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ORIGINAL ARTICLE

Deep learning-based fully automated Z-axis 
coverage range definition from scout scans 
to eliminate overscanning in chest CT imaging
Yazdan Salimi1†, Isaac Shiri1†, Azadeh Akhavanallaf1, Zahra Mansouri2, Abdollah Saberi Manesh1, 
Amirhossein Sanaat1, Masoumeh Pakbin3, Dariush Askari4, Saleh Sandoughdaran5, Ehsan Sharifipour6, 
Hossein Arabi1 and Habib Zaidi1,7,8,9*  

Abstract 

Background: Despite the prevalence of chest CT in the clinic, concerns about unoptimized protocols delivering high 
radiation doses to patients still remain. This study aimed to assess the additional radiation dose associated with over-
scanning in chest CT and to develop an automated deep learning-assisted scan range selection technique to reduce 
radiation dose to patients.

Results: A significant overscanning range (31 ± 24) mm was observed in clinical setting for over 95% of the cases. 
The average Dice coefficient for lung segmentation was 0.96 and 0.97 for anterior–posterior (AP) and lateral projec-
tions, respectively. By considering the exact lung coverage as the ground truth, and AP and lateral projections as 
input, The DL-based approach resulted in errors of 0.08 ± 1.46 and − 1.5 ± 4.1 mm in superior and inferior directions, 
respectively. In contrast, the error on external scout views was − 0.7 ± 4.08 and 0.01 ± 14.97 mm for superior and infe-
rior directions, respectively.The ED reduction achieved by automated scan range selection was 21% in the test group. 
The evaluation of a large multi-centric chest CT dataset revealed unnecessary ED of more than 2 mSv per scan and 
67% increase in the thyroid absorbed dose.

Conclusion: The proposed DL-based solution outperformed previous automatic methods with acceptable accuracy, 
even in complicated and challenging cases. The generizability of the model was demonstrated by fine-tuning the 
model on AP scout views and achieving acceptable results. The method can reduce the unoptimized dose to patients 
by exclunding unnecessary organs from field of view.
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Key points

• Overscanning is a common problem (more than 95% 
of the cases) occurring mostly in the inferior direc-
tion in clinical practice, leading to additional unnec-
essary radiation dose in chest CT.

• We developed an accurate and robust automated 
method for scan range delimitation trained on a large 
dataset with acceptable reproducibility.

• Our proposed deep learning-guided algorithm could 
potentially reduce patient’s radiation dose by up to 
21%.
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Introduction
Computed Tomography (CT) has been during recent 
decades and remains presently one of the most preva-
lent technologies used in diagnostic imaging. As the 
utilization of CT scanning is increasing, this modality 
currently accounts for the primary source of medical 
radiation exposure to the population. In this regard, 
recent innovations have focused on optimizing radia-
tion dose associated with this technology, e.g., the new 
generation of detectors [1], adaptive collimation, itera-
tive image reconstruction, adaptive voltage, and expo-
sure control, have strongly reduced CT radiation dose. 
Yet, "CT is still not a low-dose imaging modality" [2]. 
Although several functionalities, such as automatic 
tube voltage selection and tube current modulation 
(TCM), have been successfully implemented on CT 
scanners to optimize radiation exposure, some scan-
ning parameters impacting image quality and radiation 
dose, such as patient positioning, scan range choice, 
and localizer scan parameters are manually selected 
by technologists [3, 4]. In this light, developing and 
establishing automated scanning procedures to mini-
mize human error and homogenize imaging protocols 
is desirable [5, 6].

Hitherto, there is no commercialy available systems 
enabling automatic scan range selection. In current clini-
cal practice, the scan length is commonly selected based 
on task-specific landmarks extracted from two-dimen-
sional (2D) anterior–posterior (AP) or lateral scout scans. 
This manual procedure is prone to human error depend-
ing on the technologist’s experience and the medical 
center’s workload. Zanca et  al. reported that up to 80% 
of thoraco-abdominal CT examinations suffered from 
overscanning with an average of 1.8 and 2.9  cm extra-
scanning length at the superior and inferior directions, 
respectively [7]. Schwartz et al. reported a maximum of 
60% incidence of overscanning in chest CT with substan-
tial variability among the different institutions causes 
up to 50% dose increasing in specific organs such as the 
thyroid [8]. Yar et al. reported that more than 60% of CT 
examinations had more than the necessary coverage, 
especially in the inferior direction [6]. Conversely, Cohen 
et al. reported a high frequency (95%) of overscanning in 
chest CT and demonstrated a strong correlation with the 
workload of technologists [9, 10].

Recent advances in artificial intelligence, specifically 
deep learning (DL), have revolutionized the domain of 
computer vision and image processing. In the context of 
medical imaging, DL has been successfully deployed in 
challenging tasks, such as image segmentation/interpre-
tation, cross-modality image translation, image denois-
ing, radiotherapy treatment planning, and outcome 
prediction [11–13].

Zhang et al. developed a machine learning technique to 
detect landmarks on the localizer image to indicate the 
desired spiral scan limits resulting in errors around 6 mm 
[14]. Recently, Colevray et al. developed a convolutional 
neural network (CNN) model for the assessment of over-
scanning length associated with lung CT scanning, which 
showed a good agreement with radiologists’ evalua-
tion (kappa = 0.98) [15]. More recently, Demircioglu et al. 
developed a conditional generative adversarial network 
(cGAN) for the delimitation of CT scan range by training 
the model by radiologist selected scan ranges and yielded 
the average error of 1.8 and 3.3 mm in superior and infe-
rior directions [16].

In this work, we developed an automated workflow for 
task-specific scan range selection and retrospective eval-
uation of overscanning on a large cohort of a multi-cen-
tric and multi-purpose clinical database of thoracic CT 
examinations. The impact of overscanning on patients’ 
effective dose was investigated through personalized 
dosimetry of the considered cohort.

Materials and methods
Method description
A fully automated DL-based algorithm was used to seg-
ment the 3D CT images [17]. Based on the acquired 3D 
lung masks, the exact scan range was determined such 
that the axial slices containing the lung masks with a 
margin of one voxel in superior (cranial) and inferior 
(caudal) directions were included. In the second step, 2D 
projections of CT images in AP and lateral views were 
generated, representing properties of scout scans. Like-
wise, 2D lung masks were generated from 3D lung seg-
mentations (reference segmentation) to train a DL model 
for the prediction of 2D lung masks from 2D localizer 
images. The 2D AP and lateral images segmented using 
the trained network were converted to the scan range by 
considering the first pixel in the craniocaudal direction 
as the upper limit (superior) and the last pixel containing 
the lung segment as the lower limit (inferior) for the scan. 
The scan ranges selected based on AP and lateral images 
are referred to as DL_AP and DL_Lat, respectively. 
Hence, overscanning in superior and inferior directions 
was calculated and compared with the reference manu-
ally selected ranges during imaging in a clinical situation 
(via human intervention). The differences between the 
ground truth limits and the DL-predicted limits were 
considered as the error. In contrast, errors less than zero 
are related to the exclusion of some lung slices, whereas 
positive error values indicate overscanning. The radia-
tion dose delivered to organs and total body effective 
dose (ED) was then calculated for different scenarios. 
We have performed fine-tuning on our trained network 
using 3423 scout views to evaluate the reproducibility 
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of our model on real localizer datasets. In the following 
sections, we explain these steps in more detail. Figure 1 
depicts the detailed process in a multi-step workflow.

Study population
This work included a large-scale retrospective cohort 
of 20,820 chest CT images. The major part was from 9 
centers acquired on ten different CT scanner models in 
Iran (C1 to C9, 12,146 cases). The patients were referred 
for assessment, follow-up, and roll-out of COVID-19. 
Besides, three online databases of TCIA chest CT (D1, 
600 cases) [18, 19], Russia chest CT for assessment of 
COVID-19 (D2, 1022 cases) [20], and RSNA chest CT 
images (D3, 7052 cases) [21] were included. D1 and 
D3 databases were created from multiple pathologies. 
Table 1 summarizes the demographic information of the 
study population and acquisition parameters. Besides, 
the scout views were collected for dataset C9 to assess 
the generalizability of our model on scout views in clini-
cal setting. According to the flowchart (Fig.  2), we ini-
tially trained a network on a large dataset consisting of 
over 16,600 cases for the prediction of scan range from 
2D projection images (generated from 3D axial slices). 
Thereafter, the developed model, was fine-tuned on a real 
scout scan datasets obtained from a single scanner (C8, 
Siemens Emotion). Since pixel intensities of scout images 

are vendor-specific, we tested this model on two different 
scanners, namely the Siemens Somatom and Philips from 
different centers (C4 and C8, respectively). In the case of 
the Siemens scanner, i.e. same vendor but different model 
(C4, 351 cases), the results were consistent with the pri-
mary reported results based on C9 (Table  1). However, 
for datasets obtained from the Philips scanner, the model 
trained on the Siemens scanner predicted the scan range 
with overall larger error than our initial reports on C9. 
In this regard, we further fine-tuned our model for the 
Philips scanner by dividing the database obtained from 
C8 into three groups of train, validation, and test sets. 
The results summarized in Table 1 were comparable with 
those reported from C9 and C4.

Considerable variability in scanner model, pathologic 
conditions, patient positioning and CT imaging proto-
cols among the centers was observed, which caused sig-
nificant variability in image quality and patient radiation 
dose. Volumetric CT Dose Index  (CTDIvol) as a param-
eter representing a vendor-free metric of radiation expo-
sure and consequently image quality was reported to 
reflect the variability of our dataset.

3D lung segmentation
A deep residual network architecture previously devel-
oped and validated by our group was deployed for lung 

Fig. 1 The workflow adopted in this study protocol. 1) 3D lung segmentation from CT images, 2) generation of 2D projections and 2D lung 
segments from 3D images and training the deep learning network for semantic segmentation, 3) extracting the metadata and estimating the 
dosimetric impact of overscanning for all 20,820 patients. 4) Calculation of the ED and organ doses based on three scenarios described in the text
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Fig. 2 Flowchart for analysis of scout view images included in this study after fine tuning on C9 images and testing the network on two other 
datasets of C4 and C8
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segmentation from 3D axial CT images [17]. The whole 
lung from the apex to costophrenic sinuses was included. 
The segmented lung masks were visually reviewed to 
avoid noticeable errors.

2D projection generation and preprocessing
Since localizer images were available only for the C9 
dataset, we projected the 3D CT images by summing the 
slices in lateral and AP directions to generate a 2D image 
mimicking the localizer image as reported earlier in a 
number of studies [22, 23]. Accordingly, the lung masks 
on 3D images were projected on the same AP and lateral 
views as the CT images. The 2D masks were fed into the 
network as the ground truth for 2D semantic segmenta-
tion (Fig. 1). The intensity of 2D images was normalized, 
and the whole dataset was resized to 256 × 256 matrix 
size for efficient segmentation.

Network architecture
We implemented a 2D deep residual neural network for 
semantic segmentation of 2D projections in PyTorch 
[24]. A modified 2D version of a previous deep residual 
neural network including 20 convolutional layers was 
implemented [25]. Different feature levels were extracted 
by the dilation factor concept, where each two layers 
were connected using a residual connection. The data 
were split into train (80%) and external validation sets 
(20%) for each center and scanner to include images from 
all the databases in the training and validation group. The 
external validation group remained untouched during the 
training. The body fine-tuning approach was employed to 
transfer the weights from the network trained on 16′600 
AP projections to a new network to be fine-tuned by the 
real scout views.

Scout‑view preparation and training
The AP localizer images were collected for patients in 
center C9, and the same procedure for lung segmentation 
was implemented on axial slices. The 3D lung segments 
were transferred to the scout-view (localizer) by imple-
menting image distortion due to magnification on 3D 
lung segments. The total of 3243 AP localizers were split 
into 70% (2270 cases) train, 10% (325 cases) validation, 
and 20% (648 cases) test sets. The error in the determina-
tion of superior and inferior lung boundaries was evalu-
ated as performed on the projections.

Personalized dosimetry
To estimate personalized organ absorbed dose from 
chest CT scans, we adopted a habitus-specific organ-
level dosimetry approach. This approach deployed sets 
of pre-calculated organ-level dose tables based on a 
computational phantom library, by considering the scan 

parameters, adoption of the phantom to the patient size 
and  CTDIvol the organ doses are close to a personalized 
parameter [26]. In this regard, patient-specific anatomical 
metrics along with acquisition parameters were extracted 
from DICOM CT images. Age, sex, and effective diam-
eter ( Deff =

√
DLat × DAP  ) representing individualized 

anatomical features, tube voltage, effective tube current–
time product (mAs/pitch factor), scanner model, and 
 CTDIvol were fed to the ImPactDose software (CT Imag-
ing GmbH, Germany) to estimate patient organ absorbed 
doses associated with CT examination [27]. To address 
the dosimetric impact of vendor-specific x-ray beam 
quality, normalized  CTDIvol  (CTDIvol/100 mAs) was 
introduced into ImPactDose. Since organ dose variations 
pertinent to scanner-specific simulation parameters are 
approximately the same as variations in scanner-specific 
 CTDIvol [28–30], we considered the  CTDIvol as scanner 
specific parameter in our calculations. DICOM images 
of the online databases were anonymized and essential 
information for dose calculation was missing. As shown 
in Table 2, the tube current was available for the RSNA 
(D3) database. Hence, we excluded databases of D1 and 
D2 from dose calculations. As such, dose calculation was 
performed for 19,198 patients to assess the additional 
dose due to overscanning. Besides, the radiation dose 
was calculated for 3840 patients consisting the external 
validation group. Because of missing gender information 
for the D3 dataset, in estimating the dose for D3 cases, 
organ and effective doses were calculated considering 
both genders, and the average value reported.

Scan range selection
For dose calculation, three scan range selection scenarios 
were considered:

 (i) Assuming exact scan range selection for total lung 
coverage without losing anything and without any 
overscanning. The scan range was selected accord-
ing to the lung mask obtained from 3D images.

 (ii) The actual scan range selected by the technologist 
during the CT examination.

 (iii) Selecting the scan range based on 2D lung mask 
obtained from the neural network model on 2D 
segmentation after post-processing. The post-pro-
cessing was performed only to remove segmented 
regions with less than a certain number of pixels 
while keeping the largest segment.

The lung position in the Z-direction for the ORNL 
phantom was extracted from the ImPactDose software 
user manual. The scan range in the superior and inferior 
parts of the lung recorded for the second and third sce-
narios was normalized according to the lung length of 
the patient and the phantom. TCM was considered for 
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more accurate dose calculation. Hence, the tube current 
recorded in the DICOM header for each slice was aver-
aged for the lung, superior, and inferior scan regions [31]. 
Size-specific dose estimate (SSDE) and effective diameter 
were calculated using the conversion factors reported 
in the AAPM report 220 [32]. The dose length product 
(DLP) was defined as the product of  CTDIvol and the scan 
range in each scenario. Radiation dose calculations were 
performed for 3840 patients constituting the external 
validation group (D1 and D2 were excluded) according to 
the three scenarios considering the ICRP 103 weighting 
factors [33]. Organ doses and ED were reported. For the 
above mentioned databases (D1 and D2), only the scan 
length was indicated.

The organ doses and ED due to overscanning in the 
superior and inferior directions selected by the opera-
tor for all 19,198 patients were calculated. The additional 
radiation dose due to scanning regions other than the 
lungs in both directions was estimated for all patients. 
The data were entered to ImPactDose in comma-sep-
arated value (CSV) format and the output saved for all 
patients. The ORNL phantom available in the software 
was modified according to the patient’s lateral and AP 
diameters.

Statistical analysis
We used SPSS software for statistical analysis. We 
employed the Kolmogorov–Smirnov test for the assess-
ment of normal distribution. For evaluation of the dif-
ferences between genders, direction, and scenarios, the 
Mann–Whitney test was employed. Spearman test was 
used to analyse the correlation between parameters and 
p-value < 0.05 was considered as threshold for statistically 
significant difference.

Results
Table 1 summarizes the demographic information of the 
studied population consisting of gender, patients’ AP 
and Lat dimeters, CT acquisition parameters, and indi-
vidualized dose indices. A statistically significant corre-
lation between the patient diameter and overscanning 
was observed. Overscanning occurred in 99% and 95% of 
the cases in the superior and inferior directions, respec-
tively. Moreover, the extent of overscanning in the infe-
rior direction was significantly larger (p < 0.001). Table 2 
summarizes the additional radiation dose delivered to 
patients due to overscanning in clinical setting for the 
whole dataset (19,198 cases). As shown in Tables  1 and 
2, there is noticeable variability among centers, either in 
terms of overscanning range or ED, while the additional 
radiation dose from inferior overscanning is more than 
superior overscanning. The magnitude of actual over-
scanning was larger in female patients (p < 0.001). In 
addition, there was a positive correlation between over-
scanning and patients’ age (p < 0.05).

Figure 3 shows the additional radiation dose burden in 
terms of total-body effective dose to patients due to over-
scanning in both directions.

Deep learning network performance evaluation
The average Dice factor for the external validation set 
consisting of 4220 patients (projections) was 0.96 ± 0.016 
(Q1 = 0.95, Q3 = 0.981, max = 0.993) and 0.97 ± 0.02 
(Q1 = 0.97, Q3 = 0.985, max 0.995) for AP and lateral pro-
jections, respectively. In addition, the Dice factor for 648 
localizer images was 0.92 ± 0.03(Q1 = 0.90, Q3 = 0.95, 
max 0.97). Figure  4 presents the scan range selected by 
the operator (Human) and ranges selected based on AP, 
lateral, and both projections, where the zero-reference 

Table 2 The additional effective dose delivered to patients due to overscanning in superior and inferior directions in the different 
centers (mSv)

Additional ED superior (mSv) Additional ED inferior (mSv)

Database Mean ± STD min Q1 Q3 Max Mean STD Min Q1 Q3 Max

C1 0.92 ± 0.28 0.18 0.88 1.10 1.91 2.08 0.55 0.51 1.90 2.43 3.41

C2 0.17 ± 0.17 0.02 0.04 0.24 0.80 0.33 0.34 0.04 0.10 0.47 3.71

C3 0.28 ± 0.07 0.15 0.22 0.34 0.57 0.77 0.24 0.39 0.58 0.91 1.65

C4 1.17 ± 0.40 0.07 0.90 1.35 3.35 2.13 0.59 0.19 1.74 2.43 5.34

C5 1.21 ± 0.44 0.31 0.92 1.40 3.31 2.24 0.69 0.84 1.77 2.53 5.16

C6 0.88 ± 0.29 0.10 0.67 1.03 1.96 1.55 0.44 0.37 1.24 1.80 3.12

C7 2.62 ± 0.71 0.60 1.99 3.09 5.51 4.29 0.83 1.33 3.65 4.81 7.94

C8 0.66 ± 0.36 0.05 0.42 0.78 2.68 1.24 0.68 0.13 0.78 1.46 5.41

C9 1.93 ± 0.65 0.10 1.45 2.51 3.92 2.87 0.71 0.00 2.39 3.43 5.18

C10 0.42 ± 0.37 0.07 0.21 0.51 2.93 1.00 0.60 0.22 0.61 1.18 5.61

D3 0.65 ± 0.56 0.10 0.39 0.77 8.05 2.33 1.25 0.46 1.56 2.77 14.80
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Fig. 3 Additional radiation dose in terms for selected organs (in mGy) and effective dose (in mSv) due to overscanning in superior (left) and inferior 
(right)
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Fig. 4 Error from the desired exact lung coverage in the superior (bottom) and inferior (top) directions according to the technologist (Human) 
performance and DL approach based on AP, lateral, and both projections for different categories of datasets
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line is related to exact lung coverage without missing 
anything. The error averaged over all 4220 external cases 
was 0.08 ± 1.46 and − 1.5 ± 4.1 mm in superior and infe-
rior directions, respectively. As presented in Table 3, the 
error was significantly larger in the inferior direction. 
The lateral projection-based scan range selection led to 
less absolute error in the inferior direction, which was 
not statistically significant (p = 0.32). However, for supe-
rior range selection, the absolute error was less based on 
the AP projection (p < 0.001). The details of scan ranges 
are presented in Table 2. The DL scan range error is sig-
nificantly lower than human performance (p < 0.001). 
The DL method performance was excellent in superior 
delimitation for all centers and significantly better than 
the human selected range in the inferior direction, e.g., in 
C3 and D2 databases, the DL-based error is almost zero 
while the errors are 55 and 40 mm for human selection. 
The error for scout-view scan range selection was signifi-
cantly less than human selection in the same C9 center 
and was comparable with external validation results for 
AP projections generated by averaging.

Figure  5 illustrates some challenging cases with good 
agreement between DL and ground truth segmentation 
presenting with severe pathologic conditions, such as 
extensive pneumonia or collapsed lung(s), patients with 
inappropriate positioning, or overweight patients. As can 
be seen, the lung tissues were accurately distinguished. 
Additional file  1: Fig.  1 shows the performance of the 

deep neural network compared to human range selection 
for the outlier cases. Additional file 2: Fig. 2 shows sam-
ple images from the outlier group.

Radiation dose estimates
Table 4 summarizes the selected average organ doses and 
ED resulting from three scan range selection scenarios. 
The ED and all out of lung field organ doses were sig-
nificantly lower for the DL scan range compared to the 
human selected range (p < 0.001). The radiation dose was 
reduced for the thyroid, spleen, salivary glands, liver, 
adrenal, and oral mucosa by 58.2%, 60%, 94%, 47%, 45%, 
and 71%, respectively. Moreover, a 21% (1.3  mSv) dose 
reduction in terms of total body ED was achieved.

Figure 6 presents the tube current pattern for a female 
patient. The yellow highlighted region shows the lung 
region based on the 3D image. The tube current pattern 
(black line) shows increased tube current in the cranio-
caudal or Z-axis direction in body parts with more atten-
uation due to bony structures, larger diameter or both.

Figure 7 presents the lung segments on AP scout view 
images and their position on the 3D image for two dif-
ferent patients. As can be seen, the lung segment is very 
narrow in the lung’s inferior parts, while the condition 
can be different in the central parts far from costophrenic 
angles. The first study (upper row) shows a patient in 
which a narrow lung segment is extended to the infe-
rior parts while in the second one (lower row), the lung 

Table 3 The error and difference between the lung segment and the scan range selected by the technologist (Human) and DL 
network

The bolded cells reflect the results of delimitation by means of AP projections for the same centers where APscout-views

The negative values indicate missing the lung, whereas the positive values indicate overscanning. The last row is for the results of fine-tuning the network on AP 
scout-view images for center C9

Center Superior error (mm) Inferior error (mm)

Human Deep AP Deep Lateral Deep Both Human Deep AP Deep Lateral Beep Both

C1 16.9 ± 7.9  − 0.3 ± 1.7 0.7 ± 2.2  − 0.1 ± 1.0 41.7 ± 35.5 2.3 ± 9.5  − 2.46 ± 9.9  − 1.5 ± 5.5

C2 6.3 ± 2.2  − 0.1 ± 0.5  − 0.1 ± 0.6  − 0.1 ± 0.3 5.3 ± 4.5 0.4 ± 1.6  − 0.54 ± 0.8  − 0.1 ± 0.6

C3 33.3 ± 19.7  − 0.3 ± 3.4  − 0.6 ± 3.8 0.1 ± 1.9 55.2 ± 32.7 0.0 ± 10.7  − 7.36 ± 10.2  − 2.4 ± 6.8

C4 29.2 ± 11.6 0.0 ± 2.2  − 0.2 ± 2.6  − 0.1 ± 1.5 34.2 ± 22.3 1.0 ± 8.5  − 3.06 ± 6.8  − 1.5 ± 4.8

C5 26.2 ± 12.6 0.4 ± 2.2 1.0 ± 3.0 0.3 ± 1.8 43.7 ± 22.6 3.8 ± 9.3  − 1.96 ± 7.0  − 0.2 ± 4.3

C6 33.1 ± 12.9  − 0.3 ± 2.6  − 0.8 ± 2.9  − 0.5 ± 1.7 41.3 ± 21.1 2.3 ± 10.7  − 3.06 ± 5.5  − 1.3 ± 3.9

C7 29.6 ± 10.3  − 0.1 ± 2.7 0.4 ± 2.9 0.1 ± 1.9 34.8 ± 23.6 0.3 ± 7.5  − 2.66 ± 5.4  − 1.8 ± 4.1

C8 21.7 ± 10.2 0.1 ± 2.5 0.5 ± 2.8 0.1 ± 1.7 22.1 ± 16.0 0.9 ± 5.7  − 3.76 ± 7.1  − 1.3 ± 3.0

C9 26.0 ± 9.2  − 0.4 ± 3.1  − 0.7 ± 3.7  − 0.3 ± 2.2 38.1 ± 21.0 3.8 ± 11.1  − 3.36 ± 6.9  − 0.9 ± 4.1

C10 23.7 ± 12.3  − 0.2 ± 1.7  − 0.3 ± 1.6  − 0.1 ± 0.9 39.7 ± 28.0 0.9 ± 7.4  − 2.06 ± 5.9  − 1.4 ± 2.9

D1 29.7 ± 13.4 0.3 ± 1.8 0.5 ± 2.1 0.2 ± 1.3 26.0 ± 19.8 0.3 ± 7.1  − 3.36 ± 5.9  − 1.1 ± 3.9

D2 36.1 ± 12.8  − 0.3 ± 2.5 0.2 ± 3.9  − 0.2 ± 1.5 40.8 ± 24.8 0.3 ± 7.4  − 3.26 ± 6.1  − 1.3 ± 3.8

D3 21.9 ± 10.4  − 0.2 ± 1.6 0.7 ± 2.5 0.0 ± 1.0 39.3 ± 38.2  − 1.2 ± 08  − 2.96 ± 11.3  − 2.0 ± 4.4

C9-Scout view 26.0 ± 9.2  − 0.7 ± 4.08 38.1 ± 21.0 0.01 ± 14.97
C8-Scout view 21.7 ± 10.2  − 1.0 ± 3.20 38.1 ± 21.0 0.0 ± 9.40
C4-Scout view 29.2 ± 11.6 0.3 ± 5.80 34.2 ± 22.3 0.1 ± 10.60
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segment is limited to the region shown on the AP scout 
view image. The colored segment shows the thickness of 
the lung, where the red color stands for a thicker and the 
blue color for a narrower lung segment. ("JET" color map 
lookup table).

Discussion
Overscanning owing to issues linked to scan range delim-
itation has been noticed not only in chest CT but also 
in the abdomen and other body regions[34, 35]. Follow-
ing the COVID-19 pandemic, the number of chest CT 
examinations has dramatically increased, which will have 
an undeniable impact on public medical exposure [36]. In 
this work, we investigated the incidence rate and extent of 
overscanning as well as its associated dosimetric impact. 
We evaluated a large-scale database composed of 20,820 
patients from multiple centres and scanner models con-
sisting of patients presenting with different pathologies to 
build a robust model for automatic scan range selection. 
A deep learning-assisted segmentation of the lungs was 
adopted to enable choosing the exact scan range to opti-
mize patients’ radiation dose associated with CT exami-
nations [17]. We evaluated our methodology in terms of 

accuracy in range selection and radiation dose reduction. 
In addition, since the geometry and image quality of the 
scout-view images differ from CT spiral images, the gen-
eralizability of the proposed method in clinical setting 
was demonstrated by transferring and fine-tuning the 
trained network on AP projections to scout view images 
collected from one of the datasets.

Overscanning occurred in most cases (more than 95%), 
and the length of overscanning was more considerable 
in the inferior direction, which led to more contribu-
tion in patient dose, consistent with observations made 
in previous works [6, 7, 37]. The frequency of incidence 
and length of overscanning depends on the criteria based 
on which overscanning is defined. Demircioglu et al. [16] 
considered 10  mm tolerance range, while Cohen et  al. 
[9] accepted overscanning less than 2  cm. Conversely, 
Yar et al. [6] defined the exact lung coverage as the ideal 
scan range. The vague anatomy of the lower margins and 
costophrenic angles, especially in patients with patholo-
gies, overweight bodies, or additional devices on the 
body, such as respiratory aid devices, makes it more dif-
ficult, which may cause errors in distinguishing the exact 
border on the localizer image. Besides, the pressure on 

Fig. 5 Examples of segmentation by the DL model in challenging cases. From the left to right: the projection image, the ground truth 
segmentation, the output of the DL network segmentation, the segmentation after post-processing. The upper row is for AP, whereas the lower row 
is for the lateral view. The error (Dice) for AP and lateral views are reported in the bottom of each panel. The line (green) shows the desired exact 
lung boundaries in the inferior and superior directions
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the technologists to avoid excluding parts of the lungs 
and missing any essential diagnostic information might 
force them to select a lower larger limit in the inferior 
direction.

Significant positive correlations with patients’ size 
and overscanning length were observed in scan ranges 
selected either by the operator (Human) or DL segmen-
tation, i.e., the error was higher in patients with larger 
bodies (p < 0.001). Previous studies reported a similar 
correlation with the body mass index (BMI) or the thick-
ness of subcutaneous fat [6, 9, 38].

The estimated organ doses revealed that some organs, 
such as the thyroid, liver, and gall bladder, which can be 
excluded in the chest scan range, receive unjustified and 
non-optimized radiation doses. In this study, we reported 
67% (3.12  mSv) additional radiation dose to thyroid 
between Schwartz et  al. [8] (0.35  mSv) and Zanca et  al. 
[7] (5.1  mSv, 99%) studies. Overscanning was signifi-
cantly more frequent in older patients in both directions. 
Yar et  al. reported a positive and negative correlation 
with patient’s age for overscanning in inferior and supe-
rior directions, respectively [6]. Contrary to Cohen et al., 
our results seem to indicate that overscanning was more 
frequent in female patients [9].

Fig. 6 Tube current pattern (black line—mA) in the craniocaudal 
(left to right) direction. The yellow box indicates the lung segment 
boundaries

Fig. 7 Display of the axial CT image and the segmented lungs (left), AP scout view (middle) and the segmented lung overlaid on the AP scout view 
(right) for two clinical studies. The red line indicates the desired scan limit in the inferior direction. The colored segments show the thickness of the 
lung segment in any region, where the red and blue colors stand for the thicker and narrower lung segments, respectively
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The tube current pattern in the craniocaudal direction 
strongly depends on patient’s body habitus and scanning 
parameters [39]. As presented in Fig. 6, due to the pres-
ence of bony structures in the superior direction and 
belly shape variations, the TCM system might affect the 
organ doses. Liao et al. reported that higher DLP values 
caused by overscanning are obtained when TCM is acti-
vated (20% vs. 56%) [38]. We used separately averaged 
tube currents for each range selection scenario to yield 
more realistic results. This critical issue was overlooked 
in previous studies.

One of the strengths of our adopted methodology is 
that the ground truth is accurately defined based on 
3D axial CT slices, similar to the study conducted by 
Schwartz et  al. [8], though our pipeline was fully auto-
mated. The advantage of this approach is that it does not 
miss any slice containing a small lung segment, which 
might happen on the localizer images, even for an expe-
rienced technologist. Figure 7 shows an example of lung 
shape in this region and the appearance on the localizer. 
The narrow lung segments in the most inferior parts are 
not recognizable owing to low contribution to photon 
attenuation and low contrast. In complicated cases, even 
an experienced radiologist might have doubts regarding 
the lower limit and accept overscanning to avoid missing 
anything that might cause misdiagnosis. This fact is over-
looked in previous studies pertaining to automatic scan 
range selection using machine learning [14, 16, 40, 41].

The recent study by Demircioglu et al. reported on the 
use of a cGAN network for automatic scan range selec-
tion on the localizer image for chest CT images [16]. 
The desired scan range selected by the radiologist was 
used as ground truth to train the network. While the 
positive error (overscanning) obtained by the network 
compared with ground truth was considered correct 
range selection. In comparing the scan range chosen by 
the radiologist and the correct lung slice located on 3D 
axial images, there were 16.6 ± 17.3  mm (superior) and 
22.7 ± 16.5  mm (inferior) differences between them. At 
the same time, they used the radiologist’s segment, which 
was prone to error, as ground truth for training the net-
work and gained the average error equal to 1.8 ± 1.9 mm 
and 3.3 ± 5.6  mm for superior and inferior directions, 
respectively. An important conclusion of this work is that 
even two radiologists with 15 and 3 years of experience 
operating in rather calm conditions in the framework of a 
research project far from the pressure of clinical routine 
were not able to define accurately the scan range on the 
localizer image. This fact suggests the critical need for 
automated scan range detection algorithms.

The study of Huo et al. [40] employed a UNET network 
and reported − 1.68 ± 1.69% and 2.54 ± 2.31% error in 
superior and inferior directions, which can be equal to 

4.2 ± 4.22 mm and 6.35 ± 5.75 mm in superior and infe-
rior directions, respectively. Our proposed method out-
performed available methods by yielding errors less than 
2.5 mm and 1 mm in the inferior and superior directions, 
respectively.

The Dice and average range selection accuracy were 
much better when considering the lateral localizer. 
Using both AP and lateral localizers produce more reli-
able results as reported by Schwartz et al. [8], where they 
excluded patients with severe pathologies. We calculated 
the ED due to an AP localizer by the same margins cover-
ing the upper and lower boundaries of the thorax region. 
The EDs for routine clinical scenario was less than 
0.05  mSv per view. It appears an acceptable practice to 
afford the radiation dose of an extra localizer by acquir-
ing both AP and lateral localizers to prevent significant 
radiation dose to patients from overscanning. The main 
limitation of this study was the generation of the localizer 
from axial CT slices.

It was concluded that the generalizability of the model 
strongly depends on the vendor of the CT scanner. Since 
each manufacturer has specific filters and image process-
ing on the scout-view images, the pixel value for scout-
view images are not quantitative and standardized as 
reported previously [41, 42]. To this end, we propose to 
fine-tune our trained core model for each vendor. We 
performed the fine tuning on two vendors including Phil-
lips and Siemens Healthcare. The trained network on Sie-
mens Emotion scanner produced reliable results on other 
Siemens Somatom models.

However, by testing the trained model after fine-tun-
ing, our results showed that the trained model could be 
transferred to real localizer images using transfer learn-
ing. As shown in Table 3, the pattern of errors is almost 
the same, while the standard deviation of errors is larger 
(14 vs 11 mm). Yet, the model is reproducible as proven 
by the sample size used for training (16,600 vs. 2595 
cases). In addition, the perceived resolution of projection 
images in the cranio-caudal direction was limited by the 
slice thickness of spiral acquisition (1 to 8 mm), while the 
resolution of scout-view images was 1 or 2 mm. Another 
factor that makes the error more significant in the scout-
view scan range delimitation is the difference in respira-
tory phases during the scout view and the spiral CT scan. 
This can be easily overcome by acquiring the scout-view 
in the same respiratory phase (routinely end-inspiration 
breath-hold) as the spiral. The developed methodology 
can be directly implemented on the main imaging con-
sole for different manufacturers to show the selected scan 
range for axial image acquisition, as a support tool for 
the technologist. The performance is vendor-dependent 
and the trained network could be an additional software 
linked to the acquisition software which provides only 
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the superior and inferior desired Z value (pixel or slice 
location) to the technologist.

Conclusion
Overscanning causes noticeable unnecessary radiation 
dose to patients undergoing chest CT examinations. 
This work proposed a deep learning-based scan range 
selection from the scout scan to eliminate common 
occurrence of overscanning in chest CT imaging by radi-
ologists/operators. The proposed approach was devel-
oped and evaluated on a large variety of chest CT images 
presenting with different pathologies, acquired at diverse 
centers, on various scanners, using different acquisition 
parameters. The proposed automated deep learning-
based scan range selection minimizes the noticeable 
extra radiation dose by excluding unjustified body parts 
from the CT scan range.
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