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Abstract
The interplay between Maintainability and Reliability can be particularly complex and different kinds of trade-offs may 
arise when developers try to optimise for either one of these two qualities. To further understand how Maintainability and 
Reliability influence each other, we perform an empirical study using architectural smells and source code file co-changes 
as proxies for these two qualities, respectively. The study is designed using an exploratory multiple-case case study follow-
ing well-know guidelines and using fourteen open source Java projects. Three different research questions are identified 
and investigated through statistical analysis. Co-changes are detected by using both a state-of-the-art algorithm and a novel 
approach. The three architectural smells selected are among the most important from the literature and are detected using 
open source tools. The results show that 50% of co-changes eventually end up taking part in an architectural smell. Moreo-
ver, statistical tests indicate that in 50% of the projects, files and packages taking part in smells are more likely to co-change 
than non-smelly files. Finally, co-changes were also found to appear before smells 90% of the times a smell and a co-change 
appear in the same file pair. Our findings show that Reliability is indirectly affected by low levels of Maintainability even at 
the architectural level. This is because low-quality components require more frequent changes by the developers, increasing 
chances to eventually introduce faults.

Keywords Architectural smells · Co-changes · Logical coupling · Empirical study

Introduction

The interplay between design-time (e.g. Maintainability) 
and runtime qualities (e.g. Reliability) can be particularly 
complex: when developers try to optimise for either one of 
these two types of qualities, important trade-offs may arise. 
For example, striving for a simple and maintainable design, 
might inevitably affect the system run-time performance or 
security. Likewise, aiming to build a speedy and depend-
able system might require to increase the system’s inherent 
complexity, thus sacrificing its evolvability.

While there is currently a considerable amount of 
research effort to understand this interplay [5], the topic is 
still understudied and there are many aspects that have not 
been investigated. This paper focuses on one such aspect: 
the interplay between Reliability and Maintainability, spe-
cifically by studying co-changes and architectural smells as 
their proxies, respectively. We elaborate on both proxies in 
the following paragraphs.

When analysing the history of a system, co-changing 
files provide crucial insights on the implicit dependencies 
among files. Historically, co-changes are considered a sign 
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of poor design as they expose a logical coupling between 
the two files that is not explicitly declared in either of them 
[10]. Such a problematic design has impact on run-time 
qualities, such as Reliability, as co-changes are useful pre-
dictors of faults [17, 18, 38]. There exist several studies in 
the literature documenting this aspect of co-changes. Kim 
et al. [17], for instance, explain that when a programmer 
makes a change based on incomplete or incorrect knowl-
edge, they likely cannot assess the impact of their modi-
fications as well, thus introducing faults to nearby files, 
logically coupled to the changing file. Furthermore, when 
a file has a fault, there is a good chance that files that are 
“nearby” in the dependency network also contain a fault, 
and there is a good chance that they will change together 
when fixes are applied [17].

On the other hand, when analysing design-time qualities 
of a system (e.g. maintainability and evolvability), issues in 
the architecture of the system are among the most important 
and insightful to look at because of the critical role played 
by software architecture in shaping the system [19]. This has 
initiated a lot of research on how Technical debt [4] at the 
architecture level (i.e. Architectural debt, or ATD) negatively 
impacts Maintainability and Evolvability on the long term. 
One of the most interesting examples of ATD are architec-
tural smells, which are defined as “[...]commonly (although 
not always intentionally) used architectural decision that 
negatively impact system quality” [13]. Architectural smells 
are a significant threat to the long-term sustainability of the 
system’s architecture and hinder regular maintenance activi-
ties by increasing the complexity of the system.

Currently, the research community’s interest on architec-
tural smells is growing rapidly [42]. However, there are no 
studies looking at the interplay between architectural smells 
and co-changes; we note that there is instead mature research 
on code smells and co-changes, as well as antipatterns and 
co-changes [11, 29]. It is therefore interesting to study this 
relationship in order to better understand the intricacies and 
trade-offs between Reliability and Maintainability, through 
the two aforementioned indicators: co-changes and architec-
tural smells, respectively.

This study makes a first step in this direction by setting 
up a case study to examine two important aspects: (1) how 
architectural smells and co-changes co-occur, and (2) which 
one precedes the other in appearing in a system.

The study focuses on dependency-based architectural 
smells, a category of smells for which there exist no other 
studies looking at their interconnection with co-changes. 
To conduct the study, we selected a set of 14 open source 
Java systems and mined their history in search of architec-
tural smells and co-changing files. Next, we developed sev-
eral hypotheses for each research question and tested them 
through statistical tests.

Our findings show that, on average, 50% of co-changing 
file pairs detected by our custom algorithm are also affected 
by at least one architectural smell. In addition, in seven pro-
jects, file pairs affected by an architectural smell were found 
to be more likely to co-change than non-affected pairs. In all 
projects, however, over 90% of all co-changes were detected 
before the smell. These findings allow us to understand bet-
ter the interplay between Reliability and Maintainability 
throughout a system’s evolution history.

The rest of the paper is organised as follows: “Related 
work” reports on similar studies from the literature; “Meth-
odology” covers the case study design and the methods used 
to collect the data; “Architectural smells and co-changes 
(RQ1)”, “Frequency of co-changes in smelly artefacts 
(RQ2)”, and “Introduction order of co-changes and archi-
tectural smells (RQ3)” describe the methods used to analyse 
the data and report the results obtained for the three research 
questions of this study respectively; “Discussion” discusses 
the results; “Threats to validity” elaborates on the possible 
threats to the validity of this study; and finally “Conclusion” 
reports the concluding remarks of this paper.

Related Work

Architectural Smells

The literature contains several catalogues of architectural 
smells defined by a multitude of authors. In this section, we 
briefly mention some of these studies as well as key empiri-
cal studies on architectural smells.

Lippert and Roock [25] defined in 2006 a number of 
architectural smells that affect a system at different levels 
(class, package, module, etc.). Most of these smells were 
dependency-based smells, meaning that they were describ-
ing issues arising in the dependency network of a system, 
such as cyclic dependencies. Others were based on the size 
of the artefact affected, or on the inheritance hierarchy of 
a class.

In 2009, Garcia et al. [13] identified a four architectural 
smells defining suboptimal structures in how the function-
ality was implemented and distributed across the different 
parts of the system. The list was then further extended in 
2012, by Macia et al. [22], who have also performed one 
of the first empirical analyses looking into the evolution of 
architectural smells over time. Their findings showed that 
code anomalies detected by the employed strategies were 
not related to architectural problems, highlighting how the 
tools used were neglecting the artefacts suffering from archi-
tectural problems.

Suryaranayana et al. [41] proposed in 2014 an extensive 
catalogue of design smells (some of which where similar 
to some architectural smell previously defined by other 
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authors) identifying multiple categories: abstraction, modu-
larisation, hierarchy, and encapsulation. The categories and 
the smells identified were all based on key object-oriented 
design principles.

Later on, Mo et al. [27] defined five new types of architec-
tural smells in the context of the authors’ research on Design 
Rule Spaces [43]. One type of smell is defined using the 
concept of logical coupling, identifying modules that, while 
do not directly depending upon each other, are not mutually 
independent and change together frequently.

Arcelli et al. [2, 12] provide a catalogue of three depend-
ency-based architectural smell along with a validated tool 
to detect those smells in Java systems. More details on the 
smells defined by Arcelli et al. are reported in section 3.4.1.

Le Duc et al. [20, 21] strove to provide a formalised 
definition of AS before performing an empirical study on 
the evolution of the instances in 421 versions from 8 open 
source systems. They tested the hypotheses that (1) smelly 
files are more likely to have issues associated than clean 
files and that (2) smelly files are more likely to change than 
non-smelly ones, accepting them both.

Finally, in our previous study [36], we investigated the 
evolution of individual AS instances over time with respect 
to their characteristics, such as size, centrality, and age. Our 
findings showed that the vast majority of architectural smells 
instances tend to grow in size (number of elements affected, 
and/or number of connections among the affected elements) 
over time. Additionally, smells also tend to “move” towards 
the centre of the dependency network of the system, as 
measured by the Page Rank of the components affected by 
the smell. Another interesting finding showed that Cyclic 
Dependency instances were the less persistent type of smell 
in the 21 systems analysed, with only a 50% survival rate 
after 5 releases.

Co‑changes

Jaafar et al. propose two types of co-changes: MCC (Macro 
Co-Changing) and DMCC (Dephase Macro Co-Changing) 
[14]. These concepts describe two files changing simulta-
neously (MCC) or nearly simultaneously (DMCC). Their 
approach, named Macocha, attempts to find files that are 
MCC or DMCC using a sliding window, splitting up the his-
tory of the project into periods of 5.17 hours and then defin-
ing a profile/vector that for each period contains whether the 
file has changed (1) or not (0), finally resulting in a binary 
string. These strings can be compared to find co-changes. If 
the strings match exactly, they are marked as DMCC. If they 
have a Hamming distance < 3, they are marked as MCC.

Bouktif et al. undertake another approach to mine co-
changes, focusing on reducing computation time [9]. One 
typical problem with co-changes which they attempt to 
solve is that the examined window of time can influence 

the results. Taking a larger window of time means includ-
ing (co-)changes that might no longer be relevant. Taking a 
smaller window might result in missing important change-
sets, resulting in an excessive amount of possibly co-chang-
ing pairs. The authors find that larger windows result in bet-
ter accuracy, but of course require more computation. They 
present Dynamic Time Warping (DTW) as an algorithm for 
finding co-changes, thereby solving the task in quadratic 
time respective to the length of the history (time window).

Zimmermann et al. [44] also look at mining co-changes 
using Market Basket Analysis (MBA). Every change-set is 
treated as a ’basket’ containing several changes. Using the 
apriori algorithm they are able to mine association rules 
from histories of these change-sets. For a changed file, they 
are able to predict 26% of co-changed files. Moreover, 70% 
of the generated top three guesses turn out to be indeed 
co-changing.

Mondal et al. use MBA to mine co-changing method 
groups [28]. They analyse the change-sets of 7 open source 
projects and compare the lifetime and change-proneness 
of co-changing methods with those of non-co-changing 
methods. They found that co-changing methods indeed live 
longer and are more prone to change.

Co-changes are typically mined from VCS data, but Rob-
bes et al. also try to find co-changes on a more fine-grained 
level [32]. They implemented extra software in the IDE of 
developers allowing them to see when changes occur within 
a development session. They constructed detailed met-
rics based on the amount of changes per file in a session 
and determined co-changes based on these. Although this 
approach provides more detailed data, it is also harder to 
collect this data. The collected data can also be dependent 
on the monitored developers. For this reason, in our paper 
we utilise ’traditional’ VCS data.

SDK4ED Project

This work has been designed as part of the SDK4ED1 (Soft-
ware Development ToolKit for Energy Optimization and 
Technical Debt Elimination) project. The vision of SDK4ED 
is to minimize the cost, the development time and the com-
plexity of low-energy software development processes, by 
providing tools for automatic optimization of multiple qual-
ity requirements, such as Technical debt, Energy efficiency, 
Dependability (i.e. Reliability, Availability, and Security) 
and Performance. One of the topics on which the project is 
concentrating its efforts the most is researching and devel-
oping tools to identify the trade-offs between runtime and 

1 Browse the project’s website for more information: https ://sdk4e 
d.eu/.

https://sdk4ed.eu/
https://sdk4ed.eu/
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design-time software quality attributes at multiple levels of 
abstractions (code, design, and architecture).

The project’s research efforts so far have been focused 
on studying the trade-offs among different software qual-
ity attributes. For example, Papadopoulos et al. [30] have 
studied the interrelations between Maintainability-related 
metrics, Performance, and Energy consumption with a spe-
cial focus on embedded systems. Their findings show that 
indeed there are trade-offs among these three qualities when 
refactorings and transformations are applied to improve one 
of the three qualities. The way SDK4ED deals with the inter-
play between quality attributes is described by Jankovic et al. 
[15].

Part of the authors of this paper also investigated trade-
offs between quality attributes by analysing qualitative data 
collected from software architects and developers from 
seven different software companies Sas and Avgeriou [35]. 
The findings suggest that there are several trade-offs between 
quality attributes, but most of them are implicit, and the 
developers only realise they made a trade-off in hindsight. In 
this regard, the present study, instead, investigates quantita-
tively the interaction between Technical debt (i.e. Maintain-
ability) and Reliability, a design-time and a runtime quality 
attribute, respectively.

Methodology

Case Study Design

This case study is set up according to the guidelines for case 
study design as described by Runeson et al. [33]. The gen-
eral structure is displayed in Fig. 1. In this study, software 
projects function as cases and their packages and source 
files function as units of analysis. By analysing a multitude 
of projects, we are setting up a multiple-case study. Fur-
thermore, since each case contains many different units of 
analysis, the study is an embedded case study.

We have chosen this setup to avoid bias in our results 
as software projects can vary in size, style and structure. 

Multiple-case studies allow to increase the chances of gen-
eralising the results to a greater population of projects, 
whereas individual case-studies do not offer this but have 
the advantage of gaining precise insights about the project 
under analysis.

Goal and Research Questions

The goal of this study is to understand the interplay between 
Reliability and Maintainability via two of their proxies. 
Using the Goal Question Metric approach [39], the goal can 
be formulated as follows:

Analyse co-changes and architectural smells for 
the purpose of understanding the interplay between 
Reliability and Maintainability with respect to co-
occurrence and moment of introduction from the 
point of view of software developers and architects 
in the context of open source Java software systems.

To ensure we study precisely what we state in our goal, we 
break it down into three research questions: 

RQ1  What is the overlap between co-changing artefacts 
and smelly artefacts?

  This is an exploratory RQ that investigates how 
exactly co-changes and architectural smells over-
lap. Specifically, we will investigate what frac-
tion of the artefacts affected by smells happen to 
co-change, and vice versa. Understanding if co-
changes, which are well known fault predictors 
[17, 18, 38], and architectural smells co-exist in 
the same components will shed some light on how 
Reliability and Maintainability issues are inter-
twined, and more precisely to what extent.

RQ2  Are co-changes found more often in smelly artefacts?

  RQ2 follows up on RQ1, attempting to determine 
statistically whether smelly artefacts are in fact 
more prone to co-change than non-smelly ones. 
This can help us understand whether maintain-
ability issues (in the form of architecture smells) 
drive the changes within the system: smelly arte-
facts could be hotspots where developers focus a 
lot of their efforts (possibly) due to their complex-
ity and poor understandability.

RQ3  Are smells introduced before or after files start 
co-changing?

Fig. 1  Case study design representation. Based on Runeson et  al.’s 
work [33]
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  Finally, with RQ3 we aim at investigating whether 
co-changes precede the appearance of architec-
tural smells in the source code of the system, 
or it is the other way around, or maybe they are 
introduced simultaneously. This can reveal how 
the symptoms (i.e. co-changes and architectural 
smells) of poor design decisions arise within the 
system, which is crucial in understanding how 
these decisions affect the work of developers in 
the long term.

Case Selection

As mentioned above, software projects can differ from each 
other considerably. Analysing a wide variety of projects 
(cases) for our study is therefore important to increase exter-
nal validity [33]. Following Runeson et al.’s guidelines, we 
opt to achieve the maximal variance in the distribution of 
the following properties of our cases:

– Project size: projects with a small, medium, and large 
amount of artefacts (or total lines of code).

– Domain: projects intended to be used in different 
domains and environments.

– Owner: projects with different owner(s), authors, and 
contributors.

To select the projects, we used (a) GitHub’s most starred 
Java projects list2, (b) Apache’s projects list3 and (c) pro-
jects used in previous empirical studies similar to the present 

work. To ensure there were enough changes in the repository 
and the development was still in progress, the projects were 
selected if they had at least 5 years of development with a 
minimum of 250 commits on the master branch and the last 
commit was in 2020. Additionally they also had to have at 
least 10 KLOC in the last commit analysed, to filter out toy 
projects and projects that would yield an excessively low 
number of co-changes and/or architectural smells.

The projects selected are reported in Table 1.

Data Collection and Tools

The data collection process was two-fold. First, we mined 
the architectural smells from the 14 projects selected for 
this study. To do so, we used Arcan [2] that detects archi-
tectural smells in the history of a system and AStracker [36] 
that tracks these smells from one version to the next. The 
architectural smells considered for this study are Cyclic 
Dependency (CD), Unstable Dependency (UD), and Hublike 
Dependency (HL). This set of smells was selected because it 
comprises some of the most important architectural smells 
to study, according to our current theoretical and empirical 
understanding [36].

The second step entails extracting the co-changes from 
the selected projects using two different algorithms: one 
existing algorithm (Dynamic Time Warping - DTW, see 
Sect. 2) that was used in previous studies on co-changes 
[9] and one custom algorithm, named Fuzzy Overlap (FO). 
Further details on each of these algorithms are presented in 
Sect. 3.4.2.

For each system analysed, we collected AS and co-change 
data points by analysing one commit a day for each day the 
project was changed since the beginning of its history in the 
Git repository.

Table 1  Demographics of the 
projects selected for this study

Project Description Owner Domain KLOC Start-End

ArgoUML UML modelling tool Tigris-org Documentation 78–145
Druid Realtime analytics database Apache Databases 3–28
Jackson JSON library FasterXML Formatted Data 34–57
JUnit5 Unit testing framework JUnit-Team Testing 1–20
MyBatis3 SQL object mapper MyBatis Databases 23–19
PDFBox PDF manipulation Apache Formatted Data 47–63
POI MS Office interaction Apache Formatted Data 70–94
PgJDBC Postgresql Java Driver Pgjdbc Databases 8–28
Robolectric Android unit testing Robolectric Testing 32–70
RxJava Reactive JVM Extensions ReactiveX General purpose 11–143
Sonarlint Linter for IntelliJ SonarSource General purpose 0–10
Swagger API-documentation Swagger Documentation 0–15
TestNG Testing framework Cbeust Testing 18–56
Xerces2 Java XML parser Apache Formatted data 62–118

2 See https://github.com/search?l=&o=desc&q=language:java+pus
hed:>2020-01-01&s=stars&type=Repositories.
3 See https ://proje cts.apach e.org/proje cts.html?langu age.

https://projects.apache.org/projects.html?language


 SN Computer Science (2021) 2:1313 Page 6 of 15

SN Computer Science

Architectural Smells

This section lists the architectural smells considered by this 
study. The definition of these smells is provided by Arcelli 
et al. [12] and briefly reported here.

Unstable Dependency This smell represents a package 
that depends upon a significant number of components that 
are less stable than itself, according to Martin’s instabiliy 
metric [23], which measures the degree to which a compo-
nent (e.g. a package) is susceptible to change based on the 
classes it depends upon and on the classes depending on it. 
The main problem caused by UD is that the probability to 
change the central package grows higher as the number of 
unstable components it depends upon grows accordingly. 
This increases the likelihood that the components that 
depend upon it change as well when it is changed (ripple 
effect), thus inflating future maintenance efforts.

Hublike Dependency This smell represents a class 
or package where the number of ingoing and outgoing 
dependencies is higher than the median in the system and 
the absolute difference between these ingoing and outgoing 
dependencies is less than a quarter of the total number of 
dependencies of the component [12]. This structure is thus 
not desirable, as it increases the potential effort necessary 
to make changes to all of the elements involved in the smell: 
outgoing dependencies are hard to change because several 
components (i.e. classes or packages) indirectly depend 
upon them; and incoming dependencies are more prone to 
changes caused by ripple effects propagated by the central 
component.

Cyclic Dependency This smell represents a cycle among 
a number of components; there are several software design 
principles that suggest avoiding creating such cycles [24, 25, 
31, 40]. Cycles may have different topological shapes. Al-
Mutawa et al. [1] have identified 7 of them. Besides affecting 
complexity, their presence also has an impact on compiling 
(causing the recompilation of big parts of the system), test-
ing (forcing to execute unrelated parts of the system, increas-
ing testing complexity), or deploying (forcing developers 
to re-deploy unchanged components) [25]. In this study, 
we take into consideration both cycles between classes and 
cycles between packages.

Co‑change Detection Algorithms

Dynamic Time Warping The dynamic time warping algo-
rithm [34] is a way of measuring similarity between two 
time series, even if the speed of these time series varies. 
Traditionally, this algorithm has been used for automatic 
speech recognition, but it is also applied to a wide variety 
of other purposes, such as video, audio and graphics. It 
calculates the distance between two time series and pro-
vides a normalised version of the distance. If the distance 
is less than the threshold, we mark the corresponding file 
pair as co-changing. The threshold is set to 24 hours and 
is based on a case study performed by Bouktif et al. [9].

Fuzzy Overlap The fuzzy overlap algorithm is an algorithm 
that tries to formalise certain intuitive assumptions regarding 
co-changes in software development. These assumptions cannot 
be satisfied using more generic algorithms such as DTW. The 
algorithm, illustrated in Fig. 1 is based on the observation that 
co-changes can occur in a range of situations. They can occur 
either within the very same commit, when for example files A 
and B change at the same time, or there can be a short “delay” 
between the changes. For instance, if a change in File B is typi-
cally followed by a change in file A, as represented in Fig. 2, 
then a relationship between the two might exist and intuitively 
these two files would then be considered to be co-changing. Of 
course, if two files only change together once, this can easily be 
attributed to chance, instead of it being an actual co-change. In 
order to prevent this, FO implements a threshold for co-changes, 
filtering out all pairs that do not change together often enough. 
DTW is not capable of this distinction and will report every set 
of two files that change simultaneously as a co-change, as long 
as that change is their only change in that time period, as both 
will have identical change histories at that point.

The hyperparameters that FO algorithm uses to detect 
co-changes are (see Fig. 1):

– Commit Distance: the number of commits between 
two analysed commits. The value of this threshold was 
set based on the average number of commits in a day 
(excluding days without commits).

– Time Distance: the maximum time between two com-
mits for them to be marked as co-changing. The value 
of this threshold was set using the third quartile of the 

Fig. 2  The basic concept used 
by Fuzzy Overlap. The circles 
represent commits in which the 
files changed. In commit #1, 
both files change. After that, 
they do not change in the same 
commits anymore, but file B 
always changes just before file 
A
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interval time between commits, following the guide-
lines of Bird et al. [8].

– Match Threshold: the minimum number of over-
lapping commits of two files for them to marked as 
co-changing. This threshold was set by looking at 
the distribution of co-changes matches between files 
and selecting the 95th percentile for each project. The 
approach is based both on related research [8] and on 
our own experience with the data set.

An implementation of FO is freely available online.4 

Comparison of the two algorithms Both algorithms were 
run on the same data set of co-changes; the number of pairs 
reported by each algorithm can be seen in Table 2. With the 
exception of four results (MyBatis-3, PgJDBC, and TestNG 
projects), all results were below 5% of all pairs.

In general, FO reported more co-changes than DTW 
did, except for the RxJava and TestNG projects. Aside from 
PDFBox, FO reported that more than 1% of all pairs co-
change, whereas DTW only reported 6 projects above 1%.

Note that originally we also used another, very common 
co-change detection algorithm: Market Basket Analysis—
MBA. However, using the configuration parameters sug-
gested in the literature, we were not able to obtain a suffi-
cient number of co-changes that would allow us to carry out 
our analysis for the vast majority of the projects. Therefore, 
we opted to exclude MBA from our results.

Architectural Smells and Co‑changes (RQ1)

Methodology

To investigate RQ1, we will select, from our data set of co-
changes, all the file pairs affected by at least one architec-
tural smell. These pairs must match either one the following 
conditions:

Table 2  Percentage of all file pairs reported as co-changing and their 
absolute value in parenthesis. Values over 5% are marked in bold

Project % of files (number) Total source 
code file 
pairsFO DTW

ArgoUML 4.48 (140,710) 0.55 (17,258) 3,140,960
Druid 3.73 (69,567) 2.05 (38,259) 1,866,807
Jackson 2.46 (3,474) 0.3 (497) 141,353
JUnit5 3.45 (11,506) 0.74 (2,477) 333,580
MyBatis-3 38.22 (25,497) 0.19 (126) 66,703
PDFBox 0.76 (2,790) 0.12 (470) 368,982
PgJDBC 12.25 (17,247) 0.17 (236) 140,824
POI 1.52 (11,404) 0.27 (2,029) 747,846
Robolectric 2.14 (41,071) 0.06 (1,236) 1,918,436
RxJava 3.24 (43,457) 4.07 (54,644) 1,341,238
Sonarlint 3.58 (1,109) 0.26 (82) 30,987
Swagger 2.35 (1,395) 1.13 (673) 59,439
TestNG 2.85 (69,047) 8.03 (194,655) 2,425,206
Xerces2 3.37 (8,792) 2.19 (5,716) 260,670

4 See https ://githu b.com/Ronal dKrui zinga /CoSme lling Chang es.

https://github.com/RonaldKruizinga/CoSmellingChanges
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Namely, the end date of a smell must be between the start 
and end date of a co-change, or vice versa. In other words, 
there must be at least some kind of overlap between the time 
periods a co-change and an architectural smell affected the 
same file pair.

RQ1 serves mostly as an exploratory question leading 
up to RQ2. It provides insight in where the most overlap is 
found between AS and co-changes.

(1)StartDateco−change ≤EndDatesmell ≤ EndDateco−change

(2)StartDateSmell ≤EndDateco−change ≤ EndDatesmell

Results

The results obtained from this research question are reported 
in Figs. 3 and 4, and in Table 3. In Fig. 3, we can note that 
the percentages of co-changing files that are also affected by 
an architectural smell reaches over 50% of the co-changing 
pairs as detected by FO in 7 projects. Lower percentages are 
instead detected when DTW is used to detect the co-changes 
and only 3 projects exhibit 50% or more of co-changing pairs 
affected by architectural smells.

On the other hand, Fig. 4 shows the percentages of smelly 
pairs that are also co-changing. In this case, only 2 projects 
exhibit smelly file pairs with more than 25% pairs that also 
co-change according to the FO algorithm. Given the sheer 
amount of smelly pairs, the DTW algorithm has practically 

Fig. 3  Percentage of co-
changing source file pairs that 
are smelly, by project and CC 
detection algorithm
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Fig. 4  Percentage of smelly 
source file pairs that are co-
changing, by project and CC 
detection algorithm
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Table 3  Comparison of the number of smelly and co-changing pairs divided by algorithm and the percentages (with the weighted values in 
parenthesis) of overlapping pairs w.r.t the total smelly and total co-changing pairs, respectively. Total source code file pairs: 9,674,544

Algorithm No. of smelly pairs % co-changing No. of co-change pairs % smelly

DTW 2,938,426 1.4 % (1.3%) 227,792 28.5 % (16.8 %)
FO 10.3 % (5.6%) 437,405 50.9 % (39.2 %)
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detected very few co-changes in smelly files, with only 1% 
of the smelly files undergoing co-changes as detected by 
DTW (see Table 3). Instead, the FO algorithm was able to 
detect more, with an average of 10.3% of smelly file pairs 
also co-changing. To summarise, co-changing pairs, which 
represent logically-coupled file pairs, are characterized 
by very high percentages of poor design by taking part in 
architectural smells.

Frequency of Co‑changes in Smelly Artefacts 
(RQ2)

Methodology

The answer to RQ2 will be obtained through statistical 
analysis of two caretorigal variables. The first variable is 
whether a file pair is co-changing or not, and the second 
variable is whether two files belong to the same archi-
tectural smell. It is our aim to establish whether smelly 
artefacts are more likely to co-change than clean artefacts. 
Several statistical tests are applicable for this analysis, 
though the best candidates are either the �2 test for inde-
pendence or the Fisher’s exact test [37]. Based on the size 
of our data set, we opted for the �2-test. Fisher’s test is 
best to be used with a sample size ≤ 20 [37]. Our data set 
is orders of magnitudes larger as our sample consists of all 
possible pairs of source code files in a repository (changed 
in the relevant time frame); thus Fisher’s test would be 
unsuitable.

The input to the �2 test is a two by two contingency table 
containing the counts of observations with one of the four 
possible combinations of our variables. An example of such 
a contingency table can be found in Table 4.

Depending on the algorithm used to detect the co-
changes, and on the scope (classes, packages, or both) of 
the architectural smells, we define multiple pairs of null and 
alternative hypotheses as follows:

– H
RQ2_[algorithm]

0
 : Artefacts affected by AS are as likely to 

co-change as artefacts not affected by AS.
– H

RQ2_[algorithm]

1
 : Artefacts affected by AS are more likely 

to co-change than artefacts not affected by AS.

RQ2 will be answered for both co-change detection algo-
rithms and the respective null hypothesis for each test is 
denoted by the [algorithm] label.

Normally, one would reject HRQ2

0
 when the test results 

in a �-value > 3.84 (critical value) and a p-value < 0.05 . 
However, since we are dealing with a considerable sample 
size, we will also calculate a corresponding effect size � as 
defined by Eq. 3.

(3)� =

√

�2

n

Table 4  Contingency table example for RQ2’s �2 tests

Co-changed Not co-
changed

No smell x z
Smell w y

Table 5  Results of testing HRQ2 with co-changes reported by FO and 
all AS

Bold font face indicates that the value satisfies the rejection criterion

Project H
RQ2_FO

0
� -value p value o �-value

ArgoUML Rejected 55067.14 <0.01 3.75 0.14
Druid Accepted 399.77 <0.01 0.10 0.02
Jackson Accepted 1133.84 <0.01 6.33 0.09
JUnit5 Rejected 4073.88 <0.01 5.65 0.11
MyBatis-3 Rejected 1237.40 <0.01 1.79 0.14
PDFBox Accepted 1708.49 <0.01 18.53 0.07
PgJDBC Rejected 4431.60 <0.01 3.61 0.18
POI Accepted 5336.27 <0.01 12.37 0.09
Robolectric Rejected 71237.67 <0.01 10.85 0.20
RxJava Accepted 2833.66 <0.01 0.20 0.06
Sonarlint Rejected 883.96 <0.01 6.11 0.17
Swagger Rejected 2944.03 <0.01 12.44 0.24
TestNG Accepted 12252.85 <0.01 2.65 0.08
Xerces2 Accepted 8.40 <0.01 0.94 < .01

Table 6  Results of testing HRQ2 with co-changes reported by DTW 
and all AS

Bold font face indicates that the value satisfies the rejection criterion

Project H
RQ3_DTW

0
� -value p value o � -value

ArgoUML Accepted 5655.45 <0.01 .15 .04
Druid Accepted 42.54 <0.01 1.42 < .01

Jackson Accepted 620.30 <0.01 .05 .07
JUnit5 Accepted 86.55 <0.01 2.19 .02
MyBatis-3 Accepted 28.94 <0.01 2.82 .02
PDFBox Accepted 106.66 <0.01 .34 .02
PgJDBC Accepted 121.88 <0.01 4.13 .03
POI Accepted 340.64 <0.01 .42 .02
Robolectric Accepted 41.38 <0.01 .55 < .01

RxJava Rejected 26641.13 <0.01 5.76 0.17
Sonarlint Accepted < .01 0.96 1.02 < .01

Swagger Accepted 6.83 <0.01 1.33 0.01
TestNG Accepted 15129.81 <0.01 .04 0.09
Xerces2 Accepted 830.31 <0.01 0.39 0.06
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In Eq. 3, �2 is the value returned by our test and n is the sam-
ple size. The resulting value � can take values in the inter-
val [−1, 1] . The value indicates effect size in the following 
manner: 0.1 ≤ 𝜙 < 0.3 means a small effect, 0.3 ≤ 𝜙 < 0.5 
means an average effect and � ≥ 0.5 means a large effect 
[37]. To reject HRQ2

0
 , the following must hold � ≥ 0.1.

Moreover, to accept HRQ2

1
 , we need to know the direction 

of the association our test might find, thus we calculate its 
odds ratio:

using the quantities listed in Table 4.

Results

The results obtained from testing the two null hypothe-
ses for each project and for each algorithm are shown in 
Table 5 and in Table 6. By looking at Table 5, it can be 
noted that for 7 projects out of 14 in total (50 %) we reject 
the null hypothesis HRQ2_FO

0
 for the FO algorithm. This 

means that for these projects, the artefacts affected by an 
AS are more likely to co-change than artefacts not affected 
by AS. We also note that 4 (28 %) more projects (Jackson, 
POI, PDFBox, and TestNG) were close to the required �-
value threshold and passed the remaining three conditions.

Table 6, shows the results obtained using the co-changes 
detected by the DTW algorithm. In this case, we reject the 
null hypothesis HRQ2_DTW

0
 for 1 project out of 14 in total 

(7%), meaning that in the vast majority of the projects, 
the co-changes detected by DTW are as likely to appear in 
smelly artefacts as in non-smelly ones. Unlike for the FO 
algorithm, in this case, the 6 (42%) projects that passed the 
first three conditions were not close to passing the �-value 
threshold.

Given these results, we accept the null hypothesis 
H

RQ2_DTW

0
 for the DTW algorithm as there is not sufficient 

evidence to reject it. For the FO algorithm, given the results 
and the very strict criteria, we conclude that although there 
is not enough evidence to reject the null hypothesis HRQ2_FO

0
 

categorically, there is instead enough evidence to affirm 
that, in most projects, smelly file pairs are more prone to 
co-change than non-smelly ones.

Introduction Order of Co‑changes 
and Architectural Smells (RQ3)

Methodology

Answering RQ3 requires to determine when a pair of smelly 
source code files has started co-changing and when the smell 

(4)o =
x ∗ y

w ∗ z

affecting them was introduced. After determining this infor-
mation, we partition our data set into three groups: 

1. Emergencesmell < Emergenceco−change (smell-earlier)
2. Emergencesmell > Emergenceco−change (co-change-ear-

lier)
3. Emergencesmell = Emergenceco−change (simultaneous)

where Emergencesmell is the date of the commit in which the 
smell is introduced and Emergenceco−change is the date of the 
first commit in which both files of the co-change changed. 
The simultaneous group, however, ends up having a rela-
tively low number of pairs (statistically insignificant), and 
therefore we opt to ignore it for the rest of this sub-section 
for the sake of brevity (we do show the results for this group 
in the next sub-section). Obviously, co-changes and smells 
that have no overlap are also left out of this analysis.

The two remaining partitions can be seen as a binomial 
distribution, where either one of the following two events 
can occur: success, where one phenomenon indeed precedes 
the other, or failure, for which this is not true. The binomial 
distribution implies that RQ3 can be answered using the 
binomial sign test [37].

For the null hypothesis, the expected balance between the 
two outcomes is 1 to 1. In other words, it is expected that in 
50% of overlapping pairs the smell is introduced first and in 
the other 50% the co-change comes first.

Let �1 be the probability of a pair falling in category 1, 
and let �2 be the probability of it falling into category 2 
such that �1 + �2 = 1 . A null hypothesis can then be formed 
based on the expected value for �1 . This value is set to .5, 
capturing the equal distribution of earlier co-changes and 
earlier smells.

We are not merely interested in whether the distribution 
of earlier co-changes and smells matches the expected one, 
but also whether the skewing direction is a match. Therefore, 
two one-tailed tests are used instead of one two-tailed test. 
This gives rise to the following hypotheses: 

a. Are smells introduced before files start co-changing?

– H
RQ3a_[algorithm]

0
∶ �s ≤ 0.5

– H
RQ3a_[algorithm]

1
∶ 𝜋s > 0.5

b. Are co-changes introduced after files start smelling?

– H
RQ3b_[algorithm]

0
∶ �c ≤ 0.5

– H
RQ3b_[algorithm]

1
∶ 𝜋c > 0.5

where �s is the probability of a smell occurring before a 
co-change and �c the probability of the co-change coming 
first. Note that the null hypotheses include 𝜋s < 0.5 . This 
is explained in the next paragraph. The analyses will be 
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performed in twofold, namely for the reported overlapping 
pairs of FO and DTW (represented by [algorithm] in the 
hypotheses). With respect to the smells that are considered, 
both package-level and class-level smells are included.

The null hypotheses are rejected when two conditions 
are met. Firstly, earlier smells and earlier co-changes must 
occur more often. Secondly, the probability of the observed 
amount of successes (p-value) or more must be lower than 
.05. Say, for example, that m smells occurred earlier and n 
co-changes. HRQa

0
 may then be rejected when the probability 

(p-value) of observing m or more smell-earlier pairs is lower 
than confidence level � = 0.05 . This comes down to calculat-
ing the cumulative probability of observing m, m+1, ... up to 
m+n smell-earlier pairs. When only the p-value is evaluated, 
the direction of skewing remains unknown, and this would 
correspond with a null hypothesis of the form � ≠ 0.5 . The 
extra condition validates the direction and means that either 
H

RQ3a

1
 or HRQ3b

1
 can be accepted.

Results

Before enunciating the results, we would like to note that, 
due to memory constraints, we were not able to calculate all 
the necessary data to answer RQ4 for ArgoUML, PDFBox, 
POI, and Robolectric.

For the other projects, Figs. 5 and 6 depict the number of 
file pairs that were smelly before they started co-changing, 
or vice versa, for the two algorithms FO and DTW, respec-
tively. Ties are also shown for completeness and represent 
a low percentage of the total cases. We observe that co-
changes consistently appear before an architectural smell is 
introduced in the same file pair. This is valid for all projects 
and both algorithms.

The statistical tests return the exact same result: HRQ3a

0
 is 

accepted and HRQ3b

0
 is rejected for all the projects and both 

algorithms. We therefore conclude that file pairs start co-
changing before a smell starts affecting that same file pair, 
meaning that co-changes precede architectural smells.

Discussion

The results from RQ1 allow us to explore the overlap 
between architectural smells and co-changes. Looking at 
Fig. 3, it is interesting to note that several projects have 
a remarkably high percentage of co-changing pairs (from 
either algorithm) that are smelly. This confirms that logical 
coupling is a sign of poor architecture and has adverse effects 
on system quality (in the form of architectural smells).

A very different result is illustrated in Fig. 4 regarding 
the percentage of smelly file pairs that also co-change for 
each project. Such percentages are relatively low because 
because most smells affect more than two components [36], 
like for example a cycle affecting 10 elements. The files 
that take part in this cycle that have direct dependencies are 
more likely to co-change than a random pair of files from the 
same smell without a direct dependency connecting them. 
A factor influencing this is the way change propagation 
probability (due to ripple effects) diminishes the “farther” 
a file is (in the dependency network of the system) from the 
changing file [3]. Additionally, we only consider overlaps 
with smelly pairs from the same smell. Co-changing pairs 
that are affected by two different smells are not considered 
in this study.

Another interesting finding from this research question 
is the difference in the co-changes detected by the two algo-
rithms considered (see Fig. 3). The co-changes detected by 
FO seem to be more correlated to the presence of AS than 
DTW’s. A possible explanation is the fact that DTW was 
configured with parameters from the state of the art, cali-
brated based on two projects only [9], whereas FO was con-
figured by rigorously selecting each hyperparameter based 
on a statistical analysis of each project’s commit frequency. 
Hence, from this point of view, one could argue that FO is 
a better co-change detection algorithm because it is able to 
find co-changes in files that manifest structural issues better 
than DTW.
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w.r.t. the total number (shown at the centre of each bar) for the FO 
algorithm
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The findings from RQ2 highlight that smelly files are 
more likely to co-change (as detected by the FO algorithm) 
than non-smelly files. The main implication of this finding 
is that components affected by architectural smells may be 
burdened with extra maintenance effort, increasing the tech-
nical debt interest paid by developers. The higher proportion 
of co-changing artefacts in smelly components means that 
architectural smells indirectly affect the level of Reliability 
of the affected components, as co-changes are found to be 
predictors of faults [17, 18, 38]. Architectural smells are not 
the only type of problem that has been found to increase the 
change-proneness of the affected components, in fact, com-
ponents affected by code smells and antipatterns were found 
to have an increased change- and fault-proneness too [16]. 
Therefore, low Maintainability levels at different levels of 
abstraction (code, design, and architecture) may negatively 
impact Reliability because low quality components require 
more frequent changes by the developers, increasing the 
chances of eventually introducing faults.

RQ3 shows that in over 90% of the file pairs where an 
overlap between co-changes and an architectural smells 
occurs, the co-change precedes the architectural smell. This 
is a very interesting finding that shows that, eventually, up 
to 50% of the files that consistently change together (see 
Table 2) end up manifesting maintainability issues (archi-
tectural smells). We conjecture that this is to some extent 
caused as a consequence of the co-changing process itself: 
in order to fix the issues arising (or adapt the system to the 
new requirements) in the co-changing files, new code is 
added, new dependencies are introduced, and the original 
dependency structure of the two files grows more compli-
cated, resulting in the introduction of architectural smells as 
the original design of the system is eroded. In our previous 
work [36] we studied the evolution of architectural smell 
instances over time and discovered that architectural smells 
are a by-product of the software development process, since 
they are continuously introduced as the system grows in size 
(i.e. total lines of code). Indeed, the findings of this study 
corroborate that co-changing files are one of the possible 
factors leading up to the introduction of smells as the size 
of a system increases.

It is also possible that this process, especially when 
time is of critical concern, could create a vicious circle of 

changes: poor design introduces logical coupling within 
the entities of the system, allowing co-changes to arise, 
which increase the risk of introducing faults [17]. Fixing 
faults, however, causes logically-coupled files to be changed 
together [17], which may increase the chances that new 
smells are introduced (RQ3 results) by means of new code 
and dependencies. The unhealthy dependency structure that 
characterises architectural smells increases the chances that 
(co-)changes become even more frequent due to the presence 
of structural links between the affected elements [3] (rip-
ple effects). Evidence of a similar process (i.e. cause-effect 
loops) were also found by Martini et al. [26] in their study 
on ATD items and their causes. This process is part of the 
larger process of architectural erosion that every system goes 
through as it ages [6, 19].

Another interesting point of discussion stemming from 
our results is how co-changes and architectural smells 
become intertwined. According to Garcia et al. [13], archi-
tectural smells are “commonly (although not always inten-
tionally) used architectural decisions [...]”. Our results point 
towards a bigger picture: poor architectural decisions cause 
logical coupling, which in turn causes co-changes to arise 
because the concerns were not properly separated among 
the entities involved in the decision (see Fig. 7). Subse-
quently, the logical coupling among the entities creates the 
conditions for the smell to manifest itself in the dependency 
network of the system as actual (structural) dependencies. 
The affected component is now both logically and structur-
ally coupled: changes are even more likely to propagate, 
initiating and propagating in the vicious circle mentioned 
in the previous paragraph. This expands our understanding 
of what an architectural smell is: it does not simply manifest 
a poor architecture decision but rather it represents the vis-
ible ramifications caused by that decision (e.g. a cycle in the 
dependency network). There are other (structurally) invisible 
ramifications like logical coupling and co-changes.

However, not all smelly artefacts co-change; in fact only 
10.3% of smelly pairs co-change (see Table 3), implying 
that the remaining 89.7% of the smells could appear either 
directly (the design is inherently flawed), or perhaps through 
other processes similar to the one just described, as part of 
the larger process of architectural erosion.

Fig. 7  Architectural smells’ 
introduction in a system induced 
by logical coupling
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Threats to validity

In this section, the limitations and threats to validity of the 
study are discussed as described by Runeson et al. [33] in 
terms of construct validity, external validity and reliability. 
As we did not look at causal relationships, internal validity 
is not relevant to this study [33].

Construct Validity

Construct validity reflects to what extent the study measures 
what it claims to be measuring and what is being investi-
gated according to the research questions. To ensure con-
struct validity, we adopted the case study design guidelines 
by Runeson et al., and improved the study in iterations dur-
ing the process. This way, the data collection and analysis 
was planned out in advance in order to closely match the 
research questions. Nevertheless, we did identify a number 
of threats to construct validity.

The first threat are the start and end dates of a co-change. 
These dates are set to the first and last moment when the 
pair co-changes. However, this ignores the content of these 
changes and the distances between co-changes. Due to this, 
the date ranges can easily become enormous, possibly skew-
ing the results. This was partially mitigated by the threshold 
percentile of the FO algorithm which filtered out file pairs 
that did not change often enough (Match threshold).

The second threat to validity is that there was little to no 
overlap between the co-changes detected by the two algo-
rithms in the majority of the projects, in other words, the 
two algorithms returned rather different co-changes. This 
might have been caused by the fact that DTW uses a fixed 
threshold for all projects, whereas FO uses project-specific 
adaptive thresholds. To ensure the two algorithms were per-
forming correctly, we carefully selected the thresholds using 
techniques and values from the state of the art. For the DTW 
algorithm, we selected the threshold based on Bouktif et al.’s 
work [9], who performed a case study on two projects and 
identified a threshold using different metrics. For the FO 
algorithm, instead, we calibrated the thresholds using the 
guidelines on analysing historical software data suggested 
by Bird et al. [8].

External Validity

External validity is concerned with how well the results of 
this study can be extended to other projects with a similar 
context [33]. A few possible threats can be identified.

The first involves the choice of projects. All are open 
source projects, which means that the results can only be 
generalised to other open source projects, and not necessar-
ily to other kinds of projects. In addition, 5 out of 14 projects 

are owned by the Apache Foundation, which impacts the 
generalisation of results to other organisations. We have, 
however, made sure to mitigate this by choosing projects 
from 5 different domains, each with a similar number of 
projects.

The second threat is regarding the specific architectural 
smells that were chosen to analyse. It is incredibly difficult, 
if not impossible, to generalise the results unto other archi-
tectural smells as the results greatly depend on the type of 
smell and its detection strategy.

Reliability

Reliability is concerned with the extent to which the data 
collected and the analysis performed are dependent on the 
specific researchers.

All tools and scripts used for this study are freely avail-
able. This allows researchers to replicate results using the 
same data and parameters, and to run the same analysis on 
a different set of projects. Intermediate findings and data 
analysis steps were inspected and regularly discussed by the 
authors in order to ensure reliability.

In addition, similar data collection and analysis tech-
niques have been used in previous studies on architec-
tural smells [36] and co-change detection [7–9], assuring 
that such an approach to the analysis of these artefacts is 
possible.

Conclusion

This study has investigated co-changes and their relation 
to architectural smells (AS), as proxies of reliability and 
maintainability. A case study was set up analysing 14 open 
source projects and an accumulated 20,000 change-sets 
(commits), capturing decades of software change history and 
architectural smell instances. Two algorithms were then used 
to detect the co-changes, which we then merged with the 
architectural smell data to create our data set.

The data set was then explored and statistically ana-
lysed from several perspectives. The results have shown 
that 50% of co-changes detected by FO eventually become 
smelly artefacts. Moreover, in 50% of the projects, artefacts 
affected by AS were more likely to co-change than artefacts 
not affected, indicating that AS increases maintenance effort 
in certain projects and eventually impacting the Reliability 
of the affected components. The co-changes detected by both 
algorithms were also found to precede smells in over 90% 
of the cases, implying (along with the results obtained from 
RQ1) that some co-changes are early symptoms of architec-
tural problems that have yet to manifest themselves in the 
source code of the system.
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In conclusion, this work has provided key insights on the 
interplay between Reliability and Maintainability, using co-
changes and architectural smells as proxies for these two 
qualities, respectively, and highlighting how low Maintain-
ability negatively impacts Reliability.
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