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Abstract—Life science data analysis frequently encounters par-
ticular challenges that cannot be solved with classical techniques
from data analytics or machine learning domains. The complex
inherent structure of the data and especially the encoding
in non-standard ways, e.g., as genome- or protein-sequences,
graph structure or histograms, often limit the development of
appropriate classification models. To address these limitations,
the application of domain-specific expert similarity measures has
gained a lot of attention in the past. However, the use of such
expert measures suffers from two major drawbacks: (a) there is
not one outstanding similarity measure that guarantees success
in all application scenarios, and (b) such similarity functions
often lead to indefinite data that cannot be processed by classical
machine learning methods. In order to tackle both of these
limitations, this paper presents a method to embed indefinite
life science data with various similarity measures at the same
time into a complex-valued vector space. We test our approach
on various life science data sets and evaluate the performance
against other competitive methods to show its efficiency.

Index Terms—Indefinite learning, complex-valued embedding,
life science data, multi-perspective embedding, multimodal data

I. INTRODUCTION

The demand for robust and reliable models in life science

data analysis, like bioinformatics, biochemistry, environmental

research, medicine, and others, has never been greater: not

only the pure amount of data but also the intrinsic complexity

of the data is increasing steadily, such that classical techniques

are not applicable. A common way to capture the complexity

of the data is the application of so-called structured data

formats like encodings as sequence data, graph structures,

or image-based data. Naturally, a downside of these data

representations arises from most machine learning algorithm’s

constraints to numerical fixed-length input vectors, which are

not given by these structured formats.

A common strategy to transform such structured input data

into a vectorial representation is given by embedding tech-

niques from deep learning [1]–[3]. However, these techniques

require immense quantities of input data and are unsupervised,

so there is no guarantee that the essential structure of the

MM is supported by the Bavarian HighTech agenda and the Würzburg
Center for Artificial Intelligence and Robotics (CAIRO). SH is supported by
the ESF (WiT-HuB 4/2014-2020), project KI-trifft-KMU, StMBW-W-IX.4-6-
190065.

input is preserved after the embedding. Due to the lack of

sufficiently large data sets, proximity-based measures are a

powerful alternative to handle non-vectorial input data [4], [5].

Such a proximity-based measure is usually grounded on the

domain-specific knowledge of a domain expert and produces

a proximity-score for each pair of data points from the input

data.

Depending on the type of proximity function, this score

characterises the degree of similarity or dissimilarity between

each input data point. Considering, e.g., for a set of protein

sequences, a proximity function can either measure the relat-

edness (in case of a similarity function) or the difference (in

case of a dissimilarity function) between all sequences of the

set. Nevertheless, the majority of machine learning methods

require the respective proximity functions to satisfy strict

mathematical properties to guarantee well-performing and

robust models. However, most domain-specific (dis-)similarity

measures typically used for life science applications are not

fulfilling the mathematical requirements [5], and the represen-

tations are still very costly without approximations [4].

Another challenging task in life science data analysis is

the high complexity inherent in the analysis task itself. In

general, there is not one outstanding proximity measure that

fits perfectly, regardless of the task and the data’s structure.

In fact, selecting an appropriate proximity measure remains

a challenging task requiring a substantial amount of time

and computational power [7]. To overcome this limitation,

various methods combining multiple (dis-)similarity functions

have recently been proposed [7]–[9]. The underlying idea

of these methods is to consider the given problem from

multiple perspectives to better handle the intrinsic complexity.

In literature, this strategy is also referred to as multi-view
learning - see e.g. [10] for an in-depth analysis of this domain.

In summary, both the high complexity of life science tasks

and the compositional nature of the given data result in two

main challenges in life science data analysis:

1) A translation of non-vectorial data into a vectorial rep-

resentation with low computational costs.

2) The combination of multiple proximity functions to

consider the given problem from multiple perspectives.
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Fig. 1. Preprocessing workflow for creating the Tox-21 data sets. Chemicals represented as SMILE codes are translated to Morgan Fingerprints. The kernel
is created by using an application related pairwise similarity measure on the Morgan Fingerprints, in this case so-called Kulczynski. Pairwise calculated
similarities are stored in the proximity kernel matrix on the right [6].

For this purpose, this paper provides an extension of own

previous research from [11] to integrate various (dis-) simi-

larity functions at low costs with moderate approximations.

At first, we embed the data into several (potentially complex-

valued) vector spaces and combine these spaces. During the

the model’s training, we apply a technique called relevance
learning which captures each perspective’s importance and the

impact of the respective proximity function. At the end of the

training, the obtained model provides not only information

about the importance of the proximity function, but we also

obtain information about the most important reference points

in the data set by means of a prototype-based classifier model.

All elements of our approach are described in more detail in

the following. Subsequently, the effectiveness of our method

is evaluated on a variety of benchmark data. We conclude with

a detailed discussion of the results and an outlook on further

research on this topic.

II. LEARNING CLASSIFICATION MODELS FROM

STRUCTURED DATA

Learning a classification model from structured input data is

a challenging task. Recently, for structured data, in particular

for sequence and graph data, deep learning-based techniques

such as ProtVec [12], Node2Vec [13], or Graph2Vec [3] be-

came highly competitive for learning a vectorial representation

of non-vectorial input data.

On the one hand, these models perform very well and solve

outstanding challenges [14], but on the other hand, they are

extraordinary computationally expensive and require a lot of

training data. Especially in life sciences, data collection can be

an expensive task leading to limited input data. Additionally,

particularly in life sciences, interpretability is a crucial require-

ment for classification models. Moreover, life science data are

traditionally characterized by a high degree of complexity and

heterogeneity. For these reasons, deep learning methods are

no longer considered in this paper. Instead, we will focus

on multi-modal similarity-based expert functions to describe

multiple perspectives of the particular data. For this purpose,

this section comprises a brief overview of similarity-based

learning, learning with multiple similarity functions, and how

to deal with indefinite data.

A. Mathematical Background and Basic Notation

Consider a collection of N objects {xi}, i = 1, 2, . . . , N in

some input space X , where xi need not to be in a vectorial

form. A proper Mercer kernel acting on pairs of X can be

constructed starting with a given similarity function or inner

product on X . For example, if X is a finite-dimensional

vector space, a classical similarity function is the Euclidean

inner product (corresponding to the Euclidean distance). Ad-

ditionally, φ : X �→ H is a mapping from X to a Hilbert

space H equipped with the inner product 〈·, ·〉H. Usually,

the transformation φ is a non-linear mapping to a high-

dimensional space H and may not be given in an explicit

form (meaning without an explicit calculation). Instead, a

kernel function k : X × X �→ R is given, which encodes the

inner product in H. The kernel k is a positive (semi-)definite

(psd) function such that k(x,x′) = 〈φ(x), φ(x′)〉H, for any

x,x′ ∈ X . The matrix Ki,j := k(xi,xj) is an N ×N kernel

(Gram) matrix derived from the training data. For more general

similarity measures, subsequently, we also use S to describe

a similarity matrix. This procedure is motivated by the non-

linear transformation of input data into higher dimensional H,

allowing linear techniques in H. Kernelized methods process

the embedded data points in a feature space utilizing only

the inner products 〈·, ·〉H [15], without the need to explicitly

calculate φ. This technique leads to great success and is

referred to as the kernel trick. In general, the kernel function

can be very generic. Most prominent are the linear kernel with

k(x,x′) = 〈φ(x), φ(x′)〉 where 〈φ(x), φ(x′)〉 is the Euclidean

inner product and φ is the identity mapping, or the RBF

kernel k(x,x′) = exp
(
− ||x−x′||2

2σ2

)
, with σ > 0 as a free

scale parameter. In any case, most kernel methods require

the kernel function k(x,x′) to be positive semi-definite. A

matrix K is positive semi-definite if xTKx ≥ 0 for all

x ∈ Rn, respectively, if all eigenvalues of K are greater

or equal to zero. Note that domain-specific measures derived

from expert knowledge do not always satisfy this requirement,

as the applied similarity measure may not imply a metric

dissimilarity and hence does not lead to a Mercer kernel. As

an example, the creation of such an N × N kernel matrix

is illustrated in Fig. 1, following the preprocessing pipeline

from [6]. The collection of N data points is given in the

input space X as SMILE codes in a non-vectorial form. At

first, the input data is translated into bit-vectors, so-called

Morgan fingerprints. Next, a similarity measure (in this case

Kulczynski) calculates for each pair of bit-vectors a similarity

score and stores this value for each pair in a similarity matrix

S of size N ×N .
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Consequently, such non-positive semi-definite (non-psd)

similarity measures cause indefinite kernels, resulting in com-

plications with methods developed for Mercer kernels. Never-

theless, indefinite expert measures are enjoying considerable

popularity as they constantly outperform their metric counter-

parts [16]. Due to their excellent results, there is a wide variety

of expert measures today [5].

B. Multiple Kernel Learning

Considering highly complex problems from different per-

spectives, particularly in life science disciplines, a given prob-

lem and its associated data are frequently of such complexity

that a multi-dimensional consideration of the problem, i.e.

from various perspectives, is the only way to solve it. A multi-

dimensional treatment of objects in similarity-based learning is

usually done by Multiple Kernel Learning (MKL). Generally,

MKL aims to derive one strong kernel as a combination of

multiple weak base kernels as an input to an arbitrary kernel

method. For this reason, MKL is frequently used in infor-

mation fusion where each kernel was derived by a different

similarity measure or came from different input sources (e.g.,

for analyzing text, video, and audio data simultaneously) [17].

Nowadays, there is a wide variety of techniques for combining

multiple kernel functions. A highly convenient framework is

provided by [7].

Nevertheless, multiple kernel learning is still highly limited

by strong mathematical constraints of kernel methods [15],

as indicated above. Hence, the immediate usage of arbitrary

distance or similarity measures in MKL leads to a guarantee

loss in the optimization procedure as the problem is not strictly

convex anymore. For example, the famous support vector

machine (SVM) can only be used to a limited extent since

the convexity of the optimization can no longer be guaranteed

[18]. In case of a psd input matrix, the underlying convex

optimization can be solved by standard numerical solvers,

approaching the global optimum [19]. However, if the input

matrix is indefinite, there might be no global minimum, and

only a local optimum can be found, or the solver does not

converge at all [18]. Therefore, employing a non-psd measure

in SVM is a heuristic approach without any guarantees pro-

hibiting in practical applications.

C. Learning with Indefinite Similarity Functions

As a consequence, several correction and adjustment pro-

cedures were designed to continue working with indefinite

similarity measures. Following the taxonomy of [5], there are

two main directions that allow to keep on working with non-

metric proximity data despite the problems of indefiniteness:

(1) leave the data non-psd and develop models that can handle

non-psd data, and (2) modify the data to become psd in order

to apply solid models with a solid mathematical foundation.

An in-depth survey on correction techniques to process non-

psd data is given in [5] and [20]. By applying such techniques,

MKL can be used, but choosing an appropriate correction

approach is not straightforward. Additionally, there is still no

memory and computationally efficient technique to combine

multiple perspectives employing multiple similarity functions.

III. EMBEDDING INDEFINITE KERNELS WITH MULTIPLE

PERSPECTIVES

Recently, an embedding technique for non-metric proximity

data at low cost and moderate approximation error, resulting in

vectorial representation, was introduced in [11]. Initially, the

method was applied to only a single similarity function. In

this paper, however, the input data are processed by multiple

similarity functions. For each similarity function referred to as

perspective, we will create an individual vectorial embedding

matrix following the procedure in [11]. Subsequently, all indi-

vidual perspectives are combined in one (potentially complex-

valued) vector space. By employing a metric relevance learn-

ing technique within a prototype-based classification model,

the various perspectives can be weighted during a training

procedure. Consider a collection of F similarity functions

{fi}, i = 1, 2, ..., F . Let Si ∈ R
N×N be the symmetric

pairwise similarity matrix derived from the similarity function

fi. Next, the embedding matrix Mi is obtained by either

embedding Si using the real-valued embedding variant of [4]

or using the complex-valued embedding from [11].

The real-valued embedding can be calculated by an eigen

decomposition and a projection:

Si = UΛUT , V = U |Λ| 12 , (1)

resulting in an embedding matrix Mi in a real-valued vector

space. The so-called flipping strategy (the | · | operator in Eq.

(1)), as suggested in [4], now ensures eigenvalues ≥ 0 and

hence no complex values in the projection matrix. A complex-

valued embedding is obtained by removing the | · | operator

after the eigen decomposition and projection:

Si = UΛUT , V = UΛ
1
2 , (2)

which leads to a complex-valued representation of the original

matrix Si. Additionally to the embedding projection, we

also recommend a Nyström approximation to ensure low

computational costs. In previous research [21], the Nyström

approximation has been proven to remain valid for generic

proximity data, in particular non-psd similarities. Hence the

Nyström approximation becomes available to approximate a

non-psd matrix. Our work helps twofold to permit an effective

embedding of multiple proximities: (1) the input does not

need to be a kernel but can also be a similarity matrix, and

with respect to [21] also a dissimilarity matrix and (2) the

Nyström matrix approximation can also be applied on non-

psd similarities which reduces the costs of the embedding In

the Nyström approximation, one has to specify the number l
of landmarks with l� N . The landmarks can be selected for

non-psd matrices randomly or with a clustering strategy such

as kmeans++ as shown in [22].

Depending on whether real-valued or complex-valued em-

bedding is to be performed, the complete pipeline of our so-

called multi-perspective embedding (MPE) is modeled accord-

ing to Algorithm 1.
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Algorithm 1 Multi-perspective Embedding

Input: S := {S1, . . . ,SF }, l
Output: P∗ with xi := i-th row of P∗

P∗ := []
for Si in S do

K1,K2 := Nyström-Approximation(Si, l) � using [5] and [22]
[C,A] := eig(K2)
if complex-valued then

W := diag(sqrt(1./diag(A))) · CT � complex-valued embed.
else

W := diag(sqrt(1./diag(|A|))) · CT � real-valued embed
end if
M := W ·K1

P∗ := [P∗,M] � perspective concatination
K∗ := M′ ·M � reconstruction (optional)

end for

With the suggested approximation techniques and following

further ideas discussed in [5], the aforementioned procedure

can be done within linear costs. For a better intuition of Alg. 1,

the complete process for our multi-perspective embedding is

illustrated in Fig. 2 with the Morgan Fingerprint bit-vectorial

representation as input data.

For comparing two embedded vectors, the application of

a norm operator provides a dissimilarity score between the

vectors:

d(x,x′) = Ω(x− x′), (3)

with Ω a linear projection matrix. This Ω-matrix can be

learned as outlined in [23]. This matrix permits interpretability

of the single perspectives, as shown later in Sec. V-D.

Since the embedding of the input data causes complex-

valued data, we simply need a classification model that can

handle complex-valued matrices.

IV. COMPLEX-VALUED CLASSIFICATION WITH

GENERALIZED LEARNING VECTOR QUANTIZATION

Currently, there are only a few classification models that can

handle complex-valued data like the complex-valued support

vector machine (cSVM) [24], the complex-valued generalized

learning vector quantization (cGMLVQ) [23], or a complex-

valued neural network (cNNet) [25]. Further, a nearest neigh-

bour (NN) classifier can be used by employing a standard

norm operator. While cSVM, cGMLVQ, cNNet are parametric

methods, the NN classifier is parameter-free and can be used

directly.

Models from the Learning Vector Quantization (LVQ) fam-

ily are defined by a set of labeled prototypes and a distance

measure d(·, ·). New data is classified according to the nearest

prototype’s label using the distance measure d(·, ·). In contrast

to the NN classifier in which the entire data set is used,

the classes in LVQ schemes are represented by only very

few prototypes. Hence, after training, LVQ methods require

less computational effort and storage. Moreover, LVQ is often

praised for its white-box character, which is beneficial in many

applications [26].

A. Training an LVQ Classifier

Given a training data set of N labeled inputs {(xi, yi)}Ni=1,

in which xi ∈ R
d is an input vector and yi ∈ {1, 2, ...,K}

Fig. 2. Graphical illustration of the multi-perspective embedding procedure:
starting with the input data, various similarity functions Si are applied to the
data resulting in F similarity matrices (in the actual processing pipeline of
Alg. 1, the similarity matrices are not explicitly calculated, only the necessary
score values). Next, the similarities are embedded according to the embedding
strategy. Finally, all embedded similarities are concatenated to one large
feature vector in P∗.

its class label. The aim of the training procedure is the

adaptation of M labeled prototypes {(wk, yk)}Mk=1 to the

training data, such that the resulting classification scheme

gives high classification accuracy with respect to the hold-

out test data and new unseen data. Like in kernel machines,

the proximity measure (here a dissimilarity measure) of choice

d(·, ·) is of central importance for the model’s performance.

A common choice is squared Euclidean distance measure

(x−w)T (x−w). In [27], a valid cost function for the LVQ

heuristic was proposed that can be minimized by, e.g., gradient

descent:

EGLVQ =

N∑
i=1

Φ(μi), with μi =
d+(xi)− d−(xi)

d+(xi) + d−(xi)
. (4)

The argument μi is based on the difference between the

distance d+(xi) from its position to the closest prototype with

the same label and the distance d−(xi) to the closest prototype

with a different label, normalized to the range μi ∈ [−1, 1].
The function Φ(·) is monotonically increasing and is usually
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chosen to be identity Φ(x) = x or the logistic function

Φ(x) = 1/(1 + exp(−x)). The standard Euclidean distance

does not account for differences in the classification impor-

tance of the dimensions. To improve classification accuracy,

matrix relevance learning was introduced in [28]. A full matrix

of adaptive relevances Λ = ΩTΩ is introduced in the distance

measure:

dΛ(w,xi) = (xi −w)TΩTΩ(xi −w) (5)

The linear projection defined by the matrix Ω is adapted during

training to reflect each feature’s importance.

The cost function in Eq. (4) is minimized with respect to

the prototypes {wk}Mk=1 and the linear projection matrix Ω
by either batch- or stochastic gradient descent. To formulate

the gradient descent update rules with respect to w± and Ω
for an example xi, one applies the chain rule:

w± = w± − αΦ′(μi)
∂μi

∂d±
∂d±
∂w±

,

Ω± = Ω± − βΦ′(μi)
∂μi

∂d±
∂d±
∂Ω±

,

(6)

with the learning rates α and β. For all results reported in the

following, we have set α = 0.01 and β = 0.001.

B. Learning Rules for Complex-Valued Data

When the data has been embedded in a complex-valued

space and one uses the Hermitian transpose in Eq. (5), the

distance is always real-valued since it is a sum of squared

magnitudes. Hence, only the innermost derivatives of the

distance measure in Eq. (6) have to be considered with respect

to the complex-valued variables. Complex-valued derivations

can be done using the Wirtinger differential operators [29] as

proposed in [23]:

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z∗
=

1

2

(
∂

∂x
+ i

∂

∂y

)
, (7)

in which z = x + iy and z∗ = x − iy, the complex

conjugate. Using the differential operator with respect to z∗,
the innermost derivatives in Eq. (6) are as follows:

∂d

∂w∗±
= −ΩHΩ(xi −w±),

∂d

∂Ω∗
= Ω(xi −w±)(xi −w±)H ,

(8)

which are conceptually similar to the derivatives of the real-

valued variables. Finally, it is noteworthy that the (c)GMLVQ

model can be trained with linear costs based on the vectorial

data.

V. EXPERIMENTS

In this section, we evaluate the proposed multi-perspective

embedding on various data sets from life science domains.

The data sets are briefly described in the following to provide

intuition on their properties. In order to show the effectiveness

of our approach, we compare the techniques. At the end of

TABLE I
PROPERTIES OF THE DIFFERENT DATA SETS.

DETAILS ARE GIVEN IN THE TEXTUAL DESCRIPTION.

Data set #perspectives #samples #classes source
FlowCyto 4 612 3 [30]
Sugar 3 1350 9 [31]
Swiss-Prot 8 14991 15 [32]
Tox 21: NR-AhR 10 8164 2 [33]
Tox 21: NR-AR 10 9357 2 [33]
Tox 21: NR-ER 10 7693 2 [33]
Tox 21: SR-ARE 10 7164 2 [33]
Tox 21: SR-HSE 10 8146 2 [33]
Tox 21: SR-MMP 10 7316 2 [33]
Tox 21: SR-p53 10 8629 2 [33]

this section, a more in-depth review of the subsample size is

given, as it may significantly contribute to the quality of the

multi-perspective embedding.

A. Data sets

Each data set in this experimental setup consists of multiple

N × N similarity matrices according to the number of used

proximity functions. All similarity matrices of a data set had

different spectral properties and consequently differed in their

degree of indefiniteness. For a brief overview of the properties

of the individual data sets, see Tab. I.

Each data set and its corresponding preprocessing pipeline

are now briefly described in more detail:

1) The FlowCyto data set is based on 612 FL3-A DNA

flow cytometer histograms from breast cancer tissues

in 256 resolution, divided into three classes.In total,

this data set consists of 4 proximity matrices of size

612×612, each representing the same original histogram

data but with different parameterisations in the L1 norm

proximity measure [30]. The proximity matrices are

given as dissimilarities and must be translated to simi-

larity matrices by a procedure called double centering1.

2) Sugar data set is a benchmark data set for multi-modal

data evaluation, taken from [31]. This data set offers

multiple descriptions of sugar data taken by different

optical sensors at various wavelengths. In our experi-

mental setup, the information for each of the 1350 data

points was available in 3 different channels divided into

9 classes. We used the currently prominent Wasserstein

distance [34] to calculate the proximity matrices, fol-

lowed by double centering.

3) Swiss-Prot consists of 14991 protein sequences taken

as a subset of the famous Swiss-Prot database [32]. The

sequence data are categorised according to their primary

chemical characteristics into 15 classes. The generation

of the proximity matrices was done by the alignment

functions Smith-Waterman algorithm and Needleman-

Wunsch algorithm [35]. Each alignment function was

processed with different parameterisation, resulting in a

total of 10 various perspectives. It is worth noting that

1S = −JDJ/2 with J = (I− 11�/N), identity matrix I and vector of
ones 1.
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the intrinsic complexity of this data set is exceptionally

high, which makes it very difficult to approximate in

general.

4) The original intention of the Tox21 challenge was to

improve the development of computational methods for

toxicity prediction of certain chemical compounds and

their effects on particular physical processes. The main

task here was to decide whether certain substances have

a toxic effect on specific body regions (2 class classi-

fication). Initially, the challenge contained 12 physical

effects, such as stress response effects (SR) or effects

on nuclear receptors (NR). Exemplary, we used the fol-

lowing six out of the original 12 assays of the challenge

to evaluate our approach: NR-AhR, NR-AR, NR-ER,

SR-ARE, SR-HSE, SR-MMP. For more details on the

challenge and the data itself, see [33]. For each of these

6 data sets, we used 10 different proximity functions

from the RDKIT framework [36] to compare chemical

compounds following the pipeline from Fig. 1. As shown

in Tab. I, the sizes of the Tox 21 data sets vary as not

all compounds are available in each physical process.

B. Evaluation Models

In the experimental setup, we tested various models in order

to evaluate the benefit of our multi-perspective embedding

compared to a baseline classifier and methods from the MKL

domain:

• Nearest neighbour (NN): As a baseline model, we used

the nearest neighbour classifier with the respective prox-

imity function as a similarity measure. Here, the prox-

imity matrices are averaged into one single proximity

matrix to infer an overall label prediction. This approach

is computationally expensive since either all distances

have to be recalculated after each iteration or the entire

dissimilarity matrix needs to be cached in memory.

• Easy and Average Multiple Kernel Learning: EasyMKL

and AverageMKL are two methods from the multiple

kernel learning domain, implemented in MKLpy [7] used

in combination with a Support Vector Machine (SVM)

whose parameters were optimized via a grid search. The

MKL models have been calculated on the various Si.

• Nearest neighbour on multi-perspective embedded data

(MPE-NN & MPE-cNN): These two classification mod-

els are included in the experiments to illustrate the

benefits of a plain multi-perspective embedding without

any advanced learning method for complex-valued data.

Subsequently, we employed a simple nearest-neighbour

classifier on this (potentially complex-valued) vectorial

data. Similar to the NN classifier above, this classification

method is still not efficient, but as long as the embedding

process preserved the neighbourhood relationships of the

data, the model yields accurate results.

• Complex-valued Generalized Learning Vector Quantiza-

tion: We employ the cGMLVQ algorithm as presented

in Sec. IV as a variant of a prototype-based learn-

ing algorithm for classifications. To interlink the multi-

perspective embeddings and to scale the importance of

the various contributions, relevance learning is emplyed.

For simplicity, we employ one prototype per class.

C. Results

We evaluate the performance of our proposed multi-

perspective embedding on the aforementioned data sets from

Sec. V-A using all classification models from Sec. V-B and

their respective hyperparameters. All classifiers are evaluated

in a five-fold cross-validation with a hold-out test set with

accuracy and standard deviation as performance metric. The

subsample size for the (complex-valued) multi-perspective

embedding of the complete N ×N similarity matrix was 5%
of the original N × N - matrix. The performances of the

considered algorithms on the particular data sets are shown

in Tab. II.

In our experiments, the baseline model NN performed

competitively against the other methods in general. Actually,

its accuracy was best on the data sets Swiss-Prot, NR-AhR,

and SR-MMP. When dealing with a dataset as complex as

SwissProt, using a nearest neighbour classifier that has access

to the entire data as reference data may be beneficial. The

performance of NN on the remaining data sets was similar

to that of the MKL-models EasyMKL and AverageMKL. By

averaging all perspectives, this method becomes attractive on

the accuracy side, but considering the computational effort,

as a lazy learner, this model is highly inefficient for multi-

modal analysis. Besides Swiss-Prot, NR-AhR, and SR-MMP,

MKL-models performed similarly to the baseline classifier

and only in case of the Swiss-Prot data set, both EasyMKL

and AverageMKL outperformed the (c)GMLVQ variants with

MPE. However, it is essential that these models are only

valid for psd kernels. Accordingly, there is no guarantee of

an optimal solution during the optimisation process.

Although the two models MPE-NN and MPE-cNN were

primarily employed only to show that the MPE did not destroy

the neighbourhood relationships, the two models achieved

competitive results in some cases compared to the baseline

classifier NN. This is particularly noteworthy because only

5% of the similarity scores had to be calculated for the

MPE instead of the complete N × N similarity matrices.

Overall, the two classifiers showed a slightly weaker - in

some cases slightly better - performance than NN, EasyMKL

and AverageMKL. The best results over most data sets have

been obtained by the prototype-based classification models,

especially by the complex-valued multi-perspective embedded

variant. Using the classical embedding (MPE-GMLVQ) ac-

cording to [4] resulted in only slightly inferior results than the

complex-valued GMLVQ (MPE-cGMLVQ). Overall, Swiss-

Prot remained the only data set where both MPE-GMLVQ and

cGMLVQ struggled, probably grounded in the complex inher-

ent structure of this data set. In summary, our multi-perspective

embedding approach provided very promising results on most

data sets while demonstrating memory- and runtime-efficiency.
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TABLE II
CLASSIFICATION RESULTS (MEAN ± STANDARD-DEVIATION)

No Embedding Real Embedding Complex Embedding
Data set NN EasyMKL AverageMKL MPE-NN MPE-GMLVQ MPE-cNN MPE-cGMLVQ
FlowCyto 0.62 ± 0.03 0.63 ± 0.04 0.63 ± 0.02 0.61 ± 0.04 0.68 ± 0.02 0.61 ± 0.03 0.69 ± 0.02
Sugar 0.60 ± 0.03 0.63 ± 0.04 0.63 ± 0.02 0.59 ± 0.04 0.91 ± 0.01 0.61 ± 0.02 0.92 ± 0.02
Swiss-Prot 0.90 ± 0.01 0.62 ± 0.05 0.72 ± 0.03 0.90 ± 0.01 0.84 ± 0.01 0.90 ± 0.00 0.83 ± 0.01
Tox21: NR-AhR 0.92 ± 0.01 0.87 ± 0.00 0.89 ± 0.00 0.91 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.92 ± 0.01
Tox21: NR-AR 0.96 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.97 ± 0.01 0.98 ± 0.00 0.96 ± 0.00 0.98 ± 0.00
Tox21: NR-ER 0.87 ± 0.01 0.87 ± 0.01 0.88 ± 0.00 0.86 ± 0.01 0.90 ± 0.00 0.86 ± 0.01 0.90 ± 0.00
Tox21: SR-ARE 0.87 ± 0.01 0.85 ± 0.00 0.84 ± 0.00 0.86 ± 0.01 0.86 ± 0.00 0.86 ± 0.01 0.88 ± 0.01
Tox21: SR-HSE 0.95 ± 0.00 0.95 ± 0.00 0.95 ± 0.00 0.94 ± 0.01 0.96 ± 0.00 0.94 ± 0.01 0.96 ± 0.00
Tox21: SR-MMP 0.90 ± 0.01 0.84 ± 0.00 0.85 ± 0.00 0.89 ± 0.01 0.89 ± 0.00 0.90 ± 0.01 0.90 ± 0.01

Fig. 3. Progression of accuracy with increasing percentage of input data. The
x-axis indicates the subsample percentage of all n input data points.

D. Scalability and Interpretability

In addition to its runtime and memory efficiency, our

approach also provides scalability and interpretability.

Scalability and approximation techniques are indispensable

in life science data analysis, especially in the context of Big

Data. Working with dense matrices and not approximating the

proximity matrices leads to an explosion in runtime [21]. With

the highly efficient Nyström approximation in Algorithm 1,

our approach requires only a small fraction of all similarity

scores to be calculated. The only critical aspect when applying

approximation techniques is whether they suffer from evalua-

tion metrics. Commonly, any dimensionality reduction or low-

rank approximation implies a reduction in accuracy, resulting

in a less effective classifier. Fig. 3 illustrates the accuracy

progression for the FlowCyto data set based on the subsample

percentage of calculated similarity scores. Starting with 5% of

the input data, we increased the percentage after each five-fold

cross-validation by 5% until the entire input data is used.

The reached accuracy scores remained in a small range

across all tested subsample percentages. Consequently, the

accuracy behaved almost independently to the size of the

subsample taken from the original data. We observed this

behaviour in both the FlowCyto data set and other data sets,

which are not included in this paper due to spatial limitations.

As interpretability also plays an increasingly important

role in the development of classification models, we will have a

brief look at the interpretability of the MPE-cGMLVQ model.

Like all LVQ methods, employing a GMLVQ model allows

Fig. 4. Relevance profiles of the embedded feature vectors of the sugar data
set. The y-axis illustrates the assigned weights during GMLVQ training for
each feature vector (captured by its index on the x-axis). The dotted vertical
lines indicate the sections of the 3 different similarity functions.

the identification of representative and important data points.

New data points are classified based on closest prototype’s

label. This allows any false prediction to be investigated and

interpreted based on the prototypes coordinates.

Additionally, employing relevance learning allows the inter-

pretation of the input data’s features. Since relevance learning

assigns weights to the dimensions of the input elements, it is

possible to identify which dimensions were particularly im-

portant in the classification process. Although the dimensions

are no longer directly related to the input data due to the

embedding of the data in a new vector space, nevertheless

they allow an interpretation of the importance of the similarity

function. Exemplary, we chose a relevance profile that emerged

during GMLVQ training using the Sugar data set. The weights

assigned to the embedded vectors by cGMLVQ during the

training process are shown in Fig. 4.

For convenient visualisation, we set the embedding size

to 100 dimensions per similarity function. The dashed lines

separate the individual fractions of P ∗, created with the

respective proximity functions. Overall, the relevance learning

process revealed only a few very relevant features in the
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data. Considering both the summed and average relevance

scores of the three similarity function segments, the sections

of similarity function 2 and 3 are significantly lower than those

of similarity function 1. Consequently, the most important

perspective rated by relevance learning is the first similarity

function.
In summary, both the interpretation of the model’s proto-

types and the relevance profiles provide convenient ways for

interpretability. In addition to the promising experimental re-

sults, interpretability and scalability by landmark subsampling

increase the applicability of our approach.

VI. CONCLUSIONS

In this paper, we presented a fast and efficient strategy

for learning from multiple non-vectorial sources by means

of indefinite proximity functions. By embedding all available

perspectives in a complex-valued vector space, we are not only

able to transfer structured data into a vectorial representation

using indefinite similarity functions. This approach also en-

ables the training of a model with several different data de-

scriptions (i.e. kernel or similarity functions) at the same time.

Compared to other methods from multi-modal data analysis,

our approach is competitive and, in some cases, significantly

better. Moreover, our approach provides high interpretability,

memory efficiency, and less computational complexity. Our

initial findings on this approach seem promising, although

there is still much potential for further improvements, in

particular a detailed comparison with embedding methods

from deep learning. In this paper, we focused exclusively on

life science data analysis, however, there are numerous other

domains in which non-metric or indefinite proximity functions

are commonly used. As our approach is widely adaptable for

similar purposes, there will be further opportunities to apply

our complex-valued multi-perspective embedding approach in

the future.
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