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SECONDARY FREQUENCY CONTROL IN POWER SYSTEMS
WITH ARBITRARY COMMUNICATION DELAYS\ast 

FILIP J. KOERTS\dagger , ARJAN VAN DER SCHAFT\dagger , AND CLAUDIO DE PERSIS\ddagger 

Abstract. In this paper, we consider a Kron-reduced microgrid that consists solely of generator
units. The frequency control we consider consists of primary droop control at the generator units,
as well as distributed averaging integral (DAI) control that enforces both synchronization among
the generator frequencies and optimal power dispatch. To any generating unit, a DAI controller is
attached that exchanges information with neighboring nodes. In practice, this is subject to time
delays, which impedes the stability analysis. By performing scattering transformation of the input
and output variables at each end of the communication link between two DAI controllers, and trans-
mitting the scattered variables instead of the controller output, stability of the nominal frequency is
guaranteed. The time delays are not restricted to any bounds.
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1. Introduction. Power systems are currently facing a transformation from an
orderly grid with few generators that operate synchronously under centralized control
to a much more heterogeneous grid with large-scale implementation of volatile renew-
able energy sources and components with complex dynamics. This causes the net
load to change with a steeper gradient and by larger amounts. Moreover, prediction
of these changes becomes more difficult. With the traditional control schemes, robust
stability of the network is endangered, which illustrates the necessity to find more
robust and flexible control strategies.

The model we consider is a microgrid, which is comprised of generating units at
the buses, and modelled by the swing equations. The dynamics of these equations
contribute to the frequency stability in two ways. In the first place, they encompass
the dynamics of droop controllers for each of the generators, reducing large excursions
of frequency deviations in a proportional fashion, which is categorized as primary
frequency control. Second, they describe the active power flow between interconnected
buses through transmission lines, which causes the rotor angles to synchronize in a
distributed fashion for system states operating sufficiently close to a steady state.

The desired operation of the network at a state with constant voltage amplitudes
and a synchronized nominal frequency among all generators relies heavily on the
balance of power consumption and production in the network and on a net power
inflow or outflow at each bus that does not exceed the capacity constraints of the
transmission lines. As such, the system may not withstand the stressed conditions
without further implementation of higher levels of frequency control.

In this paper, we focus on secondary frequency control, which is aimed at restor-
ing the frequency to a nominal level [8], [20]. For this purpose, a distributed averaging
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integral (DAI) controller is implemented at every node in our power system that re-
stores the frequency in an economically efficient way, while also power interchanges
between adjacent control areas are restored. The DAI controllers annihilate the gap
between the global net power consumption and production by means of integral con-
trol. Moreover, the distributed character of these controllers has the advantage that
no central computation is needed. Delayed DAI controllers can be applied to a wide
range of purposes; see, e.g., [2], [11], [21].

Passivity plays a key role in the control of networked systems and has been ex-
ploited in optimization problems such as resource allocation or steady-state optimal-
ity; see, e.g., [3]. In fact, DAI control can be seen as a consensus algorithm that relies
on the passivity of the network elements. The passivity framework has been shown
to facilitate Lyapunov-based stability analysis in port-Hamiltonian systems and in
power systems; see, e.g., [3], [15], [19].

The DAI controllers communicate with each other through a communication net-
work that differs from the physical network of transmission lines and together form
a cyber-physical network. The communication links are often subject to time delays,
message losses, and link failures, which may prevent secondary control from oper-
ating efficiently [7], [17]. Traditional power networks with a decentralized control
architecture do not need to cope with this problem, since there is not always a com-
munication layer involved in its secondary control. However, this problem is expected
to show up in future power networks with a more distributed control architecture,
such as microgrids [7], [18]. A complicating factor arises when delays are heteroge-
neous, as is studied in [14]. Secondary control strategies with communication delays
are furthermore studied in, e.g., [1], [6].

Hatanaka et al. [11] showed that scattering transformation is a powerful tool to
stabilize passive networked systems with constant communication delays. Moreover,
the stability results are independent of the size of the delays. Scattering transforma-
tion in networked systems was introduced for bilateral teleoperators with time delays
[5]. Matiakis, Hirche, and Buss [13] studied finite gain L2 stability of networked
control systems with arbitrary delays using scattering transformation. In our paper,
we apply this technique to the output variables of our DAI controller and the input
variables from the communication links in order to achieve local asymptotic stabil-
ity using reasonable assumptions. As we do not measure delays, we do not aim at
compensating for them.

The main contribution of this paper is the synthesis of the above mentioned power
system comprising the dynamic DAI controller and the static scattering transforma-
tion, accompanied with sufficient conditions for delay-independent robust stability in
the case of constant delays. This work should be regarded as complementary to the
work of Schiffer, D\"orfler, and Fridman [17], where robust stability is proven by means
of delay-dependent linear matrix inequality (LMI) conditions derived from a LaSalle--
Krasovskii type of argument for a special case of our system for which the scattering
subsystem is absent. Instead, in their model, the DAI output is transmitted immedi-
ately, without a coordinate transformation in the input-output space. The feasibility
of the resulting LMI depends on the chosen delay bounds. Although the authors
consider fast-varying delays, no delay-independent conditions are given. The current
work does not cover time-varying delays, but it provides novel insights by presenting
a general stability theorem whose conditions are independent of the magnitude of the
(constant) time delays.

In practice, the proposed controllers are implemented via packet-based control
strategies, which are common in real-time digital communication setups [7]. In these
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ARBITRARY COMMUNICATION DELAYS IN POWER SYSTEMS 3789

setups, although the true delays of the information packets may vary in time, we can
enforce a constant delay by applying buffering and a timestamp registration of the
packets at each link, and the practical restrictions caused by assuming constant delays
are limited. We may still freely choose the delay bounds and let them vary among
the different edges.

We exploit passivity of the communication channel to construct a storage function
of the scattering transformation and the delay blocks. This storage function is then
combined with the storage function of the swing equations and the DAI controller to
construct a Lyapunov functional that is used to show that trajectories will converge
to a synchronous solution.

1.1. Notation. Let \scrG = (\scrV , \scrE ) denote the undirected graph in which \scrV and \scrE 
represent the node and edge sets, respectively. For each node i \in \scrV , \scrN i denotes the
set of nodes that are connected to i through an edge in \scrE . B = B(\scrG ) \in R| \scrV | \times | \scrE | de-
notes the incidence matrix of \scrG for which the kth column is associated with the edge
k = (i, j). Thus, Bik \in \{  - 1, 1\} if i is an endpoint of k; else Bik = 0. Furthermore,

[x] is the diagonal matrix with diagonal entries [x]ii = xi, and col(x, y) =
\bigl( 
xT yT

\bigr) T
is the operator that stacks vectors. In equations where a time argument is not given
explicitly, current time (t) is meant. Let C([ - \rho ,\infty ),Rn) be the space of piecewise
continuous functions Rn \rightarrow [ - \rho ,\infty ). For a function x \in C([ - \rho ,\infty ),Rn), the restric-
tion xt \in C([ - \rho , 0],Rn) is defined as xt(\theta ) = x(t + \theta ) for \theta \in [ - \rho , 0] and t \in [0,\infty ).
A delay differential equation (DDE) is a dynamical system of the form \.x = f(xt),
whereas a delay differential algebraic equation (DDAE) is a dynamical system of
the form E \.x = f(xt), where E \in Rn\times n. Let \phi \in C([ - \rho , 0]Rn). Then, a function
x \in C([ - \rho ,\infty ),Rn) satisfying the dynamics of the DDAE E \.x = f(xt), and for which
x0 = \phi , is referred to as a solution through \phi relative to E \.x = f(xt). If this function
is unique, we write x = x(\phi , t), and xt = xt(\phi , \theta ) for its restrictions.

2. System formulation. The nodes of the power system network consist of
synchronous generators that rotate ideally with a frequency close to the nominal
frequency \omega d. The generators are connected through transmission lines defined on
the edges of \scrG . The transmission lines are assumed to be purely inductive and have a
strictly positive susceptance. To every node, a DAI controller is attached for secondary
frequency control. The generation unit at node i is modelled as

Mi \.\omega i =  - Di\omega i  - 
\sum 
j\in \scrN i

fij + uDAI + Pneti .

Here, \omega i is the deviation of the rotational speed of the generator from the nominal
frequency. Mi > 0 is the inertia coefficient, Di > 0 the droop coefficient, fij is the
active power flow through the transmission line that connects i with j and enforces
consensus, and uDAI is a control input that pursues restoration to the nominal fre-
quencies. Pnet is the net power from other sources injected into the node. We assume
this quantity to be constant at the prevailing timescales of the dynamics.

For every link k = (i, j), the phase angle difference of the generation units at i
and j, denoted by \eta k, admits the following dynamics:

\.\eta k =Bik\omega i +Bjk\omega j ,

fk =\gamma k sin(\eta k).

The output fk is the active power flow through link k, where \gamma k = ViVjbk> 0. In this
expression, the constant voltages at the corresponding nodes are denoted by Vi and
Vj , whereas bk denotes the susceptance of link k.
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3790 F. J. KOERTS, A. VAN DER SCHAFT, AND C. DE PERSIS

The DAI controller attached to generating unit i is tasked with pushing the fre-
quency to the nominal value in an economically efficient way. In accordance with [19]
and [21], every DAI controller i has a state \xi i and contributes to the total cost in a
quadratic way. Cost minimization is represented as the following linearly constrained
optimization problem, which is referred to as the economic dispatch problem:

min
\xi \in Rn

\sum 
i\in \scrV 

ai\xi 
2
i

s.t.
\sum 
i\in \scrV 

\xi i =
\sum 
i\in \scrV 

Pneti .
(2.1)

The ai values are cost parameters. The constraint in this problem is a necessary
condition for a steady state, which is elaborated in the proof of Lemma 3.1. The
DAI controllers communicate with each other through a connected communication
network that is represented as a directed graph \scrG c = (\scrV , \scrE c) that differs from the
physical network \scrG . The DAI controller has to steer the state \xi to the optimal
solution \xi \ast of (2.1). In [21] and [17], it is shown that this can be achieved with the
dynamics

\kappa  - 1i
\.\xi i = ai

\sum 
j\in \scrN i

cij(aj\xi j  - ai\xi i) + \omega i.(2.2)

Here, the first term is an edge damping term that forces identical marginal costs,
i.e., ai\xi i = aj\xi j for all (i, j) \in \scrE . The second term \omega i is the integrand that pursues
frequency restoration. Furthermore, \kappa i > 0 is a timescale parameter, while cij = cji >
0 is a weight factor corresponding to the link (i, j) \in \scrE c. The closed-loop system can
be written compactly as

\.\eta =BT\omega ,

M \.\omega = - D\omega  - B\Gamma sin(\eta ) - \xi + Pnet,

K - 1 \.\xi = - AL(\scrG c)A\xi + \omega ,

(2.3)

where B = B(\scrG ) is the incidence matrix of the physical network, and the diagonal
matrices M,D,\Gamma ,K,A \succ 0 have diagonal entries denoted by Mi, Di, \gamma k, \kappa i, and
ai, respectively. Throughout this paper, the variables without subscript are stacked
vectors of the respective variables with subscript. Also, L(\scrG c) = B(\scrG c)[c]B(\scrG c)T is
the weighted Laplacian matrix with the edge weights given by cij . We refer to (2.3)
as the nominal system, which is not subject to time delays.

2.1. Scattering transformation and time delay. The DAI controller (2.2)
exchanges information with neighboring controllers about their states. However, due
to time delays, this information becomes inaccurate, and hence, we need to redefine the
coupling between neighboring DAI controllers. First, we decouple the DAI controller
by replacing \xi j with the new input variable rij . The DAI controller at node i now
reads as

\kappa  - 1i
\.\xi i = ai

\sum 
j\in \scrN i

cij(ajrij  - ai\xi i) + \omega i.(2.4)

From this point on, the system definition will differ from the DAI controlled power
system defined in [17]. Also, we remind the reader that in equations where a time
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scattering transf. scattering transf.

transmission line

agent 1 + DAI agent 2 + DAI

node controller 1 node controller 2

\int \int 
\omega 1 \omega 2

-

-

\int \gamma 12 sin(\cdot )

f12

\int 
\xi 1 v12

\int 
\xi 2v21

c12 c21

a1 a2
- -

-
- -\surd 

2 T21 T12
\surd 

2

\surd 
2

-
-

-
\surd 

2
v12 v21

a2r12 a1r21

s\rightarrow 12 s\rightarrow 21

s\leftarrow 12 s\leftarrow 21

Pnet
1 Pnet

2

Fig. 1. The subsystems at the link (1, 2) and their endpoints. Here, the node at the left is
assumed to be the head of the edge.

argument is not given explicitly, current time (t) is meant. Instead of exchanging
the \xi i variable with neighboring nodes directly, we place a static system at the ith
end of the link k = (i, j) that consists of two static subsystems: a scattering system,
which performs a scattering transformation on its input and output signals, and a
node controller that outputs an appropriate signal vij for the scattering system:

vij = cij(ajrij  - ai\xi i).

Here, ajrij is the output variable of the scattering system that is sent to the node
controller. The node controllers are illustrated by the yellow areas in Figure 1 and
are associated with both endpoints of the link. The scattering system performs a
coordinate transformation of the input variable vij and output variable ajrij , which
results in scattering variables that are defined in an asymmetric fashion at both ends
of the link; see the red areas of Figure 1. Let us assign a direction to every edge
according to the incidence matrix, so that there is no ambiguity as to which end
is referred to as the tail and which as the head. If node i is the head of the link
k = (i, j) \in \scrE c, we define the sending and receiving scattering variable as

s\rightarrow ij =
1\surd 
2
( - vij + ajrij) and

s\leftarrow ij =
1\surd 
2
( - vij  - ajrij),

(2.5)

respectively. Otherwise, i is seen as the tail of k, in which case we define the scattering
variables as

s\rightarrow ij =
1\surd 
2
(vij  - ajrij),

s\leftarrow ij =
1\surd 
2
(vij + ajrij).

(2.6)

The sending variable s\rightarrow ij is transmitted to node j, but will be subjected to a time
delay Tij before it is received at the other end. We allow the time delay to be different
for both directions:

s\leftarrow ji (t) =s
\rightarrow 
ij (t - Tij),

s\leftarrow ij (t) =s
\rightarrow 
ji (t - Tji).

(2.7)
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We can write the scattering system now in input-output form in the case when i is a
head (left) or a tail (right):

ajrij = - 
\surd 
2s\leftarrow ij  - vij , ajrij =

\surd 
2s\leftarrow ij  - vij ,

s\rightarrow ij = - s\leftarrow ij  - 
\surd 
2vij , s\rightarrow ij = - s\leftarrow ij +

\surd 
2vij .

The scattering system and the time delays are illustrated in the red area of Figure 1.
Note that an algebraic loop is visible as vij and rij appear in each other's definitions.
Although it is easily seen that this results in equations that have a unique solution,
it is for simulation purposes useful to eliminate the algebraic loop by considering the
input-state-output representation of the subsystem consisting of the node controllers,
scattering subsystems, and time delay blocks associated with a communication link.

This subsystem has inputs \xi t,i, \xi t,j \in C([ - \rho , 0],Rn), which contain the historic
values of \xi i and \xi j between t  - \rho and the current time t. The outputs at the ith
and jth end are vij(t) = cij(ajrij  - ai\xi i) and vji(t) = cij(airji  - aj\xi j), respectively,
and will be obtained by focusing on the scattering subsystem variables ajrij(t) and
airji(t). In what follows, a hat on a variable with subscript ij denotes evaluation with
a delay Tij . For example, \^s\rightarrow ij (t) := sij(t  - Tij). If i is the head of a communication
link, the output of the scattering subsystem writes as

ajrij =
1\surd 
2

\bigl( 
s\rightarrow ij  - s\leftarrow ij

\bigr) 
=

1\surd 
2

\bigl( 
s\rightarrow ij  - \^s\rightarrow ji

\bigr) 
=
1

2
((1 - cij)ajrij + cijai\xi i)

+
1

2

\Bigl( 
(1 - cij)ai\^rji + cijaj \^\xi j

\Bigr) 
=

1

1 + cij

\Bigl( 
cijai\xi i + cijaj \^\xi j + (1 - cij)ai\^rji

\Bigr) 
.

(2.8)

The final equation holds for all t \geq 0 and is also valid if i is a tail. Hence, even
though the sending and receiving variables at each end of the link are defined in an
asymmetric fashion, the output terms ajrij and airji are symmetric at both ends
with respect to the input-state-output representation of the subsystem. Using this
symmetry and assuming that (2.8) is also valid in the initial condition,1 we can write
airji(t - Tji) in terms of \xi j(t - Tji), \xi i(t - Tij  - Tji), and rij(t - Tij  - Tji) to obtain

ajrij(t) =
(1 - cij)

2

(1 + cij)2\underbrace{}  \underbrace{}  
(\alpha 0)ij

ajrij(t - Tij  - Tji) + gij(\xi t),
(2.9)

where

gij(\xi t) :=
cij

1 + cij\underbrace{}  \underbrace{}  
(\alpha 1)ij

ai\xi i(t) +
2cij

(1 + cij)2\underbrace{}  \underbrace{}  
(\alpha 2)ij

aj\xi j(t - Tji)

+
cij(1 - cij)

(1 + cij)2\underbrace{}  \underbrace{}  
(\alpha 3)ij

ai\xi i(t - Tij  - Tji).

(2.10)

1This assumption is made explicit in Assumption 2.1.
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Equation (2.9) is a delay algebraic equation where gij is a linear function of \xi 
evaluated at the current time t and a finite number of times in the past within the
interval [t - \rho , t], with a time horizon \rho = max(i,j)\in \scrE \{ Tij + Tji\} . Note, however, that
there is no need for time measurements throughout the system as the delays are not
part of the control architecture, but caused by the limitations of the communication
network. DAI controller i (including the node controller) only has access to the delayed
DAI controller state \xi j of its neighbors and its own delayed value of \xi i through the
signal ajrij . For example, the delay in the last term of (2.10) is a consequence of
the propagation of \xi i (which is present in the signal airji) from i to j and back, thus
accounting for the delay Tij + Tji.

In addition to the single hat notation for a delay Tij , we introduce the double hat
notation for denoting a delay Tij + Tji, e.g.,

\^\^rij(t) := rij(t - Tij  - Tji).

We write the closed-loop system as the following DDAE:

\.\eta =BT\omega ,

M \.\omega = - D\omega  - B\Gamma sin(\eta ) - \xi + Pnet,

\kappa  - 1i
\.\xi i = ai

\sum 
j\in \scrN i

cij(ajrij  - ai\xi i) + \omega i \forall i \in \scrV ,

ajrij =(\alpha 0)ijaj\^\^rij + gij(\xi t) \forall (i, j) \in \scrE .

(2.11)

Here, the variables without hats are evaluated at current time and the expression
for gij can be found in (2.10). The latter two equations in (2.11) define the control
architecture of the system, where \omega is the input to be measured and \xi the actua-
tion variable. We will refer to (2.11) as the delayed system. We pose the following
assumption on the initial condition \phi without any loss of generality.

Assumption 2.1. The algebraic equation (2.8) also applies to the initial condition
\phi \in C([ - \rho , 0],R2n+3m), i.e., any solution of (2.11) through \phi satisfies (2.8) for t \in 
[ - \rho ,\infty ).

As a consequence of this assumption, the conditions (2.8) and (2.9) are equivalent
for all t \in [ - \rho ,\infty ). Note that the initial condition \phi \in C([ - \rho , 0],R2n+3m) of the
above assumption is associated with the representation as given in (2.11). This initial
condition is partly redundant for the purpose of simulation of the closed-loop system.
In fact, only each delay block Tij must have an initial condition consisting of a function
in [ - Tij , 0] that mimics past values of the corresponding outgoing scattering variable
s\rightarrow ij .

Remark 2.2. For a better comparison between the delayed system (2.11) and the
nominal system (2.3), we set the initial condition rij(t) = \xi j(t) for all t \in [ - \rho , 0]. For
any (i, j) \in \scrE and t > 0, let k(t) = \lceil t

Tij+Tji
\rceil be the smallest nonnegative integer such

that t - k(t)(Tij  - Tji) \in [ - \rho , 0]. We obtain that

ajrij(t) = (\alpha 0)
k(t)ajrij(t - k(t)(Tij + Tji)) +

k(t) - 1\sum 
l=0

(\alpha 0)
l
ij

[(\alpha 1)ijai\xi i(t - l(Tij + Tji))

+(\alpha 2)ijaj\xi j(t - lTij  - (l + 1)Tji)

+(\alpha 3)ijai\xi i(t - (l + 1)(Tij + Tji))] .

(2.12)
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The parameters add up to one. Indeed, note first that (2.9) is an affine combination

as
\sum 3
k=0(\alpha k)ij = 1. Thus,

(\alpha 0)
k(t) +

k(t) - 1\sum 
l=0

(\alpha 0)
l
ij ((\alpha 1)ij + (\alpha 2)ij + (\alpha 3)ij)\underbrace{}  \underbrace{}  

1 - (\alpha 0)ij

= 1.(2.13)

Substituting (2.12) in (2.11), we notice that (2.11) can be obtained from (2.3) if we
replace aj\xi j by a weighted average of current and past values of ai\xi i and aj\xi j as
specified in (2.12).

Remark 2.3. In the special case when cij = 1 for all (i, j) \in \scrE , (2.9) simplifies to

ajrij = 1
2 (aj

\^\xi j + ai\xi i). Therefore, vij = ajrij  - ai\xi i =
1
2 (aj

\^\xi j  - ai\xi i). The DDAE
(2.11) then also simplifies, as the latter two equations can be replaced by the single
equation

\kappa  - 1i
\.\xi i =ai

\sum 
j\in \scrN i

1

2
(aj \^\xi j  - ai\xi i) + \omega i \forall i \in \scrV .

Hence, by choosing unitary edge weights, the scattering subsystem becomes invisible,
as the input vij of the DAI controller is merely a result of subtracting its own output

ai\xi i from the signal aj \^\xi j received from the other end. In fact, the system resembles
the nominal system (2.3) with the most notable difference being that the signals \xi j
are subject to a delay in the communication channels. Thus, the DDAE (2.11) boils
down to a regular DDE.

Assumption 2.4. Let r \in R2m be the stacked vector of all rij (two per edge).
The initial condition \phi = col(\eta 0, \omega 0, \xi 0, r0) \in C([ - \rho , 0],R2n+3m) of (2.11) is piecewise
continuous and shows only discontinuities in r on a finite set \scrT of time events in
[ - \rho , 0].

Lemma 2.5. For any initial condition \phi \in C([ - \rho , 0],R2n+3m), the delayed system
(2.11) admits a unique and piecewise continuous solution through \phi for t \in [ - \rho ,\infty ).

Proof. Let t1 > 0 be the first event in time for which x(\phi , t) depends explicitly
on a time event in \scrT 0 := \scrT \cup \{ 0\} , i.e., t1  - Tij \in \scrT 0, or t1  - Tij  - Tji \in \scrT 0 for
some i \in \scrV , j \in \scrN i. Then (2.11) restricted to the interval (0, t1) boils down to an
ordinary differential equation of the form \.x = f(t, x(t)), which is globally Lipschitz
continuous in x and continuous in t as the ajrij terms are piecewise continuous on
this interval. By the global version of the Picard--Lindel\"of theorem, there is a unique
solution x(t) for  - \rho \leq t \leq t1. For the solution beyond t1, we proceed as follows: for
k \geq 1, define recursively the sets \scrT k = \{ t > 0 | t - Tij \in \scrT k - 1, i \in \scrV , j \in \scrN i\} as sets
of time events for which discontinuities may appear. For any given T > 0, we have
that \scrT (T ) := \cup k\geq 0\scrT k \cap [0, T ] is a finite set and thus, for the interval (t2, t3], where
0 < t2, t3 < T are two consecutive time events in \scrT (T ), we can compute a solution
through x(t) |  - \rho \leq t\leq t2 relative to (2.11) in a similar way as for the interval (0, t1]. By
repeating this procedure, a piecewise continuous function on ( - \rho ,\infty ) is obtained in
a unique way.

3. Conditions on synchronization. We will now study the synchronous condi-
tions of the delayed system (2.11). Given an initial condition \phi \in C([ - \rho , 0],R2n+3m),
we refer to a synchronous solution as a solution x(\phi , t) for which \omega (t) \equiv 1\omega s for some
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constant \omega s \in R. First, we assume that x = col(\eta , \omega , \xi , r) is contained in the invariant
set

\Omega 0 := \{ x = col(\eta , \omega , \xi , r) \in R2n+3m | \eta \in im(BT )\} .

In what follows, we will focus mainly on the subset of \Omega 0, where the phase angle
differences are less than \pi 

2 from 0:

\Omega :=
\Bigl\{ 
x \in R2n+3m | \eta \in im(BT ), | \eta | < \pi 

2

\Bigr\} 
.

Now, let the union of \omega -limit sets of synchronous solutions of (2.11) in the set \Omega be
denoted by \=\Omega . Similarly, \=\Omega nom is the union of \omega -limit sets of synchronous solutions
that satisfy \eta \in im(BT ) and | \eta | < \pi 

2 relative to the nominal system (2.3). It is well
known [17] that points in \=\Omega nom are equilibrium points of (2.3). For the convenience
of the reader, we restate the lemma with a proof.

Lemma 3.1. Let \=x = col(\=\eta , \=\omega , \=\xi ) \in \=\Omega nom. Then \=x is an equilibrium point of (2.3)

with \=\omega = 0, \=\xi = A - 11\xi s, and \xi s = 1TPnet

1TA - 11 .

Proof. Let \=\omega = 1\omega s for some \omega s \in R. Then \.\=\eta = BT1\omega s = 0. Therefore, the terms
in the right-hand side of the dynamics for 0 = M \.\=\omega =  - D\=\omega  - B\Gamma sin(\=\eta )  - \=\xi + Pnet

are constant over time; hence \.\=\xi = 0. Summing up the rows gives 1TD1\omega s = 1T ( - \=\xi +

Pnet). The active power flow term vanishes since 1TB = 0. Setting \.\=\xi = 0 yields
AL(\scrG c)A\=\xi =  - 1\omega s. By positive definiteness of A and im(L(\scrG c)) \bot im(1), we have
im(AL(\scrG c)) \cap im(1) = \{ 0\} , implying that A\=\xi \in ker(AL(\scrG c)) = span\{ 1\} and \omega s = 0.
This implies, in turn, that \=\xi = A - 11\xi s for some \xi s \in R and from \.\=\omega = 0, 1T \=\xi = 1TPnet,
which yields the given value for \xi s.

Furthermore, the equilibrium value of \=\xi coincides with the solution to the eco-
nomic dispatch problem (2.1); see also [19] and [21]. It is shown in, e.g., [16] that the
equilibrium of the nominal system, if it exists, is unique, i.e.,

| \=\Omega nom| \leq 1.(3.1)

Unfortunately, the general lower bound for the cardinality of \=\Omega nom is zero. There-
fore, we need the following assumption.

Assumption 3.2. | \=\Omega nom| = 1, i.e., the system parameters allow for the existence
of a nominal equilibrium in the set defined by \eta \in im(BT ) and | \eta | < \pi 

2 .

Remark 3.3. In practice, this means that the active power flow capacities should
not be exceeded, which is achieved by choosing the ai parameters carefully. Indeed,
a necessary condition for a steady state is that | Pnet - \=\xi | \leq | B| \Gamma 1, where | B| \Gamma 1 must
be interpreted as a weighted degree vector. For each node i \in \scrV , this boils down to\bigm| \bigm| \bigm| \bigm| \bigm| Pneti\sum 

j\in \scrV P
net
j

 - a - 1i\sum 
j\in \scrV a

 - 1
j

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 
k=(i,j)
j\in \scrN i

\gamma k

| 
\sum 
j\in \scrV P

net
j | 

.

Assumption 3.2 is automatically obeyed if we choose a constant ratio
a - 1
i

Pnet
i

for all

i \in \scrV , in which case \=\xi = Pnet, and no active power flow is needed in the steady state.
Choosing a - 1i inversely proportional to some reference power \=Pi for all i \in \scrV leads to
a condition which is known as fair proportional power sharing [21].
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Assumption 3.2 guarantees the existence of a unique equilibrium point of the
nominal system. Moreover, it also implies that the delayed system (2.11) has a unique
equilibrium in the subset of synchronous solutions.

Lemma 3.4. | \=\Omega | = 1, i.e., every synchronous solution of the delayed system (2.11)
converges to a unique equilibrium point \=x = col(\=\eta , \=\omega , \=\xi , \=r). This equilibrium point

satisfies \=\omega = 0, \=\xi = A - 11\xi s with \xi s = 1TPnet

1TA - 11 and aj\=rij = \xi s for all i \in \scrV and
j \in \scrN i.

Proof. Consider a synchronous solution \omega = 1\omega s with \omega s \in R. Then, similar to
the proof of Lemma 3.1, we verify that \eta and \xi are constant. At steady state, also
the values rij turn out to be constant. Indeed, the algebraic equation (2.9) of ajrij

with the steady-state condition ai\xi i = ai
\^\^\xi i boils down to

ajrij = (\alpha 0)ijaj\^\^rij + (\alpha 13)ijai\xi i + (\alpha 2)ijaj\xi j(3.2)

with (\alpha 13)ij = (\alpha 1)ij + (\alpha 3)ij =
2cij

(1+cij)2
. Note that (3.2) is a stable linear difference

equation with gain | (\alpha 0)ij | = | (1 - cij)
2

(1+cij)2
| < 1 and constant input. Hence, we obtain

\=rij := limt\rightarrow \infty rij(t) = limt\rightarrow \infty \^\^rij(t) and we have

aj\=rij =
(\alpha 13)ij

1 - (\alpha 0)ij
ai\xi i +

(\alpha 2)ij
1 - (\alpha 0)ij

aj\xi j

=
1

2
(ai\xi i + aj\xi j) .

(3.3)

Substituting into vij = cij(aj\=rij  - ai\xi i) yields

vij =
1

2
cij(aj\xi j  - ai\xi i).

The dynamics of \xi then become

0 = \.\xi i =
1

2
ai

\sum 
j\in \scrN i

cij(aj\xi j  - ai\xi i) + \omega s.

In matrix-vector notation, we write this as \.\xi =  - 1
2AL(\scrG c)A\xi + 1\omega s = 0. The rest of

the proof follows along the same lines as the proof of Lemma 3.1, where \omega s = 0 and
\~\xi s = 1TPnet

1TA - 11 = \xi s. In addition, (3.3) boils down to aj\=rij =
1
2 (\xi 

s + \xi s) = \xi s.

Remark 3.5. The proof of Lemma 3.1 reveals that all synchronous solutions of
the nominal system (2.3) not only converge to \=\Omega nom, but are also fully contained
in \=\Omega nom for t \in [ - \rho ,\infty ), and hence are constant functions. This is not the case
for the delayed system (2.11), which allows for time-varying transient behavior of
synchronous solutions under some conditions. As shown in the proof of Lemma 3.4, \xi 
is constant in synchronous solutions, and thus, it must assume the steady-state value
of \=\xi = A - 11\xi s. The steady-state values of \eta , \omega , and \xi are maintained if and only if
vi =

\sum 
j\in \scrN i

cij(ajrij  - \xi s) = 0, where we can express ajrij in terms of its past values
and \xi s similar to (2.12):

ajrij(t) =(\alpha 0)
l
ijajrij(t - lTij  - lTji) + (1 - (\alpha 0)

l
ij)\xi 

s,

where l is any nonnegative integer.
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Make a partition of \scrN i in clusters \scrN k
i of constant variables, i.e., with the property

that Tij+Tji = T k, cij = ck (and consequently, (\alpha 0)ij = \alpha k0) for all j \in \scrN k
i . For any

cluster \scrN k
i , choose any set of initial conditions rij \in \scrC ([ - \rho , 0],R), j \in \scrN k

i , such that\sum 
j\in \scrN k

i

ck(ajrij(t) - \xi s) = 0 for all t \in [ - \rho , 0].
(3.4)

Then

vi(t) =
\sum 
k

\sum 
j\in \scrN k

i

ck(ajrij(t) - \xi s)

=
\sum 
k

ck\alpha k0
\sum 
j\in \scrN k

i

(ajrij(t - T k) - \xi s)

...

=
\sum 
k

ck(\alpha k0)
lk

\sum 
j\in \scrN k

i

(ajrij(t - lkT
k) - \xi s),

where each lk \in N is such that t - lkT k \in [ - \rho , 0] Note that the inner summation is zero
by the initial condition we have set. Consequently, a lower bound for the dimension of
the feasible subspace of the variables (rij1 , . . . , rij| \scrN i| 

) \in R| \scrN i| in the initial condition

for a synchronous solution in \Omega is | \scrN i| minus the number of clusters \scrN k
i .

4. Stability. In [21], it is shown that the nominal system will converge to the
unique equilibrium point (\=\eta , \=\omega , \=\xi ) \in \=\Omega nom through Lyapunov analysis. To show that
the equilibrium point \=x of the delayed system (2.11) is stable, we use an extension of
LaSalle's invariance principle. The procedure to describe this stability result in this
section is self-contained and is adopted from section 5.3 of Hale and Verduyn Lunel
[10]. First, we use the definition of Lyapunov functionals for DDAEs and adapt it for
our delayed system.

Definition 4.1 (see [10, Def. 3.1, p. 143]). A continuous function H : G \rightarrow R,
with

G := C([ - \rho , 0],\Omega ),(4.1)

is a Lyapunov functional relative to the DDAE (2.11) if H is continuous on \=G (the
closure of G), H \geq 0, and \.H \leq 0 on G, where

\.H(xt) = lim sup
h\rightarrow 0+

1

h
(H(xt+h) - H(xt))

and xt(\theta )= x(\phi , t+ \theta ) | \theta \in [ - \rho ,0]\in C([ - \rho , 0],\Omega ), the restriction of the unique solution
x(\phi , t) of (2.11).

We propose H(xt) = S(xt(0)) +
\sum 

(i,j)\in \scrE Vij(xt) as a candidate Lyapunov func-
tional. Here, S is the Lyapunov function which is commonly used for stability analysis
in the case without time delays, given as

S =U(\eta ) - U(\=\eta ) - \nabla \eta U(\=\eta )T (\eta  - \=\eta )

+
1

2
\omega TM\omega +

1

2
(\xi  - \=\xi )TK - 1(\xi  - \=\xi ),

(4.2)
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where U(\eta ) =  - 1T\Gamma cos(\eta ). The extra terms Vij are defined as follows:

Vij =
1

2

\int t

0

\bigl( 
\| \Delta s\rightarrow ij \| 2  - \| \Delta s\leftarrow ij \| 2 + \| \Delta s\rightarrow ji \| 2  - \| \Delta s\leftarrow ji \| 2

\bigr) 
d\tau 

+
1

2

\int 0

 - Tij

\| \Delta s\rightarrow ij \| 2d\tau \underbrace{}  \underbrace{}  
V \ast ij

+
1

2

\int 0

 - Tji

\| \Delta s\rightarrow ji \| 2d\tau \underbrace{}  \underbrace{}  
V \ast ji

.
(4.3)

Here, \Delta denotes the difference w.r.t. the equilibrium \=x of Lemma 3.4, which can be
determined using (2.5) and (2.6), together with the equilibrium conditions aj\=rij = ai \=\xi i
and \=vij = cij(aj\=rij  - ai \=\xi i) = 0. This yields the following explicit expression for if i is
a head (left) or a tail (right):

\Delta s\rightarrow ij =s\rightarrow ij  - 
1
\surd 
2
ai \=\xi i, \Delta s\rightarrow ij =s\rightarrow ij +

1
\surd 
2
ai \=\xi i,

\Delta s\leftarrow ij =s\leftarrow ij +
1
\surd 
2
ai \=\xi i, \Delta s\leftarrow ij =s\leftarrow ij  - 

1
\surd 
2
ai \=\xi i.

Lemma 4.2. H is a Lyapunov functional on G relative to the delayed system
(2.11).

Proof. By construction, V is lower bounded by zero. Indeed, if we substitute the
time delay coupling equations (2.7) into (4.3), we obtain

Vij =
1

2

\int t

t - Tij

\| \Delta s\rightarrow ij (\tau )\| 2d\tau +
1

2

\int t

t - Tji

\| \Delta s\rightarrow ji (\tau )\| 2d\tau \geq 0.(4.4)

Also, S is lower bounded by zero as U(\eta ) - U(\=\eta ) - \nabla \eta U(\=\eta )T (\eta  - \=\eta ) defines a Bregman
divergence [4], which is nonnegative whenever | \eta | < \pi 

2 .

Now we show that \.H \leq 0 everywhere. S admits the following partial gradients:

\nabla \eta S =\nabla \eta U(\eta ) - \nabla \eta U(\=\eta ) =: f(\eta ),

\nabla \omega S =M\omega ,

\nabla \xi S =K - 1(\xi  - \=\xi ) =: K - 1\Delta \xi .

Let us write the dynamics of \xi in matrix-vector notation as \.\xi = Av + \omega , where A is
as before (see (2.3)), and vi =

\sum 
j\in \scrN i

vij . The time derivative of S is given as (note

that Pnet = \=\xi +B\nabla U(\=\eta ) and \=v = 0, hence \Delta v = v):

\.S =\nabla \eta S
T \.\eta +\nabla \omega S

T \.\omega +\nabla \xi S
T \.\xi 

=f(\eta )TBT\omega + \omega T ( - D\omega  - Bf(\eta ) - \Delta \xi )

+ \Delta \xi T (Av + \omega )

= - \omega TD\omega +\Delta \xi TA\Delta v

= - \omega TD\omega +
\sum 
i\in \scrV 

ai\Delta \xi i
\sum 
j\in \scrN i

\Delta vij

= - \omega TD\omega +
\sum 

(i,j)\in \scrE 

(ai\Delta \xi i\Delta vij + aj\Delta \xi j\Delta vji) .

By (2.5) and (2.6), it follows readily that

\| \Delta s\rightarrow ij \| 2  - \| \Delta s\leftarrow ij \| 2 = - 2aj\Delta rij\Delta vij .
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Substituting in (4.3) gives

Vij =

\int t

0

( - aj\Delta rij\Delta vij  - ai\Delta rji\Delta vji) d\tau + V \ast ij + V \ast ji,

and therefore,

\.V =
\sum 

(i,j)\in \scrE 

\.Vij =
\sum 

(i,j)\in \scrE 

( - aj\Delta rij\Delta vij  - ai\Delta rji\Delta vji) .

The derivative of the Hamiltonian H = S +
\sum 

(i,j)\in \scrE Vij then becomes

\.H = - \omega TD\omega  - 
\sum 

(i,j)\in \scrE 

((aj\Delta rij  - ai\Delta \xi i)\Delta vij

+(ai\Delta rji  - aj\Delta \xi j)\Delta vji)

= - \omega TD\omega  - 
\sum 

(i,j)\in \scrE 

\biggl( 
1

cij
\Delta v2ij +

1

cij
\Delta v2ji

\biggr) 
.

As a consequence, \.H \leq 0.

Note that in contrast to H, its derivative \.H does not depend on past states, but
only on current variables. Analogous to the classical version of LaSalle's invariance
principle, we aim at finding \scrM , the largest invariant subset of

\scrS := \{ \phi = col(\eta 0, \omega 0, \xi 0, r0) \in G | \.H(\phi ) = 0\} ,

where the set G is defined in (4.1), and the invariance is with respect to the dynamics
(2.11).

Since the equilibrium point \=x = col(\=\eta , \=\omega , \=\xi , \=r) of Lemma 3.4 is contained in \scrS and
\.H does not depend on past states, this gives

\scrS = \{ \phi \in G | \omega (0) = 0, aj\Delta rij(0) = ai\Delta \xi i(0) \forall i \in \scrV , j \in \scrN i\} .

Under the dynamics (2.11), we have shown in the proof of Lemma 3.4 that the syn-
chronous solution \=\omega = 0 implies that \xi and r converge to the equilibrium values of \=\xi 
and \=r as given in Lemma 3.4 as t\rightarrow \infty . Thus,

\scrM = \{ \phi \in G | \omega \equiv 0,\Delta \xi (0) \equiv 0,\Delta r \equiv 0\} ,

which means that\scrM is a singleton that coincides with the constant function [0, \rho ] \rightarrow \=x.
We will work towards our main result that any solution in G converges to \scrM under
the dynamics (2.11). This requires that | \eta | < \pi 

2 for all t \geq  - \rho , which will lead to
local asymptotic stability of \=x.

As we have proven in Lemma 2.5, the solution x(\phi , t) through \phi is unique and
piecewise continuous. With this notation, we write

\scrM = \{ \phi \in G | x(\phi , t) \equiv \=x\} .(4.5)

Before we state the stability result, we need the following lemma, which shows
that solutions of the delayed system (2.11) through an initial condition \phi contained
in \Omega are bounded, provided that the value of the Lyapunov function H is sufficiently
small on the initial condition \phi , and the initial condition \phi = (\omega 0, \eta 0, \xi 0, r) is bounded.
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Since \omega 0, \eta 0, and \xi 0 are bounded by the first condition, the latter condition boils down
to boundedness of the r component of \phi . We pose the latter as an assumption, which,
together with Assumption 2.1 and Assumption 2.4, forms the conditions on the initial
condition \phi .

Assumption 4.3. For every initial condition \phi = col(\eta 0, \omega 0, \xi 0, r0) \in G, with G =
C([ - \rho , 0],\Omega ) as before, the control variable r0 is bounded on its entire domain, i.e.,
there exists M \in R such that | r0(t)| \leq M for all t \in [ - \rho , 0].

Hence, the initial condition of the control variables cannot be arbitrary, but must
satisfy a suitable bound. In the nondelay case, this corresponds to initializing the
controller to values in a bounded subset instead of the whole control space.

Lemma 4.4. Consider the Lyapunov functional H(xt) = S(xt(0))+
\sum 

(i,j)\in \scrE 
Vij(xt), with S and Vij as in (4.2) and (4.3). Define \scrU l := \{ \phi \in G | H(\phi ) < l\} .
Then

1. there exists L > 0 such that \scrU l is positive invariant with respect to the dy-
namics (2.11) for all l \leq L;

2. for all \phi \in \scrU l with l \leq L, there exists K = K(l, \phi ) such that \| xt(\phi , 0)\| < K
for all t \geq 0.

Proof. We start with the first statement. By Lemma 4.2, we have \.H(xt) \leq 0
on G \supseteq \scrU l, and we need only prove the existence of L > 0 such that x(\phi , t) \in \Omega ,
i.e., | \eta (t)| < \pi 

2 for all t > 0 and \phi \in \scrU l with l \leq L. Note that the first three terms
in (4.2) define a Bregman distance between U(\eta ) and the value of the first order
Taylor expansion of U around \=\eta evaluated at \eta . We write this Bregman distance as
d(\eta ) :=

\sum 
i\in \scrE di(\eta i), where di(\eta i) =  - \Gamma ii(cos(\eta i) - cos(\=\eta i)) - \Gamma ii sin(\=\eta i)(\eta i - \=\eta i). Note

that d restricted to the closed set \Theta := \{ \eta | | \eta i| \leq \pi 
2 \} is convex, attains its minimum

at \eta = \=\eta with d(\=\eta ) = 0, and is a maximum in \^\eta , where

\^\eta i =

\Biggl\{ 
 - \pi 

2 , \=\eta i \geq 0,
\pi 
2 , \=\eta i < 0.

Now, select an index i0 \in 1, . . . , n for which di0( - \^\eta i0) is minimum and set L = d(\^\eta \ast )
with

\^\eta \ast i =

\Biggl\{ 
 - \^\eta i, i = i0,

\=\eta i otherwise.
(4.6)

Then it holds that L > 0 since di0( - \^\eta i) > 0 and di(\=\eta i) = 0 for all i \not = i0. By
construction, \^\eta \ast satisfies the property that min\eta \in \partial \Theta d(\eta ) = d(\^\eta \ast ) = L, where \partial \Theta 
denotes the boundary of \Theta . Now, for any solution x(\phi , t) = col(\eta , \omega , \xi , r) through
\phi \in \scrU l with l \leq L, we have d(\eta t(0)) \leq H(xt) < l \leq L and | \eta i(0)| < \pi 

2 for all i \in \scrV .
We conclude that \eta (t) remains in the interior of \Theta for all t \geq 0.

For the second statement, consider any initial condition \phi \in \scrU l and the corre-
sponding solution x(\phi , t) = col(\omega , \eta , \xi , r). From the Lyapunov characteristics H(\phi ) <
l and \.H(xt) \leq 0 and nonnegativity of (1) the Bregman distance d(\eta ), (2) the qua-
dratic terms of \omega and \Delta \xi in S(xt(0)), and (3) V (xt), both \| \omega \| and \| \xi \| are bounded
by some numbers l\omega and l\xi , respectively, on [ - \rho ,\infty ). These bounds are only de-
pendent on l. Since the function gij(\xi t) of (2.9) is a linear combination of \xi i(t),
\xi j(t  - Tji), and \xi i(t  - Tij  - Tji) with (\alpha 1)ij + (\alpha 2)ij + (\alpha 3)ij = 1  - (\alpha 0)ij , we have
aj | rij | \leq (\alpha 0)ijaj | \^\^rij | + (1  - (\alpha 0)ij)l\xi . Hence, for any t > 0, and k(t) \in N such that
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t - k(Tij + Tji) \in [ - \rho , 0], we write this in terms of the initial condition as

aj | rij(t)| \leq (\alpha 0)
k
ijaj | rij(t - k(Tij + Tji))| 

+
\bigl( 
1 - (\alpha 0)

k
ij

\bigr) 
l\xi 

< sup
i\in \scrV ,j\in \scrN i

\tau \in [ - \rho ,0]

aj | rij(\tau )| + l\xi .

Hence, by Assumption 4.3, r is bounded on the entire domain [ - \rho ,\infty ). Also, | \eta | < \pi /2
by definition of \scrU l. Thus, we have shown that every variable stacked in x(t) = xt(0)
with t \geq 0 is bounded. Depending on the chosen norm, we can set up a constant
K = K(l, \phi ) such that xt \in \scrU l satisfies \| xt(0)\| < K.

We are ready to state our main result on the local asymptotic stability of (2.11);
see [10, Thm. 3.1, p. 143]. We recall from Lemma 3.4 that synchronous solutions of
the delayed system (2.11) converge to a unique equilibrium point. This result can be
extended for nonsynchronous solutions in a neighborhood of the equilibrium point.

Theorem 4.5. The equilibrium point \=x = col(\=\eta , \=\omega , \=\xi , \=r) of the delayed system
(2.11) to which every synchronous solution converges, i.e., \=\omega = 0, \=\xi = A - 11\xi s with

\xi s = 1TPnet

1TA - 11 and aj\=rij = \xi s for all i \in \scrV and j \in \scrN i, is locally asymptotically stable
under the dynamics of (2.11).

Proof. Let x(\phi , t) be the unique solution through an initial condition \phi \in \scrU l
relative to (2.11) with l < L = d(\^\eta \ast ) as defined in (4.6), and consider the function
\gamma \phi : [0,\infty ) \rightarrow C([ - \rho , 0],Rn) : t \rightarrow xt(\phi ). By Lemma 4.4, the range \{ xt(\phi )\} t\geq 0 of \gamma \phi 
belongs to a compact set and has a nonempty \omega -limit set denoted by \omega (\gamma \phi ). Since
H(\gamma \phi (t)) is nonincreasing and bounded from below by zero, we have that for any
\psi \in \omega (\gamma \phi ) it holds that H(\gamma \psi (t)) \equiv c for some c \geq 0. Thus, \omega (\gamma \phi ) \subseteq \scrS , and since
the \omega -limit set is invariant, it must be contained in \scrM . Thus, since \gamma \phi is bounded,
we have that \gamma \phi (t) \rightarrow \omega (\gamma \phi ) \subseteq \scrM as t\rightarrow \infty , and from (4.5), x(\phi , t) converges to \=x.

5. Simulation. We perform a case study on the two-area test system described
in [12, Ex. 12.6, p. 813] and [17]. In this network, two areas, each consisting of two
generators, are connected to each other by a weak tie, i.e., with smaller susceptance,
as is illustrated in Figure 2.

G1 G2

G4 G3

area 1 area 2

\sim \sim 

\sim \sim 

25 km 10 km 10 km 25 km
110 km 110 km

Fig. 2. The power network consisting of two areas and four generators from [12] and [17].

We model this configuration as a ring graph consisting of the generators 1, 2, 3,
and 4. The parameters are expressed in a per-unit (pu) system, which is commonly
used for the analysis of power systems. We set the base voltage equal to the rated
voltage of 20 kV in both areas and the base power to 100 MAV. The choice of the
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system parameter values is based on the ones used in [12, Ex. 12.6, p. 813], except
for the droop coefficients, which we set to Di = 2.5 for all i \in \scrV .

We consider two operating conditions, starting with the machine loads in Pnet0 .
After 10 seconds, we let the system operate under more stressed conditions by in-
creasing the machine loads of the generators in area 2, changing Pnet instantly to
Pnet1 , where

Pnet0 =

\left(    
7.49
2.92
6.25
5.26

\right)    pu, Pnet1 =

\left(    
6.65
0.43
1.53
5.56

\right)    pu.

We set the rated machine power for generators 1 and 2 to 9 pu, and for generators
3 and 4 to 7 pu. We choose as DAI cost parameters ai the reciprocals of the rated
machine power, which conforms to a fair power sharing principle. We set the DAI
timescale parameters \kappa i = 250, and communication edge weights cij = 0.5 for all i \in \scrV 
and j \in \scrN i. Furthermore, the transmission line capacity parameters \gamma 12 = \gamma 34 = 3.41
account for the weak ties between the areas, whereas \gamma 23 = \gamma 41 = 39.6 hold for the
stronger ties that lie within each of the two areas.

The simulation is carried out with Python/Numpy. As an initial condition, we
choose the equilibrium point corresponding to the steady-state operating condition
with the initial Pnet0 as described in Lemma 3.1. That is, the frequency deviation
variables \=\omega i are all zero, whereas the scattering subsystem output variables aj\=rij =
\xi s = 0.685 pu and the DAI controller state \=\xi i = a - 1i \xi s. The delays are symmetric
and heterogeneous: 0.8 and 1.3 seconds for the shorter ties within each area, and 3.4
and 4.7 seconds for the longer ties connecting the two areas.

Figure 3 confirms the stability of this system, both before and after the change
in machine loads. We observe a frequency drop at the generators, especially for those
in area 2. The frequency stabilizes shortly afterwards due to droop control, while for
the next \sim 30 seconds, secondary control takes effect to restore the frequency. The
rotor angle differences corresponding to the ties that connect the two areas reveal
that the network is more stressed in the new steady state. This can be seen by a
further shift of the values \eta 12 and \eta 34 towards the boundaries of the stability region
[ - 1

2\pi ,
1
2\pi ]. We observe that \xi is restored to values proportional to the reciprocals

of the cost parameters a - 1i in such a way that in the dynamics of the generators,
the power delivered by this actuation variable compensates for the net machine load,
together with the active power flow. The controller variables ajrij converge to the
new constant \xi s = 0.443 pu.

6. Conclusion. We focused on the Kron-reduced microgrid consisting of gen-
erator units that is modelled by the swing equations and controlled by distributed
averaging integral (DAI) controllers. These controllers are placed at every node to
enforce synchronization among the generator frequencies in an economically efficient
way. Each DAI controller sends a signal to its neighboring nodes that is subject to
a scattering transformation, a delay, and another scattering transformation before it
is received at the other end of the communication channel. The closed-loop system
can be modelled by a delay differential-algebraic system of equations (DDAE) which
has a state in the space of piecewise continuous functions from  - \rho to 0, where \rho 
denotes an appropriate time horizon. Assuming piecewise continuity, a finite amount
of discontinuities, and partial boundedness in the initial state, the system possesses a
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Fig. 3. The upper plot shows that the frequency deviation \omega i of all four gener-
ators in the two-area system reverts to zero after a change in the network load Pnet

for the delayed differential algebraic system described in (2.11). The other state vari-
ables are converging to the equilibrium point corresponding to the new situation too,
as is illustrated by the plots of the rotor angle differences \eta k, DAI controller state \xi i,
and scattering subsystem output variables ajrij .

locally asymptotically stable equilibrium point that exhibits synchronization of rota-
tional speed and coincides with the solution of the optimal power dispatch problem.
Furthermore, the asymptotic stability is independent of the value of the delays.

Future work will include finding a port-Hamiltonian representation of the de-
layed system, and more generally, stating a general result on PI control of port-
Hamiltonian systems over a network when feedback measurement is delayed. Also,
higher-dimensional models of the system components can be considered, such as third
order swing equations.
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