
 

 

 University of Groningen

Privacy-preserving Logistic Regression with Secret Sharing
Ghavamipour, Ali Reza; Turkmen, Fatih; Jian, Xiaoqian

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ghavamipour, A. R., Turkmen, F., & Jian, X. (2021). Privacy-preserving Logistic Regression with Secret
Sharing. arXiv. https://arxiv.org/pdf/2105.06869

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-06-2022

https://research.rug.nl/en/publications/ce981e1c-1d22-4945-99ea-e2609647f68a
https://arxiv.org/pdf/2105.06869


Ghavamipour et al.

RESEARCH

Privacy-preserving Logistic Regression with
Secret Sharing
Ali Reza Ghavamipour1*, Fatih Turkmen1 and Xiaoqian Jiang2

Abstract

Background: Logistic regression (LR) is a widely used classification method for modeling binary outcomes in
many medical data classification tasks. Research that collects and combines datasets from various data
custodians and jurisdictions can excessively benefit from the increased statistical power to support their
analyzing goals. However, combining data from these various sources creates significant privacy concerns that
need to be addressed.

Methods: In this paper, we proposed secret sharing-based privacy-preserving logistic regression protocols using
the Newton-Raphson method. Our proposed approaches are based on secure Multi-Party Computation (MPC)
with different security settings to analyze data owned by several data holders.

Results: We conducted experiments on both synthetic data and real-world datasets and compared the
efficiency and accuracy of them with those of an ordinary logistic regression model. Experimental results
demonstrate that the proposed protocols are highly efficient and accurate.

Conclusions: This study introduces iterative algorithms to simplify the federated training a logistic regression
model in a privacy-preserving manner. Our implementation results show that our improved method can handle
large datasets used in securely training a logistic regression from multiple sources.

Keywords: logistic regression; secret sharing; multi-party computation; privacy-preserving; newton-raphson

1 Background
Nowadays, patient data (i.e., medical records and ge-
nomics) are rapidly being collected worldwide, which
has expanded in volume faster than anyone predicted.
Medical data analysis often benefits from collecting
more samples to increase the power of statistical analy-
sis and the robustness of machine learning models. To
acquire more valuable information for research, hos-
pitals and research centers would like to collaborate
by sharing their data and findings in a central loca-
tion. The main benefits of the collaborative sharing
and processing of data are more accurate detection
and diagnosis of disorders, prediction of disease origin,
and development of drugs.

Various data analytic techniques can be employed
to extract information from the shared datasets. The
logistic regression model [1], one of the most popu-
lar prediction models, is now widely used in medical
research. By analyzing data, logistic regression esti-
mates a particular event’s probability based on previ-
ously observed data and creates a binary classification

*Correspondence: a.r.ghavamipour@rug.nl
1University of Groningen, Nijenborgh 9, Groningen, Netherlands

Full list of author information is available at the end of the article

model. More specifically, the value of a binary vari-

able is predicted based on several independent vari-

ables. For example, logistic regression could develop a

model suitable for identifying malignant breast can-

cers based on tumor size, patient age, blood type,

and genetic inheritance [2]. Statistical models need a

sufficient sample size to ensure necessary statistical

power in data analysis, and machine learning models

require even a large sample size (due to the consid-

eration of interactions and non-linearity assumptions)

[3]. It is also beneficial to combine and compare data

from different sources (i.e., ensuring generalizability).

However, collecting data from multiple sources often

lead to privacy concerns. Due to institutional policies

and legal restrictions, hospitals and medical centers

often have concerns about sharing their sensitive data

(i.e., especially patient-level information) with other

institutions. Therefore, it is essential to use privacy-

preserving solutions and techniques, such as secure

Multi-Party Computation (MPC), to train a logistic

regression model over shared data between multiple

data holders [4].

ar
X

iv
:2

10
5.

06
86

9v
1 

 [
cs

.L
G

] 
 1

4 
M

ay
 2

02
1

mailto:a.r.ghavamipour@rug.nl


Ghavamipour et al. Page 2 of 11

In this paper, our particular focus is on enabling lo-
gistic regression between multiple data holders, such as
hospitals and research centers, in a privacy-preserving
manner. With the proposed protocols, multiple parties
can train a logistic regression model using the Newton-
Raphson optimization method under different security
assumptions. Thus, the main contributions of this pa-
per include:

• A novel privacy-preserving algorithm for comput-
ing logistic regression models that is very accurate
but not as efficient, although acceptable.

• A second algorithm that is very efficient but less
accurate due to the use of multiple approxima-
tions.

• Implementation of the proposed algorithms in
both honest and dishonest majority security set-
tings.

• Evaluation of the proposed protocols on various
real-world and generated synthetic datasets.

We consider a setting in which data are horizontally
partitioned, which indicates that data holders have
precisely the same variables but different values for
those variables.

2 Related Work
Various approaches make use of cryptographic tech-
niques such as multi-party computation (MPC), ho-
momorphic encryption, and differential privacy. Pre-
vious studies showed the practicability of building a
secure distributed logistic regression across multiple
data holders. However, due to the complexity of the
underlying secure computation primitives, their meth-
ods suffer from multiple issues such as scalability, ac-
curacy loss, and low efficiency.

The Grid Binary LOgistic REgression (GLORE)
model was proposed by Wu et al. [5] to support
privacy-preserving logistic regression in a distributed
manner. GLORE estimates global model parameters
for horizontally partitioned data without necessarily
sharing patients. Rather than directly sharing sensitive
data with other institutes, the decomposable interme-
diary results with significantly less sensitive informa-
tion are transferred to build a global training proto-
col for logistic regression. However, in their proposed
methods, sensitive data could leak due to disclosure of
the information matrix and summary statistics.

Shi et al. [5] proposed a secure multi-party compu-
tation framework for grid logistic regression (SMAC-
GLORE), which protects the patient data’s confiden-
tiality and privacy. SMAC-GLORE preserves the in-
termediary results based on garbled circuits during
iterative model learning. Various approaches such as
secure matrix multiplication and addition and fixed-
Hessian methods have been employed to estimate the

maximum likelihood. However, due to the garbled cir-
cuit constraints, SMAC-GLORE cannot handle a large
number of records and features. Also, it uses the Taylor
series approximation approach to evaluate the sigmoid
function, which causes accuracy loss in the final result.

Xie et al. [6] developed PrivLogit, which performs
distributed privacy-preserving logistic regression and
uses Yao’s garbled circuits and Paillier encryption.
PrivLogit needs the data owners to perform computa-
tions on their data before encryption to compute parts
of a logistic regression matrix. However, their proposed
method requires an expensive computational cost to
calculate the intermediate results.

Cock et al.[7] proposed an information-theoretically
privacy-preserving model training protocols based
on secret sharing-based building blocks such as dis-
tributed multiplication, distributed comparison, bit-
decomposition of shares. Similar SecureML, their pro-
posed protocol requires multiplication triples dis-
tributed during a setup phase with or without a
trusted authority. Unlike SecureML, which is se-
cure in the computational context, they engage in
the information-theoretic model using secret sharing-
based MPC and employ commodity-based cryptogra-
phy [8] to decrease the number of communications.

SecureML [9] was one of the fastest protocols for
privacy-preserving logistic regression models training
based on secure MPC. The SecureML protocol is di-
vided into an offline (to generate and distributing mul-
tiplication triples) and an online phase. Their proposed
multiplication protocol is based on a straightforward
and efficient security setting introduced by Beaver [8].
Also, to compute the activation functions, they pro-
posed a new comparison-based activation function that
converges to 0 and 1. Unlike our work that employs the
Newton Raphson optimization method, SecureML fo-
cuses on the mini-batch gradient descent.

Other than MPC-based solutions, two popular meth-
ods have been considered. The first one is homo-
morphic encryption [10], which allows for compu-
tation to be performed over encrypted data, and
has been applied to privacy-preserving logistic regres-
sion [11][12][13][14][15][16][17]. In most of these works,
polynomial approximations need to be made to eval-
uate non-linear functions in machine-learning algo-
rithms. The second method is differential privacy, a
universally accepted mathematical structure for pro-
tecting data privacy. The main application of differen-
tial privacy in machine learning is when the model is
published publicly after training in a way that personal
data points cannot be distinguished from the released
model [18][19][20][21].



Ghavamipour et al. Page 3 of 11

3 Preliminaries
3.1 Secure multi-party computation
Secure Multi-Party Computation (MPC) allows com-
putation parties to compute an arbitrarily agreed func-
tion of their private inputs. During the computation,
no party should reveal its private inputs to the other
parties or any third party. This is formalized as a se-
cure function evaluation where n parties compute a
function

f(x1, x2, ..., xn) = (y1, y2, ..., yn) (1)

such that each computation party Pi, where 1 ≤ i ≤
n, provides its input xi and learns its output yi. The
secret shared value can be exposed to each party by
combining with other parties shares. Since our MPC
solution is based on additive secret sharing, we briefly
discuss this concept in the next section.

3.2 Secret sharing
Secret sharing is a set of techniques that allows a se-
cret value x to be distributed among n participants as
x1, ..., xn so that each party Pi receives a random share
xi (mod p) over some prime p [1]. In secret sharing-
based secure computation schemes, a different num-
ber of sensitive data holders (input parties) can se-
cretly share their data among other participants. In
this paper, we use the n-out-of-n additive secret shar-
ing scheme. In this scheme, an integer u additively
shares between n participants. In other words, each
input party pick n− 1 randomly generated values and
sends them to all other participants. Also, one of the
parties is provided by the secret u minus the sum of
those randomly generated values, which permits the
reconstruction of the original value by summing all of
the shares.

In what follows, we will use [[x]] to denote secret
shares that reconstruct to x. A share [[x]] is an n-tuple
with each computing party holding precisely one ele-
ment of the tuple and [[x]]i denotes the share held by
the ith party.

3.3 Security model
We consider a set of input parties who aim to train
a logistic regression model on their sensitive data. We
assume the data is distributed horizontally among the
input parties, where each independent database con-
tains only a sub-population. Furthermore, we consider
a set of computation parties n that receives secret-
shared data in a setup phase (this phase is not consid-
ered in any future computation).

[1]the modular notation is dropped for the means of
conciseness and ease of composition

We assume the computation parties are non-colluding
(the servers cannot be controlled by one authority), in-
dependent (if the adversary controls one party, other
parties behave honestly), and honest but curious (each
party correctly follows the protocol but might be cu-
rious about the information transferred between other
parties). However, one or more computation parties
may get corrupted, and these corrupted parties could
involve more than half of the computation parties. We
propose logistic regression training protocols for both
honest majority and dishonest majority assumptions
in this paper. In the case with the honest majority as-
sumption, the adversary may actively corrupt t < n/2
players. We implement this protocol in three-party set-
tings where only one party can be corrupted at most.
In the second protocol, we propose a protocol in which
the number of corrupted parties could be more than
n/2. To achieve the highest efficiency, we implement
this protocol in the two-party setting.

3.4 Addition and multiplication
Various operations can be performed on secret shared
data through tailored protocols. Based on the con-
sidered security models mentioned in section 3.3, we
employ addition and multiplication as the key op-
erations in our work. Under both introduced secu-
rity models, the addition of two secrets can be per-
formed locally without any communication: [[x]]+[[y]] =
([[x]]1 + [[y]]1, [[x]]2 + [[y]]2, . . . , [[x]]n + [[y]]n). However,
the multiplication of additively secret shared values
requires network communication.

In the honest majority setting, we use the multiplica-
tion protocol proposed by Bogdanov et al. [22] (classi-
cal approach). Their protocol is based on the following
equation:

xy = (x1 + x2 + x3)(y1 + y2 + y3) =

(x1y1 + x1y3 + x3y1)+

(x2y2 + x2y1 + x1y2)+

(x3y3 + x3y2 + x2y3)

=

3∑
i=1

3∑
j=1

xiyj (2)

As shown in Equation 2, to perform the multipli-
cation operation, each computation party requires its
adjacent computation party’s input share. However,
Bogdanov et al. stated that sending the input share to
the nearby computation party may reveal more infor-
mation about the input data than necessary. To solve
this issue, they introduced a re-sharing protocol to dis-
tribute a new share of the original value in each com-
putation party at the beginning and end of the multi-
plication operation.



Ghavamipour et al. Page 4 of 11

In the dishonest majority setting, we use the Beaver
triples technique [23] to perform multiplication. This
method requires a trusted initializer to pre-distribute
the multiplication triples (random and independent)
shares ([[a]], [[b]], [[c]]) between the computation parties
in a way that a.b = c. To perform the multiplication,
each computation party computes [[d]] = [[x]] - [[a]] and
[[e]] = [[y]] - [[b]] locally and then reveals both [[d]] and
[[e]]. Revealing these shares does not compromise the
security of sensitive data, as [[a]] and [[b]] have been
randomly generated and thus mask the secret values.
Next, each party locally computes:

[[w]]i = [[c]]i + [[e]].[[b]]i + [[d]].[[a]]i + [[e]].[[d]]

where [[w]]i is a share of the result of the multiplica-
tion.

Note that after distributing the multiplicative triples
needed, the trusted initializer is not involved in the
rest of the protocol. Thus, the trusted initializer does
not understand the function to be computed or the
computation inputs.

3.5 Inversion
As we will see in Section 4, we will need the opera-
tions of inversion and matrix inversion in order to im-
plement logistic regression. The MPCs protocols dis-
cussed previously support only addition and multipli-
cation. Since the accurate implementation of inversion
significantly increases the computational cost, we use
the approximation method introduced by Nardi [24].
Nardi’s method converts the matrix inversion prob-
lem into an iterative procedure of matrix multiplica-
tion and addition. In this method, we look for a matrix
X to find the inversion of the matrix B according to:

X−1 = B

The main idea is to define a function of which ma-
trix X represents its root (f(X) = 0). Therefore, the
function f(x) is defined as follows:

f = X−1 −B

To find the root of the function f , Nardi suggested
using the Newton-Raphson method. By applying this
method (take the derivative of function f(X) and ap-
plying the general iterative Newton method), a stable
numerical iterative approximation takes the following
form:

Xs+1 = 2Xs −XsMs X0 = c−1I (3)

Ms+1 = 2Ms −M2
s M0 = c−1B

where X0 and M0 are the initial guesses, I is an iden-
tity matrix, and c is a constant. After convergence, Xs

contains an approximation of matrix B’s inversion.

3.6 Logistic regression
Logistic regression is a standard machine learning tech-
nique that is commonly used in various areas of re-
search. It predicts the probability that a dependent
variable belongs to a class. This paper will consider
the binary classification, where the dependent variable
belongs to two possible classes. The logistic model is
intended to describe a probability, which is always a
number between 0 and 1.

Assume a training dataset D = {(x1, y1), (x2, y2)
, . . . , (xn, yn)} of n records, where xi is the m-dimensional
feature vector of each record and the yi is a vector of
labeled binary outcomes. The logistic regression model
is given by:

P (yi = 1|x;β) = π(βTxi) =
1

1− e−βT xi
(4)

where β = (β0, . . . , βd) is p-dimensional regression
coefficients vector, y is the observation of binary re-
sponses, and x is the feature vectors. The purpose of
using this method is to obtain the parameter vector β
that maximizes the log-likelihood function:

l(β) = −
n∑
i=1

log(1 + e−β
T xi) (5)

By determining the parameters β, the classifier can
predict the class label of new feature vectors.

4 Methods
4.1 Estimating model coefficients
Since logistic regression cannot be found in a closed
form, model estimation is often accomplished by an
iterative optimization over the log-likelihood function.
Newton-Raphson [25] is a numerical iterative method
that eventually approaches the optimal values of the
β coefficients. For each iteration, the coefficient esti-
mates are updated by:

βnew = βold −H−1(βold)∇(βold) (6)

where ∇ and H respectively correspond to the gra-
dient and the Hessian of the log-likelihood function



Ghavamipour et al. Page 5 of 11

evaluated the current estimate of the β coefficients.
The gradient and Hessian for logistic regression can
be computed as follows:

∇(β) =
∂l(β)

∂β
= XT(y − π) (7)

H(β) =
∂2f

∂β∂βT = XTWX (8)

where W is a diagonal matrix with elements defined
as ai,i = π(1− π) and π is the vector of probabilities.

4.2 Gradient
To compute the gradient (7), first we need to compute
the Sigmoid function (π). To do this, we consider two
different cases in our paper:

π(z) =
1

1 + e−z
= (1 + e−z)−1 (9)

a) Computation of the exact value of the Sigmoid
function: The main challenges of computing the exact
value of the Sigmoid function vector are the performing
of exponentiation, inversion, and matrix inversion. To
perform inversion and matrix inversion, we use the so-
lutions discussed in Section 3.5. However, performing
exponentiation by the considered secret sharing tech-
niques is still challenging.

To tackle this issue, we implement exponentiation
by using addition and multiplication. The solution
is based on the idea of using additive secret shar-
ing one more time. In other words, each computation
party plays the role of a sensitive data holder. To do
this, each computation party i computes e[[zi]] locally
and then computes n different shares of it (n indi-
cates the total number of computation parties) and
sends each of these values to the correspondence com-
putation parties. After each computation party re-
ceived the other computation parties’ share of e[[zi]],
by using the MPC multiplication operation, it com-
putes ([[e[[z1]]]]1 ∗ [[e[[z2]]]]2 ∗ · · · ∗ [[e[[zi]]]]n) which is equal
to ([[e[[z1]]+[[z2]]+···+[[zi]]]]). Therefore, each computation
party has a valid share of [[e[[z]]]] and using the addition
and inversion operation, the exact value of the Sigmoid
function will be computed.

b) Least Squares Approximation of the Sigmoid
Function: The introduced method to compute the sig-
moid function’s exact value might have scalability is-
sues due to the substantial required number of multi-
plications. In order to improve the performance, we use

the least-squares approximation of the sigmoid func-
tion over the interval [-8,8] introduced by Kim et al.
[26]. We adapt this approximation method and con-
sider the degree 3, 5, and 7 least-squares polynomials:



g3(x) = 0.5 + 1.20096.(x/8)− 0.81562.(x/8)3

g5(x) = 0.5 + 1.53048.(x/8)− 2.3533056.(x/8)3

+1.3511295.(x/8)5

g7(x) = 0.5 + 1.73496.(x/8)− 4.19407.(x/8)3

+5.43402.(x/8)5 − 2.50739.(x/8)7

The degree 3 least-squares approximation requires
fewer multiplications, while the degree 7 polynomial
has more immeasurable precision.

4.3 Hessian
The Hessian matrix H denotes the second partial
derivatives of the maximum likelihood function l(β).
In every iteration, the Hessian matrix has to be up-
dated by the newest β, and its inversion has to be
computed. To evaluate the Hessian matrix, we can con-
sider two different methods. First, we can compute the
exact value of the Hessian matrix by performing the
required MPC-based multiplication. However, the ex-
act evaluation of the Hessian matrix is considerably
expensive in computational terms. To solve this issue,
we approximate the Hessian matrix with a fixed matrix
instead of updating it in every iteration. More specifi-
cally, we can replace the fixed Hessian matrix with its
approximation H̃ (Equation 10) that only needs to be
computed and inverted once.

H̃ =
−1

4
XXT (10)

Böhning [27] has proved that if H̃−H is positive def-
inite and H̃ ≤ H then the convergence of this method
is guaranteed. Also, because H̃ does not depend on β,
we can pre-compute the Hessian and its inverse one
time and used it in all iterations.

4.4 Privacy-preserving Logistic Regression Training
In this work, we assumed that the result party desires
to compute the logistic regression model over collected
data by different data owners. Each data owner com-
putes multiple shares (based on the number of com-
putation parties) of its sensitive data and separately
sends them to each computation party. Note that each
computation party receives an equal number of depen-
dent Xi and independent yi variables. Each computa-
tion party should append the received shares and their
corresponding dependent variables in the correct or-
der. Finally, computation parties send their computed



Ghavamipour et al. Page 6 of 11

shares of logistic regression coefficient to the result
party, and the result party simply sums these shares
together to compute the final result.

We now present our privacy-preserving logistic re-
gression training algorithms that employ the previ-
ously mentioned approaches. These algorithms sum-
marize the crucial steps in the proposed protocols for
both honest and dishonest majority security assump-
tions. In our proposed algorithms, each data owner
provides a share of data for the computation parties
as input. The only output of the algorithm is the com-
puted model coefficients β. Also, to prevent unneces-
sarily revealing information about the input, we will
not employ a convergence check after each iteration.
niter specifies the upper bound of the number of iter-
ations needed for convergence.

Algorithm 1 Accurate Logistic Regression Training
algorithm

Input: A share of input data ([[X]] , [[y]]) from data owners,
niter number of iterations

Output A share of computed vector of coefficient [[β]]

1: procedure
2: [[β]], [[βold]]← 0

3: ˜[[H]]← −1
4
[[X]].[[X]]T

4: ˜[[H]]← ˜[[H]]
−1

5: for 0 to niter do
6: [[β]] = [[βold]]
7: z ← [[X]].[[β]]
8: procedure Computing [[π]]

9: locally computes e[[z]]

10: send/receive a share of e[[z]] to/from other CPs

11: [[ez ]] = [[e[[z]]]]1.[[e[[z]]]]2...[[e[[z]]]]i
12: [[π]] = [[(1 + ez)]]−1

13: end procedure
14: [[∇(βtemp)]] = [[y]]− [[π]]

15: [[∇(β)]] = [[X]]T .[[∇(βtemp)]]

16: [[βold]] = [[β]]− [[H̃−1]].[[∇(β)]]
17: end for
18: Return [[β]]
19: end procedure

In Algorithm 1, we propose a very accurate privacy-
preserving logistic regression model training protocol.
In this algorithm, we only employ highly accurate ap-
proximations such as matrix inversion and fixed Hes-
sian, which have a negligible effect on the computation
output’s accuracy. Moreover, instead of approximating
the Sigmoid function, we use our introduced approach
in section 4.2 to compute the Sigmoid function’s exact
value (lines 8-12).

The main purpose of proposing Algorithm 2 is to
achieve a highly efficient privacy-preserving logistic re-
gression model training protocol. Various approxima-
tion approaches such as fixed Hessian matrix, least-
square approximation for the Sigmoid function, and
matrix inversion algorithm are employed to obtain
our goal. This logistic regression training algorithm

demonstrates how the introduced approximation ap-
proaches can be efficiently combined to compute the
logistic regression coefficient in a privacy-preserving
manner.

Algorithm 2 Approximation-based Logistic Regres-
sion Training algorithm

Input: A share of input data ([[X]] , [[y]]) from data owners,
niter number of iterations

Output A share of computed vector of coefficient [[β]]

1: procedure
2: [[β]], [[βold]]← 0

3: [[H̃]]← −1
4
[[X]].[[X]]T

4: [[H̃]]← [[H̃]]−1

5: for 0 to niter do
6: [[β]] = [[βold]]
7: Compute [[π]]
8: [[∇(βtemp) = [[y]]− [[π]]

9: [[∇(β)]] = [[X]]T .[[∇(βtemp)]]

10: [[βold]] = [[β]]− [[H̃−1]].[[∇(β)]]
11: end for
12: Return [[β]]
13: end procedure

5 Results
In this section, we first describe computational effi-

ciency evaluations in terms of CPU time and memory
consumption for the proposed algorithms over a real-
world dataset and generated synthetic data. We finally
describe the accuracy evaluations of these protocols
and theoretically discuss the communication cost.

5.1 Implementation Details
We implemented both of the algorithms with two in-
troduced security settings for MPC in section 3 in
Python. Algorithm 1 is implemented using Beaver
triple-based MPC (Accurate BMPC) and classical
MPC (Accurate CMPC). The Beaver triple-based ver-
sion of algorithm 2 is called BMPC, and the classical-
based MPC implementation of this algorithm is called
CMPC. Moreover, to have a decent comparison, the
ordinary logistic regression (OLR), which does not use
MPC, is implemented.

Experiments were performed on an ARM-based M1
processor with 16GB memory, running a macOS op-
eration system. Also, to eliminate the impact of net-
work latency, we simulated the (distributed) comput-
ing nodes on a single computer with multiple threads.
Each experiment was performed at least 10 times and
reported the mean of the output. During the valida-
tion, we employed both synthetic data and real-world
data sets.

We report the evaluation results concerning com-
putational efficiency in terms of CPU time and
memory consumption and result accuracy. For a fair
comparison on the efficiency, we used four real-world



Ghavamipour et al. Page 7 of 11

Figure 1: Efficiency comparison for increasing
number of records using accurate algorithm 1

Figure 2: Efficiency comparison for increasing
number of features using accurate algorithm 1

Figure 3: Efficiency comparison for increasing
number of records using approximation-based
algorithm 2

Figure 4: Efficiency comparison for increasing
number of features using approximation-based
algorithm 2

data sets: Pima Indians Diabetes Dataset (PIMA) [28],
Low Birth Weight Study (LBW) [29], Prostate Cancer
Study (PCS) [30], and Umaru Impact Study datasets
(UIS)[31]. All datasets have a single binary outcome
variable. Also, to satisfy the demand for large-scale
studies between multiple research institutions with a
large number of records, we examine our protocols
with synthetic data sets of varying sizes. We gener-
ated synthetic data consists of up to 1 million records
spanning up to 3000 features representing most real-
world use cases.

5.2 Efficiency
To compare our protocols’ efficiency with an ordinary
logistic regression, first, we measure the CPU time of
our protocol when the number of features is constant
(i.e., 250) and the number of records increases. We
then calculate the CPU time of the protocols when the

number of records is fixed (i.e., 7000) and the number
of features increases.

The CPU time of the proposed protocols is heavily
influenced by the number of records and features of the
training set. Figures 1 and 2 illustrate the CPU time
of those implemented based on algorithm 1 (Accurate
BMPC and Accurate CMPC). As is shown in Figure 1,
Accurate BMPC has the best results when the number
of records increases. This protocol computes a logistic
regression model over a train set with 50000 records
and 500 features in less than 15 seconds which is 20
seconds faster than Accurate CMPC protocol and 70
seconds faster than OLR. Nevertheless, increasing the
number of features has a higher impact than OLR. As
is shown in Figure 2, by using the OLR protocol, a lo-
gistic regression model can be trained over a training
set with 7000 records and 3000 features in around 90
seconds. However, computing this model using Accu-



Ghavamipour et al. Page 8 of 11

Table 1: Memory consumption comparison of our proposed protocols using generated synthetic datasets
Records
Number

Feature
Number

OLR BMPC CMPC
Accurate
BMPC

Accurate
CMPC

10000 50 3666 1325 688 1316 888
20000 70 12559 1717 1016 1665 1325
30000 90 22736 2743 1702 2654 2033
40000 100 29110 3775 2337 3622 2672
50000 100 34394 4575 2878 4406 3220
50000 200 34512 8516 5437 8013 5770

Table 2: A comparison between model parameters β learned using the proposed protocols and ordinary logistic
regression protocol over LBW dataset

β
Ordinary

LR
Accurate
BMPC

BMPC Accurate
CMPC

CMPC

3 5 7 3 5 7
β1 0.01574 0.01577 0.01761 0.01580 0.01480 0.01574 0.02214 0.01793 0.01630
β2 0.01127 0.01123 0.01171 0.01061 0.01006 0.01127 0.01534 0.01266 0.01166
β3 0.78666 0.78152 0.67763 0.62479 0.60392 0.78662 0.95081 0.81191 0.77010
β4 -0.47132 -0.46992 -0.48975 -0.44423 -0.42170 -0.47131 -0.63960 -0.52621 -0.48340
β5 -1.32410 -1.31870 -1.24442 -1.13786 -1.08974 -1.32405 -1.68676 -1.41595 -1.32408
β6 -0.75584 -0.75594 -0.86971 -0.78142 -0.73330 -0.75583 -1.09894 -0.88944 -0.80596
β7 -2.20748 -2.20104 -2.48191 -2.23117 -2.09511 -2.20743 -3.15262 -2.56252 -2.33208
β8 -0.96060 -0.95756 -0.99906 -0.90459 -0.85667 -0.96058 -1.30317 -1.07358 -0.98838
β9 -0.24569 -0.24476 -0.21884 -0.20160 -0.19465 -0.24568 -0.30509 -0.25879 -0.24367

rate BMPC protocol takes about 3 minutes, and using
Accurate BMPC protocol requires 5 minutes.

Figures 3 and 4 illustrate the CPU time of our pro-
tocols which are implemented based on algorithm 2
(BMP and CMPC). As shown in Figure 3, both of
these protocols have a better performance than OLR
when the number of records increases and the num-
ber of features is fixed. Also, BMPC has a consider-
ably better CPU time in comparison with CMPC and
OLR. However, as is shown in Figure 4, increasing the
number of features has slightly different results. Rais-
ing the number of features decreases the efficiency of
all three protocols. CMPC receives the highest impact
from rising the number of features, but BMPC still has
an acceptable efficiency level. For example, BMPC can
train a model with 7000 records and 2500 features in
less than one minute, which is 7 seconds higher than
OLR, and four times better than CMPC. Therefore,
we can conclude that CMPC is not the right choice
when we have a dataset with a considerable number of
features.

Besides, to measure the efficiency in terms of mem-
ory consumption, a python module called “mem-
ory profiler” [32] has been utilized. Table 1 indicates
memory consumption for different introduced proto-
cols and ordinary logistic regression. All implemented
protocols in both security settings consume remark-
ably less memory during the training process. As is
describes in the table 1, to train a logistic regression
model over a dataset with 50000 records and 200 fea-
tures, the OLR protocol requires about 30 GB of mem-
ory. However, the BMPC and Accurate BMPC about

8 GB of memory to train this model. Also, the CMPC
and Accurate CMPC protocols have a better consump-
tion rate than BMPC, and less than 5 GB of memory
is needed to train such a model.

5.3 Accuracy
One of the main subjects that we considered in exam-
ining our protocols is whether they are accurate. We
measured the accuracy based on the estimated model
parameters’ precision during the training phase over
the Low Birth Weight Study dataset. To do this, we
compared the obtained vector of coefficient β from our
protocols with the ones estimated using the OLR pro-
tocols. As Table 2 presents, the Accurate BMPC and
Accurate CMPC protocols’ model parameters are al-
most the same as the model parameters estimated us-
ing OLR protocols. Moreover, the model parameters
estimated from protocols based on the algorithm 2
(BMPC and CMPC), which employ various approx-
imations, have an acceptable level of accuracy com-
pared to the model parameters estimated using OLR
protocols.

Since we introduced several approximation schemes
in BMPC and CMPC protocols (e.g., fixed-point Hes-
sian matrix, the least-squares approximation of the
Sigmoid function, and matrix inversion), and to have a
better understanding of the accuracy level of these pro-
tocols, we compare the prediction accuracy achieved
by these protocols with that obtained from OLR. To
do this, we calculated the percentage (%) of the cor-
rect predictions of the models produced on four differ-
ent datasets (25% of training samples were assigned to



Ghavamipour et al. Page 9 of 11

Table 3: Accuracy comparison result for real-word datasets with different settings
CMPC BMPC OLR

Dataset
Records

Num
Feature

Num
g(x)

degree
Accuracy AUC Accuracy AUC Accuracy AUC

3 71.87% 0.740 71.87% 0.740 71.87% 0.740

PIMA 768 9
5 71.87% 0.741 71.87% 0.740 71.87% 0.740
7 71.87% 0.741 71.87% 0.741 71.87% 0.741

No approx - - - - 71.87% 0.741
3 81.05% 0.842 81.05% 0.846 80% 0.846

PCS 379 10
5 81.05% 0.845 81.05% 0.847 80% 0.847
7 81.05% 0.847 81.05% 0.848 81.05% 0.848

No approx - - - - 81.05% 0.848
3 64.58% 0.519 64.58% 0.519 64.58% 0.519

LBW 189 10
5 64.58% 0.519 64.58% 0.519 64.58% 0.519
7 62.5% 0.519 62.5% 0.517 64.58% 0.519

No approx - - - - 62.5% 0.523
3 73.61% 0.651 73.61% 0.651 73.61% 0.651

UIS 575 9
5 72.91% 0.652 72.91% 0.652 72.91% 0.652
7 72.91% 0.655 73.61% 0.651 72.91% 0.655

No approx - - - - 72.22% 0.656

the test set) in different settings based on the degree
of Sigmoid function approximation. All the accuracy
measurement results are summarized in Table 3. This
table presents the average prediction accuracy percent-
age when threshold = 0.5 and the AUC (Area Under
the Receiver Operating Characteristic Curve), which
estimates a binary classifier’s quality. It is clear from
the table data that the approximations used in BMPC
and CMPC protocols do not significantly affect the
estimated model’s accuracy. In other words, although
based on the information provided in Table 2, varying
the Sigmoid approximation degrees affect the exact-
ness of model parameters learned during the training
phase, these differences do not considerably impact the
classification accuracy over the chosen datasets.

5.4 Communication cost
The efficiency of multi-party computation protocols in
terms of communication costs is considered a funda-
mental concern. Since in our implementation, we sim-
ulate each computation party as a thread in a multi-
threading setting, we theoretically compute the com-
munication cost in this part. To do this, first, we
compute the primary operations’ communication cost,
such as addition and multiplication, in both honest
majority and dishonest majority settings. Secondly, we
compute the total communication cost for the whole
protocol based on the number of primary operations
contained.

The addition operation in both security settings does
not require any communication between the parties.
However, multiplication requires multiple communica-
tion rounds. In the honest majority setting and with
three computation parties, Bogdanov [33] explained
that each time performing the MPC-based multipli-
cation requires exchanging 15 messages between the
computation parties. If we consider each message with

the size of 32 bits, the communication cost for one-
time multiplication will be 420 bits. Besides, one time
executing our logistic regression protocol (CMPC) re-
quires performing between 100 to 300 times multiplica-
tion protocol (based on the degree of least-squares Sig-
moid approximation and choosing a good start value
for the inversion operation). Therefore, to compute the
logistic regression model in an honest majority set-
ting with our protocol, at least 42 Kb data will be
exchanged.

In the dishonest majority setting and using the
Beaver multiplication approach, communication costs
are lower than the honest majority setting. The mul-
tiplication procedure in this method is split into the
offline and online phases. During the offline phase,
multiplication triples will be generated and distributed
before the computation parties’ inputs be associated.
Therefore, the communication cost of this phase can
be safely ignored. During the online phase and in the
two-party setting, each computation party sends only
two messages to the other party to perform the mul-
tiplication. Accordingly, if we consider each message
with the size of 32 bits, therefore 128-bits data require
to be exchanged for performing one-time multiplica-
tion in this setting, which is 3.75 times less than the
honest majority setting. For the whole logistic regres-
sion protocol, 12.5 Kb of data will be transferred.

6 Conclusions
There is an increasing interest in applying machine
learning algorithms to sensitive data, such as medi-
cal data. In this paper, we described novel protocols
for implementing secure and private logistic regression
training among distributed parties using multi-party
computation protocols. We evaluated the performance
of our protocols through experiments on real-world



Ghavamipour et al. Page 10 of 11

and synthetic datasets. With the latter, we showed
that our solutions scale well when apply to a dataset
with a very large number of records and features. Our
experiments also showed that our protocol achieves
high accuracy while maintaining a reasonable level of
efficiency. In the future, we will extend our protocols
to support secure and efficient multi-class logistic re-
gression.

Declarations

Abbreviations

LR, logistic regression; MPC, multi-party computation; GLORE, grid binary

logistic regression;SMAC-GLORE, Secure Multi-pArty Computation Grid

LOgistic REgression; BMPC, beaver triple-based multi-party computation;

CMPC, classical multi-party computation; OLR, ordinary logistic regression;

PIMA, pima indians diabetes dataset; LBW, low birth weight study; PCS,

prostate cancerstudy; UIS, umaru impact study datasets

Availability of data and materials

github.com/alirezaghavamipour/pplr ss

Authors’ contributions

The author ARG contributed the majority of the writing and conducted

major parts of the study. FT wrote a part of this paper, provided detailed

edits and critical suggestions. XJ provided the motivation for this work and

helpful comments. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

Not applicable.

Acknowledgment

We thank Aida Plocco and Sytze Tempel for their contribution to the idea

of this study.

Author details
1University of Groningen, Nijenborgh 9, Groningen, Netherlands.
2UTHealth School of Biomedical Informatics, The University of Texas,

Houston, US.

References
1. Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic

regression. (2013). John Wiley & Sons

2. Boxwala, A.A., Kim, J., Grillo, J.M., Ohno-Machado, L.: Using

statistical and machine learning to help institutions detect suspicious

access to electronic health records. Journal of the American Medical

Informatics Association 18(4), 498–505 (2011)

3. Riley, R.D., Ensor, J., Snell, K.I., Harrell, F.E., Martin, G.P., Reitsma,

J.B., Moons, K.G., Collins, G., van Smeden, M.: Calculating the

sample size required for developing a clinical prediction model. Bmj

368 (2020)

4. Jagadeesh, K.A., Wu, D.J., Birgmeier, J.A., Boneh, D., Bejerano, G.:

Deriving genomic diagnoses without revealing patient genomes.

Science 357(6352), 692–695 (2017)

5. Shi, H., Jiang, C., Dai, W., Jiang, X., Tang, Y., Ohno-Machado, L.,

Wang, S.: Secure multi-party computation grid logistic regression

(smac-glore). BMC medical informatics and decision making 16(3), 89

(2016)

6. Xie, W., Wang, Y., Boker, S.M., Brown, D.E.: Privlogit: Efficient

privacy-preserving logistic regression by tailoring numerical optimizers.

arXiv preprint arXiv:1611.01170 (2016)

7. De Cock, M., Dowsley, R., Horst, C., Katti, R., Nascimento, A.C.,

Poon, W.-S., Truex, S.: Efficient and private scoring of decision trees,

support vector machines and logistic regression models based on

pre-computation. IEEE Transactions on Dependable and Secure

Computing 16(2), 217–230 (2017)

8. Beaver, D.: Commodity-based cryptography. In: Proceedings of the

Twenty-ninth Annual ACM Symposium on Theory of Computing, pp.

446–455 (1997)

9. Mohassel, P., Zhang, Y.: Secureml: A system for scalable

privacy-preserving machine learning. In: 2017 IEEE Symposium on

Security and Privacy (SP), pp. 19–38 (2017). IEEE

10. Gentry, C., Boneh, D.: A Fully Homomorphic Encryption Scheme vol.

20. Stanford university Stanford

11. Yoo, J.S., Hwang, J.H., Song, B.K., Yoon, J.W.: A bitwise logistic

regression using binary approximation and real number division in

homomorphic encryption scheme. In: International Conference on

Information Security Practice and Experience, pp. 20–40 (2019).

Springer

12. MLD, R., Fienberg, S., Nardi, Y.: Secure multiparty linear and logistic

regression based on homomorphic encryption. cs.cmu.edu. Query date:

2020-06-24 08:59:23

13. Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.:

Privacy-preserving semi-parallel logistic regression training with fully

homomorphic encryption. BMC Medical Genomics 13(7), 1–10 (2020)

14. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic

regression based on homomorphic encryption: Design and evaluation.

JMIR medical informatics 6(2), 19 (2018)

15. Han, K., Hong, S., Cheon, J.H., Park, D.: Logistic regression on

homomorphic encrypted data at scale. In: Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 33, pp. 9466–9471 (2019)

16. Han, K., Hong, S., Cheon, J., Park, D.: Efficient logistic regression on

large encrypted data. IACR Cryptol. ePrint Arch. (2018). Query date:

2020-06-24 08:59:23

17. Djonatan, P.: Privacy-preserving Analytics: Secure Logistic Regression,

(2019). Query date: 2020-06-24 08:59:23.

https://dr.ntu.edu.sg/handle/10356/77126

18. Du, W., Li, A., Li, Q.: Privacy-preserving multiparty learning for

logistic regression. In: International Conference on Security and

Privacy in Communication Systems, pp. 549–568 (2018). Springer

19. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression.

In: Advances in Neural Information Processing Systems, pp. 289–296

(2009)

20. El Emam, K., Samet, S., Arbuckle, L., Tamblyn, R., Earle, C.,

Kantarcioglu, M.: A secure distributed logistic regression protocol for

the detection of rare adverse drug events. Journal of the American

Medical Informatics Association 20(3), 453–461 (2013)

21. Kim, M., Lee, J., Ohno-Machado, L., Jiang, X.: Secure and

differentially private logistic regression for horizontally distributed data.

IEEE Transactions on Information Forensics and Security 15, 695–710

(2019)

22. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance

secure multi-party computation for data mining applications.

International Journal of Information Security 11(6), 403–418 (2012)

23. Beaver, D.: Efficient multiparty protocols using circuit randomization.

In: Annual International Cryptology Conference, pp. 420–432 (1991).

Springer

24. Nardi, Y., Fienberg, S.E., Hall, R.J.: Achieving both valid and secure

logistic regression analysis on aggregated data from different private

sources. Journal of Privacy and Confidentiality 4(1) (2012)

25. Agresti, A.: Categorical data analysis 482 (2003)

26. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic

regression based on homomorphic encryption: Design and evaluation.

JMIR medical informatics 6(2), 19 (2018)

27. Böhning, D.: The lower bound method in probit regression.

Computational statistics & data analysis 30(1), 13–17 (1999)

28. Dua, D., Graff, C.: UCI Machine Learning Repository (2017).

http://archive.ics.uci.edu/ml

29. lbw: Low Birth Weight study data (2019).

https://rdrr.io/rforge/LogisticDx/man/lbw.html

30. pcs: Prostate Cancer Study data (2019).

https://rdrr.io/rforge/LogisticDx/man/pcs.html

https://github.com/alirezaghavamipour/pplr_ss
http://archive.ics.uci.edu/ml
https://rdrr.io/rforge/LogisticDx/man/lbw.html
https://rdrr.io/rforge/LogisticDx/man/pcs.html


Ghavamipour et al. Page 11 of 11

31. uis: UMARU IMPACT Study data (2019).

https://rdrr.io/rforge/LogisticDx/man/uis.html

32. memory-profiler (2021).

https://pypi.org/project/memory-profiler/

33. Bogdanov, D.: Sharemind: programmable secure computations with

practical applications. PhD thesis, Tartu University (2013)

https://rdrr.io/rforge/LogisticDx/man/uis.html
https://pypi.org/project/memory-profiler/

	Abstract
	1 Background
	2 Related Work
	3 Preliminaries
	3.1 Secure multi-party computation
	3.2 Secret sharing
	3.3 Security model
	3.4 Addition and multiplication
	3.5 Inversion
	3.6 Logistic regression

	4 Methods
	4.1 Estimating model coefficients
	4.2 Gradient
	4.3 Hessian
	4.4 Privacy-preserving Logistic Regression Training

	5 Results
	5.1 Implementation Details
	5.2 Efficiency
	5.3 Accuracy
	5.4 Communication cost

	6 Conclusions

