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RESEARCH Open Access

Performance of binary prediction models in
high-correlation low-dimensional settings: a
comparison of methods
Artuur M. Leeuwenberg1* , Maarten van Smeden1, Johannes A. Langendijk2, Arjen van der Schaaf2,
Murielle E. Mauer3, Karel G. M. Moons1, Johannes B. Reitsma1 and Ewoud Schuit1

Abstract

Background: Clinical prediction models are developed widely across medical disciplines. When predictors in such
models are highly collinear, unexpected or spurious predictor-outcome associations may occur, thereby potentially
reducing face-validity of the prediction model. Collinearity can be dealt with by exclusion of collinear predictors,
but when there is no a priori motivation (besides collinearity) to include or exclude specific predictors, such an
approach is arbitrary and possibly inappropriate.

Methods: We compare different methods to address collinearity, including shrinkage, dimensionality reduction, and
constrained optimization. The effectiveness of these methods is illustrated via simulations.

Results: In the conducted simulations, no effect of collinearity was observed on predictive outcomes (AUC, R2,
Intercept, Slope) across methods. However, a negative effect of collinearity on the stability of predictor selection
was found, affecting all compared methods, but in particular methods that perform strong predictor selection (e.g.,
Lasso). Methods for which the included set of predictors remained most stable under increased collinearity were
Ridge, PCLR, LAELR, and Dropout.

Conclusions: Based on the results, we would recommend refraining from data-driven predictor selection
approaches in the presence of high collinearity, because of the increased instability of predictor selection, even in
relatively high events-per-variable settings. The selection of certain predictors over others may disproportionally
give the impression that included predictors have a stronger association with the outcome than excluded
predictors.

Keywords: Multi-collinearity, Prediction models, Normal-tissue complication probability models

Background
Multi-collinearity between predictors is a common
phenomenon in clinical prediction modeling, for ex-
ample, in prediction of Alzheimer’s disease from MRI
images [1], prediction of metabolic acidosis in laboring
women that had a high-risk singleton pregnancy in
cephalic presentation beyond 36 weeks of gestation [2],
prediction of lung function in children [3], and

prediction of complications of radiotherapy in cancer pa-
tients [4, 5]. Multi-collinearity is caused by dependence
between predictors
[6]. When collinearity among predictors is high, the

data in itself provides limited information on how the
explained variance in the outcome should be distributed
over the collinear predictor coefficients. In other words,
there is not just one model, but there are multiple ways
to assign coefficients that can predict the outcome in the
data used to develop the model (almost) equally well [7].
Consequently, model coefficients of collinear variables
generally show large variance (large standard errors)
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even in large data sets. Although this is generally not
considered problematic with regard to predictive per-
formance [8], it can result in unexpected coefficients for
individual predictors, reducing the face-validity of the
model in general, thereby potentially lowering the trust
of clinicians in the model and their willingness to apply
it in clinical practice [9, 10].
Two common methods to address collinearity are pre-

dictor selection, and predictor averaging. Both make
strong assumptions about the predictive value of the col-
linear predictors. Predictor selection assumes that the
excluded predictors have no added predictive value over
the predictors that are retained in the model with re-
spect to the outcome (essentially imposing coefficients
of zero). Predictor averaging assumes that the averaged
predictors have the same predictive relation to the out-
come (imposing exact equivalence of the coefficients). In
some cases, it is possible to convincingly motivate such
assumptions using prior clinical knowledge or by resort-
ing to data- driven approaches (e.g., backward selection).
However, finding evidence in the data for such strong
assumptions can be difficult, especially when collinearity
is high, and the outcome is only weakly associated with
the difference between collinear predictors. Therefore,
further research into more sophisticated methods to ad-
dress collinearity is needed.
This article is organized as follows: firstly, we describe

different methods for handling multi-collinearity. Sec-
ondly, we compare the described methods via simula-
tions in a case study on the development of models for
the prediction of complications of radiotherapy in cancer
patients, in terms of predictive performance, and in
terms of coefficient estimation, including the choice of
predictors in the final model. Lastly, we discuss and
summarize our conclusions.

Methods
Compared prediction methods
Penalization of large coefficients
We assume the interest is in a binary outcome (y) and
candidate predictors X. The aim is to estimate the risk
of y conditioned on the predictor values, P(y = 1|X). As
a base model, we assume standard logistic regression
(LR), estimated by maximizing the likelihood of the out-
come in the data used for model development. Mathem-
atical details of all compared methods are present in
Additional file 3.
In addition to the maximum likelihood of the outcome

in the development data, approaches like Lasso and
Ridge include the size of the model’s coefficients (ex-
cluding the Intercept) as an extra penalty for coefficient
estimation. Adding this penalty results in models with
smaller coefficients that make less extreme predictions
(closer to the outcome proportion). The penalty can also

reduce the variance in the estimated coefficients induced
by collinearity. Although Lasso and Ridge have similar
structure penalizing high regression coefficients, Ridge
was originally designed to address collinearity, and Lasso
to perform predictor selection in high-dimensional data.
Lasso penalizes large coefficients linearly, by extending
the cost function with the ℓ1-norm of the coefficients,
which generally results in predictor selection of the most
predictive features [11]. Ridge penalizes coefficient size
quadratically, resulting in a grouping effect of collinear
predictors, instead of selection [12]. In practice, the de-
sire to perform predictor selection may be independent
of the degree of collinearity present in the data, and ra-
ther to enhance usability of a more parsimonious predic-
tion model. To facilitate a balance between predictor
selection and grouping, the Elastic Net method was de-
veloped [13], which combines the penalties of Lasso and
Ridge.
Penalization of coefficient size is a popular method in

clinical prediction, aimed to improve predictive perform-
ance over maximum likelihood. Recent simulation studies
suggest these penalization approaches often improve the
predictive performance on average, but can show poor
performance in small and low-dimensional datasets [14].

Dropout regularization
Dropout regularization is a method aimed directly at re-
ducing co-adaptation of coefficients during model esti-
mation, and is widely used for regularization of neural
networks [15]. Co-adaptation refers to the degree to
which the value of one regression coefficient depends on
that of other coefficients. Dropout works in iterative
gradient-based training procedures, like the one used in
the current work (described in Additional file 3). When
using Dropout, at each (gradient-based) learning step, all
predictors have a non-zero probability δ to be dropped
from the model, effectively selecting a random sub-
model at each iteration. This selected sub-model is used
to make predictions as part of that learning step, and the
involved coefficients are updated accordingly. The coeffi-
cients selected at each step are updated independently of
the dropped-out predictors, preventing co-adaptation in
the final model. An alternative view to Dropout is to
consider it as an efficient approximation to taking the
mean over the predictions of an exponentially large set
of sub-models, without having to estimate all those
models individually.
Alternatively, Dropout can also be expressed as a pen-

alty, which for logistic regression models is most similar
to Ridge regularization, and includes a quadratic penalty
on the size of coefficients. In contrast to Ridge, Dropout
does not assign the penalty uniformly across the predic-
tors. Dropout rewards infrequent predictors that enable
the model to make confident predictions (predicted risks

Leeuwenberg et al. Diagnostic and Prognostic Research             (2022) 6:1 Page 2 of 13



close to 0 or 1) whenever the predictor of interest is ac-
tive [16].

Dimensionality reduction
The multi-collinearity of predictors may be due to
shared dependence on a smaller set of unobserved
underlying variables, that could themselves be related to
the outcome. Principal component analysis (PCA) can
reduce the dimensionality of the original predictor space,
to obtain a smaller set of variables that explain (most of)
the variance in the original predictors, but is in itself un-
correlated. These uncorrelated variables, the principal
components, can be used as input to a logistic regression
model to relate them to the outcome. This combination
of PCA with logistic regression is called (incomplete)
principal component logistic regression (PCLR) [17–19].
With regard to the original model, the effect of using
PCLR is that predictors that correlate strongly, and are
thus likely related the same principal components, ob-
tain similar coefficients.
In this study, we focus on linear PCA as this gives the

possibility to rewrite the PCLR model to an equivalent
logistic model from the original predictors to the out-
come (details on this are given in Additional file 3). This
enables direct comparison of the coefficients with the
other methods, and reduces the importance of interpret-
ability of the principal components, as we can always ob-
serve the coefficients of each of the predictors in the
final model.
Linear autoencoders (LAE) are similar to PCA but do

not find the exact same projection as PCA. However,
their components span the same directions [20]. In con-
trast to PCA or LAE, which determine the components
based on the explained variance in the original predic-
tors irrespective of the outcome, we extend the training
criterion of LAE to find components that not only ex-
plain the variance of the original predictors but are also
predictive of the outcome (from now on referred to as
linear autoencoder logistic regression; LAELR). The rela-
tive importance of (1) explaining the variance in the pre-
dictors, and (2) maximizing the likelihood of the
outcome, is determined by an additional parameter that
(like the number of used components) needs to be
tuned. How to tune such parameters is discussed later in
the article. To summarize, LAELR can be seen as a com-
promise between PCLR and logistic regression (a more
detailed formulation can be found in Additional file 3).

Constrained optimization
Besides penalizing the absolute size of coefficients, as in
Lasso or Ridge, other penalties or criteria can be incor-
porated, possibly using knowledge from the clinical do-
main or setting. For example, in some cases, it may be
valid to assume a priori that it is unlikely that certain

predictors have a negative predictive relation with the
outcome (e.g., in the later described case study one
could assume that increasing radiation dosage to healthy
tissue does not reduce the risk of complications). En-
couraging the non-negativity (NN) of certain coeffi-
cients can be modeled by adding a penalty for
negative coefficient values to the maximum likelihood
criterion [21]. Alternatively, if the non-negativity con-
straints are to be respected at all times they can be
incorporated as hard constraints during the maximum
likelihood estimation of the model through, for ex-
ample, gradient projection [22].
If the additional assumptions based on domain know-

ledge are correct and complementary to the information
already present in the training data, incorporating them
can reduce the coefficients’ search space. This may pre-
vent selection of implausible models that satisfy max-
imum likelihood but are in fact inconsistent with clinical
knowledge, and consequently reduce the coefficient vari-
ance due to multi-collinearity.

Motivating example
Clinical background
Cancer patients receiving radiation therapy often experi-
ence complications after the therapy due to radiation
damage to healthy tissue surrounding the tumor. For ex-
ample, common complications for head and neck cancer
patients are xerostomia (decreased salivary flow resulting
in dry mouth syndrome), or dysphagia (swallowing prob-
lems). Prediction models, called normal-tissue complica-
tion probability (NTCP) models, are used to predict the
risk for individual patients of developing complications
after radiation-based therapy, based on patient, disease,
and treatment characteristics including the dose distri-
butions given to the healthy tissue surrounding the
tumor, the so-called organs at risk (OAR) [23–25]. Be-
sides informing patients about the expected risks of
radiation-induced complications, NTCP models are clin-
ically used to guide treatment decisions by looking at
the difference in predicted risk of complications
(ΔNTCP) between treatment plans: sometimes by pair-
wise treatment plan comparison [26–28], but also for
complete treatment plan optimization [29, 30], where
the planned dosage is adjusted to minimize the risk of
complications, by minimizing the model-predicted
NTCP, while maintaining tumor control.

For this setting, proper handling of collinearity is cru-
cial, as in the process of treatment plan optimization un-
expected coefficients may result in steering dosage to
OAR that due to collinearity may not seem important
(e.g., if the estimated coefficients are zero or negative),
but in fact are associated with increased complication
risks.
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Simulation study
We planned and report the simulation study using the
ADEMP (Aims, Data-generating mechanisms, Esti-
mands, Methods, and Performance measures) strategy,
following Morris and colleagues [31].

Aims
The aims of this simulation study are to

i. Study the effect of collinearity on development of
clinical prediction models in terms of
discrimination, calibration, and coefficient
estimation in low dimensional settings (the number
of predictors is smaller than the number of events).

ii. Compare the effectiveness of eight methods in
handling the potentially negative effects of
collinearity (logistic regression, Lasso, Ridge,
ElasticNet, PCLR, LAELR, Dropout, and non-
negativity-based constrained optimization).

Data-generating mechanisms
The simulations are based on four prediction modeling
settings: mimicking two outcomes in our motivating ex-
ample (xerostomia and dysphagia), and two predictor
sets per outcome: a smaller predictor set with less collin-
earity, where the given radiation is only indicated by the
mean dose per OAR, and a larger predictor set with
higher collinearity, where more detailed dose-volume
predictors are added as well1. These four initial settings
are in Table 1: A and C for the settings with small pre-
dictor sets, and B△ and D△ for the larger predictor sets.
For these four settings, predictor data were simulated
from a m ulti-variate normal distribution, using the
means and covariance matrix of the observed predictors
of 740 head-and-neck patients (with primary tumor lo-
cations: pharynx, larynx, or the oral cavity) that under-
went radiotherapy at the University Medical Center
Groningen (UMCG), and were selected for having no
missing data in the predictors or outcome. In simula-
tions, to establish a ground-truth relation between pre-
dictors and outcome one often sees that all logistic
regression coefficients are fixed to a certain constant
(say, a log odds ratio of 0.2 ). Here, to establish realistic
regression coefficients of the data generating model, the
simulated ground-truth relation between predictors and
outcome is constructed by fitting a logistic regression
with Ridge penalization on the corresponding real data
from our motivating example2. These regression coeffi-
cients are then used to generate our simulation study

data to which the compared methods are fit, and are the
reference coefficients (ground-truth) for assessing the
coefficient estimation quality of the compared methods.
To study the effect of collinearity independently of the

number of predictors and the number of events-per-
variable (EPV), we generated another four simulation
settings: for each setting with a large predictor set that
inherently exhibits high collinearity (B△ and D△) we gen-
erate3 low-collin earity variants (B and D respectively),
and for each setting with a small predictor set that in-
herently exhibits a lower degree of collinearity (A and C)
we generate high-collinearity variants (A△ and C△ re-
spectively). Finally, we end up with a total of eight simu-
lation settings, for which four pair-wise comparisons can
be made to assess the effect of collinearity.
To assess to what degree the simulation is accurate for

the actual clinical prediction modeling problem, we com-
pare the results of the simulation to a comparable real-
data setting. These real-data experiments are indicated by
a star (∗) in Table 1 and have the same modeling charac-
teristics as the corresponding simul ations: the same pre-
dictor covariance, outcome prevalence, and sample size
[32].

Estimators/target of analysis
We quantify collinearity by the median variance inflation
factor (VIF). The VIF of a predictor reflects the relative in-
crease in coefficient variance for that predictor due to the
presence of other predictors. A VIF of 1 indicates absence

Table 1 Eight simulation settings that are evaluated for each
method. The sub-scripted triangle (△) is used to indicate high
collinearity settings. The star (*) refers to the real-data version of
a simulated setting

Setting y N No. predictors EPV Median VIF

A/A* Xerostomia 592 7 23 5

A△ Xerostomia 592 7 23 43

B Xerostomia 592 19 8 5

B△/B△* Xerostomia 592 19 8 43

C/C* Dysphagia 592 13 6 7

C△ Dysphagia 592 13 6 43

D Dysphagia 592 43 2 7

D△/D△* Dysphagia 592 43 2 43

1More detailed descriptions of the used predictor sets are given in
Additional file 2.
2In a 5-fold cross validation on the real data, Ridge yielded good results
in terms of calibration and discrimination, but also included the largest
proportion OAR in the model (relevant for this case study).

3We change the degree of collinearity by scaling the covariance matrix
of the multi-variate Gaussian (without changing the diagonal). In doing
so, the degree of class separation and the outcome prevalence of the
ground-truth model may change. To maintain the same degree of class
separation in the data, we scale the slope of the ground-truth model.
Additionally, to maintain the same outcome prevalence, we adjusted
the ground-truth intercept accordingly. This way, we change the de-
gree of collinearity, but maintain ground-truth area under the receiver
operator curve, and outcome prevalence.
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of collinearity, whereas a VIF larger than 10 is often con-
sidered to reflect a high degree of collinearity [33].

Application of the methods
Besides standard logistic regression (LR), we compare all
methods discussed in the previous section: Lasso, Ridge,
ElasticNet, PCLR, LAELR, Dropout, and LRNN (the use
of non-negativity constraints for dosage coefficients
through gradient projection). These are listed in Table 2.
For a fair comparison, we perform equal hyperpara-

meter4 tuning across methods. For all models, we tune
hyperparameters using Bayesian optimization [34] in a
(nested) 3-fold cross-validation setting, with a log-
likelihood tuning criterion. As general data preprocess-
ing we standardize all predictors to have zero-mean and
unit variance. More details about the exact training cri-
teria for each method, hyperparameter tuning, and
optimization [35–37] can be found in Additional file 3.

Performance measures
We analyze our aims with regard to the measures stated
in Table 3. We use four measures to evaluate different
aspects of prediction model performance: the area under
the receiver-operator characteristic curve (AUC) mea-
sures how well the prediction model ranks patients
based on their predicted risks in relation to the observed
outcomes. An AUC of 1 indicates that patients with the
outcome can be perfectly separated from patients with-
out the outcome based on their predicted risk, whereas
an AUC of 0.5 indicates that the ranking of patients is
arbitrary regarding their observed outcomes. Calibration
intercept (Intercept) quantifies how well the mean pre-
dicted risk corresponds to the overall observed outcome
prevalence. An Intercept of 0 indicates perfect corres-
pondence between mean predicted risk and the observed
outcome prevalence, while negative Intercept values in-
dicate general overestimation, and positive Intercept
values a general underestimation of predicted risk. Cali-
bration slope (CS) evaluates the extremity of the pre-
dicted risks, with a CS below 1 indicating too extreme
predictions (high-risk patients receive too high predicted
risks and low-risk patients receive too low predicted
risks), while CS above 1 indicate too conservative predic-
tions (biased towards the mean predicted risk). Nagelk-
erke R2 measures more generally how much of the
variation in the observed outcomes can be explained by
the model’s predictions. To measure the quality of the
estimated coefficients, we calculate their mean absolute
error (MAE) with the ground-truth coefficients. A less

explored measure we use is the expected proportion of
included coefficients that has the same direction of effect
(positive, negative, or zero) across two simulated model
construction repetitions (the mean Jaccard index of the
coefficient signs: MJICS, ranging from 0 to 1). This
measure is formally defined in Eq. 2, for arbitrary sam-
ples i and j, to assess the robustness of the coefficient in-
terpretation when developing a prediction model: we
consider methods that include5 the same predictors in
the model and assign the same directions of effect when
repeating the model construction process to be more ro-
bust than methods that include different coefficients or
assign different direction of effect across iterations.

MJICS ¼
sgn bθi

� �

∩ sgn bθ j

� ��

�

�

�

�

�

sgn bθi
� �

∪ sgn bθ j

� ��

�

�

�

�

�

ð1Þ

sgn xð Þ ¼
−1 iff x < −0:01
1 iff x > 0:01
0 otherwise

8

<

:

ð2Þ

All measures are estimated by repeatedly sampling
(nrep. = 100) a new dataset from the constructed Gauss-
ian distributions, refitting all models in each dataset, and
evaluating them in a validation set generated from the
same distributions as the development set of size N =
10,000. The reported 95% confidence intervals are based

Table 2 List of compared methods

Method Abbreviation Hyperparameters

Logistic regression LR –

Lasso penalization Lasso λℓ1 (penalty importance)

Ridge penalization Ridge λℓ2 (penalty importance)

Elastic Net penalization ElasticNet λℓ1, λℓ2 (importance per
penalty)

Dropout regularization Dropout δ (dropout ratio)

Principal component
logistic regression

PCLR dPCA (number of components)

Linear auto-encoder
logistic regression

LAELR dLAE (number of components)
λLAE (importance of
reconstruction loss)

Non-negative logistic
regression

LRNN –

4Parameters that are not part of the model itself, but steer how the
coefficients are determined (e.g., the relative importance of the
shrinkage penalty in Lasso and Ridge, or the number of components
for PCLR, among others).

5The maximum likelihood estimation procedure, for all models, rarely
estimated coefficients to be exactly 0. Considering its implementation
using 32-bit floats, returning 0 means 0.0000000, up to the 7th deci-
mal. By choosing the pragmatic threshold of 0.01 we aimed to discrim-
inate coefficients that positively contribute to risk (> 0.01), coefficients
having no practical contribution to risk (between − 0.01 and 0.01), or
coefficients having a negative contribution to risk (< − 0.01). This way,
we discriminate between coefficients of e.g., 0.3 and 0.000001, as we
believe the latter could in practice be considered excluded.
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on these repetitions, and reflect variability of the entire
model construction procedure: sampling training data, de-
veloping the model (including hyperparameter tuning),
and sampling a new validation set. For the real-data set-
tings, a repeated 5-fold cross validation (N = 592 per fold)
on the real data is used to estimate each measure, and
their respective confidence intervals (nrep. = 100) [38].

Coding and execution
All experiments were implemented in Python 3.6, pri-
marily using Scikit-learn [39] and PyTorch [40]. Predict-
ive performance measures are calculated in R 3.6.1,
using the val.prob.ci.2 function [41]. The computer code
used to conduct the experiments is available at https://
github.com/tuur/collinearity. The original patient data is
not available for patient privacy reasons.

Results
This section presents the simulation results with regard
to predictive performance and coefficient estimation.
Based on a comparison between our simulations and the
real-data experiments in terms of predictive performance
we concluded that the simulations are in accordance
with the real-data settings. Results of the real-data ex-
periments can be found in Additional file 1.

Predictive performance
Simulation results regarding calibration and discrimin-
ation are reported in Fig. 1 for the xerostomia settings
and in Fig. 2 for the dysphagia settings. We observed no
effects of collinearity on the predictive performance of
any of the compared methods: in terms of AUC, R2,
Intercept, Slope, nor the calibration plots (comparing A
with A△, and B with B△). Based on the calibration plots
in Fig. 1, we do observe a slight overall overestimation of
risk for LR compared to the other methods when ex-
tending the predictor set (comparing B to A, and B△ to
A△), probably due to the lower EPV.
We obtained similar results for the simulated dyspha-

gia settings, finding no effect (AUC, R2, Intercept, Slope)
of collinearity on predictive performance, and little to no

difference between the compared methods in any of the
performance measures (AUC, R2, Intercept, Slope).
Again, LR yielded worse calibration compared to the
other methods (irrespective of the degree of collinearity).
As expected, the difference between LR and the other
compared methods was largest in terms of both calibra-
tion and discrimination in the setting with the lowest
EPV (setting D, with an EPV of 2), indicating that LR
suffers most from overfitting.

Coefficient estimation
Observing the estimation of the regression coefficients
shown in Figs. 3 and 4, we found that in terms of MAE
between the estimated coefficients and the true coeffi-
cients, in both the higher and lower collinearity settings
LR had a higher MAE, followed by LRNN, in turn
followed by Lasso6. Ridge, ElasticNet, PCLR, LAELR,
and Dropout had lower MAE than LR, LRNN, and Lasso,
but did not differ among one another. Regarding the ef-
fect of collinearity, LR was the only method that showed
a higher MAE in the high collinearity settings, compared
to the lower collinearity settings.
When observing the stability of the predictor selection

(to what degree the same predictors were selected with
the same directions of effect when repeating the model
development process across simulations), observing Figs.
5 and 6, we found that in all settings, LRNN had less
stable predictor selection than the other methods,
followed by Lasso, LR, and ElasticNet. Ridge, Dropout,
LAELR, and PCLR had more stable predictor selection
than the formerly mentioned methods but showed no
consistent ranking among each other.
Regarding the effect of collinearity, LRNN, Lasso, and

LR were the only methods that showed a decrease in sta-
bility of predictor selection with an increase in collinear-
ity across all settings. In settings A and C, we did find a
negative effect of collinearity on selection stability also

Table 3 Overview of the measures used to compare methods on predictive performance and coefficient estimation

Measure Abbreviation Ideal value

Predictive performance

Area under the receiver-operator characteristic curve AUC 1

Calibration intercept Intercept 0

Calibration slope Slope 1

Nagelkerke R-squared R2 1

Coefficient estimation

Mean absolute error between the estimated and the true coefficients MAE 0

Mean proportion of coefficients with the same direction of effect after repetition MJICS 1

6We also analyzed these results us regarding mean squared error
(MSE) and found similar findings as for MAE. These results can be
found in [Additional file 6].
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for the other methods. However, in settings B and D, we
found even an increase in stability of predictor selection
for Ridge and ElasticNet, but no consistent effect for

Dropout, LAELR, and PCLR. Based on these results, we
conjecture that the effect of collinearity may be ex-
plained by two aspects. First, collinearity negatively

Fig. 1 Predictive performance results for the xerostomia simulations. Lowess-smoothed calibration curves per simulation are plotted in grey. The
calibration curve over all repetitions is shown in blue. Perfect calibration, the diagonal, is dashed in red
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affects the stability of maximum likelihood-based coeffi-
cient selection (reducing MJICS), due to the increased
variance in coefficient estimation. This can explain why
the negative effect remains present for LR and LRNN

across all settings: coefficient estimation for these
methods is purely likelihood based.
The second aspect is that of regularization, which

can—for some methods—have a stabilizing effect of

Fig. 2 Predictive performance results for the dysphagia simulations. Lowess-smoothed calibration curves per simulation are plotted in grey. The
calibration curve over all repetitions is shown in blue. Perfect calibration, the diagonal, is dashed in red
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coefficient selection. The degree of regularization is de-
termined by the hyperparameter tuning process, which
is indirectly impacted by the EPV: low EPV settings are
more likely to result in overfitting, and consequently ob-
tain a larger degree of regularization. High EPV settings
are less prone to overfitting and consequently obtain less
regularization. By observing the used degree of
regularization by each method in Figs. 7 and 8, it can be
noticed that less regularization is used in the low EPV
settings A and C, and coefficient estimation is more
driven by maximum likelihood compared to their high
EPV counterparts B and D7.
Ridge, Dropout, and ElasticNet all quadratically

penalize coefficient size, resulting in a grouping effect of
collinear predictors. When regularization is strong, and
collinearity is high, this constitutes a strong grouping ef-
fect, which in turn stimulates stable predictor selection.
For PCLR and LAELR, a larger degree of

regularization implies a heavier dependence on the prin-
cipal components that explain the variance among pre-
dictors. As collinearity increases, a smaller number of
components is required to explain the same amount of
variance among predictors. This can be directly observed
in Figs. 7(3) and 8(3), where for the large predictor sets
(B and D) hyperparameter tuning resulted in a smaller
number of components for PCLR and LAELR when col-
linearity was higher. This reliance on less components
can in turn result in more stable coefficient estimation.

For Lasso, and partially ElasticNet, more regularization
implies a stronger predictor selection effect, resulting in
smaller models. Stronger selection in itself decreases the
likelihood of (by chance) selecting the same coefficients
when developing the model on a different sample. We
conjecture that this is the reason why Lasso and LRNN

have low overall MJICS, independently of collinearity
compared to the other methods. Additionally, as Lasso’s
selection is likelihood-based, the negative impact of col-
linearity on predictor selection, as observed for LR and
LRNN, also affects Lasso. This can be observed by the re-
duction of MJICS in the high collinearity settings in Figs.
5 and 6.

Discussion
The current study investigated the effect of collinearity
on predictive performance and the stability of coefficient
estimation, comparing eight different methods in a
simulation study on the construction of prediction
models that estimate the risk on complications after
radiotherapy in head-and-neck cancer patients.
In this paper, we found little to no impact of collinear-

ity on predictive performance (discrimination and cali-
bration of the fitted models) across methods and
simulation settings. For standard logistic regression, and
methods that have a strong predictor selection effect
(Lasso, and non-negative logistic regression) the stability
of predictor selection was generally lower compared to
other methods, and was negatively influenced by collin-
earity across all simulations. We observed that, although
in high-EPV settings collinearity had a negative effect on
the stability of predictor selection across all methods, in
the lower-EPV settings, that consequently required a lar-
ger amount of regularization, the negative impact of col-
linearity on predictor selection stability was smaller for
methods that distribute the explained outcome variance

Fig. 3 Across models, the log mean absolute error between the estimated and the true coefficients for each method, for the xerostomia settings.
Red indicates high collinearity, and blue low collinearity.

7Notice that λℓ1, λℓ2, and λENet are shrinkage factors: higher values
indicate a larger degree of regularization. A larger degree of dropout
ratio δ indicates a larger degree of regularization. With regard to
PCLR and LAELR it is important to notice that the number of
components is only indicative of the degree of regularization within
the same predictor set: In Figs. 7(3) and 8(3), the larger number of
components in settings B and D in comparison to settings A and C do
not imply less regularization, as the original dimensions of B and D are
in itself much larger than that of A and C (19 and 43 compared to 7
and 13).
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more evenly across collinear predictors (Ridge, Elastic-
Net, Dropout, PCLR, and LAELR).
Harrell et al. [8] mentioned that when there is no dif-

ference in the degree of collinearity between develop-
ment and validation data, collinearity is generally not
considered a problem for predictive performance, but
can be problematic for reliable variable selection when
performing stepwise selection. This was also confirmed
by Cohen et al. [42], and later also by Dormann et al.
[43], who compared 23 methods (including various di-
mensionality reduction techniques and shrinkage-based
methods) to address collinearity in five simulated eco-
logical predictor-response relationships. The current
study findings are in line with these earlier works and
provide additional evidence to support this. An import-
ant note to make is that in low-dimensional settings
(where the number of predictors is smaller than the
number of samples) with correlating predictors earlier
work by Tibshirani et al. [11], Zou et al. [13], and Pavlou
et al. [44] empirically found that selection-based

approaches like Lasso yielded lower predictive perform-
ance compared to for example Ridge. The current study
did not find such a difference in predictive performance
between Lasso and Ridge in any of the eight settings.
Nevertheless, for addressing collinearity in clinical pre-

diction models, we would recommend refraining from
data-driven predictor selection approaches (like Lasso),
because of the increased instability of predictor selection
in the presence of collinearity, even in relatively high
EPV settings. Even though the individual coefficient
values are generally not of primary interest in prediction
modeling studies, the selection of certain predictors over
others may disproportionally give the impression that in-
cluded predictors have a stronger association with the
outcome than excluded predictors (e.g., when perform-
ing face validity checks by physicians with a model in
which some clinically viable predictors have been ex-
cluded due to collinearity).
There are several limitations that should be considered

when interpreting this study. Firstly, the current work

Fig. 5 Across models, the mean proportion of coefficients with the same direction of effect after repetition for the xerostomia settings. Red
indicates high collinearity, and blue low collinearity

Fig. 4 Across models, the log mean absolute error between the estimated and the true coefficients for each method, for the dysphagia settings.
Red indicates high collinearity, and blue low collinearity
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has focused only on low-dimensional settings and binary
logistic regression models. Future studies may evaluate
the effect of collinearity, for instance in settings with
multiple outcomes (e.g., multi-nomial regression). Fi-
nally, we focused on evaluation of predictive perform-
ance in the same population, under no change of
collinearity structure between the development and val-
idation data. Collinearity has been shown to have a
negative impact on performance under changes between
development and validation data, and is considered a dif-
ficult challenge to overcome, for which a good under-
standing of the underlying mechanism causing the
collinearity is crucial [43].
We believe that beside being able to anticipate how

harmful a change in collinearity between development
and validation data may be for predictive performance,
an interesting direction of future research is to study

how background knowledge about the underlying collin-
earity mechanism, can be used to adapt prediction
models accordingly.

Conclusions
When prediction models are developed on data with
high correlations among predictors, model coefficients
may inhibit large variance, possibly resulting in unex-
pected predictor-outcome associations. Comparing a
range of methods to address such variance in a simula-
tion study showed that the choice of method had little
impact on predictive performance. Nevertheless,
methods performing strong predictor selection (e.g.,
Lasso) showed increased instability in their selection
when collinearity was high, even in relatively high
events-per-variable settings, while predictor selection
stability of certain other methods (Ridge, PCLR, LAELR,

Fig. 7 Hyperparameter values for xerostomia: per predictor set, setting A being the small predictor set with high EPV (EPV = 23), and setting B
the large predictor set with lower EPV (EPV = 8). The high collinearity settings in red, and the low collinearity setting in blue. The methods are
distributed across three plots due to their different scales. Hyperparameter notation follows Table 2, except for λENet , which is the total shrinkage
factor for ElasticNet (λℓ1 +λℓ2 )

Fig. 6 Across models, the mean proportion of coefficients with the same direction of effect after repetition for the dysphagia settings. Red
indicates high collinearity, and blue low collinearity
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and Dropout) was more robust against changes in collin-
earity. Therefore, we recommend the use of Ridge,
PCLR, LAELR, or Dropout over the use of data-driven
predictor selection approaches in high-collinearity set-
tings, as resulting models may disproportionally give the
impression that included predictors have a stronger as-
sociation with the outcome than excluded predictors.
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