

 University of Groningen

Exploring the Relation Between Co-changes and Architectural Smells
Sas, Darius; Avgeriou, Paris; Kruizinga, Ronald; Scheedler, Ruben

Published in:
SN Computer Science

DOI:
10.1007/s42979-020-00407-5

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sas, D., Avgeriou, P., Kruizinga, R., & Scheedler, R. (2020). Exploring the Relation Between Co-changes
and Architectural Smells. SN Computer Science, 2, [13]. https://doi.org/10.1007/s42979-020-00407-5

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://doi.org/10.1007/s42979-020-00407-5
https://research.rug.nl/en/publications/17a860db-d82e-46c2-94b9-fb9b9e3406ac
https://doi.org/10.1007/s42979-020-00407-5

Vol.:(0123456789)

SN Computer Science (2021) 2:13
https://doi.org/10.1007/s42979-020-00407-5

SN Computer Science

ORIGINAL RESEARCH

Exploring the Relation Between Co‑changes and Architectural Smells

Darius Sas1 · Paris Avgeriou1 · Ronald Kruizinga1 · Ruben Scheedler1

Received: 1 July 2020 / Accepted: 13 November 2020 / Published online: 16 December 2020
© The Author(s) 2020

Abstract
The interplay between Maintainability and Reliability can be particularly complex and different kinds of trade-offs may
arise when developers try to optimise for either one of these two qualities. To further understand how Maintainability and
Reliability influence each other, we perform an empirical study using architectural smells and source code file co-changes
as proxies for these two qualities, respectively. The study is designed using an exploratory multiple-case case study follow-
ing well-know guidelines and using fourteen open source Java projects. Three different research questions are identified
and investigated through statistical analysis. Co-changes are detected by using both a state-of-the-art algorithm and a novel
approach. The three architectural smells selected are among the most important from the literature and are detected using
open source tools. The results show that 50% of co-changes eventually end up taking part in an architectural smell. Moreo-
ver, statistical tests indicate that in 50% of the projects, files and packages taking part in smells are more likely to co-change
than non-smelly files. Finally, co-changes were also found to appear before smells 90% of the times a smell and a co-change
appear in the same file pair. Our findings show that Reliability is indirectly affected by low levels of Maintainability even at
the architectural level. This is because low-quality components require more frequent changes by the developers, increasing
chances to eventually introduce faults.

Keywords Architectural smells · Co-changes · Logical coupling · Empirical study

Introduction

The interplay between design-time (e.g. Maintainability)
and runtime qualities (e.g. Reliability) can be particularly
complex: when developers try to optimise for either one of
these two types of qualities, important trade-offs may arise.
For example, striving for a simple and maintainable design,
might inevitably affect the system run-time performance or
security. Likewise, aiming to build a speedy and depend-
able system might require to increase the system’s inherent
complexity, thus sacrificing its evolvability.

While there is currently a considerable amount of
research effort to understand this interplay [5], the topic is
still understudied and there are many aspects that have not
been investigated. This paper focuses on one such aspect:
the interplay between Reliability and Maintainability, spe-
cifically by studying co-changes and architectural smells as
their proxies, respectively. We elaborate on both proxies in
the following paragraphs.

When analysing the history of a system, co-changing
files provide crucial insights on the implicit dependencies
among files. Historically, co-changes are considered a sign

This work was supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No.
780572 SDK4ED (https ://sdk4e d.eu/).

This article is part of the topical collection “Interaction between
Energy Consumption, Quality of Service, Reliability and Security,
Maintainability of Computer Systems and Network” guest edited
by Erol Gelenbe.

 * Darius Sas
 d.d.sas@rug.nl

 Paris Avgeriou
 p.avgeriou@rug.nl

 Ronald Kruizinga
 ronmatk@gmail.com

 Ruben Scheedler
 rubenscheedler@gmail.com

1 Bernoulli Institute for Mathematics, Computer
Science and Artificial Intelligence, Faculty of Science
and Engineering, University of Groningen, Nijenborgh 9,
9747AG Groningen, Netherlands

http://orcid.org/0000-0003-3383-3298
http://orcid.org/0000-0002-7101-0754
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-020-00407-5&domain=pdf
https://sdk4ed.eu/

 SN Computer Science (2021) 2:1313 Page 2 of 15

SN Computer Science

of poor design as they expose a logical coupling between
the two files that is not explicitly declared in either of them
[10]. Such a problematic design has impact on run-time
qualities, such as Reliability, as co-changes are useful pre-
dictors of faults [17, 18, 38]. There exist several studies in
the literature documenting this aspect of co-changes. Kim
et al. [17], for instance, explain that when a programmer
makes a change based on incomplete or incorrect knowl-
edge, they likely cannot assess the impact of their modi-
fications as well, thus introducing faults to nearby files,
logically coupled to the changing file. Furthermore, when
a file has a fault, there is a good chance that files that are
“nearby” in the dependency network also contain a fault,
and there is a good chance that they will change together
when fixes are applied [17].

On the other hand, when analysing design-time qualities
of a system (e.g. maintainability and evolvability), issues in
the architecture of the system are among the most important
and insightful to look at because of the critical role played
by software architecture in shaping the system [19]. This has
initiated a lot of research on how Technical debt [4] at the
architecture level (i.e. Architectural debt, or ATD) negatively
impacts Maintainability and Evolvability on the long term.
One of the most interesting examples of ATD are architec-
tural smells, which are defined as “[...]commonly (although
not always intentionally) used architectural decision that
negatively impact system quality” [13]. Architectural smells
are a significant threat to the long-term sustainability of the
system’s architecture and hinder regular maintenance activi-
ties by increasing the complexity of the system.

Currently, the research community’s interest on architec-
tural smells is growing rapidly [42]. However, there are no
studies looking at the interplay between architectural smells
and co-changes; we note that there is instead mature research
on code smells and co-changes, as well as antipatterns and
co-changes [11, 29]. It is therefore interesting to study this
relationship in order to better understand the intricacies and
trade-offs between Reliability and Maintainability, through
the two aforementioned indicators: co-changes and architec-
tural smells, respectively.

This study makes a first step in this direction by setting
up a case study to examine two important aspects: (1) how
architectural smells and co-changes co-occur, and (2) which
one precedes the other in appearing in a system.

The study focuses on dependency-based architectural
smells, a category of smells for which there exist no other
studies looking at their interconnection with co-changes.
To conduct the study, we selected a set of 14 open source
Java systems and mined their history in search of architec-
tural smells and co-changing files. Next, we developed sev-
eral hypotheses for each research question and tested them
through statistical tests.

Our findings show that, on average, 50% of co-changing
file pairs detected by our custom algorithm are also affected
by at least one architectural smell. In addition, in seven pro-
jects, file pairs affected by an architectural smell were found
to be more likely to co-change than non-affected pairs. In all
projects, however, over 90% of all co-changes were detected
before the smell. These findings allow us to understand bet-
ter the interplay between Reliability and Maintainability
throughout a system’s evolution history.

The rest of the paper is organised as follows: “Related
work” reports on similar studies from the literature; “Meth-
odology” covers the case study design and the methods used
to collect the data; “Architectural smells and co-changes
(RQ1)”, “Frequency of co-changes in smelly artefacts
(RQ2)”, and “Introduction order of co-changes and archi-
tectural smells (RQ3)” describe the methods used to analyse
the data and report the results obtained for the three research
questions of this study respectively; “Discussion” discusses
the results; “Threats to validity” elaborates on the possible
threats to the validity of this study; and finally “Conclusion”
reports the concluding remarks of this paper.

Related Work

Architectural Smells

The literature contains several catalogues of architectural
smells defined by a multitude of authors. In this section, we
briefly mention some of these studies as well as key empiri-
cal studies on architectural smells.

Lippert and Roock [25] defined in 2006 a number of
architectural smells that affect a system at different levels
(class, package, module, etc.). Most of these smells were
dependency-based smells, meaning that they were describ-
ing issues arising in the dependency network of a system,
such as cyclic dependencies. Others were based on the size
of the artefact affected, or on the inheritance hierarchy of
a class.

In 2009, Garcia et al. [13] identified a four architectural
smells defining suboptimal structures in how the function-
ality was implemented and distributed across the different
parts of the system. The list was then further extended in
2012, by Macia et al. [22], who have also performed one
of the first empirical analyses looking into the evolution of
architectural smells over time. Their findings showed that
code anomalies detected by the employed strategies were
not related to architectural problems, highlighting how the
tools used were neglecting the artefacts suffering from archi-
tectural problems.

Suryaranayana et al. [41] proposed in 2014 an extensive
catalogue of design smells (some of which where similar
to some architectural smell previously defined by other

SN Computer Science (2021) 2:13 Page 3 of 15 13

SN Computer Science

authors) identifying multiple categories: abstraction, modu-
larisation, hierarchy, and encapsulation. The categories and
the smells identified were all based on key object-oriented
design principles.

Later on, Mo et al. [27] defined five new types of architec-
tural smells in the context of the authors’ research on Design
Rule Spaces [43]. One type of smell is defined using the
concept of logical coupling, identifying modules that, while
do not directly depending upon each other, are not mutually
independent and change together frequently.

Arcelli et al. [2, 12] provide a catalogue of three depend-
ency-based architectural smell along with a validated tool
to detect those smells in Java systems. More details on the
smells defined by Arcelli et al. are reported in section 3.4.1.

Le Duc et al. [20, 21] strove to provide a formalised
definition of AS before performing an empirical study on
the evolution of the instances in 421 versions from 8 open
source systems. They tested the hypotheses that (1) smelly
files are more likely to have issues associated than clean
files and that (2) smelly files are more likely to change than
non-smelly ones, accepting them both.

Finally, in our previous study [36], we investigated the
evolution of individual AS instances over time with respect
to their characteristics, such as size, centrality, and age. Our
findings showed that the vast majority of architectural smells
instances tend to grow in size (number of elements affected,
and/or number of connections among the affected elements)
over time. Additionally, smells also tend to “move” towards
the centre of the dependency network of the system, as
measured by the Page Rank of the components affected by
the smell. Another interesting finding showed that Cyclic
Dependency instances were the less persistent type of smell
in the 21 systems analysed, with only a 50% survival rate
after 5 releases.

Co‑changes

Jaafar et al. propose two types of co-changes: MCC (Macro
Co-Changing) and DMCC (Dephase Macro Co-Changing)
[14]. These concepts describe two files changing simulta-
neously (MCC) or nearly simultaneously (DMCC). Their
approach, named Macocha, attempts to find files that are
MCC or DMCC using a sliding window, splitting up the his-
tory of the project into periods of 5.17 hours and then defin-
ing a profile/vector that for each period contains whether the
file has changed (1) or not (0), finally resulting in a binary
string. These strings can be compared to find co-changes. If
the strings match exactly, they are marked as DMCC. If they
have a Hamming distance < 3, they are marked as MCC.

Bouktif et al. undertake another approach to mine co-
changes, focusing on reducing computation time [9]. One
typical problem with co-changes which they attempt to
solve is that the examined window of time can influence

the results. Taking a larger window of time means includ-
ing (co-)changes that might no longer be relevant. Taking a
smaller window might result in missing important change-
sets, resulting in an excessive amount of possibly co-chang-
ing pairs. The authors find that larger windows result in bet-
ter accuracy, but of course require more computation. They
present Dynamic Time Warping (DTW) as an algorithm for
finding co-changes, thereby solving the task in quadratic
time respective to the length of the history (time window).

Zimmermann et al. [44] also look at mining co-changes
using Market Basket Analysis (MBA). Every change-set is
treated as a ’basket’ containing several changes. Using the
apriori algorithm they are able to mine association rules
from histories of these change-sets. For a changed file, they
are able to predict 26% of co-changed files. Moreover, 70%
of the generated top three guesses turn out to be indeed
co-changing.

Mondal et al. use MBA to mine co-changing method
groups [28]. They analyse the change-sets of 7 open source
projects and compare the lifetime and change-proneness
of co-changing methods with those of non-co-changing
methods. They found that co-changing methods indeed live
longer and are more prone to change.

Co-changes are typically mined from VCS data, but Rob-
bes et al. also try to find co-changes on a more fine-grained
level [32]. They implemented extra software in the IDE of
developers allowing them to see when changes occur within
a development session. They constructed detailed met-
rics based on the amount of changes per file in a session
and determined co-changes based on these. Although this
approach provides more detailed data, it is also harder to
collect this data. The collected data can also be dependent
on the monitored developers. For this reason, in our paper
we utilise ’traditional’ VCS data.

SDK4ED Project

This work has been designed as part of the SDK4ED1 (Soft-
ware Development ToolKit for Energy Optimization and
Technical Debt Elimination) project. The vision of SDK4ED
is to minimize the cost, the development time and the com-
plexity of low-energy software development processes, by
providing tools for automatic optimization of multiple qual-
ity requirements, such as Technical debt, Energy efficiency,
Dependability (i.e. Reliability, Availability, and Security)
and Performance. One of the topics on which the project is
concentrating its efforts the most is researching and devel-
oping tools to identify the trade-offs between runtime and

1 Browse the project’s website for more information: https ://sdk4e
d.eu/.

https://sdk4ed.eu/
https://sdk4ed.eu/

 SN Computer Science (2021) 2:1313 Page 4 of 15

SN Computer Science

design-time software quality attributes at multiple levels of
abstractions (code, design, and architecture).

The project’s research efforts so far have been focused
on studying the trade-offs among different software qual-
ity attributes. For example, Papadopoulos et al. [30] have
studied the interrelations between Maintainability-related
metrics, Performance, and Energy consumption with a spe-
cial focus on embedded systems. Their findings show that
indeed there are trade-offs among these three qualities when
refactorings and transformations are applied to improve one
of the three qualities. The way SDK4ED deals with the inter-
play between quality attributes is described by Jankovic et al.
[15].

Part of the authors of this paper also investigated trade-
offs between quality attributes by analysing qualitative data
collected from software architects and developers from
seven different software companies Sas and Avgeriou [35].
The findings suggest that there are several trade-offs between
quality attributes, but most of them are implicit, and the
developers only realise they made a trade-off in hindsight. In
this regard, the present study, instead, investigates quantita-
tively the interaction between Technical debt (i.e. Maintain-
ability) and Reliability, a design-time and a runtime quality
attribute, respectively.

Methodology

Case Study Design

This case study is set up according to the guidelines for case
study design as described by Runeson et al. [33]. The gen-
eral structure is displayed in Fig. 1. In this study, software
projects function as cases and their packages and source
files function as units of analysis. By analysing a multitude
of projects, we are setting up a multiple-case study. Fur-
thermore, since each case contains many different units of
analysis, the study is an embedded case study.

We have chosen this setup to avoid bias in our results
as software projects can vary in size, style and structure.

Multiple-case studies allow to increase the chances of gen-
eralising the results to a greater population of projects,
whereas individual case-studies do not offer this but have
the advantage of gaining precise insights about the project
under analysis.

Goal and Research Questions

The goal of this study is to understand the interplay between
Reliability and Maintainability via two of their proxies.
Using the Goal Question Metric approach [39], the goal can
be formulated as follows:

Analyse co-changes and architectural smells for
the purpose of understanding the interplay between
Reliability and Maintainability with respect to co-
occurrence and moment of introduction from the
point of view of software developers and architects
in the context of open source Java software systems.

To ensure we study precisely what we state in our goal, we
break it down into three research questions:

RQ1 What is the overlap between co-changing artefacts
and smelly artefacts?

 This is an exploratory RQ that investigates how
exactly co-changes and architectural smells over-
lap. Specifically, we will investigate what frac-
tion of the artefacts affected by smells happen to
co-change, and vice versa. Understanding if co-
changes, which are well known fault predictors
[17, 18, 38], and architectural smells co-exist in
the same components will shed some light on how
Reliability and Maintainability issues are inter-
twined, and more precisely to what extent.

RQ2 Are co-changes found more often in smelly artefacts?

 RQ2 follows up on RQ1, attempting to determine
statistically whether smelly artefacts are in fact
more prone to co-change than non-smelly ones.
This can help us understand whether maintain-
ability issues (in the form of architecture smells)
drive the changes within the system: smelly arte-
facts could be hotspots where developers focus a
lot of their efforts (possibly) due to their complex-
ity and poor understandability.

RQ3 Are smells introduced before or after files start
co-changing?

Fig. 1 Case study design representation. Based on Runeson et al.’s
work [33]

SN Computer Science (2021) 2:13 Page 5 of 15 13

SN Computer Science

 Finally, with RQ3 we aim at investigating whether
co-changes precede the appearance of architec-
tural smells in the source code of the system,
or it is the other way around, or maybe they are
introduced simultaneously. This can reveal how
the symptoms (i.e. co-changes and architectural
smells) of poor design decisions arise within the
system, which is crucial in understanding how
these decisions affect the work of developers in
the long term.

Case Selection

As mentioned above, software projects can differ from each
other considerably. Analysing a wide variety of projects
(cases) for our study is therefore important to increase exter-
nal validity [33]. Following Runeson et al.’s guidelines, we
opt to achieve the maximal variance in the distribution of
the following properties of our cases:

– Project size: projects with a small, medium, and large
amount of artefacts (or total lines of code).

– Domain: projects intended to be used in different
domains and environments.

– Owner: projects with different owner(s), authors, and
contributors.

To select the projects, we used (a) GitHub’s most starred
Java projects list2, (b) Apache’s projects list3 and (c) pro-
jects used in previous empirical studies similar to the present

work. To ensure there were enough changes in the repository
and the development was still in progress, the projects were
selected if they had at least 5 years of development with a
minimum of 250 commits on the master branch and the last
commit was in 2020. Additionally they also had to have at
least 10 KLOC in the last commit analysed, to filter out toy
projects and projects that would yield an excessively low
number of co-changes and/or architectural smells.

The projects selected are reported in Table 1.

Data Collection and Tools

The data collection process was two-fold. First, we mined
the architectural smells from the 14 projects selected for
this study. To do so, we used Arcan [2] that detects archi-
tectural smells in the history of a system and AStracker [36]
that tracks these smells from one version to the next. The
architectural smells considered for this study are Cyclic
Dependency (CD), Unstable Dependency (UD), and Hublike
Dependency (HL). This set of smells was selected because it
comprises some of the most important architectural smells
to study, according to our current theoretical and empirical
understanding [36].

The second step entails extracting the co-changes from
the selected projects using two different algorithms: one
existing algorithm (Dynamic Time Warping - DTW, see
Sect. 2) that was used in previous studies on co-changes
[9] and one custom algorithm, named Fuzzy Overlap (FO).
Further details on each of these algorithms are presented in
Sect. 3.4.2.

For each system analysed, we collected AS and co-change
data points by analysing one commit a day for each day the
project was changed since the beginning of its history in the
Git repository.

Table 1 Demographics of the
projects selected for this study

Project Description Owner Domain KLOC Start-End

ArgoUML UML modelling tool Tigris-org Documentation 78–145
Druid Realtime analytics database Apache Databases 3–28
Jackson JSON library FasterXML Formatted Data 34–57
JUnit5 Unit testing framework JUnit-Team Testing 1–20
MyBatis3 SQL object mapper MyBatis Databases 23–19
PDFBox PDF manipulation Apache Formatted Data 47–63
POI MS Office interaction Apache Formatted Data 70–94
PgJDBC Postgresql Java Driver Pgjdbc Databases 8–28
Robolectric Android unit testing Robolectric Testing 32–70
RxJava Reactive JVM Extensions ReactiveX General purpose 11–143
Sonarlint Linter for IntelliJ SonarSource General purpose 0–10
Swagger API-documentation Swagger Documentation 0–15
TestNG Testing framework Cbeust Testing 18–56
Xerces2 Java XML parser Apache Formatted data 62–118

2 See https://github.com/search?l=&o=desc&q=language:java+pus
hed:>2020-01-01&s=stars&type=Repositories.
3 See https ://proje cts.apach e.org/proje cts.html?langu age.

https://projects.apache.org/projects.html?language

 SN Computer Science (2021) 2:1313 Page 6 of 15

SN Computer Science

Architectural Smells

This section lists the architectural smells considered by this
study. The definition of these smells is provided by Arcelli
et al. [12] and briefly reported here.

Unstable Dependency This smell represents a package
that depends upon a significant number of components that
are less stable than itself, according to Martin’s instabiliy
metric [23], which measures the degree to which a compo-
nent (e.g. a package) is susceptible to change based on the
classes it depends upon and on the classes depending on it.
The main problem caused by UD is that the probability to
change the central package grows higher as the number of
unstable components it depends upon grows accordingly.
This increases the likelihood that the components that
depend upon it change as well when it is changed (ripple
effect), thus inflating future maintenance efforts.

Hublike Dependency This smell represents a class
or package where the number of ingoing and outgoing
dependencies is higher than the median in the system and
the absolute difference between these ingoing and outgoing
dependencies is less than a quarter of the total number of
dependencies of the component [12]. This structure is thus
not desirable, as it increases the potential effort necessary
to make changes to all of the elements involved in the smell:
outgoing dependencies are hard to change because several
components (i.e. classes or packages) indirectly depend
upon them; and incoming dependencies are more prone to
changes caused by ripple effects propagated by the central
component.

Cyclic Dependency This smell represents a cycle among
a number of components; there are several software design
principles that suggest avoiding creating such cycles [24, 25,
31, 40]. Cycles may have different topological shapes. Al-
Mutawa et al. [1] have identified 7 of them. Besides affecting
complexity, their presence also has an impact on compiling
(causing the recompilation of big parts of the system), test-
ing (forcing to execute unrelated parts of the system, increas-
ing testing complexity), or deploying (forcing developers
to re-deploy unchanged components) [25]. In this study,
we take into consideration both cycles between classes and
cycles between packages.

Co‑change Detection Algorithms

Dynamic Time Warping The dynamic time warping algo-
rithm [34] is a way of measuring similarity between two
time series, even if the speed of these time series varies.
Traditionally, this algorithm has been used for automatic
speech recognition, but it is also applied to a wide variety
of other purposes, such as video, audio and graphics. It
calculates the distance between two time series and pro-
vides a normalised version of the distance. If the distance
is less than the threshold, we mark the corresponding file
pair as co-changing. The threshold is set to 24 hours and
is based on a case study performed by Bouktif et al. [9].

Fuzzy Overlap The fuzzy overlap algorithm is an algorithm
that tries to formalise certain intuitive assumptions regarding
co-changes in software development. These assumptions cannot
be satisfied using more generic algorithms such as DTW. The
algorithm, illustrated in Fig. 1 is based on the observation that
co-changes can occur in a range of situations. They can occur
either within the very same commit, when for example files A
and B change at the same time, or there can be a short “delay”
between the changes. For instance, if a change in File B is typi-
cally followed by a change in file A, as represented in Fig. 2,
then a relationship between the two might exist and intuitively
these two files would then be considered to be co-changing. Of
course, if two files only change together once, this can easily be
attributed to chance, instead of it being an actual co-change. In
order to prevent this, FO implements a threshold for co-changes,
filtering out all pairs that do not change together often enough.
DTW is not capable of this distinction and will report every set
of two files that change simultaneously as a co-change, as long
as that change is their only change in that time period, as both
will have identical change histories at that point.

The hyperparameters that FO algorithm uses to detect
co-changes are (see Fig. 1):

– Commit Distance: the number of commits between
two analysed commits. The value of this threshold was
set based on the average number of commits in a day
(excluding days without commits).

– Time Distance: the maximum time between two com-
mits for them to be marked as co-changing. The value
of this threshold was set using the third quartile of the

Fig. 2 The basic concept used
by Fuzzy Overlap. The circles
represent commits in which the
files changed. In commit #1,
both files change. After that,
they do not change in the same
commits anymore, but file B
always changes just before file
A

SN Computer Science (2021) 2:13 Page 7 of 15 13

SN Computer Science

interval time between commits, following the guide-
lines of Bird et al. [8].

– Match Threshold: the minimum number of over-
lapping commits of two files for them to marked as
co-changing. This threshold was set by looking at
the distribution of co-changes matches between files
and selecting the 95th percentile for each project. The
approach is based both on related research [8] and on
our own experience with the data set.

An implementation of FO is freely available online.4

Comparison of the two algorithms Both algorithms were
run on the same data set of co-changes; the number of pairs
reported by each algorithm can be seen in Table 2. With the
exception of four results (MyBatis-3, PgJDBC, and TestNG
projects), all results were below 5% of all pairs.

In general, FO reported more co-changes than DTW
did, except for the RxJava and TestNG projects. Aside from
PDFBox, FO reported that more than 1% of all pairs co-
change, whereas DTW only reported 6 projects above 1%.

Note that originally we also used another, very common
co-change detection algorithm: Market Basket Analysis—
MBA. However, using the configuration parameters sug-
gested in the literature, we were not able to obtain a suffi-
cient number of co-changes that would allow us to carry out
our analysis for the vast majority of the projects. Therefore,
we opted to exclude MBA from our results.

Architectural Smells and Co‑changes (RQ1)

Methodology

To investigate RQ1, we will select, from our data set of co-
changes, all the file pairs affected by at least one architec-
tural smell. These pairs must match either one the following
conditions:

Table 2 Percentage of all file pairs reported as co-changing and their
absolute value in parenthesis. Values over 5% are marked in bold

Project % of files (number) Total source
code file
pairsFO DTW

ArgoUML 4.48 (140,710) 0.55 (17,258) 3,140,960
Druid 3.73 (69,567) 2.05 (38,259) 1,866,807
Jackson 2.46 (3,474) 0.3 (497) 141,353
JUnit5 3.45 (11,506) 0.74 (2,477) 333,580
MyBatis-3 38.22 (25,497) 0.19 (126) 66,703
PDFBox 0.76 (2,790) 0.12 (470) 368,982
PgJDBC 12.25 (17,247) 0.17 (236) 140,824
POI 1.52 (11,404) 0.27 (2,029) 747,846
Robolectric 2.14 (41,071) 0.06 (1,236) 1,918,436
RxJava 3.24 (43,457) 4.07 (54,644) 1,341,238
Sonarlint 3.58 (1,109) 0.26 (82) 30,987
Swagger 2.35 (1,395) 1.13 (673) 59,439
TestNG 2.85 (69,047) 8.03 (194,655) 2,425,206
Xerces2 3.37 (8,792) 2.19 (5,716) 260,670

4 See https ://githu b.com/Ronal dKrui zinga /CoSme lling Chang es.

https://github.com/RonaldKruizinga/CoSmellingChanges

 SN Computer Science (2021) 2:1313 Page 8 of 15

SN Computer Science

Namely, the end date of a smell must be between the start
and end date of a co-change, or vice versa. In other words,
there must be at least some kind of overlap between the time
periods a co-change and an architectural smell affected the
same file pair.

RQ1 serves mostly as an exploratory question leading
up to RQ2. It provides insight in where the most overlap is
found between AS and co-changes.

(1)StartDateco−change ≤EndDatesmell ≤ EndDateco−change

(2)StartDateSmell ≤EndDateco−change ≤ EndDatesmell

Results

The results obtained from this research question are reported
in Figs. 3 and 4, and in Table 3. In Fig. 3, we can note that
the percentages of co-changing files that are also affected by
an architectural smell reaches over 50% of the co-changing
pairs as detected by FO in 7 projects. Lower percentages are
instead detected when DTW is used to detect the co-changes
and only 3 projects exhibit 50% or more of co-changing pairs
affected by architectural smells.

On the other hand, Fig. 4 shows the percentages of smelly
pairs that are also co-changing. In this case, only 2 projects
exhibit smelly file pairs with more than 25% pairs that also
co-change according to the FO algorithm. Given the sheer
amount of smelly pairs, the DTW algorithm has practically

Fig. 3 Percentage of co-
changing source file pairs that
are smelly, by project and CC
detection algorithm

0

25

50

75

100

Argo
UML

Drui
d

Ja
ck

so
n

JU
nit

5

MyB
ati

s−
3

PDFBox

PgJ
DBC

POI

Rob
ole

ctr
ic

RxJ
av

a

Son
arl

int

Swag
ge

r

Te
stN

G

Xerc
es

2

%
 o

f s
m

el
ly

 c
o−

ch
an

gi
ng

 fi
le

 p
ai

rs

Algorithm DTW FO

Fig. 4 Percentage of smelly
source file pairs that are co-
changing, by project and CC
detection algorithm

0

25

50

75

100

Argo
UML

Drui
d

Ja
ck

so
n

JU
nit

5

MyB
ati

s−
3

PDFBox

PgJ
DBC

POI

Rob
ole

ctr
ic

RxJ
av

a

Son
arl

int

Swag
ge

r

Te
stN

G

Xerc
es

2%
 o

f s
m

el
ly

 fi
le

 p
ai

rs
 th

at
 c

o−
ch

an
ge

Algorithm DTW FO

Table 3 Comparison of the number of smelly and co-changing pairs divided by algorithm and the percentages (with the weighted values in
parenthesis) of overlapping pairs w.r.t the total smelly and total co-changing pairs, respectively. Total source code file pairs: 9,674,544

Algorithm No. of smelly pairs % co-changing No. of co-change pairs % smelly

DTW 2,938,426 1.4 % (1.3%) 227,792 28.5 % (16.8 %)
FO 10.3 % (5.6%) 437,405 50.9 % (39.2 %)

SN Computer Science (2021) 2:13 Page 9 of 15 13

SN Computer Science

detected very few co-changes in smelly files, with only 1%
of the smelly files undergoing co-changes as detected by
DTW (see Table 3). Instead, the FO algorithm was able to
detect more, with an average of 10.3% of smelly file pairs
also co-changing. To summarise, co-changing pairs, which
represent logically-coupled file pairs, are characterized
by very high percentages of poor design by taking part in
architectural smells.

Frequency of Co‑changes in Smelly Artefacts
(RQ2)

Methodology

The answer to RQ2 will be obtained through statistical
analysis of two caretorigal variables. The first variable is
whether a file pair is co-changing or not, and the second
variable is whether two files belong to the same archi-
tectural smell. It is our aim to establish whether smelly
artefacts are more likely to co-change than clean artefacts.
Several statistical tests are applicable for this analysis,
though the best candidates are either the �2 test for inde-
pendence or the Fisher’s exact test [37]. Based on the size
of our data set, we opted for the �2-test. Fisher’s test is
best to be used with a sample size ≤ 20 [37]. Our data set
is orders of magnitudes larger as our sample consists of all
possible pairs of source code files in a repository (changed
in the relevant time frame); thus Fisher’s test would be
unsuitable.

The input to the �2 test is a two by two contingency table
containing the counts of observations with one of the four
possible combinations of our variables. An example of such
a contingency table can be found in Table 4.

Depending on the algorithm used to detect the co-
changes, and on the scope (classes, packages, or both) of
the architectural smells, we define multiple pairs of null and
alternative hypotheses as follows:

– H
RQ2_[algorithm]

0
 : Artefacts affected by AS are as likely to

co-change as artefacts not affected by AS.
– H

RQ2_[algorithm]

1
 : Artefacts affected by AS are more likely

to co-change than artefacts not affected by AS.

RQ2 will be answered for both co-change detection algo-
rithms and the respective null hypothesis for each test is
denoted by the [algorithm] label.

Normally, one would reject HRQ2

0
 when the test results

in a �-value > 3.84 (critical value) and a p-value < 0.05 .
However, since we are dealing with a considerable sample
size, we will also calculate a corresponding effect size � as
defined by Eq. 3.

(3)� =

√

�2

n

Table 4 Contingency table example for RQ2’s �2 tests

Co-changed Not co-
changed

No smell x z
Smell w y

Table 5 Results of testing HRQ2 with co-changes reported by FO and
all AS

Bold font face indicates that the value satisfies the rejection criterion

Project H
RQ2_FO

0
� -value p value o �-value

ArgoUML Rejected 55067.14 <0.01 3.75 0.14
Druid Accepted 399.77 <0.01 0.10 0.02
Jackson Accepted 1133.84 <0.01 6.33 0.09
JUnit5 Rejected 4073.88 <0.01 5.65 0.11
MyBatis-3 Rejected 1237.40 <0.01 1.79 0.14
PDFBox Accepted 1708.49 <0.01 18.53 0.07
PgJDBC Rejected 4431.60 <0.01 3.61 0.18
POI Accepted 5336.27 <0.01 12.37 0.09
Robolectric Rejected 71237.67 <0.01 10.85 0.20
RxJava Accepted 2833.66 <0.01 0.20 0.06
Sonarlint Rejected 883.96 <0.01 6.11 0.17
Swagger Rejected 2944.03 <0.01 12.44 0.24
TestNG Accepted 12252.85 <0.01 2.65 0.08
Xerces2 Accepted 8.40 <0.01 0.94 < .01

Table 6 Results of testing HRQ2 with co-changes reported by DTW
and all AS

Bold font face indicates that the value satisfies the rejection criterion

Project H
RQ3_DTW

0
� -value p value o � -value

ArgoUML Accepted 5655.45 <0.01 .15 .04
Druid Accepted 42.54 <0.01 1.42 < .01

Jackson Accepted 620.30 <0.01 .05 .07
JUnit5 Accepted 86.55 <0.01 2.19 .02
MyBatis-3 Accepted 28.94 <0.01 2.82 .02
PDFBox Accepted 106.66 <0.01 .34 .02
PgJDBC Accepted 121.88 <0.01 4.13 .03
POI Accepted 340.64 <0.01 .42 .02
Robolectric Accepted 41.38 <0.01 .55 < .01

RxJava Rejected 26641.13 <0.01 5.76 0.17
Sonarlint Accepted < .01 0.96 1.02 < .01

Swagger Accepted 6.83 <0.01 1.33 0.01
TestNG Accepted 15129.81 <0.01 .04 0.09
Xerces2 Accepted 830.31 <0.01 0.39 0.06

 SN Computer Science (2021) 2:1313 Page 10 of 15

SN Computer Science

In Eq. 3, �2 is the value returned by our test and n is the sam-
ple size. The resulting value � can take values in the inter-
val [−1, 1] . The value indicates effect size in the following
manner: 0.1 ≤ 𝜙 < 0.3 means a small effect, 0.3 ≤ 𝜙 < 0.5
means an average effect and � ≥ 0.5 means a large effect
[37]. To reject HRQ2

0
 , the following must hold � ≥ 0.1.

Moreover, to accept HRQ2

1
 , we need to know the direction

of the association our test might find, thus we calculate its
odds ratio:

using the quantities listed in Table 4.

Results

The results obtained from testing the two null hypothe-
ses for each project and for each algorithm are shown in
Table 5 and in Table 6. By looking at Table 5, it can be
noted that for 7 projects out of 14 in total (50 %) we reject
the null hypothesis HRQ2_FO

0
 for the FO algorithm. This

means that for these projects, the artefacts affected by an
AS are more likely to co-change than artefacts not affected
by AS. We also note that 4 (28 %) more projects (Jackson,
POI, PDFBox, and TestNG) were close to the required �-
value threshold and passed the remaining three conditions.

Table 6, shows the results obtained using the co-changes
detected by the DTW algorithm. In this case, we reject the
null hypothesis HRQ2_DTW

0
 for 1 project out of 14 in total

(7%), meaning that in the vast majority of the projects,
the co-changes detected by DTW are as likely to appear in
smelly artefacts as in non-smelly ones. Unlike for the FO
algorithm, in this case, the 6 (42%) projects that passed the
first three conditions were not close to passing the �-value
threshold.

Given these results, we accept the null hypothesis
H

RQ2_DTW

0
 for the DTW algorithm as there is not sufficient

evidence to reject it. For the FO algorithm, given the results
and the very strict criteria, we conclude that although there
is not enough evidence to reject the null hypothesis HRQ2_FO

0

categorically, there is instead enough evidence to affirm
that, in most projects, smelly file pairs are more prone to
co-change than non-smelly ones.

Introduction Order of Co‑changes
and Architectural Smells (RQ3)

Methodology

Answering RQ3 requires to determine when a pair of smelly
source code files has started co-changing and when the smell

(4)o =
x ∗ y

w ∗ z

affecting them was introduced. After determining this infor-
mation, we partition our data set into three groups:

1. Emergencesmell < Emergenceco−change (smell-earlier)
2. Emergencesmell > Emergenceco−change (co-change-ear-

lier)
3. Emergencesmell = Emergenceco−change (simultaneous)

where Emergencesmell is the date of the commit in which the
smell is introduced and Emergenceco−change is the date of the
first commit in which both files of the co-change changed.
The simultaneous group, however, ends up having a rela-
tively low number of pairs (statistically insignificant), and
therefore we opt to ignore it for the rest of this sub-section
for the sake of brevity (we do show the results for this group
in the next sub-section). Obviously, co-changes and smells
that have no overlap are also left out of this analysis.

The two remaining partitions can be seen as a binomial
distribution, where either one of the following two events
can occur: success, where one phenomenon indeed precedes
the other, or failure, for which this is not true. The binomial
distribution implies that RQ3 can be answered using the
binomial sign test [37].

For the null hypothesis, the expected balance between the
two outcomes is 1 to 1. In other words, it is expected that in
50% of overlapping pairs the smell is introduced first and in
the other 50% the co-change comes first.

Let �1 be the probability of a pair falling in category 1,
and let �2 be the probability of it falling into category 2
such that �1 + �2 = 1 . A null hypothesis can then be formed
based on the expected value for �1 . This value is set to .5,
capturing the equal distribution of earlier co-changes and
earlier smells.

We are not merely interested in whether the distribution
of earlier co-changes and smells matches the expected one,
but also whether the skewing direction is a match. Therefore,
two one-tailed tests are used instead of one two-tailed test.
This gives rise to the following hypotheses:

a. Are smells introduced before files start co-changing?

– H
RQ3a_[algorithm]

0
∶ �s ≤ 0.5

– H
RQ3a_[algorithm]

1
∶ 𝜋s > 0.5

b. Are co-changes introduced after files start smelling?

– H
RQ3b_[algorithm]

0
∶ �c ≤ 0.5

– H
RQ3b_[algorithm]

1
∶ 𝜋c > 0.5

where �s is the probability of a smell occurring before a
co-change and �c the probability of the co-change coming
first. Note that the null hypotheses include 𝜋s < 0.5 . This
is explained in the next paragraph. The analyses will be

SN Computer Science (2021) 2:13 Page 11 of 15 13

SN Computer Science

performed in twofold, namely for the reported overlapping
pairs of FO and DTW (represented by [algorithm] in the
hypotheses). With respect to the smells that are considered,
both package-level and class-level smells are included.

The null hypotheses are rejected when two conditions
are met. Firstly, earlier smells and earlier co-changes must
occur more often. Secondly, the probability of the observed
amount of successes (p-value) or more must be lower than
.05. Say, for example, that m smells occurred earlier and n
co-changes. HRQa

0
 may then be rejected when the probability

(p-value) of observing m or more smell-earlier pairs is lower
than confidence level � = 0.05 . This comes down to calculat-
ing the cumulative probability of observing m, m+1, ... up to
m+n smell-earlier pairs. When only the p-value is evaluated,
the direction of skewing remains unknown, and this would
correspond with a null hypothesis of the form � ≠ 0.5 . The
extra condition validates the direction and means that either
H

RQ3a

1
 or HRQ3b

1
 can be accepted.

Results

Before enunciating the results, we would like to note that,
due to memory constraints, we were not able to calculate all
the necessary data to answer RQ4 for ArgoUML, PDFBox,
POI, and Robolectric.

For the other projects, Figs. 5 and 6 depict the number of
file pairs that were smelly before they started co-changing,
or vice versa, for the two algorithms FO and DTW, respec-
tively. Ties are also shown for completeness and represent
a low percentage of the total cases. We observe that co-
changes consistently appear before an architectural smell is
introduced in the same file pair. This is valid for all projects
and both algorithms.

The statistical tests return the exact same result: HRQ3a

0
 is

accepted and HRQ3b

0
 is rejected for all the projects and both

algorithms. We therefore conclude that file pairs start co-
changing before a smell starts affecting that same file pair,
meaning that co-changes precede architectural smells.

Discussion

The results from RQ1 allow us to explore the overlap
between architectural smells and co-changes. Looking at
Fig. 3, it is interesting to note that several projects have
a remarkably high percentage of co-changing pairs (from
either algorithm) that are smelly. This confirms that logical
coupling is a sign of poor architecture and has adverse effects
on system quality (in the form of architectural smells).

A very different result is illustrated in Fig. 4 regarding
the percentage of smelly file pairs that also co-change for
each project. Such percentages are relatively low because
because most smells affect more than two components [36],
like for example a cycle affecting 10 elements. The files
that take part in this cycle that have direct dependencies are
more likely to co-change than a random pair of files from the
same smell without a direct dependency connecting them.
A factor influencing this is the way change propagation
probability (due to ripple effects) diminishes the “farther”
a file is (in the dependency network of the system) from the
changing file [3]. Additionally, we only consider overlaps
with smelly pairs from the same smell. Co-changing pairs
that are affected by two different smells are not considered
in this study.

Another interesting finding from this research question
is the difference in the co-changes detected by the two algo-
rithms considered (see Fig. 3). The co-changes detected by
FO seem to be more correlated to the presence of AS than
DTW’s. A possible explanation is the fact that DTW was
configured with parameters from the state of the art, cali-
brated based on two projects only [9], whereas FO was con-
figured by rigorously selecting each hyperparameter based
on a statistical analysis of each project’s commit frequency.
Hence, from this point of view, one could argue that FO is
a better co-change detection algorithm because it is able to
find co-changes in files that manifest structural issues better
than DTW.

174 12168 334 12758 533 1675 734 420 6210 33850

0

25

50

75

100

Drui
d

Ja
ck

so
n

JU
nit

5

MyB
ati

s−
3

PgJ
DBC

RxJ
av

a

Son
arl

int

Swag
ge

r

Te
stN

G

Xerc
es

2

%
 o

f f
ile

 p
ai

rs
Smell First CC First Ties

Fig. 5 Introduction order of smelly co-changing pairs in percentage
w.r.t. the total number (shown at the centre of each bar) for the FO
algorithm

211 1426 146 11785 1124 1618 428 146 4181 24115

0

25

50

75

100

Drui
d

Ja
ck

so
n

JU
nit

5

MyB
ati

s−
3

PgJ
DBC

RxJ
av

a

Son
arl

int

Swag
ge

r

Te
stN

G

Xerc
es

2

%
 o

f f
ile

 p
ai

rs

Smell First CC First Ties

Fig. 6 Introduction order of smelly co-changing pairs in percentage
w.r.t. the total number (shown at the centre of each bar) for the DTW
algorithm

 SN Computer Science (2021) 2:1313 Page 12 of 15

SN Computer Science

The findings from RQ2 highlight that smelly files are
more likely to co-change (as detected by the FO algorithm)
than non-smelly files. The main implication of this finding
is that components affected by architectural smells may be
burdened with extra maintenance effort, increasing the tech-
nical debt interest paid by developers. The higher proportion
of co-changing artefacts in smelly components means that
architectural smells indirectly affect the level of Reliability
of the affected components, as co-changes are found to be
predictors of faults [17, 18, 38]. Architectural smells are not
the only type of problem that has been found to increase the
change-proneness of the affected components, in fact, com-
ponents affected by code smells and antipatterns were found
to have an increased change- and fault-proneness too [16].
Therefore, low Maintainability levels at different levels of
abstraction (code, design, and architecture) may negatively
impact Reliability because low quality components require
more frequent changes by the developers, increasing the
chances of eventually introducing faults.

RQ3 shows that in over 90% of the file pairs where an
overlap between co-changes and an architectural smells
occurs, the co-change precedes the architectural smell. This
is a very interesting finding that shows that, eventually, up
to 50% of the files that consistently change together (see
Table 2) end up manifesting maintainability issues (archi-
tectural smells). We conjecture that this is to some extent
caused as a consequence of the co-changing process itself:
in order to fix the issues arising (or adapt the system to the
new requirements) in the co-changing files, new code is
added, new dependencies are introduced, and the original
dependency structure of the two files grows more compli-
cated, resulting in the introduction of architectural smells as
the original design of the system is eroded. In our previous
work [36] we studied the evolution of architectural smell
instances over time and discovered that architectural smells
are a by-product of the software development process, since
they are continuously introduced as the system grows in size
(i.e. total lines of code). Indeed, the findings of this study
corroborate that co-changing files are one of the possible
factors leading up to the introduction of smells as the size
of a system increases.

It is also possible that this process, especially when
time is of critical concern, could create a vicious circle of

changes: poor design introduces logical coupling within
the entities of the system, allowing co-changes to arise,
which increase the risk of introducing faults [17]. Fixing
faults, however, causes logically-coupled files to be changed
together [17], which may increase the chances that new
smells are introduced (RQ3 results) by means of new code
and dependencies. The unhealthy dependency structure that
characterises architectural smells increases the chances that
(co-)changes become even more frequent due to the presence
of structural links between the affected elements [3] (rip-
ple effects). Evidence of a similar process (i.e. cause-effect
loops) were also found by Martini et al. [26] in their study
on ATD items and their causes. This process is part of the
larger process of architectural erosion that every system goes
through as it ages [6, 19].

Another interesting point of discussion stemming from
our results is how co-changes and architectural smells
become intertwined. According to Garcia et al. [13], archi-
tectural smells are “commonly (although not always inten-
tionally) used architectural decisions [...]”. Our results point
towards a bigger picture: poor architectural decisions cause
logical coupling, which in turn causes co-changes to arise
because the concerns were not properly separated among
the entities involved in the decision (see Fig. 7). Subse-
quently, the logical coupling among the entities creates the
conditions for the smell to manifest itself in the dependency
network of the system as actual (structural) dependencies.
The affected component is now both logically and structur-
ally coupled: changes are even more likely to propagate,
initiating and propagating in the vicious circle mentioned
in the previous paragraph. This expands our understanding
of what an architectural smell is: it does not simply manifest
a poor architecture decision but rather it represents the vis-
ible ramifications caused by that decision (e.g. a cycle in the
dependency network). There are other (structurally) invisible
ramifications like logical coupling and co-changes.

However, not all smelly artefacts co-change; in fact only
10.3% of smelly pairs co-change (see Table 3), implying
that the remaining 89.7% of the smells could appear either
directly (the design is inherently flawed), or perhaps through
other processes similar to the one just described, as part of
the larger process of architectural erosion.

Fig. 7 Architectural smells’
introduction in a system induced
by logical coupling

SN Computer Science (2021) 2:13 Page 13 of 15 13

SN Computer Science

Threats to validity

In this section, the limitations and threats to validity of the
study are discussed as described by Runeson et al. [33] in
terms of construct validity, external validity and reliability.
As we did not look at causal relationships, internal validity
is not relevant to this study [33].

Construct Validity

Construct validity reflects to what extent the study measures
what it claims to be measuring and what is being investi-
gated according to the research questions. To ensure con-
struct validity, we adopted the case study design guidelines
by Runeson et al., and improved the study in iterations dur-
ing the process. This way, the data collection and analysis
was planned out in advance in order to closely match the
research questions. Nevertheless, we did identify a number
of threats to construct validity.

The first threat are the start and end dates of a co-change.
These dates are set to the first and last moment when the
pair co-changes. However, this ignores the content of these
changes and the distances between co-changes. Due to this,
the date ranges can easily become enormous, possibly skew-
ing the results. This was partially mitigated by the threshold
percentile of the FO algorithm which filtered out file pairs
that did not change often enough (Match threshold).

The second threat to validity is that there was little to no
overlap between the co-changes detected by the two algo-
rithms in the majority of the projects, in other words, the
two algorithms returned rather different co-changes. This
might have been caused by the fact that DTW uses a fixed
threshold for all projects, whereas FO uses project-specific
adaptive thresholds. To ensure the two algorithms were per-
forming correctly, we carefully selected the thresholds using
techniques and values from the state of the art. For the DTW
algorithm, we selected the threshold based on Bouktif et al.’s
work [9], who performed a case study on two projects and
identified a threshold using different metrics. For the FO
algorithm, instead, we calibrated the thresholds using the
guidelines on analysing historical software data suggested
by Bird et al. [8].

External Validity

External validity is concerned with how well the results of
this study can be extended to other projects with a similar
context [33]. A few possible threats can be identified.

The first involves the choice of projects. All are open
source projects, which means that the results can only be
generalised to other open source projects, and not necessar-
ily to other kinds of projects. In addition, 5 out of 14 projects

are owned by the Apache Foundation, which impacts the
generalisation of results to other organisations. We have,
however, made sure to mitigate this by choosing projects
from 5 different domains, each with a similar number of
projects.

The second threat is regarding the specific architectural
smells that were chosen to analyse. It is incredibly difficult,
if not impossible, to generalise the results unto other archi-
tectural smells as the results greatly depend on the type of
smell and its detection strategy.

Reliability

Reliability is concerned with the extent to which the data
collected and the analysis performed are dependent on the
specific researchers.

All tools and scripts used for this study are freely avail-
able. This allows researchers to replicate results using the
same data and parameters, and to run the same analysis on
a different set of projects. Intermediate findings and data
analysis steps were inspected and regularly discussed by the
authors in order to ensure reliability.

In addition, similar data collection and analysis tech-
niques have been used in previous studies on architec-
tural smells [36] and co-change detection [7–9], assuring
that such an approach to the analysis of these artefacts is
possible.

Conclusion

This study has investigated co-changes and their relation
to architectural smells (AS), as proxies of reliability and
maintainability. A case study was set up analysing 14 open
source projects and an accumulated 20,000 change-sets
(commits), capturing decades of software change history and
architectural smell instances. Two algorithms were then used
to detect the co-changes, which we then merged with the
architectural smell data to create our data set.

The data set was then explored and statistically ana-
lysed from several perspectives. The results have shown
that 50% of co-changes detected by FO eventually become
smelly artefacts. Moreover, in 50% of the projects, artefacts
affected by AS were more likely to co-change than artefacts
not affected, indicating that AS increases maintenance effort
in certain projects and eventually impacting the Reliability
of the affected components. The co-changes detected by both
algorithms were also found to precede smells in over 90%
of the cases, implying (along with the results obtained from
RQ1) that some co-changes are early symptoms of architec-
tural problems that have yet to manifest themselves in the
source code of the system.

 SN Computer Science (2021) 2:1313 Page 14 of 15

SN Computer Science

In conclusion, this work has provided key insights on the
interplay between Reliability and Maintainability, using co-
changes and architectural smells as proxies for these two
qualities, respectively, and highlighting how low Maintain-
ability negatively impacts Reliability.

Acknowledgements We would like to thank the Center for Information
Technology of the University of Groningen for their support and for
providing access to the Peregrine high performance computing clus-
ter. This work was supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 780572
SDK4ED (https ://sdk4e d.eu/).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Al-Mutawa HA, Dietrich J, Marsland S, McCartin C. On the shape
of circular dependencies in java programs. In: Proceedings of the
Australian Software Engineering Conference, ASWEC, IEEE, pp
48–57; 2014. https ://doi.org/10.1109/ASWEC .2014.15. http://
ieeex plore .ieee.org/docum ent/68241 06/. Accessed 08 Dec 2020.

 2. Arcelli Fontana F, Pigazzini I, Roveda R, Tamburri D, Zanoni
M, Nitto ED. Arcan: a tool for architectural smells detection. In:
Proceedings—2017 IEEE International Conference on Software
Architecture Workshops, ICSAW 2017: Side Track Proceedings
pp 282–285; 2017. https ://doi.org/10.1109/ICSAW .2017.16

 3. Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P.
A method for assessing class change proneness. In: ACM Inter-
national Conference Proceeding Series, Association for Com-
puting Machinery, vol Part. 2017;F1286:186–95. https ://doi.
org/10.1145/30842 26.30842 39. Accessed 08 Dec 2020.

 4. Avgeriou P, Kruchten P, Ozkaya I, Seaman C. Managing technical
debt in software engineering (Dagstuhl Seminar 16162). Dagstuhl
Rep. 2016;6(4):110–38. https ://doi.org/10.4230/DagRe p.6.4.110.

 5. Barney S, Petersen K, Svahnberg M, Aurum A, Barney H. Soft-
ware quality trade-offs: a systematic map. Inform Softw Technol
2012;54(7):651–62. https ://doi.org/10.1016/j.infso f.2012.01.008.

 6. Bass L, Clements P, Kazman P. Software Architecture in Practice,
3rd edn. Addison-Wesley Professional; 2012. https ://dl.acm.org/
citat ion.cfm?id=23926 70. Accessed 08 Dec 2020.

 7. Bavota G, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia
A. An empirical study on the developers’ perception of software
coupling. In: 2013 35th International Conference on Software
Engineering (ICSE), pp 692–701 (2013)

 8. Bird C, Menzies T, Zimmermann T. The art and science of analyz-
ing software data. Burlington: Morgan Kaufmann; 2015.

 9. Bouktif A, Gueheneuc Y, Antoniol G. Extracting change-patterns
from CVS repositories. In: 2006 13th Working Conference on

Reverse Engineering, 2006;221–230, https ://doi.org/10.1109/
WCRE.2006.27

 10. D’Ambros M, Lanza M, Lungu M. Visualizing co-change
information with the evolution radar. IEEE Trans Softw Eng.
2009;35(5):720–35. https ://doi.org/10.1109/TSE.2009.17.

 11. de Oliveira MC, Freitas D, Bonifácio R, Pinto G, Lo D. Find-
ing needles in a haystack: leveraging co-change dependencies to
recommend refactorings. J Syst Softw. 2019;158:110420. https ://
doi.org/10.1016/j.jss.2019.11042 0.

 12. Fontana FA, Pigazzini I, Roveda R, Zanoni M. Automatic detec-
tion of instability architectural smells. In: Proceedings—2016
IEEE International Conference on Software Maintenance
and Evolution, ICSME 2016 2016;pp 433–437. https ://doi.
org/10.1109/ICSME .2016.33. Accessed 08 Dec 2020.

 13. Garcia J, Daniel P, Edwards G, Medvidovic N. Dentifying Archi-
tectural Bad Smells. In: Proceedings of the European Conference
on Software Maintenance and Reengineering, CSMR. 2009; pp
255–258 https ://doi.org/10.1109/CSMR.2009.59

 14. Jaafar F, Gueheneuc Y, Hamel S, Antoniol G. An exploratory
study of macro co-changes. In: 2011 18th Working Conference
on Reverse Engineering. 2011;325–334.

 15. Jankovic M, Kehagias D, Siavvas M, Tsoukalas D, Chatzigeor-
giou A. The sdk4ed approach to software quality optimization and
interplay calculation.2019. https ://doi.org/10.13140 /RG.2.2.31377
.58723 .

 16. Khomh F, Penta MD, Guéhéneuc YG, Antoniol G. An exploratory
study of the impact of antipatterns on class change- and fault-
proneness. Emp Softw Eng. 2012;17(3):243–75. https ://doi.
org/10.1007/s1066 4-011-9171-y.

 17. Kim S, Zimmermann T, Whitehead EJ, Zeller A. Predicting faults
from cached history. In: Proceedings - International Conference
on Software Engineering. 2007;489–498 https ://doi.org/10.1109/
ICSE.2007.66.

 18. Kouroshfar E. Studying the effect of co-change dispersion on
software quality. In: Proceedings—International Conference on
Software Engineering. 2013;1450–1452 https ://doi.org/10.1109/
ICSE.2013.66067 41.

 19. Kruchten P, Nord RL, Ozkaya I. Technical debt: from metaphor
to theory and practice. IEEE Softw 2012;29(6):18–21. https ://doi.
org/10.1109/MS.2012.167

 20. Le DM, Carrillo C, Capilla R, Medvidovic N (2016) Relating
architectural decay and sustainability of software systems. In:
Proceedings - 2016 13th Working IEEE/IFIP Conference on Soft-
ware Architecture, WICSA 2016, IEEE, pp 178–181, doi:10.1109/
WICSA.2016.15, http://ieeex plore .ieee.org/docum ent/68241 06/0

 21. Le DM, Link D, Shahbazian A, Medvidovic N. An empirical
study of architectural decay in open-source software. In: Pro-
ceedings—2018 IEEE 15th International Conference on Soft-
ware Architecture, ICSA 2018, IEEE. 2018; 176–185 https ://
doi.org/10.1109/ICSA.2018.00027 , https ://ieeex plore .ieee.org/
docum ent/84171 51/. Accessed 08 Dec 2020

 22. Macia I, Garcia J, Popescu D, Garcia A, Medvidovic N, von
Staa A.Are automatically-detected code anomalies relevant to
architectural modularity? In: Proceedings of the 11th annual
international conference on Aspect-oriented Software Devel-
opment—AOSD ’12. 2012;167 https ://doi.org/10.1145/21620
49.21620 69, http://dl.acm.org/citat ion.cfm?doid=21620
49.21620 69

 23. Martin RC. OO Design Quality Metrics. Qual Eng.
1994;8(4):537–42. https ://doi.org/10.1080/08982 11960 89046 63.

 24. Martin RC (2000) Design principles and design patterns. Object
Mentor

 25. Martin Lippert SR. Refactoring in large software projects: per-
forming complex restructurings successfully. Wiley; 2006. http://
eu.wiley .com/Wiley CDA/Wiley Title /produ ctCd-04708 58923
.html. Accessed 08 Dec 2020.

https://sdk4ed.eu/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ASWEC.2014.15
http://ieeexplore.ieee.org/document/6824106/
http://ieeexplore.ieee.org/document/6824106/
https://doi.org/10.1109/ICSAW.2017.16
https://doi.org/10.1145/3084226.3084239
https://doi.org/10.1145/3084226.3084239
https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.1016/j.infsof.2012.01.008
https://dl.acm.org/citation.cfm?id=2392670
https://dl.acm.org/citation.cfm?id=2392670
https://doi.org/10.1109/WCRE.2006.27
https://doi.org/10.1109/WCRE.2006.27
https://doi.org/10.1109/TSE.2009.17
https://doi.org/10.1016/j.jss.2019.110420
https://doi.org/10.1016/j.jss.2019.110420
https://doi.org/10.1109/ICSME.2016.33
https://doi.org/10.1109/ICSME.2016.33
https://doi.org/10.1109/CSMR.2009.59
https://doi.org/10.13140/RG.2.2.31377.58723
https://doi.org/10.13140/RG.2.2.31377.58723
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1109/ICSE.2013.6606741
https://doi.org/10.1109/ICSE.2013.6606741
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/MS.2012.167
http://ieeexplore.ieee.org/document/6824106/
https://doi.org/10.1109/ICSA.2018.00027
https://doi.org/10.1109/ICSA.2018.00027
https://ieeexplore.ieee.org/document/8417151/
https://ieeexplore.ieee.org/document/8417151/
https://doi.org/10.1145/2162049.2162069
https://doi.org/10.1145/2162049.2162069
http://dl.acm.org/citation.cfm?doid=2162049.2162069
http://dl.acm.org/citation.cfm?doid=2162049.2162069
https://doi.org/10.1080/08982119608904663
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470858923.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470858923.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470858923.html

SN Computer Science (2021) 2:13 Page 15 of 15 13

SN Computer Science

 26. Martini A, Bosch J. The danger of architectural technical debt:
contagious debt and vicious circles. In: Proceedings—12th Work-
ing IEEE/IFIP Conference on Software Architecture, WICSA
2015. 2015;1–10 https ://doi.org/10.1109/WICSA .2015.31

 27. Mo R, Cai Y, Kazman R, Xiao L. Hotspot patterns: the formal
definition and automatic detection of architecture smells. In:
Proceedings—12th Working IEEE/IFIP Conference on Software
Architecture, WICSA 2015. 2015;51–60 https ://doi.org/10.1109/
WICSA .2015.12

 28. Mondal M, Roy CK, Schneider KA. Insight into a method co-
change pattern to identify highly coupled methods: An empirical
study. In: 2013 21st International Conference on Program Com-
prehension (ICPC). 2013;103–112

 29. Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshy-
vanyk D. Detecting bad smells in source code using change his-
tory information. In: 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). 2013;268–278

 30. Papadopoulos L, Marantos C, Digkas G, Ampatzoglou A, Chatz-
igeorgiou A, Soudris D. Interrelations between software qual-
ity metrics, performance and energy consumption in embedded
applications. In: Proceedings of the 21st International Workshop
on Software and Compilers for Embedded Systems, Association
for Computing Machinery, New York, NY, USA, SCOPES ’18, p
62-65 (2018) https ://doi.org/10.1145/32077 19.32077 36

 31. Parnas DL. Designing software for ease of extension and contrac-
tion. IEEE Trans Softw Eng. 1979;2:128–38.

 32. Robbes R, Pollet D, Lanza M. Logical coupling based on fine-
grained change information. In: 2008 15th Working Conference
on Reverse Engineering, pp 42–46 (2008) https ://doi.org/10.1109/
WCRE.2008.47

 33. Runeson P, Höst M, Rainer A, Regnell B. Case study research in
software engineering—guidelines and examples. 1st ed. Hoboken:
Wiley; 2012.

 34. Sakoe H, Chiba S. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Trans Acoust Speech Signal
Process. 1978;26(1):43–9.

 35. Sas D, Avgeriou P. Quality attribute trade-offs in the embedded
systems industry: an exploratory case study. Softw Qual J. 2019.
https ://doi.org/10.1007/s1121 9-019-09478 -x.

 36. Sas D, Avgeriou P, Arcelli Fontana F. Investigating instability
architectural smells evolution: an exploratory case study. In: 35th
International Conference on Software Maintenance and Evolu-
tion, IEEE. 2019; 557–567. https ://doi.org/10.1109/ICSME
.2019.00090 . https ://ieeex plore .ieee.org/docum ent/89191 09/.
Accessed 08 Dec 2020.

 37. Sheskin DJ. Handbook of Parametric and Nonparametric Statisti-
cal Procedures, 5th edn. Chapman & Hall/CRC. (2007) https ://doi.
org/10.5555/15299 39

 38. Shihab E, Mockus A, Kamei Y, Adams B, Hassan AE. High-
impact defects: a study of breakage and surprise defects. In:
SIGSOFT/FSE 2011—Proceedings of the 19th ACM SIGSOFT
Symposium on Foundations of Software Engineering, ACM
Press, New York, New York, USA, pp 300–310 (2011) https ://
doi.org/10.1145/20251 13.20251 55

 39. van Solingen R, Basili V, Caldiera G, Rombach HD. Goal question
metric (GQM) approach. Encycloped Softw Eng. 2002. https ://
doi.org/10.1002/04710 28959 .sof14 2.

 40. Stevens WP, Myers GJ, Constantine LL. Structured design. IBM
Syst J. 1974;13(2):115–39.

 41. Suryanarayana G, Samarthyam G, Sharma T. Refactoring for soft-
ware design smells: managing technical debt. Burlington: Morgan
Kaufmann; 2014.

 42. Verdecchia R, Malavolta I, Lago P. Architectural technical debt
identification: the research landscape. In: 2018 ACM/IEEE
International Conference on Technical Debt; 2018. https ://doi.
org/10.1145/31941 64.31941 76. http://www.ivano malav olta.com/
files /paper s/TechD ebt_2018.pdf. Accessed 08 Dec 2020.

 43. Xiao L, Cai Y, Kazman R. Design rule spaces: a new form of
architecture insight. In: Proceedings of the 36th International
Conference on Software Engineering—ICSE 2014, ACM
Press, New York, New York, USA 2014; 967–977 https ://doi.
org/10.1145/25682 25.25682 41

 44. Zimmermann T, Weißgerber P, Diehl S, Zeller A. Mining version
histories to guide software changes. In: Proceedings of the 26th
International Conference on Software Engineering, IEEE Com-
puter Society, USA, ICSE ’04. 2004; 563–572

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/WICSA.2015.31
https://doi.org/10.1109/WICSA.2015.12
https://doi.org/10.1109/WICSA.2015.12
https://doi.org/10.1145/3207719.3207736
https://doi.org/10.1109/WCRE.2008.47
https://doi.org/10.1109/WCRE.2008.47
https://doi.org/10.1007/s11219-019-09478-x
https://doi.org/10.1109/ICSME.2019.00090
https://doi.org/10.1109/ICSME.2019.00090
https://ieeexplore.ieee.org/document/8919109/
https://doi.org/10.5555/1529939
https://doi.org/10.5555/1529939
https://doi.org/10.1145/2025113.2025155
https://doi.org/10.1145/2025113.2025155
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1145/3194164.3194176
https://doi.org/10.1145/3194164.3194176
http://www.ivanomalavolta.com/files/papers/TechDebt_2018.pdf
http://www.ivanomalavolta.com/files/papers/TechDebt_2018.pdf
https://doi.org/10.1145/2568225.2568241
https://doi.org/10.1145/2568225.2568241

	Exploring the Relation Between Co-changes and Architectural Smells
	Abstract
	Introduction
	Related Work
	Architectural Smells
	Co-changes
	SDK4ED Project

	Methodology
	Case Study Design
	Goal and Research Questions
	Case Selection
	Data Collection and Tools
	Architectural Smells
	Co-change Detection Algorithms

	Architectural Smells and Co-changes (RQ1)
	Methodology
	Results

	Frequency of Co-changes in Smelly Artefacts (RQ2)
	Methodology
	Results

	Introduction Order of Co-changes and Architectural Smells (RQ3)
	Methodology
	Results

	Discussion
	Threats to validity
	Construct Validity
	External Validity
	Reliability

	Conclusion
	Acknowledgements
	References

