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a b s t r a c t

In this paper, we propose novel control schemes for regulating the voltage in Direct Current (DC) power
networks, where the loads are the superposition of time-varying signals and uncertain constants. More
precisely, the proposed control schemes are based on the robust output regulation methodology and,
differently from the results in the literature, where the loads are assumed to be constant, we consider
time-varying loads whose dynamics are described by a class of differential equations with parametric
uncertainty. The proposed control schemes achieve voltage regulation and guarantee the local robust
stability of the overall network in case of impedance (Z), current (I), and power (P) load types and
the global robust stability in case of ZI loads. The simulation results illustrate excellent performance
of the proposed control schemes in different scenarios, where real load data are considered.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Power networks are categorized into Direct Current (DC) and
lternating Current (AC) networks. Recently, the design and oper-
tion of DC networks in presence of renewables and new types of
oad such as electric vehicles have attracted increasing research
ttention (Justo, Mwasilu, Lee, & Jung, 2013).
Voltage control is the main control purpose in DC networks

nsuring the proper operation of the overall network, see for
nstance (Cucuzzella, Lazzari, Kawano, Kosaraju and Scherpen,
019; Ferguson, Cucuzzella, & Scherpen, 2021; Iovine et al., 2018;
eltsema & Scherpen, 2004; Kosaraju, Cucuzzella, Scherpen, &
asumarthy, 2021; Machado, Arocas-Perez, He, Ortega, & Grino,
018; Nahata, Soloperto, Tucci, Martinelli, & Ferrari-Trecate, 2020;
adabadi, Shafiee, & Karimi, 2018; Strehle, Pfeifer, Malan, Krebs,
Hohmann, 2020). However, all these works and most of the

esults available in the literature ensure, to the best of our
nowledge, voltage regulation and network stability in presence
f constant load components only, while in practice loads are
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time-varying (see for instance Aguirre, Rodrigues, Lima, & Mar-
tinez, 2008; Chiang, Wang, Huang, Chen, & Huang, 1997; Choi
et al., 2006; Verdejo, Awerkin, Saavedra, Kliemann, & Vargas,
2016; Vignesh, Chakrabarti, & Srivastava, 2014 and the references
therein), making it more difficult to guarantee the stability of the
power grid by using existing control strategies (Aguirre et al.,
2008; Verdejo et al., 2016). Consequently, new control schemes
providing robust stability guarantees of the power network in
presence of time-varying loads and uncertainty need to be devel-
oped in order to make the overall power systemmore reliable and
resilient (Sira-Ramirez & Rosales-Diaz, 2014; Wilson, Neely, Cook,
& Glover, 2014). More precisely, we consider the parallel com-
bination of impedance (Z), current (I), and power (P) load types.
Additionally and differently from Cucuzzella, Lazzari et al. (2019),
Ferguson et al. (2021), Iovine et al. (2018), Jeltsema and Scherpen
(2004), Kosaraju et al. (2021), Machado et al. (2018), Nahata et al.
(2020), Sadabadi et al. (2018), Strehle et al. (2020) and other re-
lated papers, for each type of load we consider the superposition
of time-varying and uncertain constant components, where the
time-varying components are expressed as the outputs of suitable
dynamical exosystems. However, achieving voltage regulation in
DC power networks (or, similarly, frequency control in AC power
grids) in presence of time-varying loads is attracting growing
research interest (see Ferguson et al., 2021; Silani, Cucuzzella,
Scherpen, & Yazdanpanah, 2021b; Sira-Ramirez & Rosales-Diaz,
2014; Wilson et al., 2014 for DC grids and Silani, Cucuzzella,
Scherpen, & Yazdanpanah, 2021a; Silani & Yazdanpanah, 2019;
Trip, Burger, & De Persis, 2016 for AC grids). However, the so-
lutions proposed for DC grids in Sira-Ramirez and Rosales-Diaz
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2014) and Wilson et al. (2014) do not provide any closed-
oop stability guarantee, while Ferguson et al. (2021) guarantee
nly (local) input-to-state stability, and the controller proposed
n Silani et al. (2021b) considers only ZI loads and requires to
olve Partial Differential Equations (PDEs). Differently, in this
aper we propose robust control schemes based on the robust
utput regulation methodology (Huang, 2004), ensuring voltage
egulation and robust stability also in presence of time-varying
nd uncertain constant components of ZIP loads.
The contributions of the paper can then be listed as follows:

i) the voltage control problem in DC networks is formulated
s a robust output regulation problem; (ii) for the loads we
onsider the superposition of time-varying and uncertain constant
impedance (Z), current (I) and power (P) components, where
the time-varying components of loads are modeled as outputs
of dynamical exosystems (see for instance Aguirre et al., 2008;
Chiang et al., 1997; Choi et al., 2006; Sira-Ramirez & Rosales-
Diaz, 2014; Trip et al., 2016; Vignesh et al., 2014), which is also
conform with output regulation theory (Huang, 2004); (iii) we
propose two control schemes achieving voltage regulation and
ensuring local robust stability in presence of ZIP loads, where
the local result is due to the use of linearization for control
design; (iv) we also propose a control scheme achieving voltage
regulation and ensuring global robust stability in presence of ZI
loads.

1.1. Notation

The set of real and natural numbers are denoted by R and
, respectively. The set of positive (nonnegative) real numbers is
enoted by R>0 (R≥0). Let 0 be the vector of all zeros or the null
atrix of suitable dimension(s) and let 1n ∈ Rn be the vector

containing all ones. The ith element of vector x is denoted by
xi. Given a vector x ∈ Rn, [x] ∈ Rn×n indicates the diagonal
matrix whose diagonal entries are the components of x. Let A ∈

Rn×n be a matrix. In case A is a positive definite (positive semi-
definite) matrix, we write A > 0 (A ≥ 0). Also, σ (A) denotes
the spectrum of matrix A. The n × n identity matrix is denoted
by In. Let x ∈ Rn, y ∈ Rm be vectors and x̃ ∈ R1×n, ỹ ∈ R1×m

be row vectors, then we define col(x, y) := (x⊤ y⊤)⊤ ∈ Rn+m

and row(x̃, ỹ) := (x̃ ỹ) ∈ R1×(n+m). Consider the vector x ∈ Rn

and functions g : Rn
→ Rn×m, h : Rn

→ Rn, then the Lie
derivative of h(x) along g(x) is defined as Lgh(x) :=

∂h(x)
∂x g(x) with

∂h(x)
∂x = col

(
∂h1(x)

∂x , . . . ,
∂hn(x)

∂x

)
and ∂hi(x)

∂x =
(

∂hi(x)
∂x1

. . .
∂hi(x)
∂xn

)
for

i = 1, . . . , n. Let ok(v) denote a generic function of v which is
zero up to the kth order regardless of the dimension of its range
space (see Huang, 2004, Definition 4.1). The bold symbols denote
the solutions to regulator equations. A continuous function α :

R>0 → R>0 is said to be of class K if it is nondecreasing and
α(0) = 0, while it is said to be of class K∞ if it also satisfies
lims→∞ α(s) = ∞.

2. Modeling and problem formulation

In this section, we introduce the considered DC power network
model together with the dynamics of the load components. Then,
the main control objective concerning the voltage regulation is
introduced.

2.1. DC network model

The model of the considered DC network includes Distributed
Generation Units (DGUs), loads and transmission lines Cucuzzella
et al. (2019) and Tucci, Meng, Guerrero and Ferrari-Trecate (2018).
Fig. 1 illustrates the structure of node i and Table 1 reports the
description of the used symbols. Let G = (V, E) be a connected
2

Fig. 1. Electrical scheme of DGU i, ZIP load i and transmission line k, with i ∈ V
nd k ∈ E .

able 1
escription of symbols.
Gli Conductance load ui Control input
Ili Current load Lk Line inductance
Igi Generated current Rk Line resistance
Vi Load voltage Cgi Shunt capacitor
Ik Line current Lgi Filter inductance

and undirected graph that describes the topology of the consid-
ered DC network. The nodes and the edges are denoted by V =

1, . . . , n} and E = {1, . . . ,m}, respectively. Then, the topology
of the network is represented by the corresponding incidence
matrix A ∈ Rn×m. Let the ends of each transmission line k be
rbitrarily labeled with a ‘−’ or a ‘+’, then the entries of A are
iven by Aik = +1, if i is the positive end of k, Aik = −1, if i is the
egative end of k, and Aik = 0, otherwise. Before presenting the
ynamics of the overall network, we first introduce and discuss
he models of each component of the network.

DGU model: The dynamic model of DGU i ∈ V is described by

Lgi İgi = −Vi + ui

Cgi V̇i = Igi − Ili (Vi) −

∑
k∈Ei

Ik,
(1)

here Igi , Vi, Ik, ui : R≥0 → R, Lgi , Cgi ∈ R>0 and Ei is the set of
the lines incident to node i. Moreover, Ili : R → R represents the
urrent demand of load i possibly depending on the voltage Vi.
Load model: In this work, we consider a general time-varying

oad model including the parallel combination of the following
ypes of load: (i) impedance (Z): G∗

li
+ Ĝli , (ii) current (I): I

∗

li
+ Îli ,

iii) power (P): P∗

li
+ P̂li , where G∗

li
, I∗li , P

∗

li
∈ R>0 are uncertain

onstant components and Ĝli , Îli , P̂li : R≥0 → R are time-
arying components, whose dynamics will be introduced in the
ext subsection. To refer to the load types above, the letters
, I and P, respectively, are often used in the literature (see
or instance De Persis, Weitenberg, & Dorfler, 2018). Thus, in
resence of ZIP loads, Ili (Vi) in (1) is given by

li (Vi) = (G∗

li + Ĝli )Vi + I∗li + Îli + V−1
i (P∗

li + P̂li ). (2)

Line model: The dynamics of the current Ik exchanged be-
ween nodes i and j are described by

k İk = (Vi − Vj) − RkIk, (3)

here Rk, Lk ∈ R>0.
Now, the dynamics of the overall network can be written

ompactly as

Lg İg = −V + u

CgV̇ = Ig + AI − [Gl]V − Il − [V ]
−1Pl

˙ ⊤

(4)
LI = −A V − RI,
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here Ig, V , u : R≥0 → Rn are the generated current, load
voltage and control input vector, respectively, I : R≥0 → Rm

s the line current vector, Lg, Cg ∈ Rn×n
>0 and R, L ∈ Rm×m

>0 are
positive definite diagonal matrices, e.g., Lg = diag(Lg1 , . . . , Lgn )
(see Table 1 for description of the symbols). Moreover, Gl =

G∗

l +Ĝl, Il = I∗l +Îl and Pl = P∗

l +P̂l, where G∗

l , I
∗

l , P
∗

l ∈ Rn represent
the uncertain constant components and Ĝl, Îl, P̂l : R≥0 → Rn the
time-varying ones.

We note that the considered graph G is undirected, i.e., the
edges are bidirectional, implying that the current through each
edge can flow in both directions, and the information on the
flow direction is enclosed in the incidence matrix A. Finally, note
also that for the sake of simplicity we consider load-connected
topologies (see Fig. 1). This does not involve loss of generality
in the case of linear loads (e.g., ZI), where such topologies are
obtained by a Kron reduction of the original network (Zhao &
Dorfler, 2015).

2.2. Exosystems model

In this subsection, we introduce the dynamics of the time-
varying components of the ZIP load, i.e., Ĝl, Îl, P̂l in (2), which
are modeled as outputs of dynamical exosystems (see for in-
stance Aguirre et al., 2008; Chiang et al., 1997; Choi et al., 2006;
Sira-Ramirez & Rosales-Diaz, 2014; Trip et al., 2016; Vignesh
et al., 2014). This is also conform with output regulation the-
ory (Huang, 2004). Also, in Section 5 we use real data from the
dataset (openei, 0000), which provides load profile data for res-
idential buildings in the United States to model the exosystems.
Let y (or y) denote G, I , P (or G, I, P) in case of Z, I, P loads, respec-
tively. Then, the exosystem dynamics can be expressed as (Silani
et al., 2021b, Equation (2), Silani et al., 2021a, Equation (8), Trip
et al., 2016, Equations (25), (26))

ḋyi = syidyi , ŷli = Γyidyi , (5)

where dyi : R≥0 → R2nd is the state of the exosystem describing
the time-varying components of yli , which can be defined as dyi :=

col
(
dayi , d

b
yi

)
, with dayi , d

b
yi : R≥0 → Rnd , syi ∈ R2nd×2nd , and

yi ∈ R1×2nd is defined as Γyi :=
(
γyi 01×nd

)
, with γyi ∈ R1×nd .

hen, (5) can be written compactly as

ḋy = Sydy, ŷl = Γydy, (6)

where dy : R≥0 → R2nnd is defined as dy := col(day1 , . . . ,
dayn , d

b
y1 , . . . , d

b
yn ), yl : R≥0 → Rn, Sy ∈ R2nnd×2nnd and Γy :=(

γy 0n×nnd

)
∈ Rn×2nnd , with γy := diag(γy1 , . . . , γyn ) ∈ Rn×nnd .

Now, following Huang (2004, Assumption 3.1), we introduce the
following assumption.

Assumption 1 (Stability of Exosystem). The exosystem (5) is Lya-
punov stable,

Sy =

(
0 [ωy]

−[ωy] 0

)
, syi =

(
0 [ωyi ]

−[ωyi ] 0

)
, (7)

where ωy := col
(

ωy1 , . . . , ωyn

)
∈ Rnnd , with ωyi ∈ Rnd has

distinct nonzero elements and y denotes G, I or P in case of Z, I
or P loads, respectively.

Note that the above assumption is required for establishing
the necessary condition for the solvability of the local and global
robust output regulation problem (Huang, 2004, Chapters 5, 6 and
7). Also, we notice that the exosystem model (6) is a general dy-
namical model, where the dimension of the state of (6) fulfilling
Assumption 1 can be arbitrarily high. Indeed, choosing a higher
state dimension leads to a better fitting for instance with the
day-ahead load forecast. Then, the exosystem model (6) satisfying
Assumption 1 is capable of reproducing a large class of signals.
Thus, it is realistic to adopt exosystems and we use them because

they are able to reproduce very accurately real load profiles.

3

2.3. Control objective

In this section, we introduce the main control objective of this
paper, i.e., voltage regulation. First, we notice that for a constant
input u, the steady-state solution (Ig, V , I, dG, dI, dP) to (4) and (6)
satisfies

V = u, AI = I∗l + ΓIdI +
(
[G∗

l ] + [ΓGdG]
)
V

+ [V̄ ]
−1 (P∗

l + ΓPdP
)
− Ig, I = −R−1A⊤V ,

0 = SGdG = SIdI = SPdP.

(8)

The main control objective concerning the steady-state value
of the voltage is defined as follows:

Objective 1 (Voltage Regulation).

lim
t→∞

V (t) = V ∗, (9)

V ∗

i ∈ R>0 being the voltage reference (e.g. nominal value) at node
i ∈ V .

3. Local robust output regulation

In this section, we formulate the voltage control problem as
a standard output regulation problem (Huang, 2004) in order to
design control schemes achieving Objective 1.

Let the network state x : R≥0 → Rm+2n and the exosystems
state d : R≥0 → R6nnd be defined as x := col(Ig, V , I) and
d := col(dG, dI, dP), respectively, and u : R≥0 → Rn be the control
input. Moreover, let w ∈ R3n be defined as w := col(G∗

l , I
∗

l , P
∗

l ),
which represents the unknown constant components of the ZIP
loads, i.e., parametric uncertainty. Then, we can rewrite (4) and
(6) as the following system:

ẋ = f (x, d, w) + g(x, d, w)u (10a)

ḋ = Sd (10b)

h(x, d) = V − V ∗, (10c)

where h(x, d) is the output mapping representing the tracking
error e(t) := h(x, d), S := blockdiag

(
SG, SI, SP

)
, g(x, d, w) :=

col(L−1
g , 0n×n, 0m×n) and f (x, d, w) := col

(
−L−1

g V , C−1
g (Ig + AI −

iZIP(V , d, w)), L−1(−A⊤V − RI)
)
, with

iZIP(V , d, w) := I∗l + ΓIdI +
(
[G∗

l ] + [ΓGdG]
)
V

+ [V ]
−1 (P∗

l + ΓPdP
)
.

(11)

Now, we compute the relative degree of system (10), which
will be used in the following subsections for analyzing the zero
dynamics of system (10). Let

fa(x, d, w) := col(f (x, d, w), Sd)
ga(x, d, w) := col(g(x, d, w), 0),

(12)

then, based on Huang (2004, Definition 2.47), the relative degree
of the system (10) is given in the following lemma, whose proof
is the same as that of Silani et al. (2021b, Lemma 1).

Lemma 1 (Relative Degree of System (10)). For each i = 1, . . . , n,
the ith output hi of system (10) has relative degree ri = 2 for all the
trajectories (x, d).

Now, in order to use in the following subsections some prop-
erties of the linearization technique around the equilibrium point
(x̄, d̄ = 06nnd ) with u = ū and w = 03n, let Fx(x, u, d, w) :=

f (x, d, w) + g(x, d, w)u and A ∈ R(m+2n)×(m+2n), B ∈ R(m+2n)×n,
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∈ Rn×(m+2n) be defined as:

A :=
∂Fx
∂x

(x̄, ū, 0, 0) =

⎛⎝ 0 −L−1
g 0

C−1
g 0 C−1

g A
0 −L−1A⊤

−L−1R

⎞⎠
B :=

∂Fx
∂u

(x̄, ū, 0, 0) = col
(
L−1
g , 0, 0

)
C :=

∂h
∂x

(x̄, 0) =
(
0 In 0

)
,

(13)

here A, B, C describe the linearized form of (10a) with output
10c) around the equilibrium point. Note that, since the ex-
system model (10b) is linear, we did not consider it in (13).
ow, in the following lemma, we prove the stabilizability and
etectability of the pairs (A, B) and (C, A), respectively.

Lemma 2 (Stabilizability and Detectability of (13)). The pair (A, B)
is stabilizable and the pair (C, A) is detectable, with A, B, C given in
(13).

Proof. To prove the stabilizability and detectability of (A, B) and
(C, A), respectively, it is sufficient to show that A is Hurwitz,
.e., it has all the eigenvalues with negative real part. Therefore,
onsider the linear system

˙ = A(x − x̄), (14)

and the following Lyapunov function

(x) =
1
2
(Ig − Īg)⊤Lg(Ig − Īg) +

1
2
(V − V̄ )⊤Cg(V − V̄ )

+
1
2
(I − Ī)⊤L(I − Ī). (15)

ote that in the following subsections, we will show that V̄ =
∗. Then, the derivative of the Lyapunov function (15) along the

solutions to (14) satisfies

Ė(x) =
∂E
∂x

A(x − x̄)

= − (I − Ī)⊤R(I − Ī).
(16)

Then, we can conclude that A has no eigenvalue with positive
eal-part since R > 0. Thus, in order to verify that A has no eigen-
alues with real part equal to zero, we compute the determinant
f A using the Schur complement of A, i.e.,

et(A) = det
(
−L−1R

)
det

(
0 −L−1

g
C−1
g −C−1

g AR−1A⊤

)
= (−1)n det

(
−L−1R

)
det(−C−1

g L−1
g ) ̸= 0, (17)

where we use the property that interchanging any pair of rows
of a matrix multiplies its determinant by −1. Consequently, we
can conclude that all the eigenvalues of matrix A have negative
real part. Then, the pair (A, B) is stabilizable and the pair (C, A) is
detectable. ■

Before introducing the output regulation problem, we consider
the following assumption in analogy with Huang (2004, Assump-
tion 5.4), which guarantees that the Taylor series solution to the
regulator equations exists (see Huang, 2004, Lemma 4.8 for more
details). Indeed, it ensures that there exists an internal model of
the k-fold exosystem (10b) (see Huang, 2004, Theorem 5.7 and
Remark 5.8 (i)). Moreover, its physical meaning corresponds to
the absence of resonance phenomena. Indeed, it does not allow
that the linear combinations of the eigenvalues of S are equal to
the eigenvalues of the linearized DC network.

Assumption 2 (Condition on the Eigenvalues of S). The matrix(
A − λI2n+m B

)
, has full rank for l ∈ N and for all λ given
C 0

4

by {λ = l1λ∗

1+· · · + l6nndλ
∗

6nnd
, l1+· · · + l6nnd = l, l1, . . . , l6nnd =

, 1, . . . , l}, where λ∗

1, . . . , λ
∗

6nnd
are the eigenvalues of the ma-

rix S.

Now, given the parametric uncertainty w, we define the robust
utput regulation problem for system (10) as follows (see Huang,
004, Section 5.1):

roblem 1 (Local Robust Output Regulation). Design a state feed-
ack controller
u(t) = k(x(t), ν(t), d(t))
ν̇(t) = Q(ν(t), e(t)),

(18)

uch that the closed-loop system (10), (18), for every initial
ondition

(
x(0), ν(0), d(0)

)
sufficiently close to the equilibrium

oint
(
x, ν, d = 06nnd

)
and sufficiently small elements of the

uncertainty vector w, has the following two properties:
Property 1 The trajectories col

(
x(t), ν(t), d(t)

)
of the closed-loop

system exist and are bounded for all t ≥ 0,
Property 2 The trajectories col

(
x(t), ν(t), d(t)

)
of the closed-loop

system satisfy limt→∞ e(t) = 0n, achieving Objective 1.1

If a controller (18) exists such that the closed-loop system (10),
(18) satisfies Properties 1, 2, Problem 1 is solvable. Also, the kth-
order robust output regulation problem is solvable if a controller
exists such that the closed-loop system satisfies Properties 1, 2
with limt→∞

(
e(t) − ok(d(t))

)
= 0n, i.e., the steady-state tracking

rror is zero up to the kth order.

.1. Linear robust controller

In this subsection, we propose a control scheme with a linear
nternal model achieving Objective 1 in presence of time-varying
nd uncertain constant ZIP loads.
First, we augment system (10) with a linear dynamic system

ncorporating an internal model of the k-fold exosystem (10b).
hen, a controller stabilizing the linear approximation of the aug-
ented system is proposed to solve the kth-order robust output

egulation problem. Also, following Huang (2004, Theorem 3.8),
he regulator equation associated with (10) can be expressed as
∂x(d, w)

∂d
Sd = f (x(d, w), d, w) + g(x(d, w), d, w)u(d, w) (19a)

0 = h(x(d, w), d), (19b)

whose solution we show to be polynomial in d, implying, accord-
ing to Huang (2004, Theorem 5.12), that the proposed controller
also solves Problem 1.

Now, let G1 ∈ R6nnd×6nnd and G2 ∈ R6nnd×n be defined as:

G1 := blockdiag
(
~11, . . . , ~1nd , . . . , ~n1, . . . , ~nnd

)
(20)

G2 := blockdiag
(
col(0, 1, . . . , 0, 1), . . . , col(0, 1,

. . . , 0, 1)
)
, (21)

where

~ik := blockdiag

( (
0 |ωGik |

−|ωGik | 0

)
,

(
0 |ωIik |

−|ωIik | 0

)
,

(
0 |ωPik |

−|ωPik | 0

) )
,

with i = 1, . . . , n, k = 1, . . . , nd. Then, according to Huang (2004,
Theorems 5.7, 5.12), the solvability of Problem 1 is established in
the following theorem.

1 Note that Property 2 implies x = col(I , V ∗, I).
g



A. Silani, M. Cucuzzella, J.M.A. Scherpen et al. Automatica 135 (2022) 109997

T

P
c

R
i
i
b
M
s
e
r
d
b
e

3

l
i
i
s
(
w
t
s
s
c
i
b
d
t
t
s

L
t
w

heorem 1 (Linear Robust Controller). Let Assumptions 1 and 2
hold.

(i) The linear state feedback controller

u = K1x + K2νa, ν̇a = G1νa + G2e, (22)

solves Problem 1, where νa : R≥0 → R6nnd is the state of the
controller, K1 ∈ Rn×(2n+m), K2 ∈ Rn×6nnd is chosen such that
the matrix(
A + BK1 BK2
G2C G1

)
(23)

is Hurwitz, with A, B, and C given in (13).
(ii) The linear output feedback controller

u = Kνb, ν̇b = G1νb + G2e, (24)

solves Problem 1, where νb : R≥0 → R6nnd+2n+m is the state
of the controller, K :=

(
K1 K2

)
∈ Rn×(6nnd+2n+m), with K1,

K2 given in part (i), and G1 ∈ R(6nnd+2n+m)×(6nnd+2n+m), G2 ∈

R(6nnd+2n+m)×n are given by

G1 :=

(
A + BK1 − L̄C BK2

0 G1

)
G2 := col

(
L̄, G2

)
,

(25)

such that A − L̄C is Hurwitz, with L̄ ∈ R(2n+m)×n.

roof. The proof is provided in Appendix A due to lengthy
alculations. ■

emark 1 (Controller Properties in Theorem 1). Note that, even
n presence of only ZI loads, the controllers (22) and (24) are
ncapable of ensuring global stability of the closed-loop system
ecause of the linearity of the internal models in (22) and (24).
oreover, the controllers (22) and (24) do not guarantee the
olvability of Problem 1 when the solutions to the regulator
quation (19) are nonpolynomial in d, (i.e., the solutions to the
egulator equation (19) do not have polynomial expressions in
). Indeed, the solutions to the regulator equation (19) might
e nonpolynomial in d if we consider for instance a nonlinear
xosystem or an exosystem with a structure different from (6).

.2. Stabilization technique for robust output regulation

In this subsection, we propose a control scheme solving Prob-
em 1, but we use an internal model different from the ones
n (22) and (24). Specifically, we follow the design framework
ntroduced in Huang (2004, Chapter 6), which removes the as-
umption on the polynomial solutions to the regulator equation
19) and allows to incorporate global stabilization techniques
hich will be introduced in Section 4. This framework views
he output regulation as a stabilization problem. However, for
olving the ‘‘robust’’ output regulation problem (Problem 1), the
olution to the regulator equation (19) cannot be used in the
ontroller due to the parametric uncertainty w. To address this
ssue, we augment system (10) with a generalized internal model
ased on the steady-state generator for system (10), which is a
ynamic system that can reproduce a partial or whole solution
o the regulator equation (19). In the following lemma, according
o Huang (2004, Definitions 6.1, 6.2), a steady-state generator for
ystem (10) is derived.

emma 3 (Steady-state Generator for System (10)). Let Assump-
ion 2 hold. Then, system (10) has a steady-state generator {θ, α, β}

ith output g0(x, u) = u with linear observability.
5

Proof. We first form the pairwise coprime polynomials based
on the solution to the regulator equation (19), whose expression
is given in (A.6) in Appendix. Then, we obtain the companion
matrix associated with the minimal zeroing polynomials of such
pairwise coprime polynomials. Finally, following Huang (2004,
Lemma 6.17), we obtain a steady-state generator {θ, α, β} with
output g0(x, u) = u with linear observability.

Following Huang (2004, Lemma 6.17), we form the pairwise
coprime polynomials π1 : R6nnd+3n

→ Rnnd , π2 : R6nnd+3n
→

Rnnd , π3 : R6nnd+3n
→ Rnnd based on the solution to the regulator

equation (19) for the output g0(x, u) = u as:

π1(d, w) = [ωG]dbG, π2(d, w) = C̄0 + [ωI]dbI
π3(d, w) = [ωP]dbP,

(26)

with C̄0 ∈ Rnnd satisfying LgγIC̄0 = V ∗. Then, the minimal zeroing
polynomials P1 : R → Rnnd×nnd , P2 : R → Rnnd×nnd , P3 : R →

Rnnd×nnd of (26) are given by

P1(λ) = λ2
Innd + [ωG]

2, P2(λ) = λ3
Innd + λ[ωI]

2

P3(λ) = λ2
Innd + [ωP]

2.
(27)

Note that all the zeros of Pj(λ), with j = 1, 2, 3, are simple and
pure imaginary. Now, we define Λ1ik := col(π1ik, π̇1ik) ∈ R2,
Λ2ik := col(π2ik, π̇2ik, π̈2ik) ∈ R3, Λ3ik := col(π3ik, π̇3ik) ∈

R2, Λji := col(Λji1, . . . , Λjind ), Λj := col(Λj1, . . . , Λjn), Λ :=

col(Λ1, Λ2, Λ3) ∈ R7nnd with i = 1, . . . , n, j = 1, 2, 3, k =

1, . . . , nd. Then, we have g0(x, u) = Σ(Λ), where Σ : R7nnd → Rn

reproduces u(d, w) and is defined as

Σ(Λ) := Lg[V ∗
]γGπ1 + LgγIπ2 + Lg[V ∗

]
−1γPπ3. (28)

Note that (26) and (28) follow from the solution to the regulator
equation (19), whose expression is given in (A.6) in Appendix.
Now, the companion matrix associated with the minimal ze-
roing polynomials (27) can be expressed as Φj = blockdiag(
Φj1, . . . , Φjn

)
, where Φji = blockdiag

(
Φji1, . . . , Φjind

)
,

Φ1ik =

(
0 1

−ω2
Gik

0

)
, Φ2ik =

⎛⎝0 1 0
0 0 1
0 −ω2

Iik
0

⎞⎠ ,

Φ3ik =

(
0 1

−ω2
Pik

0

)
,

(29)

with i = 1, . . . , n, j = 1, 2, 3, k = 1, . . . , nd. Then, we have Φ =

blockdiag(Φ1, Φ2, Φ3) ∈ R7nnd×7nnd . Now, the Jacobian of Σ(Λ) at
the origin can be given by Ψ = row

(
Ψ1, Ψ2, Ψ3

)
∈ Rn×7nnd , where

Ψj = blockdiag
(
Ψj1, . . . , Ψjn

)
with Ψji = row

(
Ψji1, . . . , Ψjind

)
,

Ψ1ik = row
(
LgiV

∗

i γGik , 0
)

∈ R2, Ψ2ik = row
(
LgiγIik , 0, 0

)
∈ R3,

Ψ3ik = row
(
LgiV

∗

i
−1γPik , 0

)
∈ R2, i = 1, . . . , n, j = 1, 2, 3, k =

1, . . . , nd. Then, the steady-state generator θ : R6nnd+3n
→ R7nnd ,

α : R7nnd → R7nnd , β : R7nnd → Rn with output g0(x, u) = u is
given by

θ (d, w) = TΛ, α(θ ) = TΦT−1θ,

β(θ ) = Σ(T−1θ ) = Ψ T−1θ,
(30)

where T ∈ R7nnd×7nnd is any nonsingular matrix. Since the pair(
Ψjik, Φjik

)
has a companion form, the pair

(
Ψ , Φ

)
is observable;

therefore, the steady-state generator {θ, α, β} is linearly observ-
able. Also, it can be inferred from (30) that θ̇ = α(θ ). Moreover,
we note that the solution to the regulator equation (19) relates
system (10) to the steady-state generator (30), while β(θ ) in (30)
relates (28) to (30). ■

In the following, by virtue of Lemma 3, we use the steady-state
generator (30) in order to find an internal model for system (10).
Now, we define

M := blockdiag(M1,M2,M3) ∈ R7nnd×7nnd

7nnd×n (31)

N := col(N1,N2,N3) ∈ R ,
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here Mj := blockdiag(Mj1, . . . ,Mjn), Nj := blockdiag( Nj1, . . . ,
Njn) with Mji := blockdiag(Mji1, . . . ,Mjind ), Nji := col(Nji1, . . . ,
Njind ),

M1ik :=

(
0 1

−a1ik −b1ik

)
,N1ik := col(0, 1),

M2ik :=

( 0 1 0
0 0 1

−a2ik −b2ik −c2ik

)
,N2ik := col(0, 0, 1),

M3ik :=

(
0 1

−a3ik −b3ik

)
,N3ik := col(0, 1),

jik, bjik, cjik ∈ R>0, i = 1 . . . , n, j = 1, 2, 3, k = 1, . . . , nd.
hen, T in (30) is defined as T := blockdiag(T1, T2, T3), Tj =

lockdiag(Tj1, . . . , Tjn), Tji = blockdiag(Tji1, . . . , Tjind ), T1ik, T3ik ∈

R2×2, T2ik ∈ R3×3, i = 1, . . . , n, j = 1, 2, 3, k = 1, . . . , nd. Then, T
an be obtained by solving the following Sylvester equation

jiΦji − MjiTji = NjiΨji. (32)

ote that there exists a unique nonsingular matrix Tji satisfying
he Sylvester equation (32) since the pair (Mji,Nji) is controllable,
Ψji, Φji) is observable and the spectra of Mji and Φji are disjoint.
Note that the controllability of the pair (Mji,Nji) and the observ-
ability of the pair (Ψji, Φji) follow from the controllable canonical
form of the pair (Mjik,Njik) and the companion form of the pair(
Ψjik, Φjik

)
, respectively.

Now, according to Huang (2004, Proposition 6.21), in the fol-
lowing proposition we introduce an internal model for system
(10) different from the ones in (22) and (24).

Proposition 1 (Internal Model for System (10)). Let Assumption 2
hold and consider the steady-state generator (30) with output
g0(x, u) = u. Then, the internal model for system (10) is given by

ξ̇ = µ(ξ, u) := Mξ + Nu, (33)

here ξ : R≥0 → R7nnd is the state of the internal model, µ :

R7nnd × Rn
→ R7nnd , and M, N are given in (31).

Proof. Since Σ(Λ) given in (28) is a linear function, we can write
βi(ξji) = ΨjiT−1

ji ξji, with i = 1 . . . , n, j = 1, 2, 3. Thus, we can write
µji(ξji, u) = Mjiξji+Nji

(
g0i(x, u)−βi(ξji)+ΨjiT−1

ji ξji
)
. Then, by virtue

f the Sylvester equation (32) and in analogy with (Huang, 2004,
roposition 6.21), we can write

µji(θji, u) = Mjiθji(d, w) + NjiΨjiT−1
ji θji(d, w)

= TjiΦjiT−1
ji θji(d, w)

= αji
(
θji(d, w)

)
,

(34)

here u is given in (A.6) in the Appendix and i = 1, . . . , n, j =

, 2, 3. Note that in (34) we apply g0i(x, u) = βi(θji(d, w)), where
i(θji(d, w)) is given in (30) and Mji + NjiΨjiT−1

ji = TjiΦjiT−1
ji ,

which is obtained from the Sylvester equation (32). Now, we
rewrite (34) compactly as µ(θ, u) = α

(
θ (d, w)

)
. Consequently,

by Huang (2004, Definition 6.6), (33) is an internal model for
system (10) with output g0(x, u) = u. Also, we note that the
Sylvester equation (32) relates the steady-state generator (30) to
the internal model (33). ■

In the following theorem, we use the internal model (33) to
design a robust controller solving Problem 1.

Theorem 2 (Linear Robust Controller with Internal Model (33)).
Let Assumptions 1 and 2 hold. Consider system (10), the steady-
state generator (30) and the internal model (33). Then, the output
6

feedback controller

u = Kδ + Ψ T−1ξ

δ̇ =

(
A B�
0 M + NΨ T−1

)
δ +

(
B
N

)
Kδ

− L̄
(
C 0

)
δ + L̄e

ξ̇ = Mξ + Nu,

(35)

solves Problem 1, where δ : R>0 → R7nnd+2n+m is the state of
the controller, A, B, C are given in (13), B� := col

(
L−1
g Ψ T−1,

0n×7nnd , 0m×7nnd

)
∈ R(m+2n)×7nnd , and K ∈ Rn×(7nnd+2n+m), L̄ ∈

R(7nnd+2n+m)×n are chosen such that(
A Bξ

0 M + NΨ T−1

)
+

(
B
N

)
K , (36)(

A Bξ

0 M + NΨ T−1

)
− L̄

(
C 0

)
, (37)

are Hurwitz.

Proof. According to Lemma 3, system (10) has the linearly
observable steady-state generator (30) with output g0(x, u) = u.
Also, following Proposition 1, (33) is an internal model for system
(10). Then, consider the following transformation based on the
steady-state generator (30) and internal model (33) as:

x̂a := Ig − Ig(d, w)

= Ig − AR−1A⊤V ∗
− I∗l − ΓIdI − ([G∗

l ]

+ [ΓGdG])V ∗
− [V ∗

]
−1(P∗

l + ΓPdP)
x̂b := V − V (d, w) = V − V ∗

x̂c := I − I(d, w) = I + R−1A⊤V ∗

ξ̂ := ξ − θ (d, w)

û := u − β(ξ ) = u − Ψ T−1ξ,

(38)

where Ig(d, w),V (d, w), I(d, w) are given in (A.6) in Appendix.
Then, the augmented system composed of the DC network dy-
namics (10a) and internal model (33) in the new coordinates is
given by
˙̂xa = L−1

g

(
−x̂b − V ∗

+ û + β(ξ̂ + θ )
)

− ΓISIdI − [V ∗
]ΓGSGdG − [V ∗

]
−1ΓPSPdP

˙̂xb = C−1
g

(
x̂a + Ax̂c − ([G∗

l ] + [ΓGdG])x̂b
− [x̂b]−1(P∗

l + ΓPdP)
)

˙̂xc = L−1(
−A⊤x̂b − Rx̂c

)
˙̂
ξ = (M + NΨ T−1)ξ̂ + Nû.

(39)

According to Huang (2004, Corollary 6.9), a controller that locally
stabilizes the equilibrium point of system (39) with d = 06nnd and
w = 03n solves Problem 1. Thus, we linearize system (39) around
its equilibrium point and obtain

˙̂x = Ax̂ + B�ξ̂ + Bû, ˙̂
ξ = (M + NΨ T−1)ξ̂ + Nû, (40)

where x̂ = col(x̂a, x̂b, x̂c) and A, B and B� are given in (13)
and (35), respectively. In analogy with the proof of Huang (2004,
Theorem 6.23), by virtue of Assumption 2 and Lemma 2, it can be
shown that (40) is stabilizable and detectable. Thus, the controller
û = Kδ, with δ as in (35), stabilizes system (40). Consequently,
according to Huang (2004, Corollary 6.9), controller (35) solves
Problem 1. ■

Remark 2 (Local and Global Robust Stability). The solvability of
Problem 1 guarantees the boundedness of the trajectories of the
closed-loop system (10), (18) and the asymptotic regulation of
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he error when the initial conditions are sufficiently close to the
quilibrium point and the elements of the uncertainty vector
sufficiently small. Even in the case of ZI loads, the linear

ontrollers (22), (24) and (35) can ensure only local stability. In
he next subsection, we design a controller that guarantees the
lobal boundedness of the trajectories of the closed-loop system
n presence of ZI loads and the asymptotic regulation of the error
or any initial condition of the closed-loop system and uncertain
arameter w, i.e., global robust output regulation.

4. Global robust output regulation

In this section, we first convert the system into a system in
lower triangular form. To do so, we use a suitable coordinate
transformation and dynamic extension. Then, we use the con-
trol design approach introduced in Section 3.2, i.e., we convert
he robust output regulation problem into a robust stabilization
roblem for a suitably augmented system. However, to this end,
e consider the DC network model with ZI loads only, i.e., system
10) with

f (x, d, w) :=

⎛⎝ −L−1
g V

C−1
g

(
Ig + AI − iZI(V , d, w)

)
L−1
(
−A⊤V − RI

)
⎞⎠

iZI(V , d, w) := I∗l + ΓIdI + ([G∗

l ] + [ΓGdG])V
S := blockdiag

(
SG, SI

)
d := col(dG, dI), w := col(G∗

l , I
∗

l ).

(41)

lso, we notice that for a constant input ū, the steady-state
olution x̄ to (10) with (41) satisfies

= f (x̄, d̄, w) + g(x̄, d̄, w)ū, 0 = Sd̄, (42)

here d̄ = 04nnd . Now, according to Huang (2004, Section 7.1),
e define the global robust output regulation problem for system
10) with (41) as follows:

roblem 2 (Global Robust Output Regulation). Design a state feed-
ack controller
u(t) = k(x(t), ν(t), e(t))
ν̇(t) = Q(x(t), ν(t), e(t)),

(43)

uch that the closed-loop system (10) with (41), (43), for any
ompact set D ∈ R4nnd with a known bound and any compact set
W ∈ R2n with a known bound, has the following two properties:
Property 3 For all d(0) ∈ D and w ∈ W , the trajectories
col
(
x(t), ν(t), d(t)

)
of the closed-loop system starting from any

initial state x(0) exist and are bounded for all t ≥ 0,
Property 4 The trajectories col

(
x(t), ν(t), d(t)

)
of the closed-loop

system satisfy limt→∞ e(t) = 0n, achieving Objective 1.2

If a controller exists such that the closed-loop system satisfies
Properties 3, 4, Problem 2 is solvable.

Now, we define the known bounds for the compact sets D and
W as

dmin
yi ≤ dyi ≤ dmax

yi

Gmin
li ≤ G∗

li ≤ Gmax
li , Imin

li ≤ I∗li ≤ Imax
li ,

(44)

where y denotes G or I in case of Z or I loads, respectively. Now,
let the state x̂ : R≥0 → Rn+m and vx : R≥0 → Rn be defined
as x̂ := col(Ig, I) and vx := V , respectively. Then, the system (10)

2 Note that Property 4 implies x = col(I , V ∗, I).
g

7

with (41) can be rewritten as
˙̂x = F̄ x̂ + Ḡvx + ḡu

v̇x = H̄x̂ + K̄ (d, w)vx + D̄(d, w)

ḋ = Sd
e = vx − V ∗,

(45)

here F̄ := diag(0n×n, −L−1R) ∈ R(n+m)×(n+m), Ḡ := col(−L−1
g ,

L−1A⊤) ∈ R(n+m)×n, ḡ := col(L−1
g , 0m×n) ∈ R(n+m)×n, H̄ :=

C−1
g C−1

g A
)

∈ Rn×(n+m), K̄ (d, w) := −C−1
g ([G∗

l ] + [ΓGdG]) ∈

n×n, and D̄(d, w) := −C−1
g (I∗l + ΓIdI) ∈ Rn.

We first convert system (45) into a system in lower triangular
orm. For this, we recall that the relative degree of system (10)
ith (41) is (as in Lemma 1) equal to 2. Then, according to Huang
2004, Section 7.3), we use the following dynamic extension:

˙ = −ζ + u, (46)

here ζ : R≥0 → Rn is the state of the dynamic extension.
ubsequently, we apply the following coordinate transformation
o system (45):

z := x̂ − ḡζ − (F̄ + In+m)ḡ
(
H̄ḡ
)−1

vx

= x̂ − col
(
L−1
g , 0

)
ζ − col

(
Cg, 0

)
vx.

(47)

Combining (45) with (46), we can write

ż = Fz + G(d, w)vx + D(d, w) (48a)

v̇x = H̄z + K (d, w)vx + bζ + D̄(d, w) (48b)

ζ̇ = −ζ + u (48c)

ḋ = Sd (48d)

e = vx − V ∗, (48e)

F :=

(
−In −A
0 −L−1R

)
, D(d, w) :=

(
I∗l + ΓIdI

0

)
,

K (d, w) := In − C−1
g

(
[G∗

l ] + [ΓGdG]
)
, b := C−1

g L−1
g ,

G(d, w) :=

(
−Cg − L−1

g + [G∗

l ] + [ΓGdG]
−L−1A⊤

)
.

System (48) will be used later to obtain the lower triangular
form for system (45). First, similarly to the approach discussed
in Section 3.2, we find a steady-state generator and an internal
model for system (48).

Lemma 4 (Steady-State Generator for System (48)). Let Assump-
tion 2 hold. Then, system (48) has a steady-state generator {θ̄ , ᾱ, β̄}

with output ḡ0(z, vx, ζ , u) = col(ζ , u) with linear observability.

Proof. We first compute the solution to the regulator equations
associated with system (48) and form the pairwise coprime poly-
nomials. According to Huang (2004, Section 7.3), recalling that
for each i = 1, . . . , n, the ith output hi of system (10) with (41)
has relative degree equal to 2 (similar to Lemma 1), the solution
to the regulator equations associated with system (48) is given
by col(z(d, w), vx(d, w), ζ(d, w)), with z : R4nnd+2n

→ Rn+m,
vx : R4nnd+2n

→ Rn, ζ : R4nnd+2n
→ Rn, and u : R4nnd+2n

→ Rn,
satisfying ∀d ∈ R4nnd , ∀w ∈ R2n

∂z(d, w)
∂d

Sd = Fz(d, w) + G(d, w)V ∗
+ D(d, w)

vx(d, w) = V ∗

ζ(d, w) = b−1(−H̄z(d, w) − K (d, w)V ∗
− D̄(d, w))

u(d, w) = ζ̇(d, w) + ζ(d, w).

(49)

Let z(d, w) in (49) be partitioned as z(d, w) = col(za(d, w),
z (d, w)) with z : R4nnd+2n

→ Rn and z : R4nnd+2n
→ Rm,
b a b
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hen the solution to (49) can be expressed as

za(d, w) = − [V ∗
]γG
(
[ωG]

2
− Innd

)−1daG
− [V ∗

]γG
(
[ωG]

2
− Innd

)−1
[ωG]dbG

+ γI
(
[ωI]

2
+ Innd

)−1daI
− γI

(
[ωI]

2
+ Innd

)−1
[ωI]dbI − L−1

g V ∗

+ [G∗

l ]V
∗
− CgV ∗

+ I∗l + AR−1A⊤V ∗

zb(d, w) = − R−1A⊤V ∗

vx(d, w) = V ∗

ζ(d, w) = − Lg
(
za(d, w) + Azb(d, w) + CgV ∗

− ([G∗

l ] + [ΓGdG])V ∗
+ I∗l + ΓIdI

)
u(d, w) = Lg

(
[V ∗

]γG
(
2([ωG]

2
− Innd )

−1
[ωG]

+ [ωG]
)
dbG − 2γIdaI − γI[ωI]dbI

+ L−1
g V ∗

− 2I∗l
)

.

(50)

Then, in analogy with Huang (2004, Lemma 7.19), we form the
following pairwise coprime polynomials π̄1 : R4nnd+2n

→ Rnnd ,
π̄2 : R4nnd+2n

→ Rnnd for output ḡ0(z, vx, ζ , u) = col(ζ , u) as:

π̄1(d, w) =

((
[ωG]

2
− Innd

)−1
+ Innd

)
daG

+
(
[ωG]

2
− Innd

)−1
[ωG]dbG

π̄2(d, w) =
(
[ωI]

2
+ Innd

)−1
[ωI]dbI

−

((
[ωI]

2
+ Innd

)−1
+ Innd

)
daI + C̄1,

(51)

ith C̄1 ∈ Rnnd satisfying LgγIC̄1 = V ∗
− 2LgI∗l . Then, the minimal

eroing polynomials P̄1 : R → Rnnd×nnd , P̄2 : R → Rnnd×nnd of
51) are given by

P̄1(λ) = λ2
Innd + [ωG]

2, P̄2(λ) = λ3
Innd + λ[ωI]

2. (52)

ote that all the zeros of P̄j(λ), with j = 1, 2 are simple and
ure imaginary. Now, we define Λ̄1ik := col(π̄1ik, ˙̄π1ik), Λ̄2ik :=

ol(π̄2ik, ˙̄π2ik, ¨̄π2ik), Λ̄ji := col(Λ̄ji1, . . . , Λ̄jind ), Λ̄j := col
Λ̄j1, . . . , Λ̄jn), Λ̄ := col(Λ̄1, Λ̄2) with i = 1, . . . , n, j = 1, 2,
= 1, . . . , nd. Then, Σ̄1 : R5nnd → Rn is defined as Σ̄1(Λ̄) :=

g[V ∗
]γGπ̄1+LgγIπ̄2, which reproduces ζ(d, w) given in (50). Thus,

he companion matrix associated with the minimal zeroing poly-
omials (52) can be expressed as Φ̄j = blockdiag

(
Φ̄j1, . . . , Φ̄jn

)
,

here Φ̄ji = blockdiag
(
Φ̄ji1, . . . , Φ̄jind

)
,

Φ̄1ik =

(
0 1

−ω2
Gik

0

)
, Φ̄2ik =

⎛⎝0 1 0
0 0 1
0 −ω2

Iik
0

⎞⎠ , (53)

ith i = 1, . . . , n, j = 1, 2, k = 1, . . . , nd. Then, we have

¯ = blockdiag(Φ̄1, Φ̄2) ∈ R5nnd×5nnd . (54)

ow, the Jacobian of Σ̄1(Λ̄) at the origin can be given by

¯ = row
(
Ψ̄1, Ψ̄2

)
∈ Rn×5nnd , (55)

here Ψ̄j = blockdiag
(
Ψ̄j1, . . . , Ψ̄jn

)
with Ψ̄ji = row

Ψ̄ji1, . . . , Ψ̄jind

)
, Ψ̄1ik = row

(
LgiV

∗

i γGik , 0
)
, Ψ̄2ik = row

LgiγIik , 0, 0
)
, i = 1, . . . , n, j = 1, 2, k = 1, . . . , nd. Then, the

teady-state generator θ̄ : R4nnd+2n
→ R5nnd , ᾱ : R5nnd → R5nnd ,

β̄ : R5nnd → Rn with output ḡ0(z, vx, ζ , u) = col(ζ , u) is given by

θ̄ (d, w) = T̄Λ̄, ᾱ(θ̄ ) = T̄ Φ̄T̄−1θ̄ ,

¯ ¯ ¯ ¯ ¯ ¯
(56)
β(θ ) = col(β1(θ ), β2(θ )),
8

where β̄1(θ̄ ) = Σ̄1(T̄−1θ̄ ) = Ψ̄ T̄−1θ̄ , β̄2(θ̄ ) =
˙̄β1(θ̄ ) + β̄1(θ̄ ) =

Ψ̄ Φ̄T̄−1θ̄ + Ψ̄ T̄−1θ̄ and T̄ ∈ R5nnd×5nnd is any nonsingular matrix.
Since the pair

(
Ψ̄jik, Φ̄jik

)
has a companion form, the pair

(
Ψ̄ , Φ̄

)
is observable; therefore, the steady-state generator {θ̄ , ᾱ, β̄} is
linearly observable. Also, it can be inferred from (56) that ˙̄θ =

ᾱ(θ̄ ). ■

In the following, we use the steady-state generator (56) in
order to find an internal model for system (48). Thus, we define

M̄ := blockdiag(M̄1, M̄2) ∈ R5nnd×5nnd

N̄ := col(N̄1, N̄2) ∈ R5nnd×nnd ,
(57)

where M̄j := blockdiag(M̄j1, . . . , M̄jn), N̄j := blockdiag( N̄j1, . . . ,
N̄jn) with M̄ji := blockdiag(M̄ji1, . . . , M̄jind ), N̄ji := col(N̄ji1, . . . ,
N̄jind ),

M̄1ik :=

(
0 1

−ā1ik −b̄1ik

)
, N̄1ik := col(0, 1),

M̄2ik :=

⎛⎝ 0 1 0
0 0 1

−ā2ik −b̄2ik −c̄2ik

⎞⎠ , N̄2ik := col(0, 0, 1),

ājik, b̄jik, c̄jik ∈ R>0, i = 1 . . . , n, j = 1, 2, k = 1, . . . , nd.
Then, T̄ in (56) is defined as T̄ := blockdiag(T̄1, T̄2), where T̄j =

blockdiag(T̄j1, . . . , T̄jn) with T̄ji = blockdiag(T̄ji1, . . . , T̄jind ), T̄1ik, ∈
R2×2, T̄2ik ∈ R3×3, i = 1, . . . , n, j = 1, 2, k = 1, . . . , nd. Then, T̄
can be obtained by solving the following Sylvester equation

T̄jiΦ̄ji − M̄jiT̄ji = N̄jiΨ̄ji. (58)

Note that there exists a unique, nonsingular matrix T̄ji satisfying
the Sylvester equation (58) since the pair (M̄ji, N̄ji) is controllable,
(Ψ̄ji, Φ̄ji) is observable and the spectra of M̄ji and Φ̄ji are disjoint.
Note that the controllability of the pair (M̄ji, N̄ji) and the observ-
ability of the pair (Ψ̄ji, Φ̄ji) follow from the controllable canonical
form of the pair (M̄jik, N̄jik) and the companion form of the pair(
Ψ̄jik, Φ̄jik

)
, respectively.

Now, in the following proposition, we introduce an internal
model for system (48) based on Huang (2004, Proposition 6.21).

Proposition 2 (Internal model for system (48)). Let Assumption 2
hold and consider the steady-state generator (56) with output
ḡ0(z, vx, ζ , u) = col(ζ , u). Then, the internal model for system (48)
is given by

η̇ = µ̄(η, ζ ) := M̄η + N̄ζ , (59)

where η : R≥0 → R5nnd is the state of the internal model, µ̄ :

R5nnd × Rn
→ R5nnd , and M̄, N̄ are given in (57).

Proof. The proof is similar to the one of Proposition 1. It is
sufficient to replace ξ and u in (33) by η and ζ , respectively. ■

Before introducing the global robust controller with internal
model (59), we define the following quantities, which are used to
obtain a gain function for the lower triangular form of system (10)
with (41) and represent the parameters of the proposed global
robust controller:

ρ :=
(
min

i=1,...,n
(

1
CgiLgi

, 1)
)−1

(
16

λmax(P̄)
λmin(P̄)

υϱ2ϑ2
∥P̄∥

2

(C−1
g C−1

g A
0 0

+

C−1
g L−1

g Ψ̄ T̄−1

0

+ 1
)2

+ 3

+ 2
(
∥In∥ +

C−1
g G

+
C−1

g L−1
g Ψ̄ T̄−1N̄LgCg

)
+ 2

 C−1
g L−1

g
¯ ¯−1 ¯

+
(
max (

1
, 1)
)2 )

, (60)

−(In + Ψ T N) i=1,...,n CgiLgi
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c
W

:=


∥Cg∥ + ∥L−1

g ∥ + ∥G∥

∥L−1A∥

∥M̄N̄LgCg∥ + ∥N̄LgCg∥ + ∥N̄LgG∥

, (61)

here G := [Gmax
l ] + [ΓGdmax

G ], υ > 2, ϱ > 1 are constant param-
eters and P̄ is a symmetric positive-definite matrix of appropriate
dimensions satisfying

P̄ϖ + ϖ⊤P̄ = −I5nnd+m+n, (62)

here

:=

⎛⎝ −In A 0
0 −L−1R 0

−N̄Lg −N̄LgA M̄

⎞⎠ (63)

s Hurwitz. Moreover, λmin(P̄), λmax(P̄) are the minimum and
aximum eigenvalues of P̄ , respectively.
In the following theorem, we use the internal model (59) to

esign a robust controller solving Problem 2.

heorem 3 (Global Robust Controller). Let Assumptions 1 and
hold. Consider system (10) with (41), dynamic extension (46),

teady-state generator (56) and internal model (59). Then, the feed-
ack controller

u = − ρζ − ρ2e + (ρ + 1)Ψ̄ T̄−1η + Ψ̄ Φ̄T̄−1η

η̇ = M̄η + N̄ζ

ζ̇ = − ζ + u,

(64)

olves Problem 2, where ρ is given in (60).

roof. The proof is provided in Appendix B due to lengthy
alculations. ■

emark 3 (Controller Properties). Note that the structures of the
ontrollers (22), (24), (35) and (64) we propose in this section
re more complex than other controllers proposed in the liter-
ture (see e.g., Cucuzzella, Lazzari et al., 2019; Ferguson et al.,
021; Iovine et al., 2018; Jeltsema & Scherpen, 2004; Kosaraju
t al., 2021; Machado et al., 2018; Nahata et al., 2020; Sadabadi
t al., 2018; Strehle et al., 2020). More precisely, the proposed
ontrollers require some information about the network param-
ters (e.g., Lg, Cg, L and R). However, in addition to the uncertain
onstant components of loads, the uncertainties of the network
arameters can also be considered in the uncertainty vector w,
hen the robustness of the proposed controllers can be guaran-
eed with respect to the uncertainties of the load components
nd network parameters as well. Note that the higher complex-
ty is associated with the more challenging control objective
e achieve. Indeed, differently from Cucuzzella, Lazzari et al.
2019), Ferguson et al. (2021), Iovine et al. (2018), Jeltsema and
cherpen (2004), Kosaraju et al. (2021), Machado et al. (2018),
ahata et al. (2020), Sadabadi et al. (2018) and Strehle et al.
2020), the proposed controllers achieve voltage regulation in
C networks including time-varying and uncertain constant loads.
ndeed, existing controllers in the literature cannot guarantee
oltage regulation and stability in presence of load components
hat continuously vary with time. Finally, notice that we do not
onsider P loads in the global output regulation problem because
inding a gain function satisfying (B.7) in the Appendix is very
hallenging and left as a future work. Also, we do not consider
he resistance of the buck converter in (4) because it is very small
n practice and acts as an uncertain damping, thus not affecting
he stability.

emark 4 (Comparison with (Silani et al., 2021b)). Note that the
controller proposed in Silani et al. (2021b) is designed for ZI
 S

9

loads only and does not guarantee stability in presence of P
loads. Also, the controller in Silani et al. (2021b) strongly depends
on the solution to a Partial Differential Equation (PDE). On the
other hand, the controllers (22), (24) and (35) achieve voltage
regulation, guaranteeing local robust stability in presence of ZIP
loads while the controller (64) additionally ensures global robust
stability in presence of ZI loads. Furthermore, the controllers (22),
(24), (35) and (64) guarantee robust stability with respect to the
uncertain constants G∗

li
, I∗li and P∗

li
while the controller presented

in Silani et al. (2021b) only ensures local stability (not robust
stability). Also, in this paper we provide the analytical solutions
(A.6) and (50) to the regulator Eqs. (19) and (49), respectively,
while the analytical solution for the PDE in Silani et al. (2021b) is
not provided.

5. Simulation results

In this section, the performance of the control schemes pro-
posed in Theorems 1–3 is evaluated. We consider a DC network
composed of 4 nodes, whose electric parameters are equal to
those reported in Cucuzzella, Trip et al. (2019, Tables II, III) and
are identical or very similar to those used in Nahata et al. (2020),
Strehle et al. (2020) and Tucci, Meng et al. (2018) for simulations
and in Cucuzzella, Lazzari et al. (2019) for experimental valida-
tion. In the following, we consider a mismatch between the actual
load profile and the one generated by the corresponding exosys-
tem, showing that the controlled system is Robust Input-to-State
Stable (RISS) with respect to such a mismatch and uncertain
loads.

Let Ξ1 := 1.43 sin(0.08t−0.12)+0.45 sin(1.37t−3.5)+1, and
Ξ2 := 12.41 sin(0.477t − 1.1) + 11.98 sin(0.495t + 1.97) + 0.5.
Then, consider the following load variations: ∆Ili = Ξ1 A, ∆Gli =

0.005Ξ1 Ω−1, ∆Pli = 0.1Ξ1 W, for i = 1, 2, 3 and ∆Il4 = Ξ2 A,
∆Gl4 = 0.005Ξ2 Ω−1, ∆Pl4 = 0.1Ξ2 W. Thus, the exosystem (6)
can be expressed as

ḋyi =

(
02×2 [ωyi ]

−[ωyi ] 02×2

)
dyi

ŷli = Γyidyi ,
(65)

where dyi : R≥0 → R4 is the state of the exosystem and ωyi ∈ R2

is defined as ωyi := col(ω¸
yi , ω

˛
yi ) with ω

¸
yi , ω

˛
yi equal to 0.08

and 1.37 rad/s for Nodes 1, 2 and 3, and 0.477 and 0.495 rad/s
for Node 4, respectively. Moreover, the elements of the matrix
Γyi ∈ R1×4, with y (or y) denoting G, I , P (or G, I, P) in case of
Z, I, P loads, respectively, can be obtained from the amplitude of
the sinusoidal terms in ∆Il, ∆Gl, and ∆Pl. Consider the case in
which the initial conditions of the voltages are not sufficiently
close to the desired value, i.e., V (0) = col(340, 340, 340, 340).
We can notice from Fig. 2 that only by applying the controller
proposed in Theorem 3 the voltages converge to their desired
values (i.e., 380 V). Differently, by applying the controllers pro-
posed in Theorems 1 and 2, the voltages oscillate and do not
converge to their desired values. Now, let the system initially be
at the steady-state with Il(0) = col

(
30, 15, 30, 26

)
A, Gl(0) =

ol
(
0.07, 0.05, 0.06, 0.08

)
Ω−1 and Pl(0) = col

(
8, 4, 5, 12

)
. Then, at the time instant t = 1 s the loads vary according to

the real data3 in openei (0000) while the controller uses the in-
formation of the exosystems, which differ from the real data. We
can observe from Fig. 3 that by applying the controllers proposed
in Theorems 1 and 2, the voltage at each node is kept very close
to the corresponding desired value, showing that the controlled
system is RISS with respect to the mismatch between the actual

3 Specifically, we use real load profile data of four different consumers in the
tate of New York on March 21st, 2019.
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Fig. 2. Controllers in Theorems 1–3: time evolution of the voltages in presence
of ZI loads together with the corresponding desired values (dashed lines).

Fig. 3. Controllers in Theorems 1 and 2: time evolution of the voltages in
presence of ZIP loads together with the corresponding desired values (dashed
lines).

load profile and the one generated by the exosystem, achieving
in practice voltage regulation (Objective 1). We also observe that
the controller proposed in Theorem 2 performs better than the
one proposed in Theorem 1 in terms of voltage undershoots
and deviations. Also, Fig. 4 shows that in presence ZI loads and
by applying the controllers proposed in Theorems 2 and 3, the
voltage at each node converges to the desired value, achieving
voltage regulation (see Objective 1) and the controlled system
is RISS with respect to the actual load profile. We also observe
that the controller proposed in Theorem 3 performs better than
the one proposed in Theorem 2 in terms of voltage undershoots,
deviations and time response. Finally, for the sake of comparison,
we apply (to the same network under the same conditions) the
controller in Tucci, Riverso and Ferrari-Trecate (2018), which is
designed to deal with constant loads only. Fig. 5 depicts that in
presence of time-varying ZIP loads the controller in Tucci, Riverso
t al. (2018) is not able to achieve voltage regulation.

emark 5 (Region of Attraction). Note that for the controllers
proposed in Theorems 1 and 2 when at the initial time instant,
the initial conditions are outside of the region of attraction, then,
only during the initialization phase, a conventional controller
can be used to steer the system trajectories within such region.
10
Fig. 4. Controllers in Theorems 2 and 3: time evolution of the voltages in
presence of ZI loads together with the corresponding desired values (dashed
lines).

Fig. 5. Controller (Tucci, Riverso et al., 2018): time evolution of the voltages at
each node together with the corresponding desired values (dashed lines).

However, if the region of attraction is not exactly known, the
conventional controller can use a sufficiently small region around
the equilibrium point instead of the region of attraction.

6. Conclusions and future work

In this paper, we have considered time-varying dynamics with
constant uncertainties for the load components of a DC net-
work. Then, we have proposed control schemes achieving voltage
regulation and guaranteeing robust stability of the overall net-
work. Finally, we have proposed a control scheme achieving
voltage regulation and guaranteeing global robust stability. Fu-
ture research directions include the use of (global) robust output
regulation theory to tackle the problem of average voltage regula-
tion and current sharing in DC networks with time-varying loads.
Additionally, we would like to extend the global robust stability
also to the case of P loads via finding a suitable gain function for
the lower triangular form of the system.

Appendix

The proofs of Theorems 1 and 3 are presented in the following.
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ppendix A. Proof of Theorem 1

roof. We first form the regulator equation associated with (10)
nd show that its solution is a degree k polynomial in d. Then,
ased on this solution we obtain the minimal polynomial of the
-fold exosystem (10b) to show that the pair (G1,G2) given in (20)
nd (21) incorporates an internal model of the k-fold exosystem
10b). Finally, following Huang (2004, Theorems 5.7, 5.12), we
how that the controllers (22) and (24) solve Problem 1.
In analogy with Huang (2004, Theorem 3.26), we first compute

e(x, d, w) =

(
h(x, d)

Lfah(x, d)

)
. Then, we notice that the solution to

e(x, d, w) = 02n for system (10) can be expressed as follows:

= V ∗, Ig = −AI + iZIP(V ∗, d, w), (A.1)

ith iZIP given by (11). Thus, the partition xa := col(Ig, V ),
b

:= I and a smooth function τ (xb, d, w) := col(−AI + I∗l +

IdI + ([G∗

l ] + [ΓGdG])V ∗
+ [V ∗

]
−1(P∗

l + ΓPdP), V ∗) exist such that
e(x, d, w)|xa=τ (xb,d,w)= 02n. Recalling the relative degree of sys-
em (10) (see Lemma 1), the equivalent control input ue(x, d, w)
an be computed by posing the second-time derivative of the
utput mapping (10c) equal to zero, i.e.,
2
fah(x, d) + LgaLfah(x, d)ue(x, d, w) = 0, (A.2)

ow, let u∗
e(x, d, w) := ue(x, d, w)|xa=τ (xb,d,w). By replacing V and

g in the solution to (A.2) with the right-hand side of (A.1), we
btain
∗

e(x, d, w) = V ∗
+ LgAL−1A⊤V ∗

+ LgAL−1RI
+ Lg[V ∗

]ΓGSGdG + LgΓISIdI
+ Lg[V ∗

]
−1ΓPSPdP. (A.3)

ccording to Lemma 1, the zero dynamics of (10) can be ex-
ressed as

Lİ = − A⊤V ∗
− RI, ḋ = Sd. (A.4)

hen, I(d, w) in (19) can be obtained by solving
∂I(d, w)

∂d
Sd = −L−1(A⊤V ∗

+ RI(d)
)
. (A.5)

ince the exosystem model (6) is linear, we can find the analytical
xpression for the solutions to (A.5). Thus, by virtue of Assump-
ion 1, Lemma 2 and following Huang (2004, Theorem 3.26), the
olutions to (19) can be given by

x(d, w) =

⎛⎝AR−1A⊤V ∗
+ iZIP(V ∗, d, w)
V ∗

−R−1A⊤V ∗

⎞⎠
u(d, w) = u∗

e(x(d, w), d, w)
= V ∗

+ Lg
(

[V ∗
]ΓGSGdG + ΓISIdI

+ [V ∗
]
−1ΓPSPdP

)
,

(A.6)

ith iZIP given by (11). Then, we can infer from (A.6) that the solu-
ions x(d, w) and u(d, w) to the regulator equation (19) are linear
n d, i.e., degree k = 1 polynomials in d. Consequently, according
o Huang (2004, Theorem 5.16), the minimal polynomial of the
-fold exosystem (10b) with k = 1 can be expressed as:

k(λ) =

n∏
i=1

nd∏
h=1

(λ2
+ ω2

Gih )(λ
2
+ ω2

Iih )(λ
2
+ ω2

Pih ). (A.7)

hus, it follows that the pair (G1,G2) given by (20) and (21) is the
inimal internal model of the k-fold exosystem (10b) with k = 1.
oreover, by virtue of Assumption 2, it can be inferred from (A.7)

hat G satisfies (Huang, 2004, Property 1.5), i.e., for all λ ∈ σ (G )
1 1

11
he matrix
(
A − λI2n+m B

C 0

)
has full rank. Then, by virtue of

ssumptions 1, 2 and Lemma 2, we have

(i) In analogy with Huang (2004, Theorem 5.7 (i)), the con-
troller (22) solves the first order (k = 1) robust out-
put regulation in the sense as described in Huang (2004,
Section 5.1). Furthermore, since the solutions x(d, w) and
u(d, w) to the regulator equation (19) are degree k = 1
polynomials in d, following Huang (2004, Theorem 5.12 (i)),
the controller (22) solves Problem 1.

(ii) In analogy with Huang (2004, Theorem 5.7 (ii)), the con-
troller (24) solves the first order (k = 1) robust output
regulation in the sense as described in Huang (2004, Sec-
tion 5.1). Furthermore, since the solution u(d, w) to the
regulator equation (19) is a degree k = 1 polynomial in d,
following Huang (2004, Theorem 5.12 (ii)), the controller
(24) solves Problem 1. ■

ppendix B. Proof of Theorem 3

roof. We first apply a coordinate transformation to system
48), (59) to find a lower triangular form for system (10) with
41). Then, following Huang (2004, Remark 7.23), we investigate
he Robust Input-to-State Stability (RISS) (Huang, 2004, Defini-
ion 2.22) of the internal model in the new coordinate to show
hat the controller (64) satisfies the condition given in Huang
2004, Theorem 7.21 and Remark 7.22). Finally, we show that
given in (60) fulfills the conditions given in Huang (2004,

emark 7.10).
Now, we apply the following coordinate transformation to

ystem (48), (59) in order to find a lower triangular form for
ystem (10) with (41)

ˆ := z − z(d, w), e := vx − V ∗, ζ̂ := ζ − β̄1(η)

= ζ − Ψ̄ T̄−1η, η̂ := η − θ̄ (d, w), û := u − β2(η)

= u − Ψ̄ Φ̄T̄−1η − Ψ̄ T̄−1η, (B.1)

here z(d, w) is given in (50), Φ̄, Ψ̄ are given in (54), (55),
espectively, and T̄ is the solution to the Sylvester equation (58).
hen, the augmented system (48a), (48b), (48c), (59) in the new
oordinates is given by
˙̂z = F ẑ + G(d, w)e

ė = H̄ẑ + K (d, w)e + bΨ̄ T̄−1η̂ + bζ̂
˙̂
ζ = −

(
In + Ψ̄ T̄−1N̄

)
ζ̂ + û

˙̂η =
(
M̄ + N̄Ψ̄ T̄−1)η̂ + N̄ ζ̂ ,

(B.2)

ith F , H̄ , b, G(d, w), K (d, w) as in (48) and M̄ , N̄ in (57). Now,
e consider the coordinate transformation η̃ := η̂− N̄b−1e. Then,
e have

˙̃ = M̄η̃ + M̄N̄b−1e − N̄b−1K (d, w)e − N̄b−1H̄ẑ. (B.3)

ow, let define ztr := col(ztra , ztrb ) := col(ẑ, η̃), xtr := col(xtra , xtrb )
= col(e, ζ̂ ). Then, the lower triangular form of the system (10)
ith (41) can be expressed as

˙
tr
a =Fztra + Gxtra (B.4a)

˙
tr
b =M̄ztrb + M̄N̄b−1xtra − N̄b−1Kxtra − N̄b−1H̄ztra (B.4b)

ẋtra =H̄ztra + Kxtra + bΨ̄ T̄−1(ztrb + N̄b−1xtra ) + bxtrb (B.4c)

ẋtrb = −
(
In + Ψ̄ T̄−1N̄

)
xtrb + û. (B.4d)

ow, let (B.3) view η̃ as state and col(ẑ, e) as input. Then, in
nalogy with Huang (2004, Remark 7.23), we investigate the
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o

κ

N
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ρ

J

J

K

M

N

ISS (Huang, 2004, Definition 2.22) of (B.3) with respect to the
ncertainty w. Suppose that there exists a constant value 0 <

0 < 1, satisfying 0 ≤ (1− r0)η̃⊤η̃. Moreover, since M̄ is Hurwitz,
there exists a symmetric positive-definite matrix P ∈ R5nnd×5nnd

satisfying PM̄ + M̄⊤P = −I5nnd . Let S1(η̃) =
2
r0

η̃⊤P η̃, then
2
r0

λmin(P)∥η̃∥
2

≤ S1(η̃) ≤
2
r0

λmax(P)∥η̃∥
2. The derivative of S1(η̃)

satisfies

Ṡ1(η̃) =
2
r0

(
2η̃⊤PM̄η̃ + 2η̃⊤P

(
M̄N̄b−1e

− N̄b−1K (d, w)e − N̄b−1H̄ẑ
))

≤ − ∥η̃∥
2
+

 2
r0

P
(
M̄N̄b−1e

− N̄b−1K (d, w)e − N̄b−1H̄ẑ
) 2,

(B.5)

along the solutions to (B.3). Then, we have 2
r0

P
(
M̄N̄b−1e − N̄b−1K (d, w)e − N̄b−1H̄ẑ

)
a
col(ẑ, e) , (B.6)

here a := 1 +
 2

r0
P∥ ∥ row

(
∥N̄Lg∥, ∥N̄LgA∥, ∥M̄N̄Lg

Cg∥ + ∥N̄LgCg∥ + ∥N̄Lg([Gmax
l ] + [ΓGdmax

G ])∥
). Let define the

class K∞ function ā(s) := sa, then we have Ṡ1(η̃) ≤ −∥η̃∥
2

+

ā2
(
∥ col(ẑ, e)∥

)
. Therefore, for any 0 < ε < 1 such that ā(∥ col(ẑ,e)∥)

1−ε

≤ ∥η̃∥, we have Ṡ1(η̃) ≤ −ε∥η̃∥
2. Thus, following Huang (2004,

Theorem 2.16), let a1(s) :=
2
r0

λmin(P)s2, a1(s) :=
2
r0

λmax(P)s2,

1(s) :=
1

1−ε
ā(s), then (B.3) is RISS with gain function κ1(s)

atisfying

−1
1

(
a1(χ1(s))

)
=

ā(s)
1 − ε

√
λmax(P)/λmin(P) ≤ κ1(s). (B.7)

oreover, we know that the eigenvalues of matrix F given in
(48) have negative real-parts, matrix b given in (48) is positive
definite and Ψ̄ , Φ̄ given in (55), (54), respectively, are observ-
able. Consequently, according to Huang (2004, Theorem 7.21 and
Remark 7.22), Problem 2 is solvable by the following controller

u = ι2(x̂trb ) + β̄2(η), x̂trb = ζ − β̄1(η) − ι1(e), (B.8)

where the functions ι1, ι2 : Rn
→ Rn are defined as

ι1(e) := − ρe, ι2(x̂trb ) := −ρx̂trb , (B.9)

with ρ given in (60). Now, we will show that the control param-
eter ρ given in (60) satisfies the conditions given in Huang (2004,
Remark 7.10). To do this, we should first obtain the gain function
κ2(s) introduced in Huang (2004, Theorem 2.16) for system (B.4a),
(B.4b). Since ϖ given in (63) is Hurwitz, the symmetric positive-
definite matrix P̄ exists such that (62) is satisfied. Let S2(ztr) =

ztr⊤P̄ztr, then λmin(P̄)∥ztr∥2
≤ S2(ztr) ≤ λmax(P̄)∥ztr∥2 and the

derivative of S2(ztr) satisfies

Ṡ2(ztr) = ztr⊤
(
P̄ϖ + ϖ⊤P̄

)
ztr

+ ztr⊤P̄
(

G 0
M̄N̄b−1

− N̄b−1K 0

)
xtr

+ xtr⊤
(

G 0
M̄N̄b−1

− N̄b−1K 0

)⊤

P̄ztr

≤ − ∥ztr∥2
+ 2ϑ∥P̄∥∥ztr∥∥xtr∥, (B.10)

along the solution to (B.4a), (B.4b), where ϑ is given in (61).
Therefore, for any 0 < ε̄ < 1 such that 2ϑ∥P̄∥

1−ε̄
∥xtr∥ ≤ ∥ztr∥,

e have Ṡ2(ztr) ≤ −ε̄∥ztr∥2. Thus, following Huang (2004, The-
rem 2.16), let a (s) := λ (P)s2, a (s) := λ (P)s2, χ (s) :=
2 min 2 max 2

12
2ϑ∥P̄∥

1−ε̄
s, then the gain function κ2(s) for system (B.4a), (B.4b) is

given by κ2(s) := 2
√

λmax(P̄)/λmin(P̄)ϑϱ∥P̄∥s satisfying

2(s) ≥ a−1
2

(
a2(χ2(s))

)
=

√
λmax(P̄)/λmin(P̄)

2ϑ∥P̄∥

1 − ε̄
s, (B.11)

with ϱ > 1. Now, let define the right hand side of (B.4c) and
(B.4d) for û = 0 as φ(ztr, xtr, d, w). Then, we have

∥φ(ztr, xtr, d, w)∥ ≤ ∥xtr∥φ0 + ∥ztr∥φ1, (B.12)

where

φ0 := ∥In∥ +
C−1

g G
+

C−1
g L−1

g Ψ̄ T̄−1N̄LgCg


+

 C−1
g L−1

g
−
(
In + Ψ̄ T̄−1N̄

)+ 1

φ1 :=

C−1
g C−1

g A
0 0

+

C−1
g L−1

g Ψ̄ T̄−1

0

+ 1.

(B.13)

ow, following Huang (2004, Remark 7.10), ρ given in (60) sat-
sfies

≥
(
2 min

i=1,...,n

( 1
CgiLgi

, 1
))−1

(
16

λmax(P̄)
λmin(P̄)

υϱ2ϑ2
∥P̄∥

2φ2
1

+ 2φ0 + 1 +
(
max

i=1,...,n

( 1
CgiLgi

, 1
))2)

, (B.14)

with υ > 2. Consequently, following Huang (2004, Theorem 7.21
and Remark 7.22), the controller (64) solving Problem 2 is ob-
tained by replacing (B.9) in (B.8). ■
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