

The Stop-signal task

We used the stop-signal task developed and made available by Verbruggen et al.
(2019), online with JavaScript and jsPsych.

The task, whose sequence of events is presented on Figure 5.15, included Go and
Stop trials. Go trials required participants to respond to an arrow by pressing the
key with the arrow pointing in the same direction. A minority of trials were Stop
trials, starting the same as Go trials but where the arrow turned red after a variable
Stop Signal Delay (SSD), in which case participants were required to refrain from
responding.

A trial started with a fixation sign, replaced by the stimulus after 250ms. The
stimulus disappeared after a participant’s response or after 1,250ms. The inter-
stimulus interval was 750 ms. The proportion of Stop trials was one in four.

On Stop trials, the stop signal was presented after a variable Stop Signal Delay
(SSD). The SSD started at 300 ms and was adjusted continuously with a staircase
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procedure: after a correct Stop trial (i.e. response inhibited), the SSD increased by 50
ms; if incorrect, the SSD decreased by 50 ms.

Fig. 5.15: Sequence of events in the stop-signal task. FIX = fixation dura-
tion; SSD = stop signal delay; MAX.RT = maximum reaction time; ITI =
inter-trial interval. Participants are instructed to press the arrow key corre-
sponding to the displayed arrow. However one fourth of the trials the ar-
row turns red after a certain delay (the SSD), in which case participants are
instructed to suppress their response. Figure reproduced with permission

from Verbruggen et al. (2019), licensed under CC BY 4.0.

5.3.3.3 Procedure

The procedure was almost the same as for Experiment 3, described in Section 5.2.2.2.
The only difference was the addition of the stop-signal task, that participants com-
pleted at the end of the last (fourth) session. This task included a practice phase
(one block of 32 trials), with feedback, and an experimental phase (4 blocks of 64
trials). More details can be found in the task description provided by Verbruggen
et al. (2019).

5.3.3.4 Analyses

For trial-level variables, we analysed all four sessions. For step-level variables, we
analysed the last two sessions, unless otherwise specified.

For trial-level variables, we performed simple comparisons. For the step la-
tencies at BP and nBP, as well as for the kinematic variables, we performed more
in-depth analyses, with both non-parametric tests and linear mixed models. Con-
sistently with the last experiment, Wilcoxon signed-rank tests were carried out on
response time variables for within-participant comparisons and Mann-Whitney U
tests for between-participants comparisons. For proportion variables, paired and in-
dependent samples t-tests were carried out. The four types of test were carried out
with the Python module scipy.stats.

For the main variables of interest (step latencies and kinematics), we carried out
both non-parametric and Linear Mixed Models (LMM) as described further below.
We did so because both methods have some limitations with this dataset, hence us-
ing both and noting where they agree with each other would provide more reliable

https://creativecommons.org/licenses/by/4.0/
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evidence than one or the other alone. A limitation of non-parametric tests is that
they require summarising the data and lose some information. For example, the me-
dians at participant-level were used in the non-parametric tests, because the number
of trials varied by participants depending on whether they stopped at the third or
fourth sessions. This ensured that participants who completed more sessions were
not weighted more strongly than the ones who did not; however, this could lead
to other distortions. A limitation of the Linear Mixed Models is that although log-
transformation can significantly reduce skew in the data, the response time and kine-
matics data can still deviate from normality. Nevertheless, they are a standard way
to test the effects and interactions of all independent variables together. The stance
taken is that combining both approaches compensates for the shortcomings of the
alternative approach, and that converging evidence from both will be reliable.

The figures represent the raw (non log-transformed) variables’ median, with the
error bars representing the inter-quartile range (IQR), unless otherwise specified.
The Linear Mixed Models were however run on log-transformed data to remove
skewness. When a Linear Mixed Model (LMM) was run, the plots of the estimated
marginal means (predicted values) with confidence intervals are available in the ap-
pendix.

Definition of latency variables

Regarding latencies, our variables of interest were the portion of the trajectory that
started from the central location (from the moment when the previous icon was
dropped onto the centre) and that ended when a peripheral icon was selected (clicked
on). To further understand how much the amplitude of effects (Secondary Task: ST,
or Branch Point: BP) varied with age and condition, we computed the difference
in latencies with and without Secondary Task, Delta Latencies (ST+ − ST−) and the
difference in latencies at BP compared to nBP, Delta Latencies (BP− nBP). The latter
quantifies the BP cost.

Multiple comparison corrections

In this chapter, we are interested in several dependent variables and their change
across many independent variables. Our use of hypothesis-testing is motivated by
several goals: it helps us confirm or disconfirm if the data is in line with our theory
(when it comes to pre-defined predictions), but also to decide whether to treat the
data as noise or if the data is worthy of further investigation (when it comes to ex-
ploratory hypotheses). For exploratory analyses, such hypothesis testing is helpful
to identify the strong patterns and ignore the weak ones, given the large number of
DVs and IVs.

We use a conservative approach by correcting for multiple comparisons in the
LMMs. We use the False Discovery Rate (FDR) correction. We use an alpha level
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of 0.05 to interpret pre-defined hypotheses with sufficient confidence (i.e., signifi-
cant results mean the data is in line with our hypothesis). Furthermore, to fully
exploit the data and make sure that no interesting insights are left unconsidered,
FDR-corrected p-values that fall below 0.1 will be mentioned as ’non significant but
notable’.

Mixed models

The Linear Mixed Models (also known as multilevel models or linear mixed-effect
regressions) were conducted with the R package nlme (Pinheiro et al., 2020), using
the restricted maximum likelihood (REML) approach. For the step latencies in all
four sessions, without secondary task, we included the following fixed effect fac-
tors: branch point (categorical, levels: BP, nBP), session (categorical, levels: S1&2,
S3&4) and age group (categorical, levels: 7-8, 9-12, adults). For step latencies in ses-
sions 3&4, we included: branch point (categorical, levels: BP, nBP), secondary task
(categorical, levels: ST−, ST+) and age group (categorical, levels: 7-8, 9-12, adults).

For DeltaBP − nBP, we included secondary task (categorical, levels: ST−, ST+)
and age group (categorical, levels: 7-8, 9-12, adults). For DeltaST− − ST+, we in-
cluded Branch point (categorical, levels: BP, nBP) and age group (categorical, levels:
7-8, 9-12, adults). In all models, we also included all the possible interaction terms,
and defined a random intercept per participant to account for the repeated measures
(Steele, 2014). Because the age group is a categorical predictor with three levels, the
LMMs ran on the entire dataset performed by default the comparison of the two
children’s group against the adults’ group (baseline group). To compare the two
children’s groups to each other, we additionally ran each LMM on a subset of data
containing the children’s data only.

Kinematic variables

We used the kinematic variables that have been introduced in Chapter 4 (Average
absolute orthogonal distance to straight path, Log-ratio maximal relative distance to
end point, and Variability of speed within a trial) and that had proven to be infor-
mative there. An early investigation of Variability of speed revealed that the large
baseline differences between the speed in children and adults greatly affected the
scale of the variability of speed. To tease out this difference in speed (which is al-
ready captured by the latency variables) from the variability component itself, we
normalised the variability of speed by the average speed. We will call this variable
Coefficient of Variation in speed (or simply Coefficient of Variation, CoV). In other
words, we defined: CoV = stdspeed/averagespeed.

We decided to focus on variables that had limited correlation with Step laten-
cies, so that the kinematic analyses would bring complementary information. All
three kinematic variables were significantly correlated with Step latency: Spearman
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correlation coefficient R = 0.469 and p < 0.0001 for Average absolute orthogo-
nal distance; R = 0.498 and p < 0.0001 for Log-ratio maximal relative distance;
R = 0.288 and p = 0.0004 for CoV. Although CoV was significantly correlated with
Step latency, the correlation was noticeably smaller than for the other variables (0.29
against 0.47 or 0.50). It is not surprising that CoV brings different information than
latencies, given that two trials with the same latency could have, for example, one a
fairly uniform speed, and the other sharp changes in speed, where the slow portions
would be compensated by fast portions. Consequently, we retained the CoV vari-
able for more in-depth analyses. We performed the same LMM analysis on CoV as
on step latency (with a random intercept per participant, and BP, ST and age group
as fixed effects).

Stop-signal task

To analyse the stop-signal task, we used the analysis script made available by Ver-
bruggen et al. (2019). The variable of interest was the Stop Signal Response Time
(SSRT), as defined and calculated by Verbruggen et al. (2019). This variable is taken
to indicate the covert latency of the stop process, according to the Independent Race
model introduced by Logan et al. (2014).

We explain here briefly the idea behind the model’s estimation of the SSRT. The
stop-signal task is modelled as an independent race between a ’go runner’ and a
’stop runner’. A go stimulus triggers the ’go runner’, and a stop-signal triggers the
’stop runner’. If the ’go runner’ ends the race before the ’stop runner’, a failed stop
trial is obtained (which is conceptualised as unsuccessful inhibition). If the ’stop
runner’ ends the race first, a successful stop trial is obtained. The Independent race
model links the latencies of response on failed stop trials, the latencies on go trials
and the probability of response on stop trials to the different stop-signal delays that
are used in the task. It provides an estimate of the SSRT, as illustrated in Figure 5.16.

Fig. 5.16: SSRT (Stop Signal Response Time) in the Independent race model.
SSD: Stop Signal Delay. Figure reproduced with permission from Ver-

bruggen et al. (2019), licensed under CC BY 4.0.

https://creativecommons.org/licenses/by/4.0/
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5.3.4 Results

5.3.4.1 Secondary task

As a preliminary analysis, we verified that participants were not ignoring the sec-
ondary task. To do so, we looked at the average error count per participant (across
sessions 3 & 4). The participant with the highest average error had an average of
1.8 errors. It was a child, hence had been presented on average with 5 sounds. We
deemed the maximal error was low enough not to require excluding this participant
or any participant. The participants’ average error in the secondary task across age
groups are presented in table 5.14.

Table 5.14: Average error per age group in ’bird chirp’ counts in the sec-
ondary task.

average std

7- to 8-year-olds 0.25 0.39
9- to 12-year-olds 0.18 0.37
Adults 0.30 0.29

5.3.4.2 Task acquisition and overview of age differences

Figure 5.17 shows the trial duration across steps and conditions (with or without sec-
ondary task; for session 3 and 4) per age group. The overall trial duration was signifi-
cantly longer for 7-8 year-olds than 9-12 year-olds (Median7−8 = 23.4, Median9−12 =

16.1, U(N1 = 24, N2 = 37) = 734, , p < 0.0001), which was in turn significantly
longer for 9-12 year-olds than adults (Median9−12 = 16.1, Medianadults = 9.5, U(N1 =

37, N2 = 50) = 1737, p < 0.0001).

Fig. 5.17: Median trial duration across sessions and age groups, with and
without secondary task. Error bars represent the inter-quartile range. Data
from all participants are included in this figure, regardless of their total

number of completed sessions.
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When looking at the trials without secondary task, the sessions 3&4 grouped
together were significantly shorter than 1&2, and this for all three age groups (7-
8: W(N = 20) = 18, p = 0.0005, 9-12: W(N = 26) = 70, p = 0.0074, adults:
W(N = 37) = 133, p = 0.0010; cf. table 5.15).

Table 5.15: Wilcoxon signed-rank tests for Trial Duration comparisons be-
tween sessions (only without secondary task: ST−) or between conditions
(with secondary task: ST+ against without: ST−; only in sessions 3&4). The
table shows: W-value (Wilcoxon test statistic), N of pairs with non-zero dif-

ferences, p-value.

ST−, S1&2 vs S3&4 S3&4, ST− vs ST+

7-8 W=18, N=20, p=0.0005 W=69, N=20, p=0.1893
9-12 W=70, N=26, p=0.0074 W=138, N=26, p=0.2205
Adults W=133, N=37, p=0.0010 W=68, N=37, p<0.0001

To see to what extent the sessions 1&2 could be considered as a group, and ses-
sions 3&4 as another group, we compared session 1 against 2, and session 3 against
4 (table 5.16). Session 1 differed significantly from session 2 in all age groups (7-
8: W(N = 16) = 12, p = 0.0021, 9-12: W(N = 24) = 45, p = 0.0018 and adults:
W(N = 44) = 147, p = 0.0000). The difference between sessions 3 and 4 was still
significant in adults (W(N = 27) = 53, p = 0.0011).

Table 5.16: Wilcoxon signed-rank tests for Trial Duration comparison of ses-
sion 1 against 2, and of session 3 against 4; only in trials without secondary
task (ST−). The table shows: W-value (Wilcoxon test statistic), N of pairs

with non-zero differences, p-value.

S1 vs S2 S3 vs S4, ST−

7-8 W=12, N=16, p=0.0021 W=61, N=16, p=0.7436
9-12 W=45, N=24, p=0.0018 W=114, N=23, p=0.6849
Adults W=147, N=44, p<0.0001 W=53, N=27, p=0.0011

We then looked at the difference of amplitude between the drop from session 1
to 2 and the drop from 3 to 4 in each age group (table 5.17): it was significant for both
children’s groups (7-8: W(N = 13) = 14, p = 0.0266, 9-12: W(N = 19) = 34, p =

0.0124), unlike for adults (W(N = 27) = 165, p = 0.564).

Table 5.17: Wilcoxon signed-rank tests comparing the drop in Trial Duration
from session 1 to session 2, to the drop from session 3 to session 4; only in

trials without secondary task (ST−).

Median drop 1-2 Median drop 3-4 W-value N p-value

7-8 9.11 1.32 14 13 0.0266
9-12 2.21 0.00 34 19 0.0124
Adults 0.91 0.71 165 27 0.5642

When looking at the sessions 3&4 only, the trials with secondary task were signif-
icantly longer than those without for adults (W(N = 37) = 68, p < 0.0001), but for
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the child groups the comparison was not significant. Complete results are presented
in table 5.15. Nonetheless, children had visibly larger error bars than adults, and
7-8 larger errors bar than 9-12, suggesting that the ST adds considerably variability
in children (and even more so for younger children) compared to adults. Further-
more, the lack of statistical significance does not imply the absence of effect of the
secondary task.

There was no significant effect of session or secondary task on the Proportion
of Incorrect Goal Execution (Figure 5.18 and table 5.18), except in the 7-8 group
where the Proportion of Incorrect Goals decreased from S1&2 to S3&4 (t(DF=19) =
2.33, p = 0.0309).

Fig. 5.18: Average Proportion of Incorrect Goal Execution across sessions
and age groups, with and without secondary task. Data from all participants
are included in this figure, regardless of their total number of completed

sessions.

Table 5.18: Paired samples t-tests on Incorrect Goal Execution comparisons
between sessions (only without secondary task: ST−) or between conditions
(with secondary task: ST+ against without: ST−; only in sessions 3&4). The

table shows: statistic (degrees of freedom) and p-value.

ST−, S1&2 vs S3&4 S3&4, ST− vs ST+

7-8 t(19)=2.33, p=0.0309 t(19)=-0.57, p=0.5733
9-12 t(25)=1.01, p=0.3230 t(25)=1.01, p=0.3230
Adults t(36)=1.32, p=0.1953 t(36)=-1.85, p=0.0719

When looking at the Proportion Incorrect Goals per age groups collapsed across
sessions and secondary task (Figure 5.19 and table 5.19), there was no significant
differences between age groups.

Table 5.19: Independent samples t-tests on Proportion of Incorrect Goal Ex-
ecution comparisons between age groups. DF: degrees of freedom.

test-statistic DF p-value

7-8 vs 9-12 0.19 59 0.8467
7-8 vs Adults 1.76 72 0.0835
9-12 vs Adults 1.39 85 0.1669
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Fig. 5.19: Average proportion of incorrect goal execution age groups (col-
lapsed across all sessions and conditions). Error bars represent the s.e.m.
and individual points represent individual participants. Data from all par-
ticipants are included in this figure, regardless of their total number of com-

pleted sessions.

We also noted that the participant with the highest Proportion Incorrect Goals
performed incorrect goals less than 13% of the time. This higher bound is far from
chance level, which indicates that participants were all trying to perform the task
correctly by taking into account the sequence to be performed according to the back-
ground colour cue.

To give a comprehensive overview of the sequence’s data, we present the du-
rations of all the steps which had the same distance travelled (from the centre to a
peripheral slot, namely the first, third, fourth and sixth steps) in Figure 5.20, aver-
aged across the four sessions without secondary task. In the next Section, we focus
more particularly on the branch point and the ’reference’ non-branch point, intro-
duced earlier, on which statistics will be performed.
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Fig. 5.20: Selection latencies of the steps that start from the centre. Me-
dian collapsed across 4 sessions, without secondary task (ST−). The data
shown is the median across participants. Error bars represent the IQR (inter-

quartile range).

5.3.4.3 Practise effects at branch points and non-branch points

In-text, we report the FDR-corrected p-values for the Linear Mixed Models.

Sessions 1&2 vs 3&4 - Latencies

The response latencies as a function of BP and sessions (1&2 vs 3&4) and age groups
(without secondary task) are shown in Figure 5.21.

The LMM (table 5.20) indicated that BP responses were significantly slower than
nBP responses (t(DF= 4278) = 13.09, p < 0.001), 7-8 year-olds were significantly
slower than adults (t(DF= 81) = 12.85, p < 0.001), 9-12 year-olds were significantly
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Fig. 5.21: Step latencies at BP (branch points) and nBP (non branch points)
in the first half (S1&2) or second half (S3&4) of sessions, without secondary
task (ST−): median values of participants’ trials’ median. Error bars repre-

sent the IQR.

slower than adults (t(DF= 81) = 6.47, p < 0.001) and sessions 3&4 were ’non signif-
icantly but notably’ faster than sessions 1&2 (t(DF= 4278) = −2.01, p < 0.077). Ad-
ditionally, there was an interaction of session x 7-8 group (t(DF= 4278) = −5.88, p <

0.001) and of session x BP x 7-8 group (t(DF= 4278) = 3.74, p < 0.001).
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Table 5.20: Results of the LMM on: Step latencies regressed against session
(levels: s1-2, s3-4), BP and age group. Baseline group (against which com-

parisons are presented): ADU.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept -0.46 -0.56 -0.36 0.05 4278 -8.66 <0.001 <0.001 ***
s1-2or3-4 -0.07 -0.13 -0.00 0.03 4278 -2.01 0.045 0.077 .
BP 0.40 0.34 0.46 0.03 4278 13.09 <0.001 <0.001 ***
ageGp9-12 0.54 0.37 0.71 0.08 81 6.47 <0.001 <0.001 ***
ageGp7-8 1.18 1.00 1.36 0.09 81 12.85 <0.001 <0.001 ***
s1-2or3-4:ageGp9-12 -0.04 -0.15 0.06 0.05 4278 -0.78 0.438 0.526
s1-2or3-4:ageGp7-8 -0.36 -0.47 -0.24 0.06 4278 -5.88 <0.001 <0.001 ***
BP:ageGp9-12 0.03 -0.07 0.13 0.05 4278 0.54 0.587 0.587
BP:ageGp7-8 -0.10 -0.21 0.02 0.06 4278 -1.68 0.093 0.140
s1-2or3-4:BP -0.06 -0.15 0.03 0.05 4278 -1.30 0.195 0.260
s1-2or3-4:BP:ageGp9-12 0.06 -0.09 0.20 0.07 4278 0.76 0.448 0.489
s1-2or3-4:BP:ageGp7-8 0.32 0.15 0.48 0.08 4278 3.74 <0.001 <0.001 ***
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u): Confidence
Interval (upper bound), SE: standard error, p: unadjusted p-value, p (FDR): False Discovery Rate-
adjusted p-value, sig.: significance levels based on FDR-adjusted p-values:
.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Post-hoc tests revealed all pairwise comparisons were significant (as shown in
tables 5.23, 5.22 and 5.21). However, when looking at the contrasts for the two-way
interaction (session x 7-8 group), the regression estimates suggest a larger decrease
of latencies (from session 1&2 to 3&4) for 7-8 year-olds (β = 0.292) than for 9-12
year-olds (β = 0.108) or adults (β = 0.095). When looking at the contrasts for the
three-way interaction, the larger decrease of latency with session number for 7-8
year-olds is remarkably greater at nBP (β = 0.421 for 7-8 year-olds compared to
β = 0.107 and 0.065 for 9-12 year-olds and adults) than it is at BP (β = 0.1636 for 7-8
year-olds compared to β = 0.125 and 0.110 for 9-12 year-olds and adults).

Table 5.21: Contrasts following the 3-way interaction in Table 5.20’s LMM:
effect of sessions (1-2 vs 3-4) on Step latencies.

contrast estimate SE df t-ratio p p (FDR) sig
ageGp = ADU, BP = nBP
s1-2 vs 3-4 0.0654 0.0326 4278 2.007 0.0448 0.045 *
ageGp = 9-12, BP = nBP
s1-2 vs 3-4 0.1069 0.0423 4278 2.524 0.0117 0.014 *
ageGp = 7-8, BP = nBP
s1-2 vs 3-4 0.4209 0.0510 4278 8.261 <.0001 <0.001 ***
ageGp = ADU, BP = BP
s1-2 vs 3-4 0.1248 0.0325 4278 3.834 0.0001 <0.001 ***
ageGp = 9-12, BP = BP
s1-2 vs 3-4 0.1096 0.0421 4278 2.605 0.0092 0.014 *
ageGp = 7-8, BP = BP
s1-2 vs 3-4 0.1636 0.0507 4278 3.228 0.0013 0.003 **
Degrees-of-freedom method: containment
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Table 5.22: Contrasts following the 2-way interaction (sessions:ageGp) in
Table 5.20’s LMM: effect of age group on Step latencies.

contrast estimate SE DF t-ratio p p (FDR) sig
sessions 1-2
ADU - 9-12 -0.5538 0.0792 81 -6.995 <.0001 <0.001 ***
ADU - 7-8 -1.1297 0.0870 81 -12.991 <.0001 <0.001 ***
9-12 - 7-8 -0.5759 0.0930 81 -6.191 <.0001 <0.001 ***
sessions 3-4
ADU - 9-12 -0.5407 0.0795 81 -6.803 <.0001 <0.001 ***
ADU - 7-8 -0.9325 0.0877 81 -10.634 <.0001 <0.001 ***
9-12 - 7-8 -0.3919 0.0933 81 -4.199 0.0002 <0.001 ***
Results are averaged over the levels of: BP
Degrees-of-freedom method: containment
P value adjustment: tukey method for comparing a family of 3 estimates

Table 5.23: Contrasts following the 2-way interaction (sessions:ageGp) in
Table 5.20’s LMM: effect of sessions (s1-2 vs s3-4) on Step latencies.

contrast estimate SE DF t-ratio p p (FDR) sig
ageGp = ADU
s1-2 vs 3-4 0.0951 0.0232 4278 4.103 <.0001 <0.001 ***
ageGp = 9-12
s1-2 vs 3-4 0.1082 0.0302 4278 3.583 0.0003 <0.001 ***
ageGp = 7-8
s1-2 vs 3-4 0.2923 0.0362 4278 8.074 <.0001 <0.001 ***
Results are averaged over the levels of: BP
Degrees-of-freedom method: containment

5.3.4.4 Branch points and non-branch points in the routinised phase

Sessions 3&4 - Latencies

The latencies at BP and nBP as a function of ST and age groups in sessions 3&4
are shown in Figure 5.22 (and their estimated marginal means in Figure A.6 in the
appendix).

The LMM indicated that BP had significantly longer latencies than nBP (t(DF=
3851)=-8.29, p < 0.001) and that there was no interaction. Full results are presented
in table 5.24. The effect of BP was also present in each group and condition with the
non-parametric tests (see table 5.25).

The LMM indicated that ST+ had significantly longer latencies than ST− (t(DF=
3851)=-6.27, p < 0.001), without an interaction between ST and age. With the non-
parametric tests, the effect of ST was significant in adults and 9-12 year-olds (ta-
ble 5.26).
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Fig. 5.22: Step latencies at BP (branch points) and nBP (non branch points)
with secondary task (ST+) or without (ST−): median values of participants’

trials’ median. Error bars represent the IQR (Inter-Quartile Range).
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Table 5.24: Results of the Linear Mixed Model regression (LMM): Step se-
lection latency regressed against BP, ST and age groups. Baseline group

(against which comparisons are presented): ADU.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept 0.05 -0.07 0.17 0.06 3851 0.87 0.386 0.515
ST -0.27 -0.36 -0.19 0.04 3851 -6.27 <0.001 <0.001 ***
BP -0.39 -0.48 -0.29 0.05 3851 -8.29 <0.001 <0.001 ***
ageGp9-12 0.40 0.22 0.59 0.09 81 4.34 <0.001 <0.001 ***
ageGp7-8 0.73 0.52 0.94 0.10 81 7.00 <0.001 <0.001 ***
ST:9-12 0.12 -0.01 0.25 0.07 3851 1.75 0.081 0.194
ST:7-8 0.13 -0.03 0.28 0.08 3851 1.62 0.105 0.180
BP:9-12 -0.06 -0.20 0.08 0.07 3851 -0.80 0.421 0.505
BP:7-8 -0.14 -0.31 0.02 0.08 3851 -1.70 0.088 0.176
ST:BP 0.06 -0.06 0.18 0.06 3851 0.95 0.341 0.512
ST:BP:9-12 -0.03 -0.22 0.15 0.09 3851 -0.35 0.724 0.790
ST:BP:7-8 -0.01 -0.22 0.21 0.11 3851 -0.06 0.948 0.948
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p:
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on
FDR-adjusted p-values:.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 5.25: Wilcoxon signed rank tests comparing Branch points (BP) to non
branch points (nBP) latencies, with (ST+) and without (ST−) secondary task.
The figures in the table are: statistic(N pairs with non-zero difference), p-

value.

ST+ ST−

7-8 W(20)=0, p<.0001 W(20)=19, p=0.0006
9-12 W(27)=3, p<.0001 W(27)=11, p<.0001
ADU W(37)=29, p<.0001 W(37)=40, p<.0001

Table 5.26: Wilcoxon signed rank tests comparing looking at Secondary task
effects on latencies, within nBP and within BP. The figures in the table are:

statistic(N pairs with non-zero difference), p-value).

nBP BP

7-8 W(20)=99, p=0.8408 W(20)=71, p=0.2162
9-12 W(27)=99, p=0.0306 W(27)=96, p=0.0255
ADU W(37)=131, p=0.0009 W(37)=120, p=0.0005
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Consistent with the non-parametric test results on overall trial duration, the la-
tencies were overall longer in 7-8 year-olds than adults (t(DF= 81) = 7, p < 0.001),
and in 9-12 year-olds than adults (t(DF= 81) = 4.34, p < 0.001). When compar-
ing the two children’s groups together (table 5.27, the results (main effect of BP
and ST) matched the LMM’s results (BP: t(DF= 2074) = −7.55, p < 0.001, ST:
t(DF= 2074) = −2.78, p < 0.013); and similarly to the trial-level durations, 7-8 year-
olds were significantly slower than 9-12 year-olds (t(DF= 45) = 2.58, p = 0.026).

Table 5.27: Results of the LMM in the children’s groups only: Step selection
latency regressed against BP, ST and age continuous. Baseline group: 9-12

years old.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept 0.46 0.30 0.62 0.08 2074 5.63 <0.001 <0.001 ***
ST -0.15 -0.26 -0.05 0.06 2074 -2.78 0.005 0.013 *
BP -0.44 -0.56 -0.33 0.06 2074 -7.55 <0.001 <0.001 ***
ageGp7-8 0.33 0.07 0.58 0.13 45 2.58 0.013 0.026 *
ST:7-8 0.01 -0.17 0.18 0.09 2074 0.09 0.925 0.925
BP:7-8 -0.08 -0.27 0.10 0.10 2074 -0.89 0.376 0.602
ST:BP 0.02 -0.13 0.18 0.08 2074 0.31 0.753 1.004
ST:BP:7-8 0.03 -0.22 0.27 0.13 2074 0.21 0.834 0.953
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p:
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on
FDR-adjusted p-values:.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Sessions 3&4 - Latencies Delta(ST+ − ST−)

The Delta Latencies (ST+ − ST−) as a function of BP and age groups in sessions 3&4
are shown in Figure 5.23 (and their estimated marginal means in Figure A.8 in the
appendix).

The LMM indicated a ’non significant but notable’ effect of BP on Delta Latencies
(ST+ − ST−): t(DF= 249) = −2.24, p = 0.078, with larger Delta at BP than at nBP
(see table 5.28). In the children’s group alone the effect of BP Delta Latencies (ST+ −
ST−) was also significant: t(DF= 139) = −2.77, p = 0.012 (see table 5.29). In other
words, for children, the effect of secondary task was significantly greater at branch
points than non-branch points. For adults, the effect was notable, but not significant.
Hypothesis 3 is therefore supported, at least for children.
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Fig. 5.23: Differences in latencies with and without secondary task
DeltaLatencies (ST+ − ST−): median values of participants’ trials’ median.

Error bars represent the IQR.
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Table 5.28: Results of the LMM on: Delta Latencies (ST+ − ST−) regressed
against BP and age group. Baseline group: ADU.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept 0.25 0.16 0.35 0.05 249 5.20 <0.001 <0.001 ***
BP -0.09 -0.16 -0.01 0.04 249 -2.24 0.026 0.078 .
ageGp9-12 -0.05 -0.20 0.10 0.07 81 -0.68 0.499 0.748
ageGp7-8 -0.12 -0.28 0.04 0.08 81 -1.46 0.148 0.296
BP:9-12 -0.03 -0.15 0.09 0.06 249 -0.53 0.596 0.596
BP:7-8 -0.04 -0.16 0.09 0.07 249 -0.55 0.582 0.698
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on
FDR-adjusted p-values:.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 5.29: Results of the LMM in the children’s groups only: Delta Latencies
(ST+ − ST−) regressed against BP and age group. Baseline group: 9-12 years

old.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept 0.20 0.10 0.31 0.05 139 3.78 <0.001 <0.001 ***
BP -0.12 -0.20 -0.03 0.04 139 -2.77 0.006 0.012 *
ageGp7-8 -0.07 -0.23 0.10 0.08 45 -0.84 0.403 0.537
BP:7-8 -0.00 -0.13 0.12 0.07 139 -0.07 0.947 0.947
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on
FDR-adjusted p-values:.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

The non-parametric results (table 5.30) indicate a ’non significant but notable’ ef-
fect of BP on Delta Latencies (ST+ − ST−) for 9-12 year-olds (W(N = 27) = 112, p =

0.064) and adults (W(N = 37) = 241, p = 0.096). Taken together, it seems there
could be an effect of BP on the amplitude of the ST effect, but the data is too noisy to
draw a definitive conclusion..

Table 5.30: Wilcoxon signed rank tests comparing Delta(ST+ − ST−) at BP
to Delta(ST+ − ST−) at nBP. N is the number of pairs with non-zero differ-

ences.

7-8 9-12 adults

W-value 67 112 241
N 20 27 37
p-value 0.1650 0.0643 0.0955

An interesting effect of BP on Delta Latencies (ST+ − ST−) is that latencies are
much more variable (as indicated by the larger IQR error bar) at BP than nBP, and
this difference looks increasingly pronounced with decreasing age.

There was no significant effect of age group on Delta Latencies (ST+ − ST−)

shown by both the LMM (table 5.28) and the non-parametric tests (table 5.31).
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Table 5.31: Mann-Whitney U tests comparing Delta Latencies(ST+ − ST−)
between groups. N1: sample size of the group on the left-hand side, N2 for

the right-hand side of the comparison.

nBP BP

7-8 vs 9-12 U=246, N1=20, N2=27, p=0.3066 U=252, N1=20, N2=27, p=0.3533
7-8 vs ADU U=333, N1=20, N2=37, p=0.2708 U=335, N1=20, N2=37, p=0.2820
9-12 vs ADU U=471, N1=27, N2=37, p=0.3517 U=496, N1=27, N2=37, p=0.4837

Sessions 3&4 - Latencies Delta (BP − nBP)

The Delta Latencies (BP − nBP), or BP cost, as a function of ST and age groups
in sessions 3&4 are shown in Figure 5.24 (and their estimated marginal means in
Figure A.7 in the appendix).

Fig. 5.24: Differences in latencies at BP (branch points) and nBP (non branch
points) Delta Latencies (BP − nBP): median values of participants’ trials’

median. Error bars represent the IQR.
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In the LMM (tables 5.32 and 5.33), the was a significant effect of age group: Delta
Latencies (BP − nBP) was significantly larger for 7-8 year-olds than adults (t(DF =

81) = 2.38, p < 0.001), and for 9-12 year-olds than adults (t(DF = 81) = 4.76, p =

0.040). Delta Latencies (BP − nBP) was ’non significant but notably’ larger for 7-
8 than 9-12 year-olds (t(DF = 45) = 2.02, p = 0.098). This was almost entirely
corroborated by the non-parametric tests (table 5.34): the Delta Latencies (BP− nBP)
differed amongst all age groups in all conditions, except for the 7-8 against the 9-12
year olds in the ST+ condition (U(N1=20, N2=27)=166, p=0.0130 in ST−; 7-8 vs adults:
U(N1=20, N2=37)=96, p=<.0001 in ST+ and U=96, N1=20, N2=37, p=<.0001 in ST−;
9-12 vs adults: U(N1=27, N2=37)=289, p=0.0022 in ST+ and U(N1=27, N2=37)=369,
p=0.0386 in ST−).

Table 5.32: Results of the LMM on: Delta Latencies (BP − nBP) regressed
against ST and age group. Baseline group: ADU.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept 0.44 0.23 0.64 0.11 211 4.16 <0.001 <0.001 ***
ST -0.21 -0.44 0.03 0.12 211 -1.73 0.084 0.126
ageGp9-12 0.38 0.06 0.70 0.16 81 2.38 0.02 0.040 *
ageGp7-8 0.84 0.49 1.19 0.18 81 4.76 <0.001 <0.001 ***
ST:9-12 -0.09 -0.45 0.27 0.18 211 -0.49 0.624 0.624
ST:7-8 -0.16 -0.56 0.23 0.20 211 -0.81 0.419 0.503
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on
FDR-adjusted p-values:.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 5.33: Results of the LMM in the children’s groups only: Delta Latencies
(BP − nBP) regressed against ST and age group. Baseline group: 9-12 years

old.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept 0.82 0.53 1.11 0.15 121 5.59 <0.001 <0.001 ***
ST -0.30 -0.63 0.03 0.17 121 -1.79 0.076 0.101
ageGp7-8 0.46 0.00 0.91 0.22 45 2.02 0.049 0.098 .
ST:7-8 -0.07 -0.58 0.43 0.26 121 -0.29 0.774 0.774
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on
FDR-adjusted p-values:.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 5.34: Mann-Whitney U tests comparing Delta Latencies (BP − nBP)
between groups. N1: sample size of the group on the left-hand side, N2 for

the right-hand side of the comparison.

ST+ ST−

7-8 vs 9-12 U=254, N1=20, N2=27, p=0.3694 U=166, N1=20, N2=27, p=0.0130
7-8 vs ADU U=227, N1=20, N2=37, p=0.0086 U=96, N1=20, N2=37, p=<.0001
9-12 vs ADU U=289, N1=27, N2=37, p=0.0022 U=369, N1=27, N2=37, p=0.0386
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The LMM also found no significant effect of ST (tables 5.32 and 5.33) on Delta
Latencies (BP− nBP). This was also the case for the non-parametric tests (table 5.35).

Table 5.35: Wilcoxon signed rank tests comparing Delta Latencies (BP −
nBP) at ST+ to Delta Latencies (BP − nBP) at ST−.

7-8 9-12 adults

W-value 104 123 293
N 20 27 37
p-value 0.9854 0.1128 0.3775

Sessions 3&4 - Trajectory deviation

Although not analysed in-depth due to the high correlation of the deviation vari-
ables with latencies (cf. Methods’ Section), we present in the appendix the median
value of: the Absolute average distance of each trajectory point to the final point, i.e.
the target icon (cf. appendix’s Figure A.4) and the Log maximal distance relative to
the final point (cf. appendix’s Figure A.5). Unsurprisingly given their correlations
with latencies, the two variables’ patterns seem to mirror the latencies’ pattern: the
figure shows larger deviation at BP than nBP, and a slightly larger deviation with
than without the secondary task.

Sessions 3&4 - Coefficient of Variation (CoV)

The latencies at BP and nBP as a function of ST and age groups in sessions 3&4 are
shown in Figure 5.25.
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Fig. 5.25: Speed coefficient of variation (CoV = stdspeed/averagespeed: median
values of participants’ trials’ median. The error bars represent the IQR.
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Despite the sizable error bars, the LMM (table 5.36) revealed a significant three-
way (BP x ST x 9-12 group) interaction (t(DF = 2626) = 2.25, p = 0.056). Post-hoc
comparisons (tables 5.38 and 5.37) indicated the following. In 9-12 year-olds, CoV
was significantly larger at BP than at nBP (t(DF = 2626) = 4.204, p < 0.001) in
ST−, and ’non significantly but notably’ larger at ST+ than at ST− (t(DF = 2626) =
2.36, p = 0.055) at nBP. Larger BP than nBP in 9-12 year-olds in ST− was also found
with a non-parametric test (W(N = 27) = 55, p = 0.0013, cf. table 5.39).

Table 5.36: Results of the LMM on: Speed coefficient of variation (CoV)
regressed against BP, ST and age group. Baseline group: ADU.

Predictor β CI (l) CI (u) SE DF t p p (FDR) sig

Intercept -0.01 -0.07 0.04 0.03 2626 -0.49 0.625 0.833
BP -0.04 -0.08 -0.01 0.02 2626 -2.38 0.017 0.051 .
ST -0.07 -0.10 -0.03 0.02 2626 -3.56 <0.001 <0.001 ***
ageGp9-12 0.19 0.10 0.28 0.05 81 4.14 <0.001 <0.001 ***
ageGp7-8 0.19 0.08 0.29 0.05 81 3.54 0.001 0.004 **
ST:9-12 0.07 0.01 0.13 0.03 2626 2.25 0.025 0.060 .
ST:7-8 0.06 -0.02 0.14 0.04 2626 1.48 0.139 0.238
BP:9-12 0.00 -0.06 0.06 0.03 2626 0.09 0.929 1.013
BP:7-8 0.01 -0.07 0.09 0.04 2626 0.28 0.783 0.940
BP:ST 0.03 -0.02 0.09 0.03 2626 1.27 0.204 0.306
BP:ST:ageGp9-12 -0.10 -0.18 -0.01 0.04 2626 -2.20 0.028 0.056 .
BP:ST:ageGp7-8 -0.00 -0.11 0.11 0.06 2626 -0.04 0.969 0.969
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u): Con-
fidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p (FDR): False
Discovery Rate-adjusted p-value, sig.: significance levels based on FDR-adjusted p-values:
.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 5.37: Contrasts following the 3-way interaction in Table 5.36’s LMM:
effect of ST on Speed coefficient of variation (CoV = stdspeed/averagespeed).

contrast estimate SE DF t-ratio p p (FDR) sig
ageGp = ADU, BP = BP
ST+ - ST- 0.0664 0.0187 2626 3.557 0.0004 0.002 **
ageGp = 9-12, BP = BP
ST+ - ST- -0.0040 0.0251 2626 -0.159 0.8736 0.874
ageGp = 7-8, BP = BP
ST+ - ST- 0.0083 0.0345 2626 0.241 0.8098 0.972
ageGp = ADU, BP = nBP
ST+ - ST- 0.0330 0.0187 2626 1.762 0.0783 0.157
ageGp = 9-12, BP = nBP
ST+ - ST- 0.0598 0.0253 2626 2.363 0.0182 0.055 .
ageGp = 7-8, BP = nBP
ST+ - ST- -0.0230 0.0347 2626 -0.663 0.5074 0.761
Degrees-of-freedom method: containment



Chapter 5. Hierarchical Control of Action Sequences: Two Online Studies 203

Table 5.38: Contrasts following the 3-way interaction in Table 5.36’s LMM:
effect of BP on Speed coefficient of variation (CoV = stdspeed/averagespeed).

contrast estimate SE DF t-ratio p p (FDR) sig
ST+, ADU
BP - nBP 0.0448 0.0188 2626 2.384 0.0172 0.052 .
ST−, ADU
BP - nBP 0.0113 0.0185 2626 0.612 0.5403 0.648
ST+, 9-12
BP - nBP 0.0420 0.0250 2626 1.678 0.0935 0.187
ST−, 9-12
BP - nBP 0.1058 0.0252 2626 4.204 <.0001 <0.001 ***
ST+, 7-8
BP - nBP 0.0337 0.0353 2626 0.954 0.3401 0.510
ST−, 7-8
BP - nBP 0.0024 0.0329 2626 0.073 0.9415 0.942
Degrees-of-freedom method: containment

Table 5.39: Wilcoxon signed rank tests for the effect of BP on CoV. The
figures in the table are: statistic(N pairs with non-zero difference), p-value.

ST+ ST−

7-8 W(19)=68, p=0.2935 W(19)=81, p=0.5949
9-12 W(27)=144, p=0.2796 W(27)=55, p=0.0013
ADU W(36)=285, p=0.4508 W(36)=317, p=0.8015

In adults, the LMM indicated that CoV was ’non significantly but notably’ larger
at BP than at nBP (t(DF = 2626) = 3.55, p = 0.02) in ST+, and significantly larger at
ST+ than at ST− (t(DF = 2626) = 2.384, p = 0.052) at BP. Larger CoV at ST+ than
at ST− in adults at BP was also found with a non-parametric test (W(N = 26) =

205, p = 0.044, cf. table 5.40).

Table 5.40: Wilcoxon signed rank tests for the effect of Secondary task on
CoV. The figures in the table are: statistic(N pairs with non-zero difference),

p-value.

nBP BP

7-8 W(19)=88, p=0.7983 W(19)=95, p=1.0000
9-12 W(27)=122, p=0.1075 W(27)=161, p=0.5011
ADU W(26)=287, p=0.4699 W(26)=205, p=0.0443

To guide the interpretations of the CoV measures, we illustrated the profile of
speed, that is the variation of speed across time-normalised sample number (Fig-
ure 5.26), with a few trials as examples, separated into ’low CoV’ (when below the
threshold of 1) and ’high CoV’ (when above the threshold of 1). We can visualise
there how the low CoV speed profiles tend to be smoother than the high CoV ones.
Additionally, we show the trajectories on screen that correspond to high and low
CoV trials (Figure 5.27). Although the CoV is not a direct measure of the smooth-
ness of the trajectories themselves, there seems to be an overall trend for smoother
speed profiles to have smoother trajectories, as can be seen from the higher number
of sharp turns or swirls on the top than on the bottom panel.
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Fig. 5.26: Instantaneous speed profiles to illustrate low and high CoV tri-
als. Each curve represents a different trial (in children’s and adults’ data).
The green curves have a CoV below 1, the red curves above 1. The time in

abscissa is normalised in order to overlay the curves.
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Fig. 5.27: Mouse trajectories indirectly illustrating what low and high low
and high CoV trials look like in trajectories. Each curve represents a differ-
ent trial (adults’ data only). The ’low CoV’ panel shows trajectories with a
CoV below 1; the ’high CoV’ panel shows trajectories with a CoV above 1.

5.3.4.5 Stop-signal task

The adult participants’ Stop Signal Response Times (SSRT) ranged between 144 and
305 ms. The SSRT distribution is shown in Figure 5.28.

Fig. 5.28: Distribution of the adults’ SSRT in the Stop-signal task.

We looked at the correlation between the SSRT and the sequence-making vari-
ables that could be expected to relate to inter-individual differences in supervisory
process involvement in the task. Figure 5.29 represents the SSRT plotted against
the proportion of Incorrect goals executed (top left panel), the latencies at BP (top
right panel), the difference between latencies at BP and nBP Delta Latencies (BP −
nBP) (bottom left panel), and the coefficient of variation in speed CoV (bottom right
panel).

As mentioned in introduction to experiment 4, we expected a positive relation-
ship between SSRT and the four presented variables. Spearman correlation were
computed, as shown in table 5.41. In contrast to this expectation, none of the corre-
lations were significant, nor even notable.
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Fig. 5.29: Correlations between the SSRT and the Proportion incorrect goals,
BP latency, Delta Latencies (BP − nBP) and Coefficient of Variation (CoV).

Table 5.41: Spearman correlations between the Stop Signal Response Time
SSRT (Stop-signal task) and the indicated variables of the main sequence-

making task (correlation coefficient R, p-values p).

Variable correlated to SSRT R p

Proportion incorrect goals -0.138 0.475
BP latency 0.147 0.446
DELTA latencies (BP - nBP) -0.217 0.259
Coefficient of Variation (CoV) 0.2216 0.247

5.3.5 Discussion

Overall, the study was entertaining enough to successfully collect a large number of
trials per participant over up to four sessions, allowing us to investigate routinised
action control and its process of routinisation. To our knowledge, this is the first
study of this kind to look at long action sequences in children with such extensive
practice. We discuss the acquisition or routinisation process by looking at all four
sessions, before focusing on the last two sessions and in particular on BPs and nBPs.

5.3.5.1 Task acquisition

The findings at trial-level across sessions replicate the findings of experiment 3. First,
there is a drop in trial duration from the first two sessions to the last two. This
strengthens the point that the last two sessions are the best suited to study (partially)
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routinised performance. Additionally, we replicated the finding that only younger
children show a decrease of incorrect goal execution across sessions. This is most
likely because the other age group were already performing close to floor level early
in training. Unsurprisingly, we also replicate the finding that the younger the age
group, the longer the trials.

When looking at finer changes, the trial-level duration dropped for all age groups
between sessions one and two. The trial-level duration indicated that in adults,
session 3 and 4 significantly differs. In other words, the gains in speed have not
plateaued yet by the end of the third session, so the routinisation is probably not
complete yet. Albeit not significant in adults, the drop in duration from sessions 3
to 4 seemed smaller than the drop from sessions 1 to 2, which suggested it was still
sensible to group sessions 3 and 4 together and consider them as a more advanced
routinisation phase. The fact that the difference in drop from session 3 to 4 is smaller
than from sessions 1 to 2 in children but not adults must not be ignored. Indeed, the
routinisation level may vary across age group, which should be kept in mind when
doing age group comparisons.

Importantly, the fact that the trial duration further decreases between session
3 and 4 for some participants, suggests that the findings will inform us on parti-
ally routinised action sequence performance rather than routine action performance
per se. In routine, or fully routinised performance, the supervisory system is held
to intervene at BPs but not at nBPs (Norman, 1981). However, in partially routinised
action sequence performance, the supervisory system is likely to intervene at all
points in the sequence, yet still at a stronger degree at BPs than at nBPs.

When looking at the task acquisition at step-level , 7- to 8-year-olds had a larger
decrease in latencies across sessions than 9- to 12-year-olds and adults, and even
more so at nBPs than at BPs. The data suggest that younger children start at signifi-
cantly poorer baseline performance (in the early learning phase) and thus have more
room for improvement (speed-up) throughout the task.

An increase in trial duration with the secondary task is clear only in adults. How-
ever, the average error in this secondary task strongly suggests that all participants
are attempting to do the secondary task in parallel to the sequence-making. The
fact that the secondary task significantly slowed down adults and not children may
be due to the increased difficulty of the secondary task in adults (6 to 11 sounds to
count in the task for adults, against 3 to 7 in the task for children). The increase in
difficulty may have been too large compared to the ease with which dual-tasking
can be expected to increase with age. Alternatively, the variability in the children’s
data may have masked an increase in trial duration with the secondary task.
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5.3.5.2 Characteristics of routinised action control

H1: Action selection at BPs is slower than at nBPs

A central hypothesis we aimed to build upon is the fact that action selection takes
longer at BPs than nBPs: we aimed to replicate the finding in adults, and demon-
strate it in children. The BP and nBP selected for analyses differed only in their
subsequence position (within- or between- subsequence) and in the transition prob-
ability to the next item (and not in the distance to follow, nor their particular location
in the sequence such as the start or the end). They also did not differ much semanti-
cally and perceptually as they were all implements. The finding that action selection
at BPs took longer than at nBPs is clearly replicated, regardless of the age group.
To our knowledge, this is the first study that demonstrated this BP effect of latency
in children. This reinforces the idea that children control action in a qualitatively
similar fashion to adults.

Further evidence for the qualitative similarity of routine action in children and
adults comes from Yanaoka and Saito (2019). The latter found that 5-year-olds pre-
sented similar patterns to adults in Botvinick and Plaut (2004), where adults per-
formed more errors when interrupted mid-subsequence than when interrupted at
the end of a subsequence. Collectively with experiment 3, this confirms that our
framework is suited to study children’s routine action control, and that it is reason-
able to perform cautious quantitative comparison (e.g., amplitude of BP cost shown
in latencies) between adults and children.

H2: The secondary task affects latencies

The secondary task significantly slowed task performance of specific steps but did
not significantly slowed the performance of the entire task in children. It could be
that when looking at an entire trial, the data gets too noisy to detect an effect. It
is also possible that other steps compensate the BP’s and nBP’s slowing down with
a speeding up, for example at the end of a trial, when one realises they have been
slowed down by the secondary task. This would explain that the effect of secondary
task is not apparent at the level of a trial while it is apparent at the level of BP and
nBP.

A slow down not only at BPs but also at nBPs is not surprising given that the
task is not at its highest state of possible routinisation. Still, the extent of the slow
down was expected to vary according to the BP or nBP nature of the step, which we
will examine next.

H3: The secondary task affects BP latencies more than nBP latencies

We hypothesised that the supervisory control needed to pay attention to and accu-
rately perform the secondary task (ST) would greatly interfere with the supervisory
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control needed at BPs, resulting in significantly larger secondary task delay at BPs
than at nBPs.

The data is consistent with this view: for all but the youngest age group, there
was a trend for the secondary task to affect BP more strongly than nBP across groups,
but the statistics were unclear about the presence of this effect (the LMM indicated
that such an effect was ’non significant but notable’, while the non-parametric test
indicated that such an effect was ’non significant but notable’ in older children and
adults but not in younger children, probably due to the large variability found in
younger children).

The fact that the difference between the ST effect on BPs and the ST effect on
nBPs remains small or unclear may be due to the degree of routinisation not being
sufficiently advanced, and that supervisory control might still be required (although
to a small extent) at nBPs. In Ruh et al. (2010), there was a clear-cut interaction with
latencies at BP being prolonged by the secondary task, but not latencies at nBPs. This
may be explained by the fact that the number of trials was far greater in Ruh et al.
(2010) than our study (200 trials spread over 3 sessions in Ruh et al. (2010) and 64
trials spread over 4 sessions in the present study).

5.3.5.3 Development of routinised action control

H4: The BP cost changes with age

Children were overall slower than adults both at BPs and nBPs, and the younger
the slower, which is unsurprising. More interestingly, if we consider that subtract-
ing latencies at nBPs from latencies at BPs performs a normalisation for age groups’
baseline speed, we can view this variable as a BP cost, that is, how much more dif-
ficult are the BPs (compared to the nBPs) for a given age group. This BP cost was
significantly higher for both children’s groups than for the adult group, and to some
extent, higher for younger children than older children (bearing in mind that for the
latter the non-matching statistical results do not allow to draw a clear conclusion).
This is in line with our hypothesis which states that children, having less good exec-
utive function than adults, will struggle more in selecting actions at branch points,
because this part of the sequence requires additional supervisory control.

There is a small discrepancy between the results of the LMM and the nonparam-
etric test. While the former suggested that Delta Latencies (BP − nBP) was signifi-
cantly larger in 7- to 8- than 9- to 12-year-olds, the latter suggested that this was true
only when not performing the secondary task. If this interaction was confirmed, it
would imply that 9- to 12-year-olds have a smaller BP cost, hence better routinisa-
tion than 7- to 8-year-olds under normal conditions. However, their BP cost would
become as high as the 7- to 8-year-olds when under cognitive load.

Thus, the higher BP cost for children than adults, and the trend of a higher BP
cost for younger than older children in the present age range, suggest that the ability
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to recruit supervisory control at branch points, or the effectiveness of supervisory
control at branch points, improves with age.

Exploratory Hypothesis: The CoV reveals developmental changes in supervisory
capacity

We explored the kinematics features of the participants’ mouse movements on screen.
Following the preceding chapter’s ’Variability of speed’ feature, and following the
high correlation between trajectory features and the response time in this study, we
concentrated our analysis on the CoV (Coefficient of variability of speed, which is a
normalised version of the ’Variability of speed’ feature used in the previous chapter).

With practice, and consequently across development, actions are performed with
less and less variability. The variability can be considered across repetitions of ac-
tion over large developmental scales (Bruner, 1973), across trials of a task (Chu et
al., 2016), or as we approach it here within-trials (Benedetti et al., 2020). Bruner
(1973) points out that actions are performed with less and less variability across de-
velopment. The variability within trial can also be seen as the degree of smoothness
(with high variability indicating low smoothness). Benedetti et al. (2020) analysed
the smoothness of velocity profiles by classifying them into ’multi-peaks’ velocity
profiles and ’one-shot’ (steep slope without speak) velocity profiles. Less smooth
movements were linked to proactive control. Although the task and context differed
from ours, it goes together with the idea that the smoothness of speed profiles is
informative of the type of control engaged in a task. Dotan et al. (2018) also found
within-trial changes in speed informative, with momentary speed indexing the par-
ticipant’s degree of confidence during a touchscreen task.

The CoV as a function of BP and ST highlighted two particular points. First, in
9-12 year-olds, the nBP without secondary task had significantly lower CoV than
the BP without secondary task, or than the nBP with the secondary task. This could
be explained by the nBP needing minimal supervisory control at nBP without sec-
ondary task. Second, in adults, the BP with the secondary task had significantly
higher CoV than the nBP with the secondary task or than the BP without secondary
task. It is harder to draw conclusions about younger children since the absence of
effects may be due to their noisier data.

Here, we will distinguish partially routinised action sequence performance (at the
level of an entire action sequence) from the control of a single action autonomously
by the routine system. Partially routinised action sequence performance involves the ef-
ficient use of both systems throughout a sequence. As a reminder, the comparison of
latencies at BP compared to nBP in children and adults suggested that action selec-
tion at nBP could be carried out mainly by the routine system, albeit perhaps with
some remaining supervisory influence, while selection at BP benefited from consid-
erably more biasing of the supervisory system relative to nBP. We further propose
that the CoV reflects when the resources of the supervisory system are saturated.
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Under no cognitive load, it seems that both children and adults have good partial-
ly routinised action sequence performance, but the CoV patterns may reveal differences
in how close to saturation their systems are. As mentioned earlier, unlike in fully
routinised sequential performance, the non branch points in this study still require
a small degree of supervisory control. The CoV patterns suggest that children un-
der no cognitive load are able to recruit their supervisory system at the points that
are less routinised within the context of partially routinised performance, but do so
by using the maximal capacity of the supervisory system. Therefore, the entire se-
quence (both at BP and at nBP) is susceptible to interference from a secondary task.

For adults, additional cognitive load conflicts only with the recruitment of su-
pervisory control at BP, where larger supervisory resources are needed; thus, the
supervisory resources are only saturated both at BP and under cognitive load.

Thus, it seems that children, like adults, are able to recruit both routine and su-
pervisory systems when needed in the task. Furthermore, it seems that the super-
visory system capacity in children is sufficient for good routine performance under
normal conditions, but saturates quickly under heightened cognitive load. This is
consistent with the view that the supervisory system has an extended period of de-
velopment and is not yet fully developed at the end of school age (Casey et al., 2005a,
Lenroot and Giedd, 2006, Mehnert, Akhrif, Telkemeyer, Rossi, Schmitz, et al., 2013).

Role of inhibition: results on the Stop-signal task are inconclusive

We expected that some executive function scores measured by a standard task (the
stop-signal task) would correlate with measures of supervisory control involvement
in sequence execution, such as the BP cost or the CoV. We found no such correlations.
A number of reasons could explain this absence of correlation. First, it could be that
response inhibition may not be relevant to sequential task performance. It could be
that components of executive functions other than inhibitory control are important.
Although all executive functions components measures obtained by standard task
on their own (as opposed to a large number of tasks such as Miyake et al., 2000b)
correlate together, the specific inhibition component may not be central to this task.
Alternatively, it could be that participants showed different levels of engagement
with the sequence-making task and the stop-signal task: the sequence-making task
was gamified and thus perhaps more engaging than the stop-signal task. This is
all the more plausible that the game was significantly shorter for a participant who
tried to execute it more rapidly, thus presumably paid more attention, than for a
participant who did not. On the contrary, the duration of stop-signal task could not
be significantly shortened by fast responses. Third, it could be that the online version
of the stop-signal task does not compare well with inhibition measured in the lab.

Other studies have linked executive function and action sequence execution or
planning. Perone et al. (2020) found that the scores in executive functions as mea-
sured by the Minnesota Executive Function Scale predicted 6- to 7- and 8- to 10-year-
olds’ performance in carrying out a series of different naturalistic daily-life tasks.
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The task did not attempt to separate executive functions into distinct components.
Yanaoka and Saito (2020) found that shifting abilities (as assessed by the Advanced
Dimensional Card Change Sort task of Chevalier and Blaye, 2009) were related to
how children’s sequence control is affected by mid- or end-sequence interruptions.
Schröer et al. (2021) found that in 3- to 5- years olds, better inhibition skill made
sequence execution less vulnerable to distractors, while better updating skill was re-
lated to better following the subgoal order of a sequence. Apart from the age range
of participants in this study compared to ours, a notable difference is that Schröer et
al.’s (2021)’s experiment involved several distractors, which may increase the need
for inhibitory control as compared to our experiment.

Consequently, although the evidence in our study does not rule out that in-
hibitory control plays an important role in routine sequence control across devel-
opment, other studies highlight that shifting/updating abilities may play a more
important role, at least when distractor objects are absent.

5.4 General Discussion

5.4.1 Task acquisition and routinisation

In both experiments, it appeared that participants learned the task without diffi-
culty, even the youngest. Thus, errors do not arise from placing too much demand
on memory. It seemed that participants reached a certain degree of routinisation, as
evidence for example by a bigger drop in duration between the first two sessions
compared to between the last two sessions for children. However, evidence also
suggests that routinisation may not be fully achieved. Therefore, the view that we
propose differs slightly from Norman and Shallice’s (1986) account. In the latter ac-
count, the routine system carries out sequential action performance autonomously,
and is biased by the non-routine system at branch points only. However, the data
from experiments 3 and 4 suggests that participants’ performance is only partially
routinised. Thus, the supervisory system is most likely involved at all points in the
sequence, but the routine system plays the dominant role at non branch points while
the supervisory system plays the dominant role at branch points.

Furthermore, it is possible that different age groups have different learning rates
and thus reach different degrees of routinisation. Indeed, learning rates in a va-
riety of tasks have been found to differ between adults and children (e.g., Master,
Eckstein, Gotlieb, Dahl, Wilbrecht, Anne, et al., 2020). Thus, one could argue that
the differences between age groups that we may find at sessions 3&4 may not be
related to different maturation levels of their routine and/or supervisory system
but only to the different degree of routinisation they reach. However, we propose
that the developmental differences in the supervisory system (beyond learning rate)
is the more plausible explanation for the effects found at branch points and under
cognitive load, given the large number of trials involved and given the theoretical
knowledge of the involvement of supervisory functions at branch points in adults,
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and of the role of changing executive functions in children’s performance on many
tasks (discussed in introduction). Regarding the routine system, it is difficult to sep-
arate the efficiency of routinisation from the amount of practice needed to get to an
advanced level of routinisation. Thus, we will consider them as one phenomenon
(efficiency of the routine system).

In the present type of task, there is a trade-off between setting a number of trials
that is high enough to reach some degree of routinisation, and ensuring that children
do not get bored by the game. This trade-off might be overcome by using data
from commercial video games (which are, undeniably, engaging enough to many
players), if such data was available and usable for the purpose of understanding the
process of routinisation. Another possibility, that we expand on later, is to study
routines at a larger time scale and/or in real-life.

5.4.2 Higher-level goal execution

In both experiments 3 and 4, incorrect goal execution was rare for all age groups. The
rarity of such errors indicates that participants did not fail to understand the rules
and were trying to follow them. The errors resemble the occasional attention or goal
monitoring failure that occurs in real-life actions, where two similar sequences used
in resembling contexts can be swapped (see, for example, Norman, 1981, Reason,
1979).

While incorrect goal execution was rare in both experiments reported in this
chapter, the younger the participants, the more frequent were these errors. This sug-
gests that children ability to keep track of a goal cue (the trial’s background colour),
to retrieve the mapping between the goal’s cue and the appropriate sequence and/or
to maintain the goal in mind throughout the sequence is still developing throughout
school years.

5.4.3 Hierarchical control of action

In experiment 3, the errors were distributed with a certain concentration near what
can be conceived as subtask boundaries (near actions that visibly achieve a subogal),
both in children and adults. This suggests an underlying hierarchical representation
used already early in school years.

The difference in response time between branch points (BP) versus control non
branch points (nBP), in all age groups, was consistent with the formation of hierar-
chically-structured representations. As a reminder, the branch points were charac-
terised by 50% transition probability between the preceding action and the branch
point action (while non branch points had 100% transition probability), and could
also be seen as a boundary between two different subgoals (adding the Nutella and
adding the topping).
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5.4.4 Cognitive load and the role of supervisory functions

In both experiments 3 and 4, higher error rates or longer response time highlighted
points in the sequence that were more challenging to participants. The fact that
the secondary tasks tended to affect the same points more substantially than other
points, often boundaries between subgoals, together with the results of previous
findings such as in Ruh et al. (2010), further suggests that these more challenging
points require higher influence of the supervisory system if they are to be performed
without error.

5.4.5 Developmental changes within the dual-systems framework

In Experiment 3, age mainly seemed to increase the error rate particularly at the
points where the baseline error rate was already high. Such points are assumed to
recruit higher supervisory control.

In Experiment 4, inter-action latencies at branch points were longer than at non
branch points and this cost was bigger in children than adults (and perhaps but
not clearly evidenced in the data, bigger for 7- to 8-year-olds than 9- to 12-year-
olds), suggesting a qualitatively similar functioning of partially routinised action
sequence performance across developmental stages, with a larger intervention of
the supervisory system at branch points, and whose efficiency improves with age.

The results confirmed that the dual-systems framework can explain children’s
routine sequential action control, and that it is sensible to perform comparisons be-
tween adults and children under the same framework.

A kinematic marker, Coefficient of variation (CoV) revealed further developmen-
tal differences in the availability of supervisory resources. In Experiment 4, a higher
CoV was found at branch points under cognitive load in adults, and at all points
except for the non branch points under no cognitive load in 9- to 12-year-olds, and
we proposed the CoV to index how close to saturation the supervisory resources are
being used.

The response time together with the CoV data suggest that school-age children
already have an harmonious interaction of two systems to support partially routinised
action sequence performance, where both systems intervene to various extents accord-
ing to the point in the sequence. But children’s supervisory system has less capacity
than adults, which is reflected in the CoV measure. The CoV measure captures more
subtle changes than RT because the CoV captures increased saturation even at non
branch points under cognitive load.

Thus, even though school-age children can execute routine sequential actions
well under normal conditions, their supervisory system is not yet at its fully ma-
tured capacity. This is consistent with the view that general executive function, as
measured by standard tasks in the developmental literature and well-known to im-
prove throughout childhood including school years, play a key part in action se-
quence control.
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5.4.6 Limitations and methodological considerations

The GoGelato task aimed to strike a balance between encompassing key features of
real-life action sequences and being gamified, easy to learn and engaging enough for
children, while allowing us to measure errors, selection latencies and kinematics.

A fair criticism is that we did not counterbalance the order of nBPs and BPs. If
anything, the fact that nBP appeared earlier in the sequence might have made the
nBP slower and could have masked the difference in latency between BP and nBP.
However, we still found much larger latencies at BP than nBP.

Another concern may be that children at both ends of the age range have different
amounts of experience with using a computer mouse. From informal exchange with
participants, this sounds likely. However, our key analyses either compared raw
measures within participants, or compared composite scores (e.g., difference with
and without secondary task) across age groups. This limits any possible interference
of individual participants’ experience with computer and computer mouse with our
findings. The same is true for the experience or knowledge of participants with
more or less similar real-life action sequences. On top of that, our game involved a
large number of trials, and the analyses were focused on the second half of the trials;
if any interference with personal experience or knowledge existed, it would have
likely been diminished by such extensive practice by the second half of sessions.
Nonetheless, the fact that some of the youngest children in our sample had very
limited experience using the computer mouse before taking part in the study (even
if they had the opportunity to progress throughout the four sessions) very probably
added noise to the data, which limits the interpretations within this age range (for
example for CoV measure). Studies with naturalistic action sequences are needed
to circumvent this problem. On a related note, we have differences in variability
(for error, latency and kinematic variables) across age groups, which is a common
drawback of developmental data. The task also has artificial aspects and limitations
that are inherent to any computerised experiment; or to some lab-based experiments,
such as repeating many trials in a row, and thus does not reproduce acquisition of
routines in real-life which would be more likely be repeated only a few times per
day but over many months and years.

One may also be worried about data quality arising from the online nature of the
task. Concerns over the quality and reliability of data collected online are discussed
by Anwyl-Irvine et al. (2020). One source of concern may be that participants be-
haviour may differ online compared to a lab experiment (e.g., participants not con-
centrating on the task or multi-tasking, participants lying about who they say they
are, etc.). Following recommendations on online testing with children and adults
from Kochari (2019), we reduced this concern by the design of our game which did
not allow cheating. Indeed, the game would move on only if the sequence were
properly carried out, the only possible error being not changing the recipe according
to the goal cue; but we found all participants took the goal cue into account. Fur-
thermore, adults were selected among reliable Prolific users, that is, whose previous
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participation in other experiments had not been excluded by other researchers. For
children, families were met via video call on the first session and were in touch via
email throughout the experiment, which reinforces the confidence in the same child
having taken part throughout all four sessions. Additionally, during the initial data
quality check we scanned for any suspicious data pattern (e.g., surprising response
time variations across trials of all sessions).

Relatedly, one might worry about whether sampling of online participants may
not be generalisable. Compared to the accessibility of research laboratories, if any-
thing the study being online might have made it more accessible (e.g. participants
who live far away from a research lab and would not have travelled for in-person
study were able to take part) and potentially have increased the variety of our sam-
ple (we cannot verify this because we did not collect personal information beyond
age and gender for data protection matters). Another source of concern may be the
variability in hardware and software across participants. We ensured that the order
of magnitude of the expected response times were large enough to not be affected by
online measurement imprecision (following Bridges et al. (2020) who found 10 ms
as the worst precision achieved in the most commonly used software combinations).
In practice, many researchers have found online studies to replicate findings from
lab-based experiments (e.g., Tsay et al., 2021).

Nonetheless, a remaining limitation is that the task was a mouse computer game,
which is a step further away from naturalistic action control (compared to touch-
screen use in the previous Chapter’s study). Motor control for mouse usage is un-
deniably different from real-life 3D actions. However, we believe that the task did
recruit the same key processes of interest as real-life routine action control. Indeed,
findings from the computerised task of Ruh et al. (2010) supports the dual-systems
view, which itself is vastly supported by findings from real-life error studies in neu-
rological patients (reviewed by Shallice, 2006) and the action slips and lapses of
neurologically healthy participants (Norman, 1981, Reason, 1979). This indicates
agreement between computer-based tasks and real-life behaviour.

The convergence of findings from computer-based tasks and real-life behaviour
exists in adults, but it would be interesting to find evidence of such an agreement
in children. To our knowledge, there has been no past study that looked at children
performing long action sequences with repeated practice in a naturalistic environ-
ment. We can cite related work which, although involving shorter sequences or
fewer trials, are indicative that our results may extend to real-life settings. Yanaoka
and Saito (2019) found evidence for a similar use of task representation in adults and
5-6 year old children. Additionally, Yanaoka and Saito (2020) used knowledge on the
central role of branch points, by inserting reminders prior to branch points while 3-6
year olds were learning routines. Compared to when inserting no reminders, this
promoted routine acquisition. This emphasises the importance of goal maintenance
in real-life action sequences, especially before a context-dependent action, and links
to the particular difficulty at branch points in our computerised action sequences.
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5.5 Conclusions

The newly-developed GoGelato task replicated key findings on sequential action
control in adults consistent with the dual-systems framework (Norman and Shal-
lice, 1986, Cooper et al., 2014), and importantly was suitable to study routine action
control in children.

The patterns of errors in experiment 3 suggested that sequences of action are con-
trolled using underlying hierarchically-structured representations both in children
and adults. Children’s control seemed particularly weaker at certain boundaries
between subtasks. In experiment 4, the response time differences at branch points
compared to non branch points, or BP cost, replicated the findings of Ruh et al.
(2010). We furthermore found some evidence that this BP cost decreases throughout
the school-age years.

In both experiments, the points that were more susceptible to errors or that took
longer in the absence of cognitive load also tended to be the points more affected
by cognitive load, further confirming that supervisory control is more strongly re-
cruited at those particular points, and giving insights into the combined use of rou-
tine and non-routine systems to control an action sequence. Furthermore, a kine-
matic feature (coefficient of variation of speed) was proposed to reflect supervisory
resource use, and suggested lower supervisory capacity in children compared to
adults.

Overall, changes in both routine and supervisory functions may drive improve-
ments in children’s sequence execution accuracy and efficiency. Nonetheless, chan-
ges in supervisory functions are likely to play a greater role, and the lesser matura-
tion of such supervisory function impact the sequential action performance in early
school-age years.
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Chapter 6

General Discussion

Abstract

This chapter reviews the key findings of the thesis in connection with each other and
their context. Firstly, it summarises the key findings in each chapter. Secondly, it de-
scribes the contribution on the methodological side, that includes a new approach to
kinematic analyses and the development of a child-friendly paradigm to study the
development of action control. Thirdly, it develops the thesis’ contributions to the
field the theoretical side, highlighting the role of executive function development
in driving changes in action control throughout the school years. It also discusses
the newly developed computational model together with current theories of the de-
velopment of action control, to propose a framework for understanding how two
systems work together to control action across development. Finally, it lays out fu-
ture research directions.

6.1 Overview of empirical and computational findings

6.1.1 Action-based inhibitory selection mechanisms improve throughout
childhood

In Chapter 2, we investigated the interference from distractors when reaching for a
target, by re-analysing duration and kinematics data. The findings helped us un-
derstand the resolution of competition from potentially conflicting action represen-
tations, in children and adults. It was previously established that the environment
can have a direct influence on action (e.g., affordances of Gibson, 1977), and that top-
down processes related to the intended goals can mediate action selection. Further-
more, it was known that, around preschool age, children’s actions tended to follow
perceptual inputs more than internal goals or strategy and that this trend decreased
across development (e.g., Mitsopoulos et al., 2015). However, the changes in ac-
tion selection processes across development were unclear. By analysing the precise
course of reaching for a target among distractors in children and adults, Chapter 2
found that children’s reaching to a target was slowed and suggestively deviated ver-
tically when distractors were present, compared to when they were not, and this was
true regardless of the semantic or perceptual compatibility between distractors and
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the target. This was the case despite the distractors being irrelevant throughout the
task (the target remained the same), and this interference effect was not found in
adults.

Given the hypothesised role of action-based inhibitory selection mechanisms
(e.g., Tipper, 1985), and given that tasks different from our reaching task, using the
same age range, have found that the development of inhibitory control helps con-
flict resolution (e.g., Flanker task in Erb et al., 2018), the novel findings strongly
suggest that: (1) even irrelevant distractors pose a challenge in action selection early
in childhood, most likely by the simultaneous activation of reaching actions to all
the objects present in one’s visual field, and (2) improvements in inhibitory control
abilities throughout development drive the improvement in action selection when
reaching for a pre-defined target among distractors.

6.1.2 The interaction between model-free and model-based types of con-
trol can be specified at the algorithmic level

In Chapter 3, we proposed a new computational model that explains data from a pre-
existing task (the standard two-stage task, Daw et al., 2005) tapping into the balance
of model-free and model-based systems. The systems are partly analogous to the
routine and supervisory systems introduced by Norman (1981). First, we prove that
it is possible, with an interactive activation network, to model the standard two-
stage task at the algorithmic level of Marr (Marr, 1982). The task had previously
been described at the computational level of Marr. The novel model provides a more
detailed account of the processes of selection between actions and the integration
of the two systems. Furthermore, this account has the potential to implement and
test various mechanistic hypotheses. Additionally, it is able to make contact with
response time data which the original model did not do.

Second, and thanks to the possibility of capitalising on the response time data,
we implemented and tested four mechanistic hypotheses about the different per-
formance of the developmental groups of Decker et al. (2016). A possibility is that
the recruitment of the model-free and model-based systems is externally arbitrated
and favours model-based more and more with age; the other three assume that the
model-based system is recruited at the same level throughout development, but that
another mechanism explains the apparent increase in the contribution of model-
based with age. According to the second hypothesis, the computations get less noisy
with age. According to the third, the model-based system becomes faster in perform-
ing computations. According to the last, the learning rate increases with age.

We were able to distinguish two hypotheses (the first and second hypotheses
which were discussed in the previous paragraph) which were more compatible with
the data than the other two. Crucially, we proved that this type of model is useful in
distinguishing among competing hypotheses (even if, at this stage, it does not allow
to draw conclusions about a single most plausible hypothesis). Thus, to explain
the apparent increase in model-based contribution with development in this task,
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the most plausible hypotheses tested are that the model-free/model-based balance
is externally arbitrated, and that the arbitration increasingly favours model-based
with age, or that model-based computations become less subject to noise with age.

Focusing on a widely-used task has important advantages and provided some
insights behind the changes in the model-free/model-based balance across devel-
opment. Nonetheless, the task showed limitations in its suitability to investigate
the changes within a child group, and furthermore may not be suited for use with
children younger than 8 years old. It also appeared to not tap into the entirety of
processes relevant for daily-life routine action control. Consequently, the following
chapters consisted of experimental work with tasks that were specifically designed
for studying children’s routine action control.

6.1.3 Fine differences in the updating processes of an ongoing sequence
occurs through development

Chapter 4 investigated the routine-like control by 5- to 9-year-olds of a well-learned
short sequence, and the children’s adaptability to mid-sequence unpredictable chan-
ges of the environment. It used a novel touchscreen task, recording the responses
time and kinematics of icons being moved across the screen. Two variants of a se-
quence carried out two different goals. The transition between the first and second
action had a low probability of changing the state of the environment in an unpre-
dictable way. Such a change of state subsequently required updating what would
have been the best action in the absence of the change. This manipulation allowed
us to probe the recruitment of supervisory type of control during a sequence that
may be controlled solely by routine type of control.

The youngest age group accurately performed a sequence adapted to the goal,
revealing good routine control at this age. Furthermore, this younger age group was
also able to monitor and update an ongoing sequence when facing unpredictable
changes of state (where a change of the environment that may have been expected,
given the action executed, led to an unexpected change of the environment). This in-
dicated that the supervisory functions required to adapt an ongoing sequence were
already in place and could be effectively used by participants from as young as the
early school years. Nonetheless, this ability was limited in younger children when
facing another type of environmental change, in which the goal changed unexpect-
edly. This result indicated that before 9 years of age, children’s not fully-developed
supervisory system does not allow an efficient monitoring and/or accurate action
update within an ongoing sequence. The results further suggested that the failure
to update an action might result from insufficient inhibitory control to interrupt a
pre-planned action.

The findings in this chapter, that supervisory control becomes more prominent
around school-years, are broadly consistent with the finding from Chapter 3. Chap-
ter 4 further clarifies which components of supervisory control improves during this
period: monitoring, updating functions, and possibly inhibition.
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6.1.4 The hierarchical control of action sequences and involvement of two
systems at various points vary with age

Chapter 5 probed the dual-modes of control during the execution, by 7- to 12-year-
olds, of well-learned action sequences that are characteristic of real-life routines. The
chapter included two studies, both consisting of an online mouse-tracking task. The
main study had two variants of a 9-steps action sequence that featured overlap-
ping actions between the sequences’ variants, as well as diverging subsequences.
The start of the diverging subsequences constituted a branch point. In addition, a
secondary task was used in some trials in order to further understand the role of
supervisory control.

The study replicated in adults and extended to children the key finding that adult
action selection is slowed at branch points compared to non branch points (Ruh
et al., 2010), and that branch points are particularly susceptible to secondary task
interference. The findings support the idea that supervisory control is most needed
at branch points when the selection between action is most ambiguous and needs
to be connected explicitly to the context and goal representations. Other actions,
however, may be carried out principally by routine control, which benefits from
having learned regular transitions, at the parts of the sequence that overlaps between
the two sequences’ variants. Chapter 5 also found interesting developmental trends.
Younger children appeared to have comparable ability to that of older children to
control actions at non branch points, but younger participants’ performance was
less good than that of older participants at branch points or under cognitive load.
This suggests that supervisory control is not yet fully developed at 7-9 years old and
continues to improve later on, resulting in improvements in action control through
development.

6.2 Methodological contributions

6.2.1 Novel kinematic analyses methods

Kinematics measurements are rich in information, and it has seen a recent increase
in its use to probe the mind (see Freeman, 2018 for a review). Popular analytic ap-
proaches often face one of the two following limitations: being too little or too much
task-specific. In the first case, analyses are tailored to a specific paradigm and re-
search question, and thus have the advantage of capturing a largest amount of the
variance, but do not allow to take advantage of being used across diverse studies.
They consequently make cross-task comparisons difficult. In the second case, using
pre-defined, literature-driven, kinematic features has the advantage of using con-
verging knowledge from multiple studies around the construct affecting the kine-
matic features, but it presents the risk of missing other kinematics patterns that may
be highly informative in the task at hand. We proposed and applied an alterna-
tive method. The proposed method defines a large set of possible features (not
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hypothesis-driven), and selects the most relevant features (that capture the most
variance, and possibly additional constraints) extracted on a dataset independent
but similar to the dataset of interest (e.g., pilot data). Our alternative method led to
examining features that were not the most intuitive ones to look at (such as vertical
deviation, or within-trial variability in speed) and provided rich insights on action
selection among distractors or in routine sequence production.

6.2.2 Developing child-friendly hand-tracking games

The thesis presents newly-designed tasks, either inspired by a classical reinforce-
ment learning task, or inspired from routine sequence production tasks in adults.
The new tasks were gamified to be intuitive and engaging for children, and allowed
us to measure a large number of trials of children executing various action sequen-
ces. Such tasks are crucial to study action control in children in a way that is as
naturalistic as possible yet sufficiently controlled to directly extend results on com-
parable tasks in adults, verify the applicability of key principles of action control in
adults to children and thus gain knowledge on the development of action control.

A methodological challenge when studying action control is that one must take
into consideration multiple processes happening in parallel: visual, motor, atten-
tional, memory, planning, etc. Each process studied separately does not necessarily
reflect what happens when they are interacting together to control action. Thus,
when designing a task to study action control, one must reproduce sufficiently nat-
uralistic sequences that incorporates key characteristics of daily-life activities. We
were specifically interested in routine action control, which means the task had to be
repeated a sufficient number of times.

An additional challenge was designing tasks that children would understand
and learn easily (within a single visit- on the lab or online), that children would en-
gage with and have enough attention span to apply until the end of the study. An-
other crucial point was to ensure that any observed developmental change would
not simply be attributable to differences in strategy or motivation with respect to
the game, but instead be attributable to developmental changes in action control
systems. Therefore, we controlled as much as possible for the valuation of game’s
rewards by different ages. For that purpose, we integrated entertaining cover stories
and animations that would appeal to children across our age range, and promoted
children’s motivation to complete the task by providing encouraging signs of pro-
gression through the task.

The tasks were inspired or derived from existing tasks. They were substantially
re-designed (in terms of context, nature of the sequence and of the actions, number
of actions, rewards, etc.) and also programmed from scratch to fit this thesis’ re-
search purpose. One advantage that comes with the same researcher developing a
new task and programming it, is that it ensures that every aspect of the game, and
the way they may influence participants (visual salience of items, accessibility on
screen, ease of selection, possible and impossible actions, etc.), are carefully thought
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through. Like computational modelling, programming the game forces one to the-
orise in detail all the processes that might be at play when participants do the task
(not only the processes relevant to the research question, but also non-relevant pro-
cesses that needs to be controlled for). Another advantage is that knowing how the
data was generated and saved makes the analyses more reliable. The disadvantage
of such computerised games is their non-ecological nature, despite computer games
being relatively more naturalistic than ’keyboard-response’ tasks. Another disad-
vantage is that developing such a task requires programming skills and takes time.

The tasks were successful as evidenced by: (1) the large number of children com-
pleting the studies and the low drop-out rate, and (2) the theoretical insights gained.
The insights include replicating findings on adult action control, thus reinforcing ex-
isting results and simultaneously bringing additional credibility to the tasks. They
can and will also hopefully be tools for further studies, by adapting the games from
this thesis, or drawing inspiration from them.

6.3 Theoretical contributions

6.3.1 Children must adapt to varying influences on action control

All four chapters highlight that action selection is subject to many influences, and
that both the spatial and temporal context matters. Chapter 2 revealed the vulnera-
bility of a reaching action to interference from surrounding objects, i.e., from the spa-
tial context. Chapter 3, 4, and 5 studied additional dimensions integrated together,
and brought the following evidence. Conflict in action selection can arise on the rel-
ative location of an action within a sequence, and the existence of alternative actions
that may be valid in a similar context. Conflict can also arise from a pre-planned
action that is made inappropriate by unexpected changes in the environment. The
choice and speed of choice of an action is also influenced by one’s abilities to recruit
supervisory control at crucial points of an action sequence, and secondarily of one’s
propensity to be more explorative and exploitative.

In other words, competition for action selection can arise because of the physical
presence of other objects (as evidence by Chapter 2), or from representation from
other actions that may be compatible in a similar context but may achieve a different
goal (as observed in Chapter 4 and 5). Difficulties in resolution of the competition
processes can be apparent in errors. Alternatively, in the absence of error, they can
be apparent in longer response times or in modified kinematic patterns.

6.3.2 The dual-systems is a suitable framework to account for the devel-
opment of action control

Prior to this thesis, there was no direct evidence of the applicability of the dual-
systems framework of Norman and Shallice (1986) to explain children’s action con-
trol. The dual-systems account is supported by empirical data in adults and by a



Chapter 6. General Discussion 224

computational model that simulates the key empirical phenomena characteristic of
sequential action control (Cooper et al., 2014). The experimental paradigm of Ruh
et al. (2010) was of particular interest. By designing a task comparable to the task
of Ruh et al. (2010) and suitable for children, the thesis brought direct support for
the existence of dual-systems type of control in school-aged children, and further
indicated how the systems evolve across development.

Furthermore, all three Chapters 3, 4 and 5 looked at the combination of two
modes of action control which, although defined slightly differently (model-free or
model-based in the reinforcement learning terms of Daw et al. (2011), or routine/su-
pervisory following Norman and Shallice, 1986), share key commonalities. There
are more commonalities than differences, but the nuances will be discussed in Sec-
tion 6.3.4. The findings from the three chapters converge towards the idea of a rou-
tine (model-free) mode of action selection already mature at the lower bound of the
school-age range (albeit the findings of Chapter 5 do not rule out that the routine
control may still slightly improve with age), and a supervisory (model-based) mode
of action control significantly developing throughout the school years.

Importantly, the findings widen the possibility to further our understanding of
children’s action control by leveraging the dual-systems framework.

6.3.3 Executive functions changes drive the developmental changes in
performance

The experimental evidence from this thesis and previous studies converge towards
the idea that improvements in executive functions are a central driver for improve-
ments of action control throughout childhood, including during school years.

The role of developing executive functions manifests itself at different levels in
each chapter. Specifically, in the reaching for objects study (Chapter 2), the younger
children (7 years old) were substantially slowed by the presence of distractor ob-
jects, and this interference decreased with age. This was argued to be attributable
to changes in inhibitory control with age, which allow more efficient suppression of
irrelevant action representations linked to the distractors.

The lab-touchscreen study (Chapter 4) and online-computer study (Chapter 5)
had sequences differing in their length and challenged posed (Chapter 4: unex-
pected change within-sequence happening in some trials and not others; or Chap-
ter 5: predictable sequences but with varying difficulty within the sequence). With
these two different designs, we found a consistent pattern in which the younger ages
in each study sample (5 to about 7 years old in Chapter 4, 7 to 8 years old in Chap-
ter 5) had a similar time cost in action selection than older age (about 7 to 9 years
old in Chapter 4, or 9 to 12 years old in Chapter 5) between a baseline condition
and a slightly challenging one (common vs rare state transitions in Chapter 4, or
non branch point vs branch points without secondary task in Chapter 5), but when
in a more challenging one (rare goal transition Chapter 4, or under secondary task
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Chapter 5), the cost was significantly higher in the younger compared to the older
children.

This indicates that from early in school years, children have the building blocks
to learn, execute and update action sequences appropriately, almost or just as well
as children later in school ages, when the conditions are not excessively challeng-
ing. However, an increase in cognitive load or difficult points in the sequences re-
veals age differences. Specifically, younger children’s performance is impaired while
older children deal better with the challenges. Furthermore, when adults’ perfor-
mance was measured, adults showed further improvement compared to the older
children’s groups, suggesting that the development of executive functions necessary
to improve performance in this task may continue beyond school-age years.

The multiple consequences of changes in executive functions on action control
are summarised in Figure 6.1. Specifically, in Chapter 3, we found that the influ-
ence of the supervisory system overall increased from childhood to adulthood in
repeated action selection. In Chapter 2, we found that gains in inhibitory control
with age led to more efficient selection of actions in the face of distractors. In Chap-
ter 4, the improvement with age in correcting an action sequence following an unpre-
dictable within-sequence change was attributed to improvements in two functions:
the ability to monitor or detect certain changes, and the ability to inhibit a presum-
ably pre-planned action. Finally, in Chapter 5, we found that older children were
more efficient than younger children in inhibiting a locally-competing action (that
would be relevant at a same point in a sequence in a different context).

6.3.4 Broader developmental shift in the dual-systems control

As revealed by the computational work of Chapter 3, different mechanisms can lead
to the same difference in the ratio of model-free/model-based types of control. Al-
though the chapter’s work was not able to select a single explicative hypothesis (fur-
thermore, it may not have explored all plausible candidate hypotheses), an impor-
tant point to keep in mind is that the same behaviour can be obtained by multiple
underlying mechanisms.

If we were to use a reinforcement learning type of model on the studies in Chap-
ter 4 and Chapter 5, and if we measured the ’balance model-free/model-based’ for
the sequence overall, we would probably find results similar to the Decker et al.’s
(2016) study, where the balance goes towards more model-based and less model-free
influence with age. However, this would be due to the increasing capacities of su-
pervisory (model-based) control with age used to bias points such as branch points,
whereas the influence of the supervisory system on the rest of the points would not
change substantially with age.

As outlined in the Introduction Chapter (1), the views of Decker et al. (2016)
and Janacsek et al. (2012) involve that a developmental shift occurs in late child-
hood/early adolescence where the ’default’ involvement of a model-free strategy
balances towards a model-based strategy, via both a maturation of the model-based



Chapter 6. General Discussion 226

Fig. 6.1: Summary of the key findings of the thesis: development of su-
pervision functions related to the control of action. Arrows represent the
influence of a system or of an item over another; the thickness of the arrows

represent the relative degree of influence.

system and a regression of the model-free system. Instead, we favour the view that,
with development, the ability to control action sequences improves with the increas-
ing capacities of the supervisory system, and that the stronger influence of the super-
visory system will appear only when required, via a coordinated or conjoint control
of routine and supervisory systems. This subtle nuance highlights the fact that many
daily action sequences involve the coordinated recruitment of the two systems, each
system having advantages at certain parts of the sequence. It is therefore interesting
to understand the development of the joint actions of the systems, rather than the
prominence of one or the other at different developmental stages.

From this stance, it appears that from early school age, and possibly earlier, chil-
dren can efficiently use implicit-like or routine type of control when they have ac-
quired experience with an action sequence that bears sufficient regularity. Through-
out development, components of supervisory functions gradually improve. As a
consequence, action sequences can be controlled more finely, and benefit from addi-
tional supervisory influence when it helps performance (e.g., at ambiguous points
or in the face of unpredictable environmental changes). This view is summarised in
Figure 6.2.
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Fig. 6.2: Summarised view of the differences between action systems within
the Dual systems framework (Norman and Shallice, 1986, Cooper et al.,
2014) at the early school-years child stage (A), and at the adult stage (B). It is
proposed that the influences from the environment and the routine system
are comparable in both stages. However, the maturation of the supervisory
system brings about the necessary influences at various points, resulting in
more efficient action control in adult’s compared to children’s stage. Arrows
thickness represents how strong the influence is. The green arrows rep-
resent the developmental changes, including highlighting points at which

stronger supervisory influence makes a bigger difference.

6.4 Future research

6.4.1 Towards more ecological experimental paradigms

All three experimental studies measured kinematics (motion capture, touchscreen
or mouse-tracking). The reaching task in Chapter 2 had the advantage of presenting
real physical objects in a 3D space, nonetheless the action was the same through-
out the task. Chapters 4 and 5 had the advantage of presenting actions embedded
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in sequence but that suffered from being virtual, and on a 2D surface (touchscreen
or mouse-tracking). Chapter 2 revealed that the vertical deviation in reaching was
affected by the surroundings (when past studies had only looked at 2 out of 3 di-
mensions in space), showing that all three dimensions were important measures of
reaching. This also means that our 2D kinematic setups potentially miss out on in-
teresting information. Future studies should therefore combine the advantages of
the two types of experiments, with action sequences in a 3D realistic environment
being routinised, while recording kinematics.

Another artificial aspect of the computer-based games is that every action con-
sisted of going to and selecting icons (via click- or touch-and-drag), which makes the
target selection and the act upon that target inseparable (this design choice had the
advantage of making the response times directly comparable). In real-life, actions
are varied (grasping, turning, pouring, etc.), and one may occasionally perform an
inappropriate action to the appropriate object, or the appropriate action to an inap-
propriate object (an example, from a patient’s diary presented in Schwartz (1995), is
peeling a can of meatballs instead of peeling an orange). Bringing this dimension
would be interesting in naturalistic paradigms. Nonetheless, we do not expect fun-
damental changes in how school-aged children manipulate objects, given findings
that early on children are skilled at using tools and can perform anticipatory and
fine adaptation to the type of grasp needed (Adolph and Berger, 2007).

Another point to highlight is that, in all the experiments of this thesis, partici-
pants were facing all the task stimuli, that were placed in a relatively limited visual
angle (table or screen). However, in real life, action sequences’ objects are often dis-
persed beyond the visual fields (e.g., in a kitchen, items can be on one’s sides, behind
and/or in cupboards), which adds a substantial object localisation component.

Inevitably, there are advantages and disadvantages to every setup: lab studies,
real-life studies (e.g., action slip diaries), and the ’middle-grounds’ such as lab stud-
ies reproducing real-life settings with less experimental control. Converging evi-
dence from several types of setups is needed to validate a research finding. We have
discussed in Chapters 5 how lab-based ecological paradigms bring indirect support
for the idea that our findings are valid in real-life settings (and not just on a lab
computerised task). Studies such as Yanaoka and Saito (2019)’s are more ecological
than ours, but take place only over one session contrary to the four sessions in the
task from Chapter 5. It would be interesting to investigate routine actions in more
ecological context and with studies that span several days.

Another complementary approach would be to measure children performing
actual routines of their daily lives (as opposed to invented sequences such as in
Chapters 4 and 5), if possible in a longitudinal design. One could think of choos-
ing a routine that children perform consistently at school, and measuring it across
several months in a real school, and/or mimicking such a routine in the lab with
standardised material that looks as close to the original as possible. Such studies
should quantify performance or errors in action selection, action selection latencies



Chapter 6. General Discussion 229

and kinematics to validate our findings on the ability to learn routines and the in-
creasing ability with age to engage supervisory control when appropriate within the
routines. Nowadays, it would be technologically possible to place cameras in real
life environments and use computer vision algorithms to partially-automatise analy-
ses. The ethical concerns related to such investigation can be successfully addressed,
as revealed by studies such as L. B. Smith et al.’s (2015), which used head-mounted
cameras and eye-trackers and recorded hours of parents and child interactions in
real home environments.

6.4.2 The role of objects’ location and visual search in action sequences
performance

As mentioned earlier, the object search component is missing from the thesis’ stud-
ies. Research has found consistent patterns in familiar sequence execution (Land et
al., 1999, Pelz and Canoza, 2001): objects are often located ahead in time (and mem-
orised), and subsequently the object to be used is often fixated before the preceding
action is terminated. The certainty and rapidity with which the visual system can
direct towards the appropriate objects seems to be a crucial component of routine
action (Land, 2006). A question to address is whether gazing at the target object of
the next action happens earlier for non branch-points than branch points. If this is
the case, the late gazing at branch points may contribute to the delay in selecting
actions at branch points observed in Chapter 5. An alternative hypothesis would be
that gazing at the object happens as early for branch points than non branch points,
but that only the action execution takes longer at branch points.

Based on the findings of the thesis, we expect that more difficult action selection
at branch points (which require biasing from the supervisory system) would be as-
sociated with alternative gazing between candidate options until a target action has
been selected. Thus, we hypothesise that anticipatory gazing would happen at non
branch points and would be absent at branch points.

Furthermore, in a food-preparation task by Land and Hayhoe (2001), adults ex-
hibited a very low percentage of looking at task-irrelevant objects, supporting the
idea that their gaze is driven more by the top-down goal of the task than by the
salience of objects in the scene. In Chapter 2, we found distractor objects to affect
younger children’s reaching, which can be linked to difficulties in maintaining top-
down control earlier in development (e.g., Freier et al., 2017). Relatedly, Freier et
al. (2015) found that 3- to 5-year-olds incorporated irrelevant items in a sandwich-
making task, but no longer when the task was facilitated by spatially arranging the
items in the sequence temporal order. Taken together, if we investigated school-
aged children naturalistic execution of a well-practised sequence, we can expect that
school-aged children would not use, but would gaze at, irrelevant objects (on the
contrary to adults, whose fixations have been found to alternate on several target
objects but to avoid irrelevant objects). This would indicate an intermediate phase
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of development, during which top-down control is sufficient to avoid using distrac-
tors, but perhaps not sufficient to drive efficient gaze patterns such that of adults.

It is possible then that children would gaze more at irrelevant objects than adults,
and it would be interesting to investigate the relationship between developmental
changes in viewing patterns (that is, not looking at irrelevant objects, and anticipa-
tory looking at the next target) and actions’ accuracy and speed. We hypothesise
that the same underlying developmental processes guide viewing patterns and ac-
tion execution. We thus predict that gazing accuracy (that is, gazing more at relevant
than irrelevant objects, and gazing in anticipation at the subsequent target) would
improve simultaneously to actions’ accuracy and speed.

Finally, using a task identical to that of Chapter 3, Konovalov and Krajbich (2016)
found two particular gaze patterns in participants. One pattern was related to model-
based choices (e.g., looking at the best option first, and only at that option; as if
having made their decision early), and the other pattern was related to model-free
valuation (looking at both options multiple times). This is somehow inconsistent
with the idea that the more action is under routine (habitual, model-free) control,
the more anticipatory is the gaze. This supports the claim that the two-stage task
paradigm is not directly translatable to naturalistic action, but further research could
clarify the role of anticipatory gaze in sequential action control.

All in all, adding eye-tracking measurements would allow a more comprehen-
sive account of sequence action control that integrates the interaction between antic-
ipatory search for target, object recognition and action.

6.4.3 The speed-accuracy trade-off in the involvement routine and non-
routine modes

The role of timing should be further investigated because there is some empirical ev-
idence for a change in the habitual/goal-directed balance related to speed-accuracy
trade-offs. Indeed, reinforcement learning tasks that resemble the one in Chapter 3
have found that increasing the speed of response led to increased recruitment of
habitual (routine) control, and inversely that slower responses led to increased goal-
directed (non-routine) control (Hardwick et al., 2019). Indeed, the habitual (routine)
system makes simpler computation and is consequently faster than the goal-directed
(non-routine) one. Consequently, timing directly affects one’s action control strategy.
The study in Chapter 4 could be directly adjusted to influence the speed of responses
(e.g., rewarding fast action more by attributing more coins to faster responses, or on
the contrary ’blocking’ the game for some instants before a step can be carried out)
to investigate whether the patterns of errors following common and rare transitions
would be altered. We predict that with shorter responding, the ’failure to update’ er-
rors would be more frequent (a consequence of the recruitment of the habitual mode
of action) while, with longer responding, errors would be less frequent overall. We
furthermore predict that the younger the children within the school-age range, the
more time pressure would impair their performance. Thus, with the same amount of
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time pressure, children at the lower bound of school-age years would exhibit more
’failure to update’ than children at the upper bound of school-age years.

In addition to affecting the habitual/goal-directed balance, speeding up actions
is expected to increase the probability of errors within habitual or routine actions.
For example, Schwartz (1995) cites an entry of the Manchester study, in which a
participant with the habit of giving a biscuit to her dog when leaving for work,
while putting on her earrings, has one day thrown the earrings to the dog and tried
to attach a dog biscuit to her ear. This error is an example of the possible errors
occurring when speeding up a routine.

6.4.4 Fractionating executive function involvement in sequential perfor-
mance with different secondary tasks

The study in Chapter 5 uses a secondary task to tax the supervisory resources and
consequently dissociate developmental changes in routine and supervisory modes
of control. It is based on the assumption that the secondary task increases cognitive
load as a whole, as opposed to specific components of supervisory control. However,
one could argue that a task requiring to count sounds will tap into different resources
from, for example, a task requiring to press a button at each sound occurrence, the
latter not relying on memory. Indeed, Cooper et al. (2012) found evidence against the
view that taxing resources by a secondary task increases cognitive load indistinctly.
Instead, the main tasks in Cooper et al. (2012) were differentially impacted when the
secondary task differed in their degree of set-shifting and monitoring components
involvement.

It would be interesting to investigate what would be the different impacts on se-
quence execution of secondary tasks which tap into different cognitive components.
We could expect, for example, that a secondary task which has non-negligible mem-
ory demands (like counting) would affect more strongly maintaining a higher-level
goal in mind (which we know is still a struggle for 4 or 5 years old: Freier et al.,
2017, Yanaoka and Saito, 2017; and presumably still later) than a task which has no
memory demands. This would result specifically in more errors or slowing down
of actions that cannot be predicted by preceding action and need to be related to
the higher-level goal, like branch point actions (compared to non branch point ac-
tions). On the other hand, a secondary task without memory component but direct
responding might slow down all actions equally. Indeed, the latter would require
switching between the sequence production task and counting task at every sound,
and this would be unaffected by the nature of the action.

6.4.5 Modelling the interaction of routine and non-routine modes of con-
trol and the role of developing executive functions

An outstanding line of research is to study whether the newly designed tasks of
Chapter 4 and Chapter 5 can be modelled following the Interactive activation model
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of Chapter 3. It would be interesting to operationalise the role of inhibitory control
in a similar fashion across all three tasks, in order to support a unified account of the
development of inhibitory control driving changes in action control throughout the
school-age years.

Such an account could be implemented with interaction-based processes, using
an overall architecture similar to the GCM of Cooper et al. (2014), and that should
contain at the minimum the following elements. Units would represent candidate
actions at each point of the sequence (denoted action units). The actions units would
receive direct activation from the objects corresponding to the action (environmen-
tal influences) and influences from well-learned representations of the actions of the
sequence (either explicit, or implicit like in Cooper et al., 2014). The actions units
would also receive influence from goal units that form the supervisory influence.
Crucially, the supervisory influence would have a limit, for example, a maximal
connection strength. This would implement the fact that, early on in development,
the influence of the supervisory system may not be strong enough to overcome the
influences from the environment (e.g., distractor objects), nor strong enough to in-
hibit schemas that are appropriate in another context. The connexion strength would
increase across development, modelling the fact that, through development, the su-
pervisory system can more effectively exert the appropriate control over action, in
particular at point at which other influences are not sufficient for appropriate action
selection.

The presented architecture considers the developmental differences in the effi-
ciency of transferring goal units’ input into action control. It assumed that goals
units are already defined with respect to a context and goal. This is equal to assum-
ing that the sequence of actions needed to achieve a goal can be learnt and retrieved
explicitly, but might not be translated efficiently into action control (e.g., due to en-
vironment influences that may be competing with the explicit goals). This account
leaves out the process of learning the relevant sequence of actions needed to achieve
a goal. In Chapter 4 and Chapter 5, the actions were explicitly instructed to the par-
ticipant and in real life, a number of sequences are indeed explicitly instructed (e.g.,
James et al., 1998).

Nonetheless, a number of lower-level actions may be learnt by trial-and-error.
In Chapter 3 we saw how reward-based learning could occur and inform model-
free and model-based types of action selection. In Chapter 3, learning occurred for
each state and action of the sequence separately. To simulate this type of explo-
rative learning in the real world, one must assume an endless number of states and
may perform a wide range of possible actions. In that case, learning actions indepen-
dently will lead to scaling issues; such issues are common on standard reinforcement
learning (Botvinick et al., 2009). Hierarchical reinforcement learning may be a solu-
tion, and it has been proposed that the brain may implement such form of learning
(Botvinick et al., 2009). This is another area for future investigation.
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6.5 Conclusion

This thesis proposed new experimental and computational approaches to study rou-
tine sequential action control in school-age children and understand its changes
across development.

With a variety of experimental contexts (reaching for an object among irrelevant
distractors, updating an ongoing action sequence, selecting among multiple com-
patible actions), findings from the three experimental studies support the argument
that in cases when an inappropriate action has to be inhibited, the younger the chil-
dren are, the more they struggle to do so, resulting in less efficient action selection.
Given the important role of executive functions in action selection process (and in
particular of inhibitory control), and taken together with the known protracted mat-
uration of the prefrontal cortex, the findings indicate that development in executive
functions is a key driver of the developmental changes in sequential action perfor-
mance.

More broadly, by developing a new computational model of the interaction of
model-free and model-based systems as used in the reinforcement learning frame-
work, and comparing existing theoretical accounts of the functioning of two systems
for action control, we showed how the dual-systems accounts is suited to explain
school-aged children’s action control and proposed a developmental trajectory fol-
lowed by the systems. Early on during school-age years, children appear to have a
well-developed routine system that controls well-learned action efficiently at non-
challenging points of sequences and under no cognitive load. Throughout develop-
ment, the supervisory system becomes more efficient and can contribute better to
action selection at challenging points, resulting in finer sequential action control.

We hope that the new methods developed (computational modelling, task de-
velopment and kinematic analyses) as well as the evidence for the applicability of
the dual-systems framework to understand children’s action control will help fu-
ture research on children’s sequential routine action control, and its change across
development.
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Appendix A

Appendix

A.1 Appendix for Chapter 4: Action Sequence Control fol-
lowing an Unexpected Change: Two Touchscreen Stud-
ies

A.1.1 Script of the instruction videos for the touchscreen game

This is the script read aloud and video recorded to present the instructions of the
game of Chapter 4. There was a video presented at the start of the training phase,
lasting 1mn44, and one presented at the start of the test phase, lasting 1mn08. The
display on the right was directly matching was is being said. We present some
screenshots of the video at different times in Figure A.1.

A.1.1.1 Training phase

Note: the same script was existed in two version: the one presented here, and an-
other one where the first cake presented (’white chocolate with grape’) is associated
to the cat instead of the bunny (and the other one associated to be bunny). The men-
tions of the cat and bunny are swapped to match the two existing mapping between
the characters and their favourite recipes.

"In a moment we are going to play a game together on this touchscreen. We’re
going to bake cakes for fluffy the bunny, and kitty the cat.

In the kitchen, you will see the following ingredients: white chocolate, dark
chocolate, pear, raspberry and grape.

The pets really like cakes and want to eat a lot of them. But they like some more
than others.

- The bunny likes the white chocolate with grape; that’s its very favourite recipe
in the world. Every time you see the bunny, you’re gonna make the white chocolate
and grape cake.
- The cat likes the dark chocolate with pear; that’s its very favourite recipe in the
whole wide world. Every time you see the cat, you’re gonna make the dark chocolate
with pear cake.
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To make the cake, we will place the ingredients one by one. Before we decorate
the cake with the fruit, we’re going to make the chocolate mix. First, we need to
pick up the spoon, collect the chocolate, give it to the pet. The pet will place it in the
bowl.

Then we can pick up the spoon, get the fruit and place it in the bowl.
Remember they’re very hungry, and they want to eat it as soon as possible, so try

and make it as quickly as you can.
When the bowl disappears, it means the pet got too hungry and went to the shop

because it couldn’t wait any longer. But don’t worry, they will be back and we can
try to make another cake.

Remember, the bunny’s favourite cake in the world is the white chocolate and
grape cake; and the cat’s favourite cake in the world is the dark chocolate and pear
cake. Let’s start!"

A.1.1.2 Test phase

"Now, we’re going to play a similar game, but this time, the pets will attempt to play
tricks on you.

They have switched around some of the chocolate wrappers, and when this hap-
pens, the chocolate will reveal its true colour in the mixing bowl. This means that,
even if you take the white chocolate wrapper, it can be dark chocolate inside. When
this happens, you need to make the pet’s second favourite cake.

The pets second favourite cake is the one with raspberry. Even if the bunny
prefers white chocolate with grape, the bunny will still be happy with dark chocolate
and raspberry. The very same goes for the cat.

Sometimes, the bunny and cat will swap places with each other after you’ve
started the cake. They’re trying to trick you out to see if you can remember what
cakes they like. When this happens, the pets second favourite cake is the one with
raspberry.

Now you’re ready to play the game! Remember to try and make their very
favourite recipe like you did in the first game. But pay close attention to the tricks
they are trying to play on you."
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Fig. A.1: Some snapshots of the instruction videos for the touchscreen game,
presenting the items in the game, the goals (left hand side snapshots) and

showing the game being played (at step 1, 2 and 3).
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A.2 Appendix for Chapter 5: Hierarchical Control of Action
Sequences: Two Online Studies

A.2.1 Experiment 3

Fig. A.2: Median step-level action selection latencies in sessions 3 and 4
across age groups, without secondary task (ST−; left) or with (ST+; right).

Dots indicate the median and error bars indicate s.e.m.
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Fig. A.3: For the sequences with main goal ’spoon-sprinkles’ ice-cream,
median step-level action selection latencies in sessions 3 and 4 across age
groups, without secondary task (ST−; left) or with (ST+; right). The cyan-
blue dots highlights the steps involving picking-up the spoon. Dots indi-

cate the median and error bars indicate s.e.m.

Table A.1: Linear mixed model regression (LMM) coefficients indicating
the effect of age group (ageGp) and presence/absence of secondary task

(ST+/ST−) on the action selection latency at Step F.

β CI (l) CI (u) Stde DF t p sig
(Intercept) -0.81 -0.95 -0.66 0.07 527 -10.89 <0.001 ***

ST+-ST− 0.09 -0.02 0.20 0.06 527 1.60 0.111
ageGp = 9 − 11 -0.09 -0.37 0.19 0.14 42 -0.67 0.508

ageGp = 7 − 8 0.33 0.01 0.64 0.16 42 2.10 0.042 *
ST+-ST−:ageGp = 9 − 11 0.43 0.21 0.65 0.11 527 3.79 <0.001 ***

ST+-ST−:ageGp = 7 − 8 -0.01 -0.28 0.27 0.14 527 -0.04 0.97
β: Estimate (regression coefficient), CI (l): Confidence Interval (lower bound), CI (u):
Confidence Interval (upper bound), SE: standard error, p: unadjusted p-value, p
(FDR): False Discovery Rate-adjusted p-value, sig.: significance levels based on
FDR-adjusted p-values:.: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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Table A.2: Linear mixed model regression (LMM) coefficients indicating
the effect of age group (ageGp) and presence/absence of secondary task

(ST+/ST−) on the action selection latency at step A.

β CI (l) CI (u) SE DF t p sig
(Intercept) 0.30 0.18 0.41 0.06 527 4.99 <0.001 ***

ST+-ST− 0.03 -0.03 0.10 0.03 527 0.97 0.331
ageGp = 9 − 11 0.13 -0.09 0.36 0.11 42 1.22 0.229

ageGp = 7 − 8 0.54 0.30 0.77 0.12 42 4.55 <0.001 ***
ST+-ST−:ageGp = 9 − 11 0.27 0.13 0.41 0.07 527 3.90 <0.001 ***

ST+-ST−:ageGp = 7 − 8 -0.01 -0.18 0.16 0.09 527 -0.15 0.878

Table A.3: LMM coefficients indicating the effect of age group (ageGp) and
presence/absence of secondary task (ST+/ST−) on the action selection la-

tency at step B.

β CI (l) CI (u) SE DF t p sig
(Intercept) -1.42 -1.59 -1.26 0.08 527 -16.83 <0.001 ***

ST+-ST− 0.19 0.10 0.28 0.04 527 4.20 <0.001 ***
ageGp = 9 − 11 0.31 -0.00 0.62 0.15 42 2.02 0.05 .

ageGp = 7 − 8 0.19 -0.14 0.53 0.16 42 1.18 0.245
ST+-ST−:ageGp = 9 − 11 0.09 -0.08 0.27 0.09 527 1.04 0.299

ST+-ST−:ageGp = 7 − 8 0.31 0.09 0.53 0.11 527 2.77 0.006 **

Table A.4: LMM coefficients indicating the effect of age group (ageGp) and
presence/absence of secondary task (ST+/ST−) on the action selection la-

tency at step C.

β CI (l) CI (u) SE DF t p sig
(Intercept) -0.04 -0.19 0.12 0.08 527 -0.47 0.635

ST+-ST− -0.01 -0.12 0.10 0.06 527 -0.12 0.905
ageGp = 9 − 11 0.20 -0.09 0.50 0.15 42 1.38 0.176

ageGp = 7 − 8 0.61 0.28 0.94 0.16 42 3.76 0.001 ***
ST+-ST−:ageGp = 9 − 11 0.40 0.18 0.63 0.11 527 3.52 <0.001 ***

ST+-ST−:ageGp = 7 − 8 0.16 -0.11 0.44 0.14 527 1.16 0.245

Table A.5: LMM coefficients indicating the effect of age group (ageGp) and
presence/absence of secondary task (ST+/ST−) on the action selection la-

tency at step D.

Value CI (l) CI (u) SE DF t p sig
(Intercept) -0.11 -0.27 0.05 0.08 528 -1.35 0.178

ST+-ST− -0.15 -0.24 -0.05 0.05 528 -2.96 0.003 **
ageGp = 9 − 11 0.04 -0.26 0.34 0.15 42 0.26 0.798

ageGp = 7 − 8 0.58 0.25 0.90 0.16 42 3.57 0.001 ***
ST+-ST−:ageGp = 9 − 11 0.42 0.22 0.62 0.10 528 4.11 <0.001 ***
ST+-ST−:ageGp = 7 − 8 0.08 -0.17 0.32 0.12 528 0.62 0.536

Table A.6: LMM coefficients indicating the effect of age group (ageGp) and
presence/absence of secondary task (ST+/ST−) on the action selection la-

tency at step E.

β CI (l) CI (u) SE DF t p sig
(Intercept) -1.33 -1.53 -1.14 0.10 528 -13.71 <0.001 ***

ST+-ST− 0.13 0.04 0.21 0.04 528 2.96 0.003 **
ageGp = 9 − 11 0.23 -0.13 0.59 0.18 42 1.30 0.199

ageGp = 7 − 8 0.27 -0.10 0.64 0.18 42 1.47 0.15
ST+-ST−:ageGp = 9 − 11 0.09 -0.09 0.26 0.09 528 0.99 0.325

ST+-ST−:ageGp = 7 − 8 0.03 -0.18 0.25 0.11 528 0.30 0.763
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Table A.7: LMM coefficients indicating the effect of age group (ageGp) and
presence/absence of secondary task (ST+/ST−) on the action selection la-

tency at step G.

β CI (l) CI (u) SE DF t p sig
(Intercept) 0.14 -0.03 0.31 0.08 527 1.65 0.1

ST+-ST− -0.38 -0.49 -0.26 0.06 527 -6.24 <0.001 ***
ageGp = 9 − 11 0.19 -0.13 0.51 0.16 42 1.21 0.234

ageGp = 7 − 8 0.42 0.07 0.78 0.18 42 2.40 0.021 *
ST+-ST−:ageGp = 9 − 11 0.34 0.10 0.58 0.12 527 2.76 0.006 **
ST+-ST−:ageGp = 7 − 8 0.19 -0.10 0.49 0.15 527 1.29 0.198

Table A.8: LMM coefficients indicating the effect of age group (ageGp) and
presence/absence of secondary task (ST+/ST−) on the action selection la-

tency at step H.

β CI (l) CI (u) SE DF t p sig
(Intercept) 0.06 -0.09 0.21 0.08 527 0.74 0.46

ST+-ST− -0.16 -0.27 -0.06 0.05 527 -3.21 0.001 **
ageGp = 9 − 11 0.09 -0.20 0.37 0.14 42 0.60 0.552

ageGp = 7 − 8 0.69 0.37 1.00 0.16 42 4.38 <0.001 ***
ST+-ST−:ageGp = 9 − 11 0.39 0.19 0.60 0.10 527 3.75 <0.001 ***

ST+-ST−:ageGp = 7 − 8 -0.04 -0.29 0.21 0.13 527 -0.32 0.753

Table A.9: LMM coefficients indicating the effect of age group (ageGp) and
presence/absence of secondary task (ST+/ST−) on the action selection la-

tency at step I.

β CI (l) CI (u) SE DF t p sig
(Intercept) -1.26 -1.45 -1.07 0.10 527 -12.96 <0.001 ***

ST+-ST− -0.04 -0.13 0.05 0.05 527 -0.88 0.377
ageGp = 9 − 11 0.20 -0.15 0.56 0.18 42 1.16 0.253

ageGp = 7 − 8 0.45 0.08 0.82 0.19 42 2.44 0.019 *
ST+-ST−:ageGp = 9 − 11 0.17 -0.01 0.35 0.09 527 1.82 0.07 .

ST+-ST−:ageGp = 7 − 8 -0.18 -0.40 0.05 0.11 527 -1.54 0.123
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A.2.2 Experiment 4

Fig. A.4: Deviation: Average absolute orthogonal distance to straight path).
Median values. Error bars represent s.e.m.
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Fig. A.5: Deviation: Log ratio maximal relative distance (maxDist/dist start
end). Median values. Error bars represent s.e.m.
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Fig. A.6: Linear Mixed Model predicted values of the Step latencies. ST−:
without secondary task, ST+: with secondary task. Error bars represent 95%

confidence intervals.

Fig. A.7: Linear Mixed Model predicted values of the Delta BP − nBP. ST−:
without secondary task, ST+: with secondary task. Error bars represent 95%

confidence intervals.
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Fig. A.8: Linear MixedModel predicted values of the DeltaST+ − ST−. ST−:
without secondary task, ST+: with secondary task. BP: branch points, nBP:

non branch points. Error bars represent 95% confidence intervals.
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