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Critical slowing down in dynamical systems driven by nonstationary correlated noise
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Precursor signals for bifurcation-induced critical transitions have recently gained interest across many research
fields. Common indicators, including variance and autocorrelation increases, rely on the dynamical system being
driven by white noise. Here, we show that these metrics raise false alarms for systems driven by time-correlated
noise, if the autocorrelation of the noise process increases with time. We introduce an indicator for systems
driven by nonstationary short-term memory noise, and show that this indicator performs well in situations where
the classical methods fail.

DOI: 10.1103/PhysRevResearch.4.013230

I. INTRODUCTION

Many theoretical, experimental, and real-world systems
undergo abrupt shifts from one dynamical regime to another.
Anticipating or predicting such regime shifts is of vital im-
portance in many instances, such as for major Earth system
components or ecosystems, but also in physiology, neurology,
or finance [1–6]. Such regime shifts can often be described
in terms of critical transitions of low-dimensional nonlinear
dynamical systems, induced by codimension-1 bifurcations.

The theory behind this type of transition goes back to the
fluctuation-dissipation theorem [7,8] and is understood well
[9]. Transitions triggered by codimension-1 bifurcations in
stochastic dynamical systems with additive noise forcing are
associated with a characteristic widening of the underlying
basin of attraction on the way to the bifurcation [9,10]. This
leads to a weakening of the restoring force to perturbations,
which causes the phenomenon of critical slowing down (CSD)
[11–13]. CSD changes the statistical properties of the system
and, in particular, leads to an increase of the variance and lag-1
autocorrelation (AC1) before the critical threshold is reached.
A data-driven approach to identify such statistical precursor
signals for forthcoming critical transitions thus relies on mea-
suring the variance and AC1 of a time series encoding the
dynamics of the system in sliding windows, and searching for
consistent increases in both indicators. This specific method
has already found a number of applications to models and
real-world data [14–17].

Bifurcation-induced transitions are also a widely studied
mechanism for sudden climate transitions [18–21].
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Precursor signals for critical transitions in terms of ris-
ing variance and AC1 have been identified in ecological
and geological time series, controlled biological experiments,
and a multitude of model simulations of different systems
[10,12,22]. Besides these classical CSD indicators, which are
most widely used in practical applications, a number of ad-
ditional indicators have been proposed, including changes in
skewness [9], diverging susceptibility [23], mean exit time
[24], and increases in complexity of ARMA models [25]. In
recent years there have been considerable efforts to improve
the performance of these statistical methods by reducing false
and raising true positive detection rates. Existing work has
mainly focused on systems driven by uncorrelated (white)
noise, which makes the methods prone to failure if this
assumption is not fulfilled—which is likely in the climate
system [26])—although some work has been done to construct
methods for systems with correlated noise using detrended
fluctuation analysis [27,28].

Here, we propose an analytical early-warning indicator for
systems driven by noise with exponentially decaying autocor-
relation structure. We show that the classical CSD indicators
produce false alarms if the autocorrelation of the driving noise
increases, while the indicator proposed here remains reliable
in such cases. We thereby provide the analytical basis and con-
firmation for recent work that followed a purely data-driven
approach to account for changing temporal correlation in the
driving noise [29]. The method introduced here also suits itself
to generalizations of the noise model and constitutes a flexible
approach for situations when the classical CSD indicators are
not applicable.

The structure of this paper is as follows: We first describe
the occurrence of the classical CSD indicators for traditional
one-dimensional systems driven by white noise. Thereafter,
we show that the classical indicators cannot accurately predict
transitions in cases of correlated noise with increasing auto-
correlation, as described by a nonstationary AR(1) process.
We then propose an early-warning indicator based on esti-
mating the varying AR(1) parameters. This estimator reduces
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to the AC1 in the white-noise case. We then demonstrate
the performance of our method, and compare it to existing
alternatives, on simple mathematical models.

II. THEORY

A. Classical critical slowing down

The occurrence of CSD can be formally explained on
the basis of stochastic dynamics. Assume that the system is
well described by a deterministic function f and driven by
high-frequency forcing that can be represented by additive
stochastic noise. The typical noise model assumed in the con-
text of CSD is additive, stationary white noise with variance
σ 2, so that the dynamical equation reads

dx = f (x, r(t ), t )dt + σdWt , (1)

for system states x, control parameter r, and a Wiener process
Wt . If the system is close to equilibrium, locally it suffices to
consider the linearized dynamics

dx ≈ f ′(x∗, r(t ), t )(x − x∗)dt + σdWt , (2)

since f (x∗) = 0 by definition. Of course, the equilibrium po-
sition x∗ can itself change in an open system, hence x∗ =
x∗(r(t ), t ). By performing a coordinate change x → (x − x∗)
this part of the dynamics can be absorbed. Under the assump-
tion that the control parameter changes sufficiently slowly,
so that the system state can track the equilibrium position
(quasistatic assumption), the linear approximation holds after
the transformation. With λ:= − f ′(x∗, r(t ), t ), Eq. (2) takes
the form

ẋ = −λ(t )x + σdWt , (3)

where the negative sign causes λ to be a positive number for
stable solutions. For constant (or slowly varying) λ, this equa-
tion defines the Ornstein-Uhlenbeck process; in its stationary
state, the parameter λ is related to the variance Var(xt ) and the
autocorrelation AC(xs, xt ) by [30]

Var(xt ) = σ 2

2λ
, AC(xs, xt ) = e−λ|t−s|. (4)

In this framework, the loss of (linear) stability when approach-
ing the bifurcation manifests as a decrease in λ; by Eq. (4) this
leads to the increases in variance and AC1 that are widely used
to identify CSD in a given time series. Note that it has also
previously been proposed to use the restoring rate λ as a para-
metric indicator for an approaching bifurcation [29,31,32],
while some nonparametric approaches have been devised to
analyze the full nonlinear system [33,34]. In practice, the
statistical properties are usually calculated on discrete time
series data. Sampling a realization of the Ornstein-Uhlenbeck
process Xt := xn�t , n ∈ Z, in time steps of size �t = const,
leads to a discrete-time process

Xt+1 = ϕXt + εt , X0 = x0, ϕ := e−λ�t ,

εt ∼ N (0, σ̃ 2), σ̃ 2 := 1

2λ
σ 2(1 − e−2λ|�t |), (5)

which is a first-order autoregressive (AR1) model. In the sta-
tionary case, Eq. (4) implies that

Var(Xt ) = σ̃ 2

1 − ϕ(λ)2
, AC(Xt+1, Xt ) = ϕ(λ) (6)

(see [35] and Supplemental Material [36]). Therefore, a de-
crease in λ, which leads to an increase of ϕ, in turn leads to
an increase in variance and AC1 also when estimated from
a discrete time series. The above derivation already reveals
some limitations of the classical approach based on increasing
variance and AC1. In particular, an increase of the variance
may not only be caused by a decrease in the restoring rate λ,
but also by an increase in σ . An increase in both variance and
AC1 is therefore necessary for reliable detection of critical
slowing down, even if the assumptions on white additive noise
are justified; this has been prominently discussed in [13]. In
cases where the assumption of white noise cannot be justified,
however, further theoretical development is needed, as we will
show in the following.

B. Critical slowing down in systems driven by correlated noise

In addition to assuming σ = const, the classical CSD
indicators in terms of rising variance and AC1 rely on the as-
sumption that the autocorrelation of the process only increases
due to a weakening in the restoring force. A natural extension
to the process is a model in which the autocorrelation may
change independently of critical slowing down. In fact, for
any real-world natural system, it would be very hard to justify
that the driving noise is white, and correlated noise structures
should be considered much more realistic. A straightforward
generalization of Eq. (3) is thus

dxt = −λxt dt + dVt , dVt = −μVt dt + σdWt , (7)

an Ornstein-Uhlenbeck process driven by another Ornstein-
Uhlenbeck process [37]. By increasing the autocorrelation
parameter μ of the noise term, one directly manipulates
both the autocorrelation and the variance of the process xt .
Since the noise process is described in itself by an Ornstein-
Uhlenbeck process, the covariance of the noise term decreases
exponentially in time. This model can thus be considered as a
linear model driven by a short-term memory process, a type of
noise that is very often considered for (paleo-)climate records
[38]. A discrete analog for this model is

Xt = ϕXt−1 + Vt , Vt = ρVt−1 + εt , εt ∼ N (0, σ̃ 2), (8)

which has the following statistical properties (see
Supplemental Material [36]):

Var(Xt ) = σ 2

(1 − ϕ2)(1 − ρ2)

[
1 + ϕρ

1 − ϕρ

]
, (9)

AC(Xt+1, Xt ) = ϕ + ρ (1 − ϕ2)

1 + ϕρ
. (10)

From these equations, it is clear that a loss of stability (and
increase in ϕ) still leads to the increases in variance and AC1,
just as for the case of white-noise forcing. However, in this
model an increase in ρ also increases both quantities. This
implies that classical CSD indicators, i.e., rising variance and
AC1, are prone to false positives if there are no strong reasons
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FIG. 1. Example realization for a linear model driven by AR(1)
noise, with increasing noise autocorrelation ρ (orange dashed line).
The CSD indicators are calculated in the area marked by the orange
shading. The classical methods σ 2 and α1 as well as ϕ exhibit sig-
nificant linear trends (solid black). The adjusted method ϕa correctly
identifies no significant trend.

to assume that the noise forcing is indeed white, since in that
case the autocorrelation of the noise term may increase. An
example is given in Fig. 1.

1. Estimating ϕ as an indicator of critical slowing down

Casting CSD into the above framework permits the defini-
tion of an early-warning indicator. The increase of the AR(1)
parameter ϕ in Eq. (8) is a direct measure of the system’s
stability, and the motivation to use the variance and AC1 relies
on the behavior of ϕ. We therefore propose to estimate ϕ

directly, and to use it as a robust indicator for CSD for which
the likelihood of false positives is reduced.

One can estimate ϕ from time series data using an ordinary
least-squares (OLS) regression. Given the time series data y =
(y0, y1, . . . , yn), the OLS fit function is

S(ϕ) =
n∑

i=1

(yi − ϕyi−1)2. (11)

The best estimator for ϕ is given by the value ϕ̂ minimizing S,
given by

ϕ̂ =
∑n

i=1 yiyi−1∑n
i=1 y2

i−1

. (12)

The OLS estimator is unbiased if

cov(εi, ε j ) = σ 2δi j, (13)

i.e., if the noise is uncorrelated.

2. White noise

In the classical situation with white-noise forcing, Eq. (13)
holds and the estimator is unbiased. Since E(Xt ) = 0 for an
AR(1) process, Eq. (12) coincides with the sample estima-
tion procedure for the linear (Pearson) correlation coefficient
r(Xt+1, Xt ) and is therefore identical to the AC1 estimation,
consistent with Eq. (6). Thus, direct estimation of ϕ is equiv-
alent with the classical CSD indicators if the time series itself

can be described well by an AR(1) process driven by white
noise.

3. AR(1) noise

For the model described by Eq. (8), direct estimation of ϕ

using Eq. (12) yields a biased result. It is, however, possible
to construct an unbiased estimator [39–41]. One begins with
the biased least-squares estimator for a time series y:

ϕ̂b =
∑n

i=1 yiyi−1∑n
i=1 y2

i−1

. (14)

For large n this quantity converges to a biased estimator [39]:

ϕb = ϕ + ρ

1 + ϕρ
, (15)

which only coincides with ϕ for the white-noise case ρ = 0.
One can see that an increase in ρ alone leads to an increase
in ϕb (for ϕ, ρ ∈ (0, 1)), which makes ϕb unsuited as an in-
dicator of CSD. However, the convergence properties of the
least-squares estimator for ρ,

ρ̂b =
∑n

i=1 V̂iV̂i−1∑n
i=1 V̂ 2

i−1

, V̂i = yi − ϕ̂byi−1, (16)

are also known to be [39]

ρb = ϕρϕb. (17)

Using both of these properties, one can construct an adjusted,
unbiased estimator [40] for ϕ > ρ, given by

ϕ̂a = â +
√

â − 4b̂

2
, (18)

or alternatively for ρ > ϕ by

ϕ̂a = â −
√

â − 4b̂

2
, (19)

where

â = ϕ̂b + ρ̂b, b̂ = ρ̂b

ϕ̂b
. (20)

This estimation procedure works as long as the processes are
stationary (−1 < ϕ, ρ < 1). For a detailed discussion on the
convergence properties of these estimators, see [40,42].

III. RESULTS

To demonstrate the benefit of our method, the performance
of the classical CSD indicators, variance and AC1, are com-
pared to the simple parameter ϕ and the adjusted parameter
ϕa for two models. The first model is a linear model with-
out the potential for abrupt transitions, and the second is
a nonlinear model with a double-well potential, which thus
allows for a critical transition from one fixed point to the
other. Both are driven by white noise and nonstationary AR(1)
noise for comparison. The equations are discretized using the
Euler-Maruyama method and the different CSD indicators
are calculated in rolling windows (see Supplemental Material
for details on the employed parameters [36]). For the AR(1)
noise driving the systems, the autocorrelation parameter ρ is
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FIG. 2. Performance of the classical CSD indicators compared
to the ϕ indicators proposed here, for a linear dynamical system with
single-well potential, driven by white (left) and nonstationary AR(1)
noise [right, the parameter ρ in Eq. (8) increases from 0 to 0.6 over
the course of the simulations].

increased linearly from 0 to 0.6 over the course of the sim-
ulation. The linear trend of the quantities is calculated using
a linear least-squares regression (for the double-well model
only data prior to the transition are considered).

An increase in one of the CSD indicators might of course
also happen due to random fluctuations. To evaluate the signif-
icance of these trends we use a surrogate test based on Fourier
surrogates with randomized phases. For a given time series,
1000 surrogates are created. These surrogates coincide with
the original time series in their relevant statistical properties;
in particular, the total variance and total lag-1 autocorrelation
are the same. However, any true trend will be removed in the
surrogates, as desired for such a surrogate null model. The
likelihood that a trend in the original time series is real and not
caused by random fluctuations can then be estimated by com-
paring the magnitude of the trend in the original time series
to the trends in the surrogates. This is done by calculating the
proportion of trends that have a larger magnitude in the surro-
gates than the original time series. The test can be turned into a
binary classifier by choosing a significance threshold for this
test statistic—the proportion of surrogates that have a larger
trend than the original time series. For example, a threshold
of 0.05 would mean a maximum of 5% of the surrogate trend
magnitudes are allowed to be larger than the trend in the
original time series for the trend to be considered statistically
significant. For more information on this procedure see [43]
as well as Appendix, and for application to CSD estimation
see [15,44,45].

The performance of the different CSD indicators is tested
for varying values of this threshold. To quantify the perfor-
mance of the indicators, the number of significant positives
trends is calculated for ensembles of 500 realizations. The
proportions of these ensembles that yield significant trends—
according to the test prescribed above—as a function of the
threshold are shown in Figs. 2 and 3.

A. Linear model

First, we analyze the performance of the classical CSD
indicators based on a linear model described by Eq. (3) for

FIG. 3. Performance of the classical CSD indicators compared to
the ϕ indicators proposed here, for a dynamical system with double-
well potential, exhibiting a critical transition. Simulations are shown
for the model driven by white (left) and nonstationary AR(1) noise
[right, the parameter ρ in Eq. (8) increases from 0 to 0.6 over the
course of the simulation].

the white-noise case and Eq. (7) for the nonstationary AR(1)
noise case. This linear model is used as a baseline for the
performance of the methods, for which no indication of CSD
should occur. The trends in the estimator are calculated for
104 and 105 total data points in the time series (see Fig. 2
and Supplemental Material [36]). For the white-noise case,
the classical indicators as well as ϕ and ϕa method all detect a
number of significant (false) positive trends that matches the
significance threshold (Fig. 2). This is the expected behav-
ior for this null model in case of a correctly working CSD
indicator. In contrast, based on variance, AC1, or ϕ, a signif-
icant excess of false positive detections occurs in the case of
nonstationary AR(1) noise. As predicted, the changes in the
noise term are misinterpreted by these indicators as signs of
CSD; increases in the data availability only increase the false
positive rate since these effects are more clearly resolved. In
contrast, the adjusted ϕa does not respond to the changes in
the noise forcing and hence performs exactly as expected for
the AR(1) noise, and similarly as the classical methods in the
white-noise case.

B. Double-well model

Next, we compare the CSD indicator proposed here, i.e.,
ϕa, to the previously proposed indicators for time series ob-
tained with the nonlinear double-well model, given in the
continuous case by

ẋt = −x3
t + xt + r(t ) + σdWt (21)

(r evolves linearly from −1 to 1; see Supplemental
Material [36] for further details). For a varying control pa-
rameter r, this model undergoes a saddle-node bifurcation
preceded by a widening of the basin of attraction. To calculate
the CSD indicators in this case, the resulting time series has
to be detrended beforehand in order to avoid biases induced
by any underlying nonlinear trends. In the case at hand, we
detrend the individual stochastic realizations by subtracting
the corresponding deterministic realization (σ = 0). For this
model, significantly positive trends constitute a true positive
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detection of CSD and hence a justified alarm of a forthcoming
critical transition. The classical indicators perform well in the
case of white-noise forcing and exhibit a high number of true
positives prior to the transition. Their performance increases
with the size of the time series (see Supplemental Material
[36]). For the AR(1) noise model, the number of significant
trends increases faster than for the white-noise model, indi-
cating changes in the noise term are misattributed as signs
of CSD. In contrast, ϕa performs similarly in the white-noise
case and in the AR(1) noise case, indicating that ϕa is able
to disentangle effects in the noise term from actual CSD on
the way to a bifurcation-induced transition. Its performance
in the white-noise case is however slightly lower than for the
classical methods by sometimes misattributing some of the ef-
fects of CSD to noise effects. Therefore, using just this method
slightly increases the chance for false negative detections.

IV. DISCUSSION

Investigating the performance of the classical CSD indica-
tors on simple models reconfirms that CSD provides powerful
tools for the prediction of bifurcation-induced transitions.
Under the right circumstances, these tools yield near 100%
effective precursor signals.

However, we also demonstrated that the classical CSD
indicators fail in cases where correlated noise forcing cannot
be excluded, which is likely the case in many real-world situ-
ations, such as when analyzing climate data; blindly applying
the classical CSD indicators, i.e., variance and AC1, likely
leads to incorrect conclusions. We demonstrated this by the
performance of variance and AC1 on a linear model driven by
nonstationary AR(1) noise; in this case the two classical CSD
indicators lead to a near 100% false positive rate. These results
call attention to the need for further research into indicators
for CSD in the presence of correlated noise.

Directly estimating the restoring rate of the system, or
equivalently the closely related AR(1) parameter ϕ, presents
strong candidates for improvement. We have demonstrated
that one can readily adjust the estimation to obtain unbiased
values ϕa for different and especially for nonstationary noise
models. Using this unbiased estimate of the AR(1) parameter,
i.e., ϕa, directly as a CSD indicator works robustly in cases
of short-memory noise with varying variance and autocorre-
lation. We emphasize that using the unbiased estimate ϕa as
introduced above efficiently decreases the probability of false
positive detections, which is very high if the classical indica-
tors are used in the—in practical cases very likely—situation
of noise forcing with changing temporal correlation strength.
At the same time, our results indicate that using this method
might slightly increase the false negative detection rate for ac-
tual transitions, by misattributing trends in the autocorrelation
to changes in the noise properties. For real-world time series
data, the choice of method should therefore be informed by
additional information about the most probable noise model.

Since the estimation procedure for ϕa is more involved
than for the classical methods, it is likely that more data
points will be needed in practical applications of this method
compared to the classical methods. This limits the usability
of this method in situations where only sparse data are avail-
able, e.g., when analyzing (paleo-)climate time series. We

emphasize that the generalization made here is also applicable
to other noise models. For example, Brouste and Iacus [46]
propose a method to estimate the restoring rate for time series
data derived from an Ornstein-Uhlenbeck process driven by a
fractional Gaussian noise process. This quantity can be used
as a CSD indicator in cases where the noise of the system is
better modeled by a long-term memory noise process, and can
be complementary to the method proposed here.
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APPENDIX: RANDOM PHASE FOURIER
SURROGATE TEST

To test the significance of a (linear) trend within a time
series, a surrogate data approach is taken. For a given time
series y, a number of pseudodatasets is used. These surrogate
sets are created using the method of random phase Fourier
surrogates. For a dataset y = (y0, y1, . . . , yn), the algorithm
works as follows.

(1) Calculate the discrete Fourier transform, FT (y)k =
Yk = ∑n−1

j=0 yne− i2π
n k j .

(2) Create a set of uniformly distributed random
phases, eiφk .

(3) Create the surrogate Fourier transform as Ỹk = Ykeiφk .
(4) Create surrogate time series by inverse transform, ỹk =

FT −1(Ỹ )k .
This method is used since the surrogate dataset has the

same variance and (linear) correlation structure as the original
time series, but since the components are randomly shuffled
any real (linear) trend is removed. The linear trend’s signifi-
cance is estimated by fitting a linear function f (x) = ax + b to
the original and surrogate data using an ordinary least-squares
regression; the trend is indicated by the magnitude and sign
of the parameter a. If there is a significant (positive) trend
in the original time series this parameter will be much larger
for the real dataset than for most of the surrogate set, since
any trend in the surrogate data is a purely random effect
stemming from the variance and autocorrelation of the time
series. Consequently, if the trends in the surrogate data are of
similar or larger magnitude than for the original time series,
it is an indicator that the trend is insignificant and can be
explained purely by stochastic effects.

Following this logic, a hypothesis test can be established:
Create a large number of surrogates (1000 in practice) and cal-
culate the trend parameter a for the real (aref) and all surrogate
datasets (as). The probability that the trend in the original time
series can be explained by stochastic effects alone is then

p = 1 − number of as for which as � aref

total number of as
. (A1)

This can be turned into a binary classifier by choosing an
appropriate significance threshold value for p (which is varied
for Figs. 2 and 3 in the main text).
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