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Tumor cells of classic Hodgkin lymphoma (cHL) are derived from antigen presenting B
cells that are infected by Epstein Barr virus (EBV) in ~30% of patients. Polymorphic Killer
cell immunoglobulin-like receptors (KIRs) expressed on NK cells interact with human
leukocyte antigen (HLA) class I and play a key role in immune surveillance against virally
infected cells and tumor cells. We investigated the effect of KIR types on cHL susceptibility
overall (n=211) and in EBV-stratified subgroups using the Dutch GoNL cohort as controls
(n=498). The frequency of the KIR haplotype B subgroup was significantly different
between EBV+ and EBV− cHL patients (62% vs. 77%, p=0.04) and this difference was
more pronounced in nodular sclerosis (NS) cHL (49% vs. 79%, p=0.0003). The frequency
of KIR haplotype B subgroup was significantly lower in EBV+ NS cHL compared to
controls (49% vs. 67%, p=0.01). Analyses of known KIR – HLA interaction pairs revealed
lower carrier frequencies of KIR2DS2 – HLA-C1 (29% vs. 46%, p=0.03) and KIR2DL2 –

HLA-C1 (29% vs. 45%, p=0.04) in EBV+ NS cHL patients compared to controls. Carriers
of the KIR haplotype B subgroup are less likely to develop EBV+ NS cHL, probably
because of a more efficient control over EBV-infected B cells.

Keywords: KIR, HLA class I, susceptibility, EBV, NK cells, CHL
INTRODUCTION

Hodgkin lymphoma (HL) is a B-cell derived malignancy most commonly affecting children and
young adolescents. Two main subtypes are recognized, i.e. classic HL (cHL) and nodular
lymphocyte predominant HL (NLPHL), of which cHL comprises about 95% of all cases. A
characteristic feature of cHL is the low percentage of neoplastic cells, i.e. Hodgkin-Reed
Sternberg (HRS) cells, surrounded by an abundant infiltrate of reactive immune cells (1). cHL is
further classified into four subtypes, i.e. nodular sclerosis (NS), mixed cellularity (MC), lymphocyte
rich (LR) and lymphocyte depleted (LD). NS cHL is the most common subtype in high-income
countries. In the western world, about 30% of the cHL cases are associated with Epstein-Barr virus
org January 2022 | Volume 13 | Article 8299431
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(EBV) (2). In these cases, monoclonal EBV genomes are present
in all tumor cells suggesting that infection with EBV is an early
event. The age-incidence of cHL shows a bimodal pattern with
peaks in young adults and individuals aged > 45 (3). EBV+ cases
are observed more frequently in children, elderly, male and MC
subtype patients (3–5).

HRS cells originate from germinal center B cells and cHL
presents in lymph nodes which is an immune cell rich
microenvironment (6). The precursor cells need to escape from
anti-tumor immune responses, especially those that involve HLA
class I and CD8+ cytotoxic T lymphocytes (CTLs) and natural
killer (NK) cells. CTLs may recognize tumor specific antigens
presented by HLA class I molecules on HRS cells through T cell
receptors (TCRs) (7). In general, NK cells recognize presence of
HLA class I irrespective of the antigenic peptide and kill HLA
class I negative cells (8). Further proof for a critical role of HLA
in cHL was obtained by HLA typing and genome-wide
association studies (GWAS) that revealed strong associations
between cHL and specific HLA alleles and single nucleotide
polymorphisms (SNPs) in the HLA region, respectively (9–12).
Part of these associations were linked to cHL overall, while others
were restricted to the EBV+ cHL subgroup. The most
pronounced associations were observed for HLA-A and EBV+
cHL, with HLA-A*01 being a risk allele and HLA-A*02 being a
protective allele. These associations are in line with the
previously reported ability of HLA-A*02 to induce anti-EBV-
specific CTL responses, while these are lacking for HLA-A*01
(13, 14).

NK cells can monitor HLA class I expression on target cells
through multiple NK-cell receptors such as killer cell
immunoglobulin-like receptors (KIRs). The KIR gene family is
highly polymorphic with respect to the sequence and the number
of genes, including nine inhibitory (KIR2DL1, KIR2DL2,
KIR2DL3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR3DL1,
KIR3DL2, KIR3DL3) and six activating (KIR2DS1, KIR2DS2,
KIR2DS3, KIR2DS4, KIR2DS5, KIR3DS1) genes. KIRs can
inhibit or activate NK cells dependent on binding to specific
ligands, which include amongst others specific HLA class I
molecules or epitope subgroups (15–17). The HLA-C types can
be divided into two epitope groups, i.e. HLA-C1 and HLA-C2,
based on presence of an asparagine (HLA-C1) or lysine (HLA-
C2) at position 80 of the a1 domain (18). Well-established
receptor – ligand interactions are limited to KIR2DL1 and
KIR2DS1 interacting with the HLA-C2 epitope (present on
C*02, C*04, C*05, C*06, C*15, C*17 and C*18), KIR2DL2,
KIR2DL3, and KIR2DS2 recognizing the HLA-C1 epitope
(present on C*01, C*03, C*07, C*08, C*12, C*14 and C*16),
KIR3DL1 and KIR3DS1 recognizing the HLA-Bw4 epitope
(present on B*13, B*27, B*37, B*38, B*44, B*49, B*51, B*52,
B*57, A*23, A*24, A*25 and A*32), and KIR3DL2 recognizing
both HLA-A*03 and HLA-A*11. The KIR gene region can be
broadly divided into two haplotype subgroups. The haplotype A
subgroup includes all haplotypes with only one activating KIR
gene KIR2DS4, which is often not functional, and up to six
inhibiting KIR genes. The haplotype B subgroup includes a
variable number of inhibiting KIR genes and multiple
Frontiers in Immunology | www.frontiersin.org 2
functional activating genes (19). Each NK cell can express
different subsets of the KIR genes resulting in a highly
heterogeneous mix of NK cells within each individual (20).
Multiple KIR haplotype B-specific activating genes are known
to play a protective role in diseases caused by viral infection
by the human immunodeficiency virus (HIV), Human
Cytomegalovirus (HCMV), hepatitis C virus (HCV) or EBV
(21–26). Thus, NK cells in KIR haplotype B subgroup carriers are
more easily activated upon viral infection due to presence of
multiple activating KIR genes that for example can recognize
virally induced cellular stress by interacting with open
conformers of HLA-F (21). Previous studies showed a role of
NK cells in controlling primary EBV infection (25, 26), and
demonstrated a more effective response against EBV infected
cells in KIR haplotype B carriers (Figure 1). A few studies have
investigated associations of KIR genes with cHL but little
attention has been paid to KIR associations in EBV stratified
cHL subgroups (27–29).

In this study, we hypothesize that KIR haplotype B carriers
have a better control over EBV+ B cells resulting in a lower risk
of developing EBV+ cHL.
FIGURE 1 | Immune responses to EBV-infected B cells mediated by NK
cells and cytotoxic T lymphocytes (CTLs) in KIR haplotype B carriers or non-
carriers. NK cells in individuals not carrying KIR haplotype B often do not
express a functional activating KIR receptor. The only activating KIR gene
which is then present is KIR2DS4, which product ligates to a few uncommon
HLA class I types and often has an allele preventing translation to protein.
This means that NK cells in KIR haplotype B non-carriers have a relatively low
level of stimulation (upper panel). In comparison, the multiple activating KIRs
in KIR haplotype B carriers provide additional activating signals when binding
to HLA class I ligand and stimulate NK cells closer to becoming fully activated
and cytotoxic against virally infected cells (lower panel).
January 2022 | Volume 13 | Article 829943
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MATERIALS AND METHODS

Patient and Control Samples
A total of 210 cHL patients from the Northern part of the
Netherlands were included in this study. We included all
available EBV+ cHL patients to maximize power (n = 85, 40%).
The remaining 125 cases, including 94 EBV− and 31 cHL cases for
which the EBV status was unknown, were selected based on
availability of sufficient DNA. Data of the original cohort on
sex, age, histological subtype, HLA type, and EBV status have been
published in previous studies (11, 30). cHL diagnoses were revised
according to the 2017 classification of the World Health
Organization by an experienced hematopathologist (31). EBV
status was determined by EBV-encoded small RNA (EBER) in-
situ hybridization using standard protocols.

SNP genotype data of Dutch controls were retrieved from The
Genome of the Netherlands (GoNL) dataset (32). KIR types
imputed based on whole genome sequencing data for controls
were obtained from a previous study (33). We only included the
498 parents and not the children to avoid bias in the allele
frequency estimations.

KIR Typing
KIR typing was done using a commercially available KIR typing
kit (Immucor Inc., Norcross, Georgia, United States) on the
Luminex 200 platform. For each reaction, 50 ng genomic DNA
was mixed with Master Mix in a 96-well plate. Genomic DNA was
amplified by PCR and hybridized to the probes provided by the
Lifecodes KIR Genotyping kit according to the manufacturer’s
protocol. KIR typing calls were assessed using MATCH IT! DNA
1.2.4 (Immucor Inc., Norcross, Georgia, United States). Phenotype
(positive or negative) of 12 KIR genes, i.e. KIR2DL1, KIR2DL2,
KIR2DL3, KIR2DL4, KIR2DL5, KIR3DL1, KIR2DS1, KIR2DS2,
KIR2DS3, KIR2DS4 (plus two additional isoforms, one with full
length, the other with a 22 bp frame-shift deletion), KIR2DS5 and
KIR3DS1, were identified for each patient. Patients were stratified
into KIR haplotype B subgroup carriers and non-carriers, based on
presence or absence of haplotype B-specific KIR genes (KIR2DL2,
KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5 ,
and KIR3DS1).
Frontiers in Immunology | www.frontiersin.org 3
HLA Imputation
HLA class I types of GoNL controls were determined using the
SNP-based HLA imputation R-package HIBAG (34). The
imputed HLA alleles with prediction probability less than 0.8
were excluded. Patients and controls were stratified into three
HLA type subgroups based on carriership of specific epitope
groups of HLA alleles, i.e. HLA-Bw4+ (including HLA-B*13,
B*27, B*37, B*38, B*44, B*49, B*51, B*52, B*57, A*23, A*24,
A*25 and A*32), HLA-C1+ (including HLA-C*01, C*03, C*07,
C*08, C*12, C*14 and C*16), and HLA-C2+ (including HLA-
C*02, C*04, C*05, C*06, C*15, C*17 and C*18).

Statistical Analysis
Chi square tests were used for association analyses of KIR gene or
haplotype carriership in cHL overall or EBV stratified patient
groups and for KIR receptor –HLA ligand interaction analysis. A
p-value < 0.05 was regarded as significant.
RESULTS

Characteristics of Patients
The median age of controls was 62 years (range: 43 to 87) and for
cHL patients it was 32 years (range: 14 to 89) (Table 1).
Consistent with previous studies, there were more males than
females (76% vs. 24%) in the EBV+ cHL subgroup (4, 35). The
most common subtype in both cHL overall and EBV-stratified
subgroups was the NS subtype.

KIR Typing
KIR haplotype B subgroup carriers accounted for 72% of the total
cHL cohort and carrier frequencies of B-specific genes i.e.
KIR2DS2, KIR2DL2, KIR2DL5, KIR2DS3, KIR2DS5, KIR3DS1
and KIR2DS1, ranged from 26% to 54% (Supplementary
Table 1). Carrier frequencies of the other KIR genes were more
than 90%. The two alleles of KIR2DS4, 2DS4WT (wild type) and
2DS4DEL (resulting in a stop codon), were present in 47% and
73% of the patients, respectively. No significant differences of KIR
gene frequencies were observed between cHL patients overall and
Dutch GoNL controls (Supplementary Table 1).
TABLE 1 | Characteristics of controls and patients.

Characteristic GoNL controls (n=498) cHL Patients

Total (n=210) EBV+ (n=85) EBV− (n=94) EBV Unknown (n=31)

Age at diagnosis, median (range) 62 (43–87) 32 (14-89) 35 (14-70) 32 (15-89) 31 (17-61)
Sex, no. (%)

male 250 (50%) 123 (58%) 65 (76%) 46 (49%) 12 (39%)
female 248 (50%) 87 (41%) 20 (24%) 48 (51%) 19 (61%)

Subtype, no. (%)
NS 153 (73%) 49 (58%) 82 (87%) 22 (71%)
LR 4 (2%) 3 (4%) 1 (1%) 0 (0%)
MC 25 (12%) 22 (26%) 1 (1%) 2 (6%)
LD 0 (0%) 0 (0%) 0 (0%) 0 (0%)
NOS 28 (13%) 11 (13%) 10 (11%) 7 (23%)
J
anuary 2022 | Volu
NS, nodular sclerosis; LR, lymphocyte-rich; MC, mixed cellularity; LD, lymphocyte depleted; NOS, not otherwise specified; GoNL, genome of the Netherlands.
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Differences Between EBV+ and EBV− cHL
To test our hypothesis, we compared the frequency of haplotype
B subgroup carriers between EBV-stratified cHL subgroups and
the GoNL controls. Although no significant differences were
observed between EBV stratified groups and GoNL controls, we
did find a significantly lower haplotype B frequency in EBV+
compared to EBV− cHL (62% vs. 77%, p = 0.04) (Figure 2A).
The odds ratio (OR) of having EBV+ cHL in haplotype B carriers
was 0.51 compared to having EBV− cHL. To determine if the
difference was caused by a single haplotype B-subgroup specific
gene, we also analyzed the frequencies of individual haplotype B-
subgroup specific genes in EBV-stratified subgroups. All seven
haplotype B-subgroup specific genes showed a similar pattern
with lower carrier frequencies in EBV+ than EBV− cHL, albeit
not significant (Figure 2B). The odds ratios were similar, with
the lowest OR for KIR2DS2 (0.60) and the highest OR for
KIR2DS5 (0.76) (Figure 2B).
Frontiers in Immunology | www.frontiersin.org 4
As the EBV status of cHL is associated with subtype, age and sex
of the cHL patients, we next analyzed KIR haplotype B subgroup
frequencies in age, sex, and histological subtype stratified
subgroups. The difference in KIR haplotype B subgroup carrier
frequency was most pronounced in NS cHL (49% vs. 79%, p =
0.0003). Non-NS cHL showed a pattern opposite to the NS
subgroup, albeit non-significant. The KIR haplotype B subgroup
carrier frequencies were also significantly different in females (p =
0.01) and cHL patients younger than 45 (p = 0.03), while no
differences were observed in males and cHL patients of 45 and
older, respectively (Table 2, Supplementary Figures 1A–C).
Analysis of individual KIR haplotype B-subgroup specific genes
revealed similar patterns in the NS subgroup and again opposite
patterns in the non-NS subgroup (Supplementary Figure 1D).
Specifically testing EBV+ NS versus GoNL controls revealed that
the KIR haplotype B subgroup protects against the development of
this cHL subgroup (49% vs. 67%, p = 0.01) (Figure 2C).
A B

C

FIGURE 2 | Association between KIR haplotype B and EBV status in cHL. (A) Bar plot showing the KIR haplotype B frequencies in controls (white), EBV+ (black)
and EBV− (grey) cHL subgroups, ns: not significant. (B) The odds ratios (black squares) and 95% confidence intervals (whiskers) of KIR haplotype B and haplotype
B-specific genes to have EBV− or EBV+ cHL are shown in the forest plot. A higher odds ratio means a higher risk for EBV+ cHL. (C) Bar plot showing the KIR
haplotype B frequencies in controls (white) and EBV+ nodular sclerosis (NS) (black) cHL subgroups.
TABLE 2 | Frequency differences of KIR haplotype B carriers between EBV+ and EBV− cHL in subtype-, sex- and age-stratified subgroups.

cHL subgroup EBV+ EBV− P value (EBV+ vs. EBV−)

N KIR B Carriers (%) N KIR B Carriers (%)

Subtype
NS 49 24 (49%) 82 65 (79%) 0.0003
Non-NS 36 29 (81%) 12 7 (58%) ns

Sex
male 65 44 (68%) 45 35 (76%) ns
female 20 9 (45%) 48 37 (77%) 0.01

Age
Age<45 61 39 (64%) 73 59 (81%) 0.03
Age>=45 24 14 (58%) 21 13 (62%) ns
January 2022 | V
NS, nodular sclerosis; ns, not significant.
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KIR–HLA Interaction
HLA imputation of 498 GoNL controls resulted in 480, 456 and
487 well-imputed individuals for HLA-A, HLA-B and HLA-C,
respectively. Allele frequencies of HLA-A and HLA-B for well-
imputed controls were similar with direct typing data from our
previous study (Supplementary Table 2) (11). No significant
differences were found in allele frequencies of known KIR –HLA
pairs between patients and controls (Supplementary Table 3).

Based on the differences observed for the KIR haplotype B
associations especially within EBV+ NS cHL, we also studied
associations of known KIR – HLA pairs in this subgroup. This
revealed significant associations for KIR2DL2 and HLA-C1 (29%
vs. 45%, p = 0.04) and for KIR2DS2 and HLA-C1 (Table 3).
DISCUSSION

In this study, we explored associations between KIR and cHL in
EBV-stratified subgroups and the interaction of specific KIR genes
with their known HLA ligands. We found that KIR haplotype B
subgroup protects against the development of EBV+ NS cHL. In
addition, KIR2DL2 – HLA-C1 and KIR2DS2 – HLA-C1 were
observed at significantly lower carrier frequencies in EBV+ NS
cHL patients compared to controls. These two KIR genes belong to
the KIR B haplotype subgroup, which protects against EBV+
NS cHL.

Infection of B cells with EBV is considered to be an early
event in the development of EBV+ cHL based on presence of
clonal EBV genomes in HRS cells (36). In healthy individuals, the
number of EBV infected cells is well-controlled by the immune
system to a rate of 1-50 infected B cells per million B cells in the
peripheral blood (37). Previous studies showed that elevated
levels of antibodies against EBV capsid antigen and early antigen
D were increased around 4 years before EBV+ cHL diagnosis
(38). Moreover, the risk of developing EBV+ cHL was increased
in individuals suffering from infectious mononucleosis (IM) (39,
40). Together this indicates that an increase of EBV infected B
cells may increase the risk of EBV+ cHL. NK cells were shown to
play an essential role in the control of EBV infected B cells and
loss of NK cells increases the incidence of lymphoma in a mouse
model (41, 42). Not only NK cells but also KIRs were reported to
be involved in EBV-associated diseases such as IM and EBV
infection after hematopoietic stem-cell transplantation (25, 26).
Frontiers in Immunology | www.frontiersin.org 5
The frequency of the KIR haplotype B specific gene, KIR2DS2,
was lower in IM patients than in controls, suggesting a protective
role of this KIR haplotype B specific gene (25). These data and
our results fit with our hypothesis, proposing that KIR haplotype
B subgroup might be associated with a better control of EBV
infected B cells during primary infection, resulting in a lower
number of latently infected B cells and a lower chance of
developing EBV+ cHL.

Although the model can explain susceptibility effects by
decreasing the number of EBV+ cHL precursor cells, it does
not explain why this effect appears to be specific for the NS
subtype. This subtype is characterized by clustering of large HRS
cells in nodules and the occurrence of scar-like fibrosis. In
general, NK cells are present in the tumor microenvironment
of cHL, but at numbers lower than in normal lymph nodes and in
non-Hodgkin lymphomas. Moreover, the number of NK cells
were reported to be lower in EBV+ cHL cases (7 out 10 cases
were NS subtype) compared to EBV− cHL (43). The number of
circulating NK cells in cHL patients is low and these NK cells
display a decreased cytotoxicity (44). These observations suggest
that NK cells are actively suppressed by the HRS cells. One of the
mechanisms that HRS cells can use is the production of the
immunosuppressive cytokine Transforming Growth Factor-b
(TGF-b), which not only inhibits NK cells but also induces the
fibrosis characteristic of the NS subtype (45–47). This might
indicate that NK cell function in KIR haplotype B carriers who
do start to develop EBV+ cHL, is most likely inhibited by
mechanisms other than TGF-b, resulting in non-NS subtype.
Potential other mechanisms that might lead to NK cell inhibition
include production of the immunosuppressive cytokine IL10 and
expression of HLA-G. Expression levels of IL10 were indeed
reported to be higher in EBV+ than EBV− cHL (48–50).
Combined with the lower number of NK cells in EBV+ cHL
cases (43), this supports a stronger impairment of NK cells in
EBV+ cHL. The MC subtype is the second most common
subtype and has no fibrosis, but unfortunately, the number of
MC patients in our study was too small to do a meaningful
analysis of this subgroup. To further explore this issue, a larger
study is needed that not only considers KIR type and histological
subtype, but also studies the role of TGF-b, IL-10 and other
alternative mechanisms to suppress NK cells.

KIRs are dependent on the interaction with their ligands,
which include mainly certain HLA class I alleles. We tested
interaction of both the receptor and the ligand of known receptor
ligand pairs, as presence of both genes can lead to a functional
interaction and subsequent triggering of NK cells to either
exhibit inhibitory or activating signals towards killing of the
target cells. However, no significant differences were observed
between controls and cHL patients overall, consistent with
previous studies (27, 28). Nevertheless, we did find significant
differences in the carrier frequencies of both KIR2DL2 and
KIR2DS2 together with HLA-C1 in EBV+ NS cHL cases. So,
both the inhibitory and the activating KIR receptor are associated
with HLA-C1. Although signaling of inhibitory KIRs is
dominant over signaling via activating KIRs, the restricted KIR
expression pattern, with one to three KIR genes per NK cell,
TABLE 3 | KIR receptor – HLA ligand interactions in EBV+ NS cHL patients and
GoNL controls.

KIR HLA Patients N (%) GoNL Controls N (%) p value

KIR2DL2+ HLA-C1+ 14 (29%) 217 (45%) 0.04
KIR2DL3+ HLA-C1+ 42 (88%) 387 (80%) 0.20
KIR3DL1+ HLA-Bw4+ 29 (59%) 299 (65%) 0.40
KIR2DS1+ HLA-C2+ 6 (13%) 98 (20%) 0.20
KIR2DS2+ HLA-C1+ 14 (29%) 223 (46%) 0.03
KIR3DS1+ HLA-Bw4+ 7 (14%) 118 (26%) 0.08
Significant differences with p < 0.05 are shown as bold. GoNL, genome of the
Netherlands.
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will result in a substantial proportion of NK cells that only have
the activating KIR, and these NK cells will be capable of
controlling the number of circulating EBV+ B cells. This can
lead to lower numbers of EBV-infected B cells and thereby
reduce the risk to develop EBV+ NS cHL.

To put our KIR and HLA typing analyses into perspective we
looked at previously published studies in HL. In a family study by
Besson et al. KIR2DS1 and KIR3DS1 were identified as protective
factors in 90 cHL cases and 255 first-degree siblings. However,
this could not be replicated in their case – control study
including 68 patients (29). In a case – control study including
41 cHL cases and 120 controls from a Lebanese population, also
no associations of KIR genes with cHL were reported (28).
Consistent with these earlier studies, we did not find any
association of specific KIR genes with cHL overall in our data
either. In a third more recent study in 135 cHL cases and 221
controls, the authors showed a protective role for homozygous
KIR haplotype A in homozygous HLA-C1 cHL patients (27). In
addition, they reported a significant association between
presence of KIR3DS1 or KIR3DL1 and absence of HLA alleles
belonging to the HLA-Bw4 epitope group. In our data, we could
only confirm the higher frequency of KIR3DS1 in cHL patients
who did not carry HLA-Bw4 (20.5% vs. 11.6%, p = 0.002). The
explanation for this finding is unclear because HLA-Bw4 is
known to be a ligand of KIR3DS1 and its presence instead of
absence would be expected to affect susceptibility. Of note, it has
been suggested that KIR3DS1 ligands other than HLA-Bw4
exist (21).

So far, this is the largest study to investigate the association
between KIR and cHL, focusing specifically on EBV stratified
cases. Although we aimed at including as many EBV+ cases as
possible, the finding of a specific association in the NS subtype,
reduced our power. This emphasizes the need of larger studies
including sufficient number of MC cases to fully elucidate the
relevance of KIR gene associations. In addition, we cannot
exclude a potential bias in KIR frequencies caused by the
inclusion strategy of the EBV− patient group.

To conclude, EBV+ NS cHL is less common in KIR haplotype
B subgroup carriers as compared to non-haplotype B individuals.
Our findings suggest that KIR haplotype B subgroup modulates
cHL susceptibility in an EBV-dependent way.
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