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a b s t r a c t

In privacy-preserving controller design, there is usually a trade-off between the privacy level and
control performances, and we show in this paper that this trade-off in particular determines a lower
bound on the differential privacy level of the closed-loop system. The control task we consider is
reference tracking in a plug-and-play setting, and the plant under control is a networked system of
modules, each of which has no access to the models of the others. For a module, we first identify the
whole set of tracking local controllers based on the Youla parametrization. At the same time, each
module, to protect its own privacy, tries to prevent the other interconnected modules to identify
its private information; in this context, for example, the tracking reference signal (say, the target
production amount if each module is a workshop in a factory) can be viewed as a piece of private
information. Each module can tune the parameters of its local controller to increase the privacy level of
its reference signal. However, if the distribution of Laplace (resp. uniform) noise is fixed, the differential
privacy level of a Laplace (resp. uniform) mechanism cannot be further improved from a ceiling value
no matter how one tunes parameters. In other words, for modular systems under local reference
tracking control, there is a lower bound on the differential privacy level.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In the beginning, statistical disclosure control technologies
or protecting private data have been developed for static data;
ee e.g. Dwork, Kenthapadi, McSherry, Mironov and Naor (2006),
work, McSherry, Nissim and Smith (2006) and Willenborg and
e Waal (1996, 2012). Later on, partly motivated by the fact that
rivate data generated by IoT technologies are sometimes outputs
f dynamic processes as modules, privacy has started to be stud-
ed in the context of dynamical systems, and privacy protection
s gradually becoming an active research topic in systems and
ontrol communities; see e.g. recent publications (Cortés et al.,
016; Farokhi & Sandberg, 2019) and references therein. It is well
nown that there is in general a trade-off between data utility
nd privacy protection; however, such trade-offs have not been
dequately quantitatively investigated.

✩ This work was supported in part by JSPS, Japan KAKENHI under Grant
JP18H01461, the European Research Council (ERC-CoG-771687) and the Dutch
Organization for Scientific Research, The Netherlands (NWO-vidi-14134). The
material in this paper was partially presented at the 21st IFAC World Congress
(IFAC 2020), July 12–17, 2020, Berlin, Germany. This paper was recommended
for publication in revised form by Associate Editor Linda Bushnell under the
direction of Editor Sophie Tarbouriech.
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k@i.kyoto-u.ac.jp (K. Kashima), m.cao@rug.nl (M. Cao).
ttps://doi.org/10.1016/j.automatica.2021.109518
005-1098/© 2021 Elsevier Ltd. All rights reserved.
In a networked system of modules, e.g. those created through
IoT technologies, the sharing of data generated by individual
modules through the network may create the risk of private
information of one module being inferred by other modules. On
the other hand, sharing information is necessary when controllers
for such modular network systems are designed since each mod-
ule may only have part of the information that is needed. By
considering these data privacy and network control problems at
the same time, this paper aims at advancing the existing trade-
off analysis one step further by focusing on the tracking problem
of a module. In this context, the concept of retrofit control is
proposed for characterizing a class of stabilizing local controllers
with the Youla parametrization (Ishizaki, Kawaguchi, Sasahara,
& Imura, 2019; Sasahara, Ishizaki, & Imura, 2019). By extending
this method to tracking control, we provide the complete char-
acterization of the local tracking controllers, which enables us to
proceed with privacy analysis for all possible local tracking con-
trollers. Even for stabilization, our result is more general than that
of Ishizaki et al. (2019) in the sense that we provide a necessary
and sufficient condition; in contrast, Ishizaki et al. (2019) give a
sufficient condition.

For the privacy issue, we consider a scenario where the ref-
erence signal (e.g. the target production amount) of a module
is required to be private. As a privacy preserving data mining
technique, we employ differential privacy (Dwork, Kenthapadi

et al., 2006; Dwork, McSherry et al., 2006), where the main idea
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s to add noise to signals before sending them to other modules
or making the estimation of the reference difficult from those
ent data. Given that differential privacy has been employed in
ynamical settings (Hale & Egerstedt, 2017; Han, Topcu, & Pappas,
017; He & Cai, 2016; Huang, Mitra, & Vaidya, 2015; Ito, Kawano,
Kashima, 2021; Kawano & Cao, 2020; Le Ny & Mohammady,

018; Le Ny & Pappas, 2014; Yazdani, Jones, Leahy, & Hale, 2018),
he main advance of this paper is to show that for both Laplace
nd uniform mechanisms, lower bounds on the differential pri-
acy levels can be constructed for given i.i.d. Laplace and uniform
istributions. That is, given distributions, there are ceiling values
or the differential privacy levels to be achieved by tuning the
arameters in general. It is worth mentioning that these results
re obtained based on necessary and sufficient conditions proven
n this paper for the differential privacy of Laplace and uniform
echanisms, where the condition for the Laplace mechanism
ithout the proof can be found in the preliminary conference
ersion (Kawano, Kashima, & Cao, 2020). In most of differential
rivacy analysis, only sufficient conditions have been studied.
As relevant researches, Le Ny and Mohammady (2018) and Le

y and Pappas (2014) provide ways to publish output data while
rotecting the private state or input data of dynamical systems,
nd Kawano and Cao (2020) analyze differential privacy in terms
f observability and proposes a control design methodology while
uaranteeing privacy of the plant data. The paper (Yazdani et al.,
018) designs a cloud-based LQ controller while protecting the
rivacy of the state of each agent against the cloud. The privacy
rotecting methods in these four papers mainly rely on adding
he Gaussian noise, and some results for differential privacy anal-
sis in Kawano and Cao (2020) are extended to the case of using
stable distribution. None of Kawano and Cao (2020), Le Ny

nd Mohammady (2018) and Le Ny and Pappas (2014) mathe-
atically investigates the trade-offs between filtering/control and
rivacy performances. The paper (Yazdani et al., 2018) provides
sufficient condition for differential privacy for given cost func-
ions; however, even with the help of this sufficient condition,
t is difficult to derive a lower bound on the differential privacy
evel to be achieved by tuning cost functions. Some works (Han
t al., 2017; He & Cai, 2016; Huang et al., 2015; Wang, Huang,
itra, & Dullerud, 2017) have studied the trade-offs between
ifferential privacy and optimality in distributed optimizations,
ut the problem formulations are fundamentally different from
hat is studied in this paper; in particular, these papers do not
nalyze ceiling values for the differential privacy levels.
A preliminary conference version of this work can be found

n Kawano et al. (2020). The main contributions of this paper is
hen for MIMO systems, the finding of a necessary and sufficient
ondition for tracking control (the conference version only gives
conservative sufficient condition for more restrictive classes of
ystems), the analysis of the uniform mechanism, and computing
he tracking error under each noise. The uniform mechanism
nvolving the dynamical system has not been studied before to
ur best knowledge. In addition, we show that the proposed
ower bounds are tight for positive systems, which implies that
he constructed lower bounds are not conservative.

The remainder of this paper is organized as follows. In
ection 2, we formulate a tracking control problem in the context
f modular control design and provide the class of tracking
ocal controllers for a constant reference. In Section 3, we es-
imate the ceiling levels of the differential privacy for Laplace
nd uniform mechanisms. Section 4 illustrates our results by
n example of tracking the prescribed power supply in a DC
icrogrid while keeping the electricity consumption of each user
rivate. Concluding remarks are given in Section 5.

otations: The sets of real numbers, non-negative integers, and

positive integers are denoted by R, Z≥0, and Z>0, respectively.

2

For the sequence u : Z≥0 → Rm, a vector consisting of its
ubsequence is denoted by ut := [u⊤(0) · · · u⊤(t)]⊤ ∈ R(t+1)m.
oth the vector q-norm and matrix norm induced by the vector
-norm are denoted by |·|q for q ∈ Z>0 ∪ {∞}. For a sequence, its
-norm is denoted by ∥ · ∥q. A sequence u : Z≥0 → Rm is said to
elong to Lmq [0, ∞) if ∥u∥q is bounded. The set of stable, proper,
nd rational transfer function matrices is denoted by RH∞.
Let ν ∈ Rn be an i.i.d. random variable with mean zero.

he Laplace distribution with the variance 2b2 (b > 0) has the
ollowing probability density:

(ν; b) =
1

(2b)n
e−

|ν|1
b .

The uniform distribution on [−d/2, d/2]n (d > 0) has the follow-
ing probability density:

p(ν; d) =

⎧⎨⎩
1
dn

if ν ∈ [−d/2, d/2]n

0 otherwise,

and the variance is d2/12.

2. Tracking control for modules

2.1. Problem formulation

In this section, we formulate a tracking control problem of
interconnected systems in the framework of retrofit control pro-
posed by Ishizaki et al. (2019). Consider the following discrete-
time linear system:[
w

y

]
=

[
Gw,v(z) Gw,u(z)
Gy,v(z) Gy,u(z)

]
  

=:G(z)

[
v

u

]
(1)

that we call a local plant. This local plant as a module is influenced
by other modules through the signal v as shown in Fig. 1:

v = Gv,w(z)w. (2)

The transfer function matrix of the interconnected system from u
to y is

pre := Gy,u + Gy,vGv,w(I − Gw,vGv,w)−1Gw,u, (3)

where the argument z is omitted hereafter. Suppose that Gpre is
internally stable. This is a natural assumption for real-life systems
including factories and power systems having a stable functioning
mode.

For controlling interconnected systems, it can happen that
only one module needs to be updated for improving its control
performance or satisfying an additional control requirement. Such
an update can be done by implementing a local controller in
this module. However, such a module may not always be able
to access the model information Gv,w of the other modules. For
instance, another module may belong to a different provider or
management party which can implement its own local controller.
Therefore, a local controller is required to be designed without
knowing Gv,w. This is a standard assumption in decentralized
control. On the other hand, implementing a local controller can
destroy the internal stability of the overall interconnected system.
For instance, consider a local controller u = Kyy + δu. Then, the
transfer function matrix from δu → y becomes (I+GpreKy)−1Gpre.
Without knowing Gv,w, the gain Ky needs to be designed such that
the internal stability of the interconnected system is preserved.

As a control objective, we consider tracking control, i.e.,
limt→∞(y(t) − r(t)) = 0 for the given reference signal r . Since
the local plant can access the signals v, w, u, and y, these signals
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Fig. 1. Interconnection of G and Gv,w .

are available for controller design in contrast to Gv,w. That is, a
local controller can be described as

u =
[
Ky(z) Kw(z) Kv(z)

]  
=:K (z)

[y − r
w

v

]
. (4)

In summary, the entire system can be illustrated by Fig. 2, and
we study the following tracking problem.

Problem 2.1. Let G in (1) be given and internally stable. Find the
class of local controllers K in the form of (4), which achieves y(t)−

→ 0 as t → ∞ for an arbitrary constant reference r ∈ Rm

hile keeping the internal stability of the entire system in Fig. 2
or each Gv,w ∈ Gv,w := {Gv,w : Gpre is internally stable}. ◁

In Ishizaki et al. (2019), a specific class of stabilizing local
ontrollers (namely controllers solving Problem 2.1 for r =

) has been provided based on the Youla parametrization in
he continuous-time problem setting; such controllers are called
utput-rectifying retrofit controllers. As Ishizaki et al. (2019), this
aper assumes the internal stability of G to avoid unnecessary
omplication of controller parametrization; this assumption can
e relaxed via a doubly coprime factorization, see e.g., Sasahara
t al. (2019). In the next subsection, we generalize the results
f Ishizaki et al. (2019) to solve Problem 2.1.
Recently, other parametrizations than the Youla parametriza-

ion have been proposed for describing the set of all stabilizing
ontrollers (Furieri, Zheng, Papachristodoulou, & Kamgarpour,
019; Wang, Matni, & Doyle, 2019) and are shown to be all equiv-
lent (Furieri et al., 2019; Zheng, Furieri, Papachristodoulou, Li, &
amgarpour, 2020). Note that the equivalence to the parametriza-
ion in Wang et al. (2019) is analyzed when the feed-though term
s zero, while this assumption is not imposed in this paper. In
ur problem setting, the so-called input–output parametrization
IOP) in Furieri et al. (2019) can also be used to obtain an equiv-
lent condition for the solvability of Problem 2.1 as explained
ater. In this paper, to utilize some existing results on retrofit
ontrol (Ishizaki et al., 2019; Sasahara et al., 2019), we employ
he Youla parametrization for solving Problem 2.1.

.2. Local controller design

To proceed with local controller design, let G(y,w,v),v (resp.
(y,w,v),u) denote the transfer function matrix of the system in
ig. 1 from v (resp. u) to (y, w, v), i.e.,

(y,w,v),v :=

[Gy,v
Gw,v

I

]
, G(y,w,v),u :=

[Gy,u
Gw,u
0

]
.

rom the internal stability of G, the Youla parametrization gives
he class of all stabilizing controllers as follows:

−1

= (I + QG(y,w,v),u) Q , (5)

3

Fig. 2. Entire system after local controller K is implemented.

Q :=
[
Qy Qw Qv

]
∈ RH∞.

From tracking and internal stability requirements, constraints are
imposed to Q as follows.

Theorem 2.2. A local controller (5) solves Problem 2.1 if and only
f Q ∈ RH∞ satisfies

w,uQG(y,w,v),v = 0 (6)

nd

+ Ḡy,r(1)Qy(1) = 0, (7)

where

Ḡy,r := Gy,u + (Gy,v + Gy,uQG(y,w,v),v)(I − Gv,wGw,v)−1Gv,wGw,u. (8)

Proof. The proof is given in Appendix A.1. □

If (7) has a solution Qy(1), one can always construct at least
a Q ∈ RH∞ satisfying (6) and (7), namely a local controller
achieving tracking control. Otherwise, tracking control is infeasi-
ble. For the sake of illustration, we introduce a matrix Q̄y whose
size is the same as that of Qy(1). First, we solve a matrix equation
corresponding to (7), i.e. I + Ḡy,r(1)Q̄y = 0 with respect to Q̄y,
where one can check its solvability. If it has a solution Q̄y, we
can find Qy ∈ RH∞ satisfying Qy(1) = Q̄y. For instance, such
a Qy is Qy = Q̄y/z. Next, by using the block elements of G(y,w,v),v
and Q , Eq. (6) can be rewritten as

Gw,u(Gy,vQy + Gw,vQw + Qv) = 0.

Therefore, for arbitrary Qy ∈ RH∞ and Qw ∈ RH∞, (6) is satisfied
by choosing Qv as Qv = −(Gy,vQy+Gw,vQw). Note that Qv ∈ RH∞

because of Gy,v,Gw,v ∈ RH∞.
Although the constraints (6) and (7) can be described in terms

of K , a condition corresponding to (5) in terms K is not clear.
Therefore, to obtain the complete characterization of K solving
Problem 2.1, we employ the Youla parametrization. On the other
hand, the controller (5) can be rewritten as

K = X−1Q ,

where X is a solution to[
X Q

] [
I

−G(y,w,v),v

]
= I. (9)

This is in essence an IOP. All conditions (6), (7), and (9) are linear
with respect to parameters Q ∈ RH and X or the value of Q at
∞
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= 1. IOP enables us to formulate controller design as a convex
ptimization problem. For unstable systems, controller design by
OP can be done without computing doubly coprime factorization
n contrast to the Youla parametrization (Furieri et al., 2019). This
act can be used to simplify retrofit control design for unstable
ystems. However, this is not the main interest of this paper
ecause the results on privacy analysis do not depend on the
ethods for parametrizing the set of controllers.

emark 2.3. Even when r = 0, Theorem 2.2 is more general
han (Ishizaki et al., 2019, Proposition 2.2) because QG(y,w,v),v = 0
s required instead of (6). If QG(y,w,v),v = 0 (or weakly
y,uQG(y,w,v),v = 0), then Ḡy,r becomes the following Ĝy,r,

ˆ y,r := Gy,u + Gy,v(I − Gv,wGw,v)−1Gv,wGw,u. (10)

ote that Ĝy,r does not depend on tuning parameters Q anymore.
oreover, if Gv,w is square and satisfies

I − Gv,wGw,v)−1Gv,w = Gv,w(I − Gv,wGw,v)−1,

hen Ĝy,r = Gpre; recall (3). Therefore, the tracking condition (7)
educes to

+ Gpre(1)Qy(1) = 0 (11)

hat is the MIMO version of the condition obtained in the pre-
iminary version (Kawano et al., 2020). In the SISO case, (6) and
G(y,w,v),v = 0 are equivalent. In this case, the condition (11) is
irectly derived without introducing the transfer function matrix

¯ y,r in contrast to (7). This is an example of that considering the
ISO case simplifies the whole analysis. ◁

One notices that from (3), tracking controller design requires
he information of Gv,w(1) although Gv,w(z) is not available for
ocal controller design. Sharing only the information of Gv,w(1)
ay not be that difficult. Even if this information is not shared,

t can be estimated by adding constant inputs w(t) = c , t ∈ Z≥0.
or instance, when v and w are scalar, an approximation of the
C gain is obtained as

v,w(1) = lim
t→∞

v(t)
c

≃
v(t̄)
c

for sufficiently large t̄ ∈ Z≥0.
The condition (7) can be extended to an arbitrary reference r(t)

or which the final value theorem is available. If limt→∞ r(t) does
ot exist, the final value theorem is not applicable. However, an
lternative condition can be derived based on the internal model
rinciple (Levine, 2018).

. Fundamental performance limits for privacy protection

In the previous section, we have provided a condition for
racking control of each local plant in a decentralized control
etting. Decentralized control has advantages in view of privacy
reservation because the local plant does not need to share
nformation of the local controller (i.e. control algorithms) and
eference r (e.g. a target produced amount) with the other mod-
les Gv,w. However, there is still a possibility that the owner(s)
f Gv,w estimates the reference r from the signal w it receives. In
his section, our objective is to design the local controller which
akes estimating r difficult, i.e. r is highly private against the
wner(s) of Gv,w. As a criterion for privacy, we employ differential
rivacy proposed by Dwork, Kenthapadi et al. (2006) and Dwork,
cSherry et al. (2006), which has been applied to state–space

epresentations of dynamical systems; see e.g. Ito et al. (2021),
awano and Cao (2020) and Le Ny and Pappas (2014). In this
ection, we proceed with differential privacy analysis by using
tate–space models.
4

.1. State–space models

Suppose that a controller satisfying the conditions in Theo-
em 2.2 is implemented. From (2) and (A.2), the transfer function
atrix from r to w of the entire system is computed as

= −(I − Gw,vGv,w)−1Gw,uQyr. (12)

ote that this is internally stable.

roposition 3.1. The transfer function matrix from r to w in (12)
s internally stable.

roof. From the assumption in Problem 2.1, the transfer function
atrix from u to w of the interconnected system in Fig. 1 is

nternally stable. By using (1) and (2), the transfer function matrix
an be computed as

= (I − Gw,vGv,w)−1Gw,uu.

herefore, Q ∈ RH∞ concludes the statement of the propo-
ition. □

For fixed Qy, consider a minimal realization of (12), which can
e computed by using for instance the Ho–Kalman algorithm (Ho
Kálmán, 1966).

w,r :

{
x(t + 1) = Ax(t) + Br(t), x(0) = 0,
w(t) = Cx(t) + Dr(t) (13)

or t ∈ Z≥0, where x(t) ∈ Rn, r(t) ∈ Rm, and w(t) ∈ Rp de-
ote the state, input (reference signal), and output, respectively,
nd A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. From

Proposition 3.1, this system is Schur stable. Now, we consider the
output sequence wt ∈ R(t+1)p of the system (13) with the zero
nitial state, where the meaning of the subscript t was defined in
he notation section. This can be described by

t = Ht rt , (14)

here Ht ∈ R(t+1)p×(t+1)m is

t :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D 0 · · · · · · 0

CB D
. . .

...

CAB CB D
. . .

...
...

...
. . .

. . . 0
CAt−1B CAt−2B · · · CB D

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

hroughout this section, we assume that Ht ̸= 0; if Ht = 0,
hen wt = 0, and it becomes unnecessary to discuss the privacy
f rt .
For the sake of later analysis, we introduce the q-induced

orm (q ∈ Z>0 ∪ {∞}) of the system (13),

Σw,r∥q−ind := sup
r∈Lmq [0,∞)

∥r∥q ̸=0

∥w∥q

∥r∥q
= sup

t∈Z≥0

|Ht |q, (15)

here the last equality follows from the definition (14) of Ht .
ince the system (13) is Schur stable, the induced q-norm is
ounded for any q ∈ Z>0 ∪ {∞}.

.2. Differential privacy

In this subsection, we give the definition of differential pri-
acy. Although differential privacy is mainly used for analysis
f aggregated data, the criterion for evaluating the privacy level
tself is available for our problem. One of the main ideas of
ifferential privacy is to add noise ν to the output w for increasing
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he difficulty of estimating r . That is, instead of w, the local plant
ends the following wν to Gv,w:

ν(t) = w(t) + ν(t), t ∈ Z≥0. (16)

or the zero initial state, the system (13) with the new output (16)
nduces the mapping M : R(t+1)m

× R(t+1)p
∋ (rt , νt ) ↦→ wν,t ∈

R(t+1)p; recall the notation of the sequence. In differential privacy
analysis, this mapping is called a mechanism (Dwork, Kenthapadi
et al., 2006; Dwork, McSherry et al., 2006).

Differential privacy gives an index of the privacy level of a
mechanism, which is characterized by the sensitivity of published
output data wν,t with respect to input data rt . More specifically,
if for a pair of not so distinct input data (rt , r ′

t ), the corresponding
air of output data (wν,t , w

′
ν,t ) is very different, then input data rt

is easy to estimate, i.e. the mechanism is less private. For such a
reason, differential privacy is defined by using a pair of different
but ‘‘similar’’ input data, where by similar we mean that the pair
satisfies the following adjacency relations.

Definition 3.2. Given c > 0 and p ∈ Z>0 ∪ {∞}, a pair of
input data (rt , r ′

t ) ∈ R(t+1)m
× R(t+1)m (resp. (r, r ′) ∈ Lmq [0, ∞) ×

Lmq [0, ∞)) is said to belong to the binary relation c-adjacency
under the q-norm if |rt − r ′

t |q ≤ c (resp. ∥r − r ′
∥q ≤ c). The set of

all pairs of the input data that are c-adjacent under the q-norm
s denoted by Adjcq. ◁

Now, we are ready to define differential privacy of the mech-
nism proposed by Dwork, Kenthapadi et al. (2006) and Dwork,
cSherry et al. (2006).

efinition 3.3. The mechanism (induced by (13) and (16)) is
aid to be (ε, δ)-differentially private for Adjcq at t ∈ Z≥0 if there
xist ε, δ ≥ 0 such that

(wν,t ∈ S) ≤ eεP(w′

ν,t ∈ S) + δ (17)

or all sets S of outputs and for any (rt , r ′
t ) ∈ Adjcq. If δ (resp. ε)

is zero, the mechanism is simply said to be ε-differentially (resp.
δ-differentially) private. ◁

If ε and δ are small, then for a different pair of input data
(rt , r ′

t ), the corresponding pair of probability distributions of out-
put data (wν,t , w

′
ν,t ) is small, i.e., a mechanism is highly private.

herefore, the privacy level of a mechanism is evaluated by the
ariables ε and δ.

.3. Privacy limits of Laplace mechanisms

From the definition, the variables ε and δ can depend on
oise ν. In other words, noise ν needs to be designed based on
he required differential privacy level. In this subsection, we con-
ider adding i.i.d. Laplace noise; the corresponding mechanism
s called the Laplace mechanism. For the Laplace mechanism, a
ufficient condition for differential privacy has been proposed;
ee, e.g., Dwork, Kenthapadi et al. (2006), Dwork, McSherry et al.
2006) and Le Ny and Pappas (2014). However, for our analysis,
e need a necessary condition. In fact, a necessary and suffi-
ient condition can be established based on an existing sufficient
ondition (Le Ny & Pappas, 2014, Theorem 2).

heorem 3.4. Consider the i.i.d. Laplace noise with the vari-
nce 2b2. The Laplace mechanism is ε-differentially private for Adjc1
t t ∈ Z>0 (t ∈ Z≥0 when D ̸= 0) if and only if b > 0 is chosen

such that

b ≥
c
ε
|Ht |1. (18)

Proof. The proof is given in Appendix A.2. □
5

Remark 3.5. In this section, we assume that the owner(s)
of Gv,w does not know whether the reference r is constant. If
the reference is known to be constant, then the condition (18)
is replaced by

b ≥
c
ε
|Ht1l|1, (19)

where 1l is the vector whose all elements are one, and c-adjacency
means |r − r ′

| ≤ c for constants r and r ′. Note that b satisfy-
ing (19) is larger than that of (18) in general because |Ht1l|1 is not
bounded function of t in contrast to |Ht |1 even if the system (13)
s Schur stable. This corresponds to the natural observation: it is
ore difficult to protect r when r is known to be constant. ◁

In Theorem 3.4, the system (13) is not necessarily Schur stable
ecause a fixed and bounded time-interval is considered. If we
equire the Laplace mechanism to be differentially private for any
ime-interval, Schur stability is required.

orollary 3.6. Consider the i.i.d. Laplace noise with the vari-
nce 2b2. The Laplace mechanism is ε-differentially private for Adjc1

at any t ∈ Z≥0 if and only if b > 0 is chosen such that

b ≥
c
ε
∥Σw,r∥1−ind. (20)

roof. First, we show the necessity. From (15), for any ā > 0,
here exists t ∈ Z≥0 such that |Ht |1 ≥ ∥Σw,r∥1−ind − ā. From
heorem 3.4, if the Laplace mechanism is ε-differentially private
t this t , then

≥
c
ε
|Ht |1 ≥

c
ε
∥Σw,r∥1−ind − a, a :=

āc
ε

.

Since ā > 0 (or equivalently a > 0) is arbitrary, we have (20).
Next, we show the sufficiency. From (15), it follows that |Ht |1

≤ ∥Σw,r∥1−ind for any t ∈ Z≥0. Therefore, from Theorem 3.4,
f (20) holds, the Laplace mechanism is ε-differentially private for
any t ∈ Z≥0. □

From (20), for fixed c and ∥Σw,r∥1−ind, one may conclude nat-
urally that adding large noise ν increases the differential privacy
level ε. However, adding noise degenerates control performances,
which is specified by the following proposition.

Proposition 3.7. Let Σy,ν denote a minimal realization of the
transfer function matrix of the whole system from ν to y. For the
i.i.d. Laplace noise ν with the variance 2b2, the tracking error y − r
satisfies

lim
t→∞

E[|y(t) − r(t)|2] = 2b2∥Σy,ν∥2−ind. (21)

Proof. The proof is given in Appendix A.3. □

From Corollary 3.6 and Proposition 3.7, one sees clearly the
trade-off between differential privacy and tracking control perfor-
mances. If one chooses the minimum b to achieve ε-differential
privacy, the equality in (20) yields

lim
t→∞

E[|y(t) − r(t)|2] = 2
( c

ε
∥Σw,r∥1−ind

)2
∥Σy,ν∥2−ind.

Therefore, the differential privacy level can be decided by evalu-
ating the utility guarantee of the tracking control performance.
To utilize this evaluation, the induced norms ∥Σw,r∥1−ind and
∥Σy,ν∥2−ind are needed to be estimated, since Gv,w is unknown.
It may not be difficult to estimate their upper bounds although
the resulting evaluation with these upper bounds becomes con-
servative. If one designs b based on (19) instead of (18), con-
servativeness is reduced, since Ht1l can be estimated in arbitrary
accuracy.
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Note that not only the variance of the Laplace noise is a tuning
parameter. The 1-induced norm of the system (13) denoted by
∥Σw,r∥1−ind can be specified by tuning the free controller pa-
rameter Qy. From (12), ∥Σw,r∥1−ind can be made arbitrarily small
by making Qy arbitrarily small even though Gv,w is unknown.
owever, as clarified in Theorem 2.2, the tracking control re-
uirement of a module imposes the constraints (6) and (7) for Q .
ecause of them, the parameter Qy cannot be made arbitrarily
mall in general. Therefore, in general, given the variance 2b2, the
ifferential privacy level ε of the Laplace mechanism cannot be
mproved from the ceiling value even if one tunes the controller
arameters Q . In the special case when Gy,uQG(y,w,v),v = 0, the
imit can be estimated explicitly as follows.

heorem 3.8. Consider the i.i.d. Laplace noise with Q solving
roblem 2.1. Suppose that Qy is square, and Q satisfies Gy,uQ
(y,w,v),v = 0. If given variance 2b2 and Adjc1, the Laplace mechanism
s ε-differentially private, then it holds that

≥
c
b
|(I − Gw,v(1)Gv,w(1))−1Gw,u(1)Ĝ−1

y,r (1)|1. (22)

Proof. From the definition of the 1-induced norm of the system,
the DC gain gives its lower bound,

∥Σw,r∥1−ind ≥ |C(I − A)−1B + D|1.

Since (13) is a state–space representation of (12), we obtain

C(I − A)−1B + D = −(I − Gw,v(1)Gv,w(1))−1Gw,u(1)Qy(1).

ext, the assumptions for Q imply that (7) holds for Ḡy,r = Ĝy,r,
where Ĝy,r is defined in (10). Thus, Qy needs to satisfy

Qy(1) = −Ĝ−1
y,r (1).

By combining the above, we have

∥Σw,r∥1−ind ≥ |(I − Gw,v(1)Gv,w(1))−1Gw,u(1)Ĝ−1
y,r (1)|1.

Therefore, (22) is obtained from (20). □

Theorem 3.8 implies that given variance 2b2 and c , the differ-
ential privacy level ε cannot be made smaller than the value given
by the right-hand side of (22) for any Q satisfying the conditions.
It is worth emphasizing that this lower bound can be computed
only by estimating the value of Gv,w(z) at z = 1. As mentioned
at the paragraph immediately after Remark 2.3, this may not be
that difficult. From Remark 3.5, the lower bound can be larger if r
is known to be constant.

Remark 3.9. From (21), one may think that tracking con-
trol performance can be made less degenerated against noise ν

if ∥Σy,v∥2−ind is made arbitrary small. From (2) and (A.1), the
transfer function matrix from ν to y is obtained as

y = (Gy,v + Gy,uQG(y,w,v),v)(I − Gv,wGw,v)−1Gv,wν.

Therefore, ∥Σy,v∥2−ind can be specified by tuning Q . However, as
for the differential privacy level ε, the constraints (6) and (7) can
give a lower bound on ∥Σy,v∥2−ind. ◁

emark 3.10. When each signal is scalar, from the definition (10)
f Ĝy,r, we have

I−Gw,vGv,w)−1Gw,uĜ−1
y,r =

Gw,u

Gy,u + (Gy,vGw,u − Gy,uGw,v)Gv,w
. (23)

f Gy,u(1)Gw,v(1) = Gy,v(1)Gw,u(1), the condition (22) reduces to

ε ≥
c Gw,u(1)

.

b Gy,u(1)

6

In this case, the lower bound on the differential privacy level is
determined only by the local plant. On the other hand, if Gv,w is
designed such that Gy,u + (Gy,vGw,u −Gy,uGw,v)Gv,w = 0, then (23)
does not exist, and the condition (22) does not hold for any
finite ε ≥ 0. In this case, we have Gpre = 0 from (3). This implies
that if Gv,w is designed to make Gpre small, large noise is required
to make r highly private. ◁

Remark 3.11. For positive systems, ∥Σw,r∥1−ind = |C(I−A)−1B+

D|1 can be shown in a similar manner as for SISO systems (Rantzer,
2011, Theorem 6). Therefore, for the positive system and b satis-
fying the equality in (20), the equality holds in (22), i.e., the lower
bound (22) is tight. ◁

3.4. Privacy limits of uniform mechanisms

In the previous subsection, we have shown that for the Laplace
mechanism, there exists the limit of the differential privacy level
when achieving tracking control. As an evaluation of data utility,
we have estimated the tracking error in the mean-square sense,
but the worst-case error cannot be specified due to the structure
of its probability distribution. In contrast, this is possible for the
uniform mechanism, the mechanism obtained by adding noise
following a uniform distribution. Furthermore, we will obtain in
this sub-section similar conclusions for a differential privacy level
and mean-square tracking error.

The differential privacy of the uniform mechanism has been
studied (Geng, Ding, Guo, & Kumar, 2018; He & Cai, 2016) for
scalar static data, but not in a dynamical setting. First, we provide
a necessary and sufficient condition for differential privacy.

Theorem 3.12. Consider the i.i.d. noise with uniform distribution
on [−d/2, d/2]. The uniform mechanism is δ-differentially private
for Adjc

∞
at t ∈ Z>0 (t ∈ Z≥0 when D ̸= 0) if and only if d > 0 is

chosen such that

d ≥
c
δ
|Ht |∞. (24)

roof. The proof is given in Appendix A.4. □

orollary 3.13. Consider the i.i.d. noise with uniform distribution
n [−d/2, d/2]. The uniform mechanism is δ-differentially private

for Adjc
∞

at any t ∈ Z≥0 if and only if d > 0 is chosen such that

d ≥
c
δ
∥Σw,r∥∞.

Proof. The proof can be shown in a similar way as that of
Corollary 3.6 based on Theorem 3.12. □

Remark 3.14. The definition of δ-differential privacy implies δ ≤

1, and thus we implicitly assume d ≥ c|Ht |∞ (resp. d ≥

c∥Σw,r∥∞) in Theorem 3.12 (resp. Corollary 3.13). ◁

As for the Laplace mechanism, there is a trade-off between the
privacy level and tracking control performances for the uniform
mechanism. To see this, we provide the following proposition.

Proposition 3.15. For the i.i.d. noise ν with uniform distribution
on [−d/2, d/2], the tracking error y − r satisfies

lim
t→∞

E[|y(t) − r(t)|2] =
d2

12
∥Σy,ν∥2−ind. (25)

Proof. The proof is similar to that of Proposition 3.7, where the
variance is d2/12 for the considered noise here. □
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From Corollary 3.13, to make the uniform mechanism highly
differentially private (i.e., to make δ small), d needs to be large.
From Proposition 3.15, this can cause a large tracking error.
Therefore, we again here design a local controller such that
the ∞-induced norm of the system (13) becomes small, which
is another approach to increase the differential privacy level.
However, again due to the constraint (7) for tracking control, the
differential privacy level δ cannot be improved from the ceiling
value in general.

As for Theorem 3.8, the limit can be estimated explicitly in a
specific case.

Theorem 3.16. Consider the i.i.d. noise with uniform distribu-
tion. Suppose that Q satisfies the assumptions in Theorem 3.8. If
iven interval [−d/2, d/2] and Adjc

∞
, the uniform mechanism is

ifferentially private, then

≥
c
d
|(I − Gw,v(1)Gv,w(1))−1Gw,u(1)Ĝy,r(1)−1

|∞.

roof. The proof is similar to that of Theorem 3.8. □

emark 3.17. Again for the positive system, the lower bound ob-
ained in Theorem 3.16 is tight because ∥Σw,r∥∞−ind =

C(I − A)−1B + D|∞. This equality can be shown in a similar
anner as for the SISO system (Rantzer, 2011, Theorem 6). ◁

. Examples

.1. Problem setting

Consider the DC microgrids (Cucuzzella et al., 2018) whose
ynamics are described by

Li İi(t) = −RiIi(t) − Vi(t) + ui(t),

iV̇i(t) = Ii(t) − IL,i −
∑
j∈Ni

R−1
i,j (Vi(t) − Vj(t)),

yi(t) = Ii(t) (26)

for i = 1, . . . , n, where Ii(t) ∈ R, Vi(t) > 0, and ui(t) denote
the generator current, load voltage, and control input of node
(i.e. module) i, respectively, and IL,i ∈ R denote the load current
of node i, which can be viewed as a constant in the time scale of
controller design. The positive parameters Li, Ri, Ri,j(= Rj,i), and Ci
denote the inductance, resistances, and capacitance, respectively.
The set of neighbors of node i is denoted by Ni. Note that the sub-
system of each node (with Vj = 0) and the whole interconnected
system are Hurwitz.

The control objective is to maintain the stability of the system
by keeping Vi(t) to the prescribed value V ∗ and the difference
between the generator and load currents to zero. Therefore, the
control objective of each module i is

lim
t→∞

Vi(t) = V ∗, lim
t→∞

Ii(t) = IL,i. (27)

In contrast to V ∗, the consumption IL,i depends on each module i
and contains information of consumption patterns. Therefore, this
needs to be private against the other modules.

To simplify the local controller design process, we apply the
changes of variables Îi = Ii − IL,i, V̂i = Vi − V ∗, ŷi = yi − IL,i,
nd ûi = ui − RIL,i − V ∗. Then, (26) becomes

Li
˙̂Ii(t) = −Ri Îi(t) − V̂i(t) + ûi(t),

Ci
˙̂Vi(t) = Îi(t) −

∑
j∈Ni

R−1
i,j (V̂i(t) − V̂j(t)),

ŷi(t) = Îi(t), (28)
7

and the control objective (27) becomes regulation, i.e., r = 0. Our
objective is to design a local controller of node i for achieving
regulation while increasing the differential privacy level of r (that
is IL,i in the original coordinates), where the differential privacy
level does not depend on the changes of variables.

4.2. Tracking controller design

For designing a local controller, we use the zero-order-hold
discretization with the sampling period 10−3

[s], since each out-
put information is collected and sent to the power company
digitally. Note that the discretization of a Hurwitz system is Schur,
and thus the assumptions in Problem 2.1 are satisfied.

We consider the case when n = 2. Based on Cucuzzella et al.
(2018), the parameters are chosen as L1 = 2.0 [mH], L2 =

.8 [mH], R1 = 0.5 [�], R2 = 0.2 [m�], R1,2 = 50 [m�], C1 =

.5 [mF], and C2 = 2.2 [mF]. We design a local controller for
ode 1. Then, v = V̂2, u = û1, and w = V̂1, and y = ŷ1. The
ransfer functions are obtained as

Gy,v =
−0.389z − 0.0493

z2 − 0.759z + 2.61 × 10−4 ,

Gy,u =
0.4382z + 9.06 × 10−6

z2 − 0.759z + 2.61 × 10−4 ,

Gw,v =
0.983z − 0.764

z2 − 0.759z + 2.61 × 10−4 ,

Gw,u =
(19.5z + 2.46) × 10−3

z2 − 0.759z + 2.61 × 10−4 ,

and

Gv,w =
0.979z − 0.875

z2 − 0.870z + 1.01 × 10−4 .

First, we write down the conditions in Theorem 2.2 for tracking
control. Since Gw,u is scalar, (6) holds if and only if QG(y,w,v),v = 0,
i.e.,

Qv = −(QyGy,v + QwGw,v).

Next, since Gv,w and Gw,v are scalar, the tracking condition be-
comes (11) that is

1 + 1.33Qy(1) = 0. (29)

Therefore, Qy cannot be made arbitrarily small, and thus the
differential privacy levels of the Laplace and uniform mechanisms
cannot be improved from the ceiling values. In fact, all conditions
in Theorems 3.8 and 3.16 hold, and we have

(I − Gw,v(1)Gv,w(1))−1Gw,u(1)Ĝ−1
y,r (1) = 0.25.

For the Laplace (resp. uniform) mechanism, the differential pri-
vacy level is lower bounded by ε ≥ 0.25c/b (resp. δ ≥ 0.25c/d.)

Remark 4.1. If one takes the outputs as yi = [Ii, Vi]
⊤, then it is

possible to show that given distributions, the lower bounds on
the differential privacy levels of IL,i can be made arbitrarily small
by tuning Q . Therefore, our results can suggest how to choose
outputs for improving the privacy performance. ◁

Since QG(y,w,v),v = 0 needs to hold, the transfer function from
noise ν to y is computed as

y =
Gy,vGv,w

1 − Gv,wGw,v

ν,

where recall Remark 3.9. Its H∞-norm, namely ∥Σy,ν∥2−ind, is
1.82, which cannot be improved by tuning the local controller.
From Proposition 3.7 (resp. Proposition 3.15), the tracking er-
ror is 3.64b2 for the Laplace mechanism (resp. 0.152d2 for the
uniform mechanism).
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Fig. 3. Responses of wν and yν of the Laplace mechanism for Qy without noise
blue line) and with noise (red line). (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this
rticle.)

.3. Simulation results

When noise ν is added, the output of the considered module
(i.e. node 1) yν and the signal sent to the other module (i.e. node
2) wν are respectively computed as

yν = −GpreQyr +
Gy,vGv,w

1 − Gw,vGv,w
ν,

ν = −
Gw,u

1 − Gw,vGv,w
Qyr + ν.

he controller parameter here is only Qy ∈ RH∞. A parameter Qy
atisfying (29) is, for instance,

y = −
1

1.33z
.

s a comparison, we also consider a controller achieving the
ower bounds on the differential privacy levels; towards this end,
e use the information of Gv,w even though this is not supposed
o be available. Such a controller parameter is

¯y = −
1
4z

1 − Gw,vGv,w

Gw,u
,

here the coefficient 1/4 is determined by (29).
We consider a scenario where the reference r is switched

etween 0 and 1. By adding noise, we protect from r being
identified from wν and also evaluate the tracking control perfor-
mance under noise. Fig. 3 (resp. Fig. 4) shows wν and yν of the
aplace mechanism for controller parameter Qy (resp. Q̄y) when
= 1/8 and b = 1/4. It is observed that Qy has similar privacy
erformance as Q̄y achieving the lower bound on the differential

privacy level. Namely, the differential privacy level is impossible
to improve further. In contrast to slight improvement of privacy
performance, the tracking control performance is significantly
degenerated for Q̄y when the reference signal is switched. A
possible reason of Qy having better tracking control performance
is that Qy is the one having the smallest H∞-norm satisfying (29).
hat is, yν with Qy is less sensitive with respect to the change of r .
Next, Fig. 5 shows wν and yν of the uniform mechanism for

ontroller parameter Qy when d =
√
3/8 and d =

√
3/2, where

hese values are chosen such that tracking errors are equivalent
nder both noises. The maximum tracking error is smaller than
he Laplace mechanism as expected.
8

Fig. 4. Responses of wν and yν of the Laplace mechanism for Q̄y without noise
(blue line) and with noise (red line). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Responses of wν and yν of the uniform mechanism for Qy without noise
(blue line) and with noise (red line). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

5. Conclusion

In the framework of modular control design, we have analyzed
lower bounds on the differential privacy levels for the Laplace and
uniform mechanisms in terms of the 1- and ∞-induced system
norms, respectively. In systems and control, the 2-induced norm,
namely the H∞-norm plays an important role, which is connected
to the Gaussian mechanism by Kawano and Cao (2020) and Le
Ny and Pappas (2014). As for the 1- and ∞-induced norms, the
2-induced norm can be lower bounded due to the constraints on
the local controller. Therefore, in general, the differential privacy
level of the Gaussian mechanism cannot be improved from a
ceiling value even one tunes parameters of the local controller
although it is not easy to estimate the ceiling value explicitly.
Future work includes estimating ceiling values of differential
privacy levels in more general problem settings, e.g. for general
nonlinear systems. As to mechanisms, we have focused on Laplace
and uniform mechanisms, and it may be possible to estimate
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ceiling value from the definition of differential privacy itself
ithout specifying the types of noise to be added.

ppendix. Proofs

.1. Proof of Theorem 2.2

By generalizing Ishizaki et al. (2019, Proposition 2.2) with the
rgument after Ishizaki et al. (2019, Proposition 2.1), it is possible
o show that a controller (5) solves Problem 2.1 for r = 0 if
nd only if it satisfies (6). That is, (6) gives a characterization of
ll stabilizing controllers. Since a tracking controller is a specific
tabilizing controller, we investigate an additional condition to
chieve tracking.
A tracking condition is derived based on the final value the-

rem (see e.g. Levine, 2018). To compute the transfer function
atrix from r to y of the entire system in Fig. 2, we apply the
hanges of variables ŷ = y − Gy,vv and ŵ = w − Gw,vv, which
ields

v = Gv,w(ŵ + Gw,vv),
ˆ = Gw,uu,
ŷ = Gy,uu,
u = − Kyr + Kyŷ + Kwŵ + KG(y,w,v),vv.

he last three equations lead to

= (I − KG(y,w,v),u)−1(−Kyr + KG(y,w,v),vv).

y using (5), KG(y,w,v),u can be computed as

G(y,w,v),u = (I + QG(y,w,v),u)−1QG(y,w,v),u

= I − (I + QG(y,w,v),u)−1,

and consequently

u = (I + QG(y,w,v),u)(−Kyr + KG(y,w,v),vv)
= −Qyr + QG(y,w,v),vv,

where again (5) is used. Then, y and w are respectively computed
as

y = −Gy,uQyr + (Gy,v + Gy,uQG(y,w,v),v)v (A.1)

and

w = −Gw,uQyr + Gw,vv, (A.2)

where (6) is used. From (2) and (A.2), it follows that

v = −(I − Gv,wGw,v)−1Gv,wGw,uQyr.

Substituting this into (A.1) yields

y = −Ḡy,rQyr

for Ḡy,r in (8). From the final value theorem, tracking control is
achieved for a constant reference r ∈ Rm if and only if

lim
z→1

−
z − 1
z

Ḡy,r(z)Qy(z)
z

z − 1
r = r,

where z/(z − 1)r is the z-transformation of a constant signal r .
his holds for arbitrary r if and only if (7) holds. □

.2. Proof of Theorem 3.4

The sufficiency follows from that of Le Ny and Pappas (2014,
heorem 2) with the definition of the matrix induced norm.
For the necessity proof, we show that if the Laplace mech-

nism is ε-differentially private, the equality holds in (18) for
pecific choices of (r , r ′) and S. Since the system is linear, let
t t

9

rt = 0 without loss of generality. Then, |r ′
t |1 = c from the

definition of Adjc1. From the definition of the induced matrix 1-
norm, there exists r ′

t such that |Ht r ′
t |1 = |Ht |1|r ′

t |1 and |r ′
t |1 = c ,

and consequently

|Ht r ′

t |1 = c|Ht |1. (A.3)

Next, let S = S1 × · · · × S(t+1)p, where Si = (−1, 0) if the ith
element of Ht r ′

t is positive; Si = (0, 1) otherwise. This implies

|Ht r ′

t − νt |1 = |Ht r ′

t |1 + |νt |1 = c|Ht |1 + |νt |1, ∀νt ∈ S (A.4)

where (A.3) is used.
For these (rt , r ′

t ) and S, it follows from (A.4) that

P(wν,t ∈ S) =
1

(2b)(t+1)p

∫
R(t+1)p

1S(νt )e−
|νt |1
b dνt

= e
c
b |Ht |1

1
(2b)(t+1)p

∫
R(t+1)p

1S(νt )e−
|Ht r′t−νt |1

b dνt .

he change of variables νt = Ht r ′
t + ν̄t yields

(wν,t ∈ S) = e
c
b |Ht |1P(w′

ν,t ∈ S).

herefore, if the Laplace mechanism is ε-differentially private, ε
cannot be smaller than c

b |Ht |1, i.e., b satisfies (18). □

A.3. Proof of Proposition 3.7

When noise ν is added, the output y can be described by

y = −Ḡy,rQyr + (Gy,v + Gy,uQG(y,w,v),v)(I − Gv,wGw,v)−1Gv,wν,

where the first and second terms on the right-hand side are com-
puted in Appendix A.1 and Remark 3.9, respectively. To analyze
y in the time domain, we consider a minimal realization of the
above transfer function matrix:

Σ̄ :

{
x̄(t + 1) = Āx̄(t) + B̄r r(t) + B̄νν(t), x̄(0) = 0,
y(t) = C̄ x̄(t) + D̄r r(t) + D̄νν(t).

By defining

hr (t) :=

{
D̄r , t = 0
C̄ Āt−1B̄r + D̄r , otherwise,

hν(t) :=

{
D̄ν, t = 0
C̄ Āt−1B̄ν + D̄ν, otherwise,

the output can be described as

y(t) =

t∑
k=0

(hr (k)r(t − k) + hν(k)ν(t − k)),

nd consequently the tracking error at time instant t is

(t) − r(t) =

t∑
k=0

(hr (k)r(t − k) + hν(k)ν(t − k)) − r(t),

ince ν(t) is i.i.d. Laplace noise with E[ν(t)] = 0 and E[ν2(t)] =

b2, it follows that

[|y(t) − r(t)|2] =

⏐⏐⏐⏐⏐
t∑

k=0

hr (k)r(t − k) − r(t)

⏐⏐⏐⏐⏐
2

+ 2b2
t∑

k=0

|hν(k)|2.

ow, the controller is designed to achieve tracking control, i.e.,

lim
→∞

⏐⏐⏐⏐⏐
t∑

k=0

hr (k)r(t − k) − r(t)

⏐⏐⏐⏐⏐
2

= 0.

urthermore, from the assumptions in Problem 2.1 and Q ∈

H∞, the system Σy,ν is internally stable, and consequently

lim
→∞

t∑
|hν(k)|2 = ∥Σy,ν∥2−ind.
k=0
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herefore, by taking t → ∞, we obtain (21). □

.4. Proof of Theorem 3.12

First, we consider the necessity. As in the proof of
heorem 3.12, we show that if the system is δ-differentially
rivate, the equality holds in (24) for specific choices of (rt , r ′

t )
and S. Let rt = 0 without loss of generality. From the definitions
of Adjc

∞
and the induced matrix ∞-norm, there exists r ′

t such
that |Ht r ′

t |∞ = c|Ht |∞. Furthermore, from the definition of the
vector ∞-norm, for some ith element of Ht r ′

t , denoted by y′

t,i, we
have

|y′

t,i| = |Ht r ′

t |∞ = c|Ht |∞. (A.5)

Now, we choose S = S1 × · · · × S(t+1)p, where Sj = (−∞, ∞),
j ̸= i, and Si = [−c|Ht |∞/2, ∞) (resp. Si = (−∞, c|Ht |∞/2])
if y′

t,i > 0 (resp. y′

t,i < 0); note that y′

t,i ̸= 0 from the assumption
Ht ̸= 0.

For these (rt , r ′
t ) and S, it follows that

P(wν,t ∈ S) =
1

d(t+1)p

∫
R(t+1)p

1S(νt )dνt

=
1
2d

(d + c|Ht |∞),

nd

(w′

ν,t ∈ S) =
1

d(t+1)p

∫
R(t+1)p

1S(Ht r ′

t + νt )dνt

=
1
2d

(d − c|Ht |∞).

hese two equalities yield

(wν,t ∈ S) − P(w′

ν,t ∈ S) =
c
d
|Ht |∞.

ince the system is δ-differentially private, δ cannot be smaller
han c|Ht |∞/d. Therefore, d satisfies (24).

Next, we show sufficiency. Let rt = 0 without loss of gener-
lity. Then, |r ′

t |∞ = c. Also, let y′
t := Ht r ′

t . Then, for any S, the
efinition of the uniform distribution leads to

(w′

ν,t ∈ S) − P(wν,t ∈ S)

=
1

d(t+1)p

∫
R(t+1)p

(1S(y′

t + νt ) − 1S(νt ))dνt .

et y′

t,i, i = 1, . . . , (t+1)p denote the vector whose ith element is
hat of y′

t , and the other elements are zero. Also, define y′

t,−1 :=
′
t − y′

t,1. Then, the direct computation yields∫
R(t+1)p

(1S(y′

t + νt ) − 1S(νt ))dνt

=

∫
R(t+1)p

(1S(y′

t + νt ) − 1S(y′

t,−1 + νt ))dνt

+

∫
R(t+1)p

(1S(y′

t,−1 + νt ) − 1S(νt ))dνt .

y applying the change of variables ν̄t = νt + y′

t,−1, the first term
n the right-hand side can be rearranged as∫
R(t+1)p

(1S(y′

t + νt ) − 1S(y′

t,−1 + νt ))dνt

=

∫
R(t+1)p

(1S(y′

t,1 + ν̄t ) − 1S(ν̄t ))dν̄t .

y repeating similar procedures, we have

(w′
∈ S) − P(w ∈ S)
ν,t ν,t

10
=
1

d(t+1)p

(t+1)p∑
i=1

∫
R(t+1)p

(1S(y′

t,i + νt ) − 1S(νt ))dνt .

For any S, it is possible to show that

|P(w′

ν,t ∈ S) − P(wν,t ∈ S)|

≤
1

d(t+1)p max
i=1,...,(t+1)p

|r′t |∞=c

⏐⏐⏐⏐∫
R(t+1)p

(1S(y′

t,i + νt ) − 1S(νt ))dνt

⏐⏐⏐⏐
≤ max

i=1,...,(t+1)p
|r′t |∞=c

|y′

t,i|

d
=

c
d
|Ht |∞.

Therefore, if (24) holds, the uniform mechanism is δ-differentially
private. □
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