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Abstract
In the social and behavioral sciences, it is often not interesting to evaluate the null hypothesis by
means of a p-value. Researchers are often more interested in quantifying the evidence in the data (as
opposed to using p-values) with respect to their own expectations represented by equality and/or in-
equality constrained hypotheses (as opposed to the null hypothesis). This article proposes an Akaike-
type information criterion (AIC; Akaike, 1973, 1974) called the generalized order-restricted informa-
tion criterion approximation (GORICA) that evaluates (in)equality constrained hypotheses under a
very broad range of statistical models. The results of five simulation studies provide empirical evi-
dence showing that the performance of the GORICA on selecting the best hypothesis out of a set of
(in)equality constrained hypotheses is convincing. To illustrate the use of the GORICA, the expecta-
tions of researchers are investigated in a logistic regression, multilevel regression, and structural
equation model.

Translational Abstract
Evaluation of Inequality Constrained Hypotheses Using a Generalization of the AIC: Researchers are
interested in evaluating equality and/or inequality constrained hypotheses in the context not only of nor-
mal linear models, but also of the families outside of normal linear models using a suitable information
criterion. However, the available information criteria in the literature are not capable of evaluating (in)
equality constrained hypotheses under such a broad range of statistical models. The main aim of this pa-
per is to close this research gap by proposing a new information criterion named the GORICA which
can be utilized to evaluate these hypotheses for generalized linear (mixed) models and structural equa-
tion models. The GORICA enables researchers to quantify the evidence in the data for two or more (in)
equality constrained hypotheses. Like all the other information criteria, the GORICA has the log likeli-
hood and penalty parts. The superiority of the GORICA over the other information criteria lies behind
the use of a simple formula when calculating its log likelihood. We investigated the performance of the
GORICA on choosing the true hypothesis out of a set of competing hypotheses using simulation studies
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for logistic regression, multilevel regression, and structural equation model. The findings in these simu-
lation studies suggest that the GORICA has a convincing performance on choosing the true hypothesis.
The use of the GORICA is illustrated for (real) data sets in line with these simulation studies.

Keywords: AIC, Akaike weights, GORICA, (in)equality constrained hypotheses, model selection

Supplemental materials: https://doi.org/10.1037/met0000406.supp

The evaluation of the null hypothesis H0: “Nothing is going
on” and the alternative hypothesis Ha: “Something is going on
but I do not know what” by means of a p-value is controversial.
First, the null hypothesis is often not a reasonable representation
of the population of interest (Cohen, 1994). For example, it is
hard to come up with a population in which two means l1 and l2
are exactly equal, that is, H0 : l1 ¼ l2. In addition, Royall
(1997, pp. 79–81) elaborates that the null hypothesis can never
be accepted. For instance, failing to reject the null hypothesis
H0 : l1 ¼ l2 against hypothesis H1 : l1 > l2 essentially means
that hypothesis H1 is incorrect and not that the null hypothesis is
correct. Second, p-values cannot measure the evidence in the
data for H0 or any other hypothesis (Wagenmakers, 2007). After
rejecting the null hypothesis (e.g., p = .04), it is still not quantifi-
able to what degree the alternative hypothesis is better than the
null hypothesis.
In our opinion, such hypotheses should only be used if research-

ers think they provide a plausible description of the relations in the
population of interest. Clear cut examples for this can be found in
Wainer (1999) and Bem (2011). Beside these examples, when
there is a theory stating that the means of two groups are equal,
then this should be incorporated (but only then). Notably, in many
instances, we expect either order constraints or no constraints.
Evaluation of (in)equality constrained hypotheses, also called in-
formative hypotheses (Hoijtink, 2012) representing the research-
ers’ expectations may be more interesting for researchers than
evaluating null-hypotheses. To illustrate how to formulate (in)
equality constrained hypotheses, consider the study conducted on
a replication (N = 310) of the study in Nederhof et al. (2014), in
which 11-year-old participants are divided into three groups: 1 =
sustainers, 2 = shifters, and 3 = comparison group, based on their
performance on a sustained-attention task and on a shifting-set
task. The outcome depressive episode (D: 0 = no depressive epi-
sode, 1 = experienced an episode) is predicted by the categorical
variable early life stress (ES: 0 = low, 1 = high), the standardized
continuous variable recent stress, RS, and the interaction between
both predictors. The continuous variable RS is standardized because
of one main reason: to improve the interpretation of main effects
when interactions exist (Gelman, 2008). The resulting logistic regres-
sion model for group j and person i is:

f ðD̂jiÞ ¼ hj0 þ hj1RSji þ hj2ESji þ hj3RSjiESji; (1)

where f ð:Þ denotes the logit link function, hj0 denotes the intercept
for group j, and hj1; hj2; and hj3 are the group dependent coeffi-
cients of the values of the three predictors for j = 1, 2, 3 and
i ¼ 1; 2; . . . ;Nj, where Nj denotes the number of persons in group

j with
X3

j¼1
Nj ¼ N. Based on the values of variable ES, the

model in Equation 1 can be converted to:

f ðD̂jiÞ ¼ hj0 þ hj1RSji if ES ¼ 0 ðlowÞ
ðhj0 þ hj2Þ þ ðhj1 þ hj3ÞRSji if ES ¼ 1 ðhighÞ:

�
(2)

Our hypotheses of interest are based on the studies in Nederhof
and Schmidt (2012) and Nederhof et al. (2014). Both studies
investigate the relationship between stress and depression based
on the mismatch and cumulative stress expectations. The mis-
match expectation states that the risk of depression for adolescents
with low levels of early life stress increases with high recent stress
levels (i.e., hj1 > 0) while adolescents with high levels of early
life stress are not affected by high recent stress levels (i.e.,
hj1 þ hj3 ¼ 0). The cumulative stress expectation states that there
is no interaction between early and recent life stress (i.e., hj3 ¼ 0)
and that only the main effect of recent stress predicts depression
and, furthermore, that this relation is positive (i.e., hj1 > 0).

Based on the theory in Nederhof and Schmidt (2012), we for-
mulated together with the authors an (in)equality constrained hy-
pothesis, referred to as H1. It states that the mismatch expectation
applies to the sustainers and the shifters: hj1 > 0 if ES is low and
hj1 þ hj3 ¼ 0 if ES is high for j = 1, 2. In contrast, the cumulative
stress expectation applies to the comparison groups: hj1 > 0 if ES
is low and hj3 ¼ 0; hj1 > 0 if ES is high for j = 3. Hypothesis H2 is
based on the results presented in Nederhof et al. (2014, p. 689). It
expresses that the mismatch expectation applies to the sustainers:
hj1 > 0 if ES is low and hj1 þ hj3 ¼ 0 if ES is high for j = 1.
Because the mismatch and the cumulative expectations do not
apply, there is no interaction effect and no main effect for the
shifters: hj1 ¼ 0 if ES is low and hj1 þ hj3 ¼ 0 if ES is high for
j = 2. The cumulative stress expectation applies to the comparison
group: hj1 > 0 if ES is low and hj3 ¼ 0; hj1 > 0 if ES is high for
j = 3. Note that, as a safeguard against choosing a weak hypothesis
as the best hypothesis out of the set of weak hypotheses, we
include the unconstrained hypothesis H3 in the set, where there are
no restrictions on model parameters. In summary,

ðSustainersÞ ðShiftersÞ ðComparisonÞ
H1 : h11 þ h13 ¼ 0; h11 > 0; h21 þ h23 ¼ 0; h21 > 0; h33 ¼ 0; h31 > 0;
H2 : h11 þ h13 ¼ 0; h11 > 0; h21 ¼ h23 ¼ 0; h33 ¼ 0; h31 > 0;
H3 : h11; h13; h21; h23; h31; h33:

(3)

The use of information criteria (ICs) is a well-known alternative
technique against the traditional null hypothesis testing when eval-
uating the hypotheses of interest. An information criterion selects
the best hypothesis in a set of candidate hypotheses which are
evaluated for the same data set. The AIC (Akaike, 1973, 1974) is
one of the most commonly used ICs to evaluate the hypotheses
under consideration. The AIC selects the best of a set of hypotheses,
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that is, the hypothesis that has the shortest distance to the true (but
unknown) hypothesis. However, the AIC cannot evaluate hypothe-
ses containing inequality constraint(s). To evaluate inequality con-
strained hypotheses, Anraku (1999) proposed a modification of the
AIC which is called the order-restricted information criterion
(ORIC). However, the ORIC can only be applied to hypotheses that
have simple order restrictions which are of the form l1, . . .,lJ ,
where “, ” may be replaced by “=”, or “,” and J is the number of
groups in the context of ANOVA. Kuiper et al. (2011, 2012) pro-
pose the GORIC which is a generalization of the ORIC that can be
used for the evaluation of (in)equality constrained hypotheses going
beyond the simple order-constrained hypotheses (Kuiper et al.,
2011, 2012). For example, the GORIC can be used to evaluate the
following hypotheses: H4 : h1 > 0; h2 > 0; h1 > h2 (two regression
coefficients are larger than zero and the first is larger than the sec-
ond); H5 : 0:5ðh1 þ h3Þ > h2 (the average of the means for the first
and third groups 0:5ðh1 þ h3Þ is higher than the mean for the
second group h2 in an analysis of variance); H6 : ðh1 � h2Þ >
ðh3 � h4Þ; h2 ¼ h3 (which specifies an interaction effect in a 2 3 2
analysis of variance and additionally states that the means in Group
2 and Group 3 are the same); H7 : h1 � h2 > 2 (which specifies
that the mean in Group 1 is at least 2 points larger than the mean in
Group 2); and H8 : �2,h1,2; h2 (which specifies a range restric-
tion on h1, which is restricted in the interval [�2, 2], and no restric-
tion on parameter h2). However, the GORIC can only be applied to
univariate and multivariate normal linear models.
In this article, we propose an AIC-type information criterion

named the generalized order-restricted information criterion approx-
imation (GORICA) to evaluate (in)equality constrained hypotheses
for a general class of models: generalized linear models (GLMs;
McCullagh & Nelder, 1989), generalized linear mixed models
(GLMMs; McCullogh & Searle, 2001), and structural equation
models (SEMs; Bollen, 1989). Like other confirmatory methods
(e.g., F-Bar tests, Silvapulle & Sen, 2005, pp. 25–42; the Bayes fac-
tor, Kass, 1993; Kass & Raftery, 1995; the GORIC, etc.), the
GORICA requires researchers to formulate theories and/or expecta-
tions. Although researchers need to make an extra effort to formu-
late these theories and expectations into hypotheses, we strongly
encourage them to pursue this worthwhile effort toward good
research practice. Evaluating a reasonable set of (in)equality con-
strained hypotheses is powerful, because it increases the probability
of selecting the correct hypotheses from the set (comparable to an
increase in power in hypothesis testing; Kuiper & Hoijtink, 2010).
The GORICA is based on large-sample theory and uses the property
that the likelihood function of a statistical model can be approxi-
mated by a normal distribution (Fisher, 1922). The interpretation
of the GORICA is the same as that of the AIC. The GORICA uses
the GORICA weights when evaluating hypotheses, which have
the same functional characteristics as the AIC weights (Burnham
& Anderson, 2002, p. 75). In contrast to p-values, the GORICA
weights improve the interpretability of analysis results. The GORICA
weights are between 0 and 1 and they sum to one for a set of hypoth-
eses of interest. Researchers can quantify the support in the data for a
hypothesis against another hypothesis in the set. The larger the
GORICA weight for hypothesis Hm, the smaller the Kullback-Leibler
divergence (Kullback & Leibler, 1951) between this hypothesis and
the true hypothesis when compared with that between other hypothe-
ses in the set and the true hypothesis, and thus, the better the support
by the data for hypothesis Hm. We perform simulations to compare

the performance of the GORIC and GORICA for normal linear mod-
els on choosing the best hypothesis out of a set of hypotheses under
evaluation. Further, we investigate the performance of the GORICA
for a broader range of models, namely, for a logistic regression, mul-
tilevel regression, and structural equation model as being representa-
tives of generalized linear models, generalized linear mixed models,
and structural equation models, respectively.

Like with hypothesis testing, the study design plays a pivotal role
when evaluating (in)equality constrained hypotheses using all informa-
tion criteria. Campbell and Machin (1999) state that the study design is
more important than analyzing the data, because the mistake made in
data analysis can always be corrected while the problems that occur by
implementing the wrong study design can never be rectified. The study
design is strongly associated with the data quality which is influenced
by data definition, collection, processing, and representation mecha-
nisms (Richesson & Andrews, 2012, p. 177). Thus, each stage of this
process also plays an essential role on correctly evaluating the hypoth-
eses of interest. Moreover, loannidis (2005) elaborates on the factors
causing many studies to produce false results which bias the scientific
literature such as the power of study, the number of studies answering
the same research question, and more than enough flexibility in
designs and outcomes and so forth. Additionally, replication crisis
(Pashler & Wagenmakers, 2012; Maxwell et al., 2015), publication
bias (Stern & Simes, 1997; Schimmack, 2012), and some questionable
research practices (Agnoli et al., 2017) such as ad-hoc specification of
hypotheses of interest (Kerr, 1998) and utilizing methods which
improves the probability of publication (Wagenmakers et al., 2012)
also require a worthwhile attention when evaluating hypotheses
using information criteria. Although all of these aspects are impor-
tant, the focus of this article is only one particular aspect among
these, that is, the GORICA as an alternative to hypothesis testing
using p-values. Our contribution is based on the same arguments
as Wagenmakers (2007) uses for the Bayesian information crite-
rion (BIC; Raftery, 1995), but note that the GORICA can evaluate
a broader class of hypotheses (namely, also order and range constraints).

The outline of the article is as follows. First, we introduce the
GORIC and GORICA, respectively. Second, we elaborate on the
conceptual similarities and dissimilarities between the GORIC and
GORICA. Third, we illustrate how to evaluate (in)equality con-
strained hypotheses using the GORICA in the context of GLMs,
GLMMs, and SEMs, respectively, in three consecutive sections.
The illustrations in these three sections are accompanied by simu-
lation studies to further examine the performance of the GORICA
on choosing the best hypothesis. Fourth, we elaborate on how to
evaluate hypotheses containing range restrictions using the GORIC
and GORICA. The article concludes with a discussion.

GORIC and GORICA

GORIC

We will first introduce the GORIC (Kuiper et al., 2011) and
then generalize it to the GORICA. The GORIC will be introduced
using the following univariate normal linear model:

y ¼ Xbþ e; (4)

where y ¼ ðy1; y2; . . . ; yNÞT 2 IRN31 denotes the outcome, X ¼
ðx0;x1; . . . ;xp; . . . ;xP�1Þ 2 IRN3P with xp ¼ ðxp1; xp2; . . . ; xpNÞT
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2 IRN31 for p ¼ 0; 1; . . . ;P� 1 contains the predictors, b ¼
ðb0;b1; . . . ;bðP�1ÞÞT 2 IRP31 are the regression coefficients, and

ϵ�Nð 0, r2I NÞ represents the vector of residuals with mean
vector 0 and covariance matrix r2I N , where r2 is the variance term
and I N denotes theN3N identity matrix.
In the remainder of this article, we will make a distinction

between structural parameters (h of length K # P for a univariate
normal linear model), that is, the parameters that appear in the
hypotheses of interest, and nuisance parameters (n of length
P� K þ 1, where the number “1” denotes the variance term r2

for a univariate normal linear model), that is, the parameters that
do not appear in the hypotheses of interest. Let, for the univariate
normal linear model, h ¼ b (and thus, K = P) and n ¼ r2. The
hypotheses of interest in this paper are of the form:

Hm : Smh ¼ sm;Rmh > rm; (5)

where m denotes the index number for the hypotheses under evalua-
tion. Here, Sm is a qs3K matrix and Rm is a qr3K matrix representing
the equality and inequality constraints of hypothesis Hm, respectively,
and sm is a qs-vector and rm is a qr-vector containing the constants in
Hm, respectively. For example, for hypothesis H6 : ðh1 � h2Þ >
ðh3 � h4Þ; h2 ¼ h3 in the introduction, it holds that h ¼
ðh1; h2; h3; h4ÞT ; P ¼ K ¼ 4 (i.e., the number of parameters used to
formulate hypothesis H6), qs ¼ 1; qr ¼ 1, and

S6 ¼ 0 1 �1 0
� �

; s6 ¼ 0;
R6 ¼ 1 �1 �1 1

� �
; r6 ¼ 0:

Two important aspects need attention on formulating hypotheses
using Equation 5. First, the parameters have to be measured on the
same scale for a meaningful comparison among them. For example,
while group means will be comparable with each other (e.g., in an
ANOVAmodel), regression coefficients should often be standardized
for comparison. This can be achieved by standardizing the variables
to which they correspond (e.g., the predictors in a regression). In
each of the simulations and examples presented in this article, it will

be highlighted which variables were standardized. Second,
Sm

Rm

� �
should be of full (row) rank after discarding the redundant restrictions
(Kuiper et al., 2012). Note that a redundant restriction is a restriction
that is implied by one or more of the other restrictions. In case
Sm

Rm

� �
does not contain a redundant restriction but it is still not of

full (row) rank, hypotheses should be evaluated with caution using
the GORIC and GORICA. A special case is when the hypotheses of
interest contain range restrictions. Hypothesis H8 : �2, h1 , 2; h2
containing a simple range constraint is formulated by specifying

R8 ¼ 1 0
�1 0

� �
with

r8 ¼ ð�2;�2Þ:

Because the two rows of R8 are linearly dependent on each
other, H8 is not of full rank. In the section Range Restrictions, we

describe how to evaluate hypotheses containing range restrictions
using the GORIC and GORICA.

For the univariate normal linear model, the GORIC for hypothe-
sis Hm is defined as:

GORICm ¼ �2 Lð~hm; ~nm j y;XÞ þ 2 ½PTmðhÞ þ PTmðnÞ�; (6)

where, ~h
m
and ~n

m
maximize the log likelihood, Lðh; n j y;XÞ, sub-

ject to the restrictions in hypothesis Hm. The maximum log likeli-
hood stands for the fit of hypothesis Hm to the data at hand and is
defined for the univariate normal linear model as:

Lð~hm; ~nm j y;XÞ ¼ �N
2
logð2pÞ � 1

2
log j ~nmI N j � 1

2

½ðy �X~h
mÞTð~nmI NÞ�1ðy �X~h

mÞ�: (7)

Like all ICs, the GORIC evaluates a hypothesis using its fit and
specificity. A hypothesis has a larger fit if the maximum of the log
likelihood for this hypothesis (obtained by considering the restric-
tions in the hypothesis) is larger than that of the other hypotheses.
The specificity for hypothesis Hm is accounted for using the
penalty term PTm. It consists of two parts: PTmðhÞ denotes the
expected number of distinct regression parameters after taking into
account the order constraints in Hm; and PTmðnÞ ¼ 1 because the
vector n only contains the unconstrained residual variance r2 (see
Appendix A).

In, for example, an ANOVAmodel with three means, for hypothe-
ses H0 : l1 ¼ l2 ¼ l3 and H1 : l1 > l2 > l3, and the uncon-

strained hypothesis H2 : l1; l2;l3, it holds that h ¼ ðh1; h2; h3ÞT ;
P ¼ K ¼ 3, and PTmðhÞ is, 1, 1.834, and 3, respectively (see the end
of Appendix B for more details on the calculation of the penalty
value of 1.834 by taking into account the restrictions in H1). A hy-
pothesis that has large fit (and thus a small misfit) and a small penalty
will render a small GORIC value which means that this hypothesis
has a relatively small Kullback-Leibler divergence to the unknown
true hypothesis. Therefore, the hypothesis with the smallest GORIC
value is the best in a set of hypotheses.

The GORIC has specifically been developed for hypotheses evalu-
ation in (multivariate) normal linear models (Kuiper et al., 2011,
2012). It cannot be applied for hypotheses evaluation in the context
of other statistical models. In fact, it must be rederived for each statis-
tical model of interest. To avoid these derivations, we propose the
GORICA, which can be computed using a normal approximation of
the log likelihood function, which only requires the maximum likeli-
hood estimates (MLEs) of the structural parameters and their covari-
ance matrix. The GORICA is superior than the GORIC in terms of
the simplicity of its formula and the ease of its applicability when
evaluating (in)equality constrained hypotheses outside of normal lin-
ear models. In the remainder of this section, the GORICA will be
presented (to keep the presentation accessible, the reader will be
referred to the Appendices of this article for derivations).

GORICA

In this subsection, we show the expression of the GORICA. Its
derivation can be found in Appendix A. Here, we use a normal
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approximation of the likelihood in Equation 6 and we can leave
out all the parts related to the nuisance parameters:

GORICAm ¼ �2 Lð~hm j ĥ; R̂ĥÞ þ 2PTmðhÞ; (8)

where ĥ and R̂ ĥ denote the maximum likelihood estimates of the
structural parameters and their covariance matrix, respectively,
that are used to construct a normal approximation of the
likelihood:

Lð~hm j ĥ; R̂ ĥÞ ¼ �K
2
logð2pÞ � 1

2
log j R̂ĥ j �

1
2

ðĥ � ~h
mÞTðR̂ĥÞ�1ðĥ � ~h

mÞ: (9)

Note that, for many statistical models, the (standardized) estimates
and their covariance matrix are very easy to obtain, for example,
using the glm (R Core Team, 2012) and glmer (Bates et al., 2015)
procedures for GLMs and GLMMs, and the lavaan package (Ros-
seel, 2012) for SEMs in R. For each Hm, the order-restricted maxi-

mum likelihood estimates ~h
m
(that is, the best estimates of h when

maximizing the log likelihood in Equation 9 accounting for the
restrictions in Hm) have to be obtained. Note that the calculation of
these estimates of the GORICA strongly resembles that of the
GORIC, because both methods minimize similar objective functions
taking into account the restrictions of each hypothesis under evalua-
tion. In this sense, the GORICA is an adequate approximation of the
GORIC for normal linear models when researchers have enough
data to estimate model parameters, because the sampling distribution
of these parameters will be approximately normal. Like the AIC and
the likelihood ratio test, the GORICA is based on the central limit
theory and it is known that such asymptotic methods perform well in
practice for medium and large data sets. The calculation of the order-
restrictedMLEs for the GORICA is described in Appendix B.
The GORICA is superior than the GORIC because it can easily

be applied to any statistical model due to the normal approxima-
tion used in the log likelihood part. In contrast, there is no (rela-
tive) difference between the GORIC and GORICA in computing
the penalty part. In the calculation, the GORICA leaves out the
number of nuisance parameters (that is, PTmðnÞ in Equation 6),
which is the same for each hypothesis under consideration (e.g.,
PTmðnÞ ¼ 1 for the univariate normal linear model). As shown in
Appendix A, this does not influence the differences in penalties
nor the comparison (i.e., relative support) of the hypotheses of
interest.
Analogous to Akaike weights (Burnham & Anderson, 2002, p.

75) and GORIC weights (Kuiper & Hoijtink, 2013), the extent to
which a hypothesis is better than another hypothesis can be quanti-
fied using GORICA weights (wm) that are numbers on a scale that
ranges from 0 to 1:

wm ¼ expf- 12 GORICAmgPM
m0¼1 expf� 1

2 GORICAm0 g : (10)

For example, if hypothesesH1, H2, and the unconstrained hypothe-
sis H3 have GORICA weights 0.15, 0.03, and 0.82, respectively, H1

has 0.15=0:03 ¼ 5 times more support than H2. Note the value of
including the unconstrained hypothesis H3 in the set of hypotheses:
Although H1 is a better hypothesis than H2, it is a weak hypothesis,
because it is outperformed by the unconstrained hypothesis H3, that

is, H3 has 0.82/0.15� 5.47 times more support than H1. Stated other-
wise, the constraints in both H1 and H2 are not supported by the data.

We next provide guidance on how to create appropriate sets of (in)
equality constrained hypotheses along with the procedure to evaluate
the hypotheses of interest. The steps below should be taken to evalu-
ate a set of (in)equality constrained hypotheses using the GORICA.

1. Check the number of theories under consideration.

a. If there is only one hypothesis under consideration, it should
be evaluated against the complement of the hypothesis of in-
terest representing all possible theories except the hypothesis
of interest (Vanbrabant et al., 2020). Alternatively, one can
use the unconstrained hypothesis representing all possible
theories including the hypothesis of interest. Note that one
should not include any fabricated hypothesis in the set when
there is only one theory under evaluation.

b. If there are multiple hypotheses in the set, check whether
the restrictions of hypotheses cover all possible relations
between parameters.

i. When the restrictions of the hypotheses of interest
cover all possible relations between parameters, do not
include the unconstrained hypothesis (or the comple-
ment of a hypothesis) in the set. For example, there is
no need to include the unconstrained hypothesis (or the
complements of the hypotheses) in the set when evaluat-
ing hypothesis H1 : h1 > h2 against hypothesis
H2 : h2 > h1, because the restrictions of these hypothe-
ses together cover the whole parameter space.

ii. When the restrictions of hypotheses do not cover the
whole parameter space, then include a safeguard hypothe-
sis to avoid choosing a weak hypothesis as the best hy-
pothesis among a set of weak hypotheses. For instance,
the unconstrained hypothesis (or the complements of the
hypotheses) should be included in the set when evaluating
hypothesis H1 : h1 > h2 > h3 against hypothesis
H2 : h3 > h2 > h1, since H1 and H2 do not specify all
possible relations between parameters h1, h2, and h3 and
both hypotheses may be weak hypotheses. The gorica
package (Van Lissa et al., 2020) in R provides a user-
friendly way to specify the hypotheses of interest. We
elaborate on how to specify the restrictions of the hypothe-
ses under consideration for each example presented
in this article using the gorica package in the online
supplementary material. In the section “Range restric-
tions”, we elaborate on how to evaluate hypotheses con-
taining range restrictions using the goric function in the
restriktor package (Vanbrabant, 2020) in R. Additionally,
we compare the GORIC and GORICA in an ANOVA
example for which the set also contains the complement of
a hypothesis.

2. If necessary, standardize model parameters to compare
them on the same scale. For example, if hypotheses con-
tain parameters compared to only constants and/or the data
contain only categorical variables, then there might not be
a reason for standardizing model parameters. In contrast, if
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hypotheses consist of directional relationships between
model parameters and/or the model contains interactions
on continuous variables, then the model parameters should
be standardized to compare them on the same scale.

3. Estimate structural parameters (ĥ) and their covariance
matrix (R̂ ĥ ). Sometimes the model fit object is sufficient
to obtain these estimates and their covariance matrix,
when all parameters in this object are used to formulate
the hypotheses of interest.

The procedure in Steps 4–8 below is fully automatic in the
gorica package and does not require intervention by users.

4. Obtain the order-restricted MLEs (see Appendix B).
Notably, the gorica package checks whether the restric-
tion matrices Sm and/or Rm for each hypothesis under
evaluation are of full (row) rank. If all the restriction mat-
rices are not of full (row) rank, our function in the pack-
age stops and gives the error message: “The restriction
matrices for the hypotheses of interest have to be of full
(row) rank.” In such a case, we cannot obtain the order-
restricted MLEs, and consequently, the results.

5. Calculate the value of the log likelihood function in
Equation 9 for each hypothesis under evaluation by using
the estimates of structural parameters and their covariance
matrix (ĥ and R̂ ĥ ) in Step 3 and the order-restricted
MLEs (~h

m
) in Step 4.

6. Compute the penalty part, PTmðhÞ, for each hypothesis
under consideration (see Appendix B).

7. Calculate the GORICA values for the hypotheses of inter-
est using the equation in Equation 8.

8. Calculate the GORICA weights to determine the extent of
support by the data for each hypothesis under considera-
tion using the equation in Equation 10.

The GORIC and GORICA show some similarities and dissimi-
larities in evaluating hypotheses containing (in)equality con-
straints, which will be elaborated in the next section.

GORIC and GORICA: How TheyWork and How
They Differ

The GORIC and GORICA share a common background
depending on the AIC with a common goal: to evaluate (in)equal-
ity constrained hypotheses of the form in Equation 5. All informa-
tion criteria need the data to evaluate hypotheses of interest, even
though their calculations are different. The AIC uses the data and
equality restrictions in the hypotheses to calculate the log likelihood
part and uses the number of distinct parameters in these hypotheses
to compute the penalty part. The GORICA needs the (unrestricted)
MLEs and their covariance matrix from summary statistics using the
data, besides the equality and/or inequality restrictions on parameters,
to evaluate the hypotheses under consideration. The GORICA is an

approximation of the GORIC assuming large sample sizes. The for-
mal proof indicating that the GORICA is an adequate approximation
of the GORIC is provided in Appendix A. Using the (unrestricted)
MLEs and their covariance matrix, the GORICA approximates the
GORIC retaining only the first and second order terms of the Taylor
series expansion of the log likelihood function given in the first equa-
tion of Appendix A. Notably, the second order Taylor approximation
of the log likelihood renders a normal approximation of the likeli-
hood. Maximizing this log likelihood function for a study requires
the estimates of model parameters and their covariance matrix. For
example, the lm() object in R can be used to obtain the estimates of
model parameters and their covariance matrix for normal linear mod-
els such as the ANOVA and multiple regression. Similarly, the glm
(), glmer(), and sem() objects can be used for GLMs, GLMMs, and
SEMs, respectively. In addition, we have performed two simulation
studies to show that the performance of the GORIC and GORICA in
the context of normal linear models are comparable (see Section 1 of
the online supplementary material). The results of the simulation
studies indicate that the performance of the GORIC and GORICA
with respect to the probability of choosing the true hypothesis from a
set of competing hypotheses are identical for large samples in the
context of normal linear models. Note that the GORIC and GORICA
results may be slightly different for small samples. Because the
GORICA is an approximation procedure assuming large sample
sizes, we recommend using the GORIC instead of the GORICA for
small samples in the context of normal linear models.

The distinction between the GORIC and GORICA lies in the
definition of the log likelihood part for hypothesis Hm. Suppose
that a researcher aims to apply both the GORIC and GORICA to
the logistic regression model in Equation 1 to evaluate the hypoth-
eses in Equation 3. Note that the structural parameters addressed
in hypotheses H1 and H2 are h = ðh11; h13; h21; h23; h31; h33Þ and
the nuisance parameters are n = ðh10; h12; h20; h22; h30; h32Þ. The
GORIC needs to maximize the order-restricted log likelihood
Lðh; n j y;XÞ, which is conditional on the data (i.e., y), and to
determine this log likelihood, it needs the conditional covariance
matrix of the data from the logistic regression model, cov(y jXb),
where b ¼ fh; ng. This is not an easy task to achieve, because the
expected value of the binary data (y) is related to the linear predic-
tor (Xb) via a logit link function. Similarly, derivation of the
GORIC for the other models in the general class of models in this
article is complicated and cumbersome, because it involves differ-
ent sets of formulas for different types of models. In contrast, the
GORICA has only one simple formula for maximizing its log like-
lihood function, which can be used not only for the logistic regres-
sion model in Equation 1, but also for the other types of models in
the general class of models.

In the sequel, we exemplify how to evaluate (in)equality con-
strained hypotheses using the GORICA for the logistic regression,
multilevel regression, and SEM examples. For each of these exam-
ples, we used the following strategy.

1. And formulate the hypotheses under consideration.

2. Simulation: Before analyzing the data with the GORICA,
we investigate the performance of the GORICA on evaluat-
ing these hypotheses for the specific statistical model in
Step 1 using a simulation study.
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3. Example (continued): When we know that the performance
of the GORICA is good, we evaluate the example data.

Logistic Regression Modeling

In this section, we exemplify how to evaluate (in)equality con-
strained hypotheses with the GORICA using the study in the intro-
duction. Before analyzing the data for this study, we want to make
sure that the GORICA performs well on choosing the best hypoth-
esis out of the three hypotheses in Equation 3. Therefore, in the
next subsection, we will conduct a simulation study to evaluate the
performance of the GORICA in the context of logistic regression.

Performance of the GORICA for the Logistic
Regression Example

The logistic regression model in the simulation is the same model
as in Equation 1. We create three different cases, where in Cases 1
and 2, the population values of the parameters are in accordance with
H1 and H2, respectively. In Case 3, the h’s are only in accordance
with the unconstrained hypothesis H3. Table 1 displays our choices
for the h’s for which it holds that if we generate Dji�BernoulliðD̂jiÞ
for j = 1, 2, 3 and i ¼ 1; 2; . . . ;Nj, the expected correct classification
rate (CCR) is equal to 60%, 65%, 70%, or 75%. The correct classifi-
cation rate is based on a cut-off value of 0.5 for the expected value of
the outcome for the ith person in the jth group.We choose the sample
size in each group as Nj ¼ 50; 100; 150; or 200 for j = 1, 2, 3. For
more details on data generation in the logistic regression simulation

see the section “Simulation Steps” in the online supplementary
material.

Figure 1 shows the proportion of times each of the hypotheses
was selected by the GORICA in 1000 independent samples gener-
ated from each of the populations displayed in Table 1. The proba-
bility of correctly preferring hypothesis H1 and the unconstrained
hypothesis H3 increases with the correct classification rate. The
probability of correctly preferring hypothesis H2 does not depend
much on the values of the correct classification rate for this set of
hypotheses. This is because hypotheses H1 and H2 differ from
each other only with respect to parameter h21, that is, h21 > 0 for
hypothesis H1 and h21 ¼ 0 for hypothesis H2. Note that the per-
formance of the GORICA is still satisfactory, that is, the true hy-
pothesis H2 is chosen at least 81% of the times and at most 85%
of the times.

Like with increasing the correct classification rate, the probability
of correctly preferring hypothesis H1 and the unconstrained hypothe-
sis H3 increases with the sample size, but this increase does not
depend much on the sample size when hypothesis H2 is the true hy-
pothesis. When sampling from a population based on the restrictions
in H2, even in large samples, the estimate of h21 is not exactly equal
to zero. In that case, the data may or may not be in accordance with
H1. If the data are in accordance with H1, then the (log) likelihood
for H1 is larger than that for H2, and if the data are not in agreement
with H1, both hypotheses have the same (log) likelihood. Thus, hy-
pothesis H2 is never exactly true and never better than hypothesis H1

in terms of fit. Although hypothesis H2 always has a lower pen-
alty than hypothesis H1, sometimes when the data are in

Table 1
Logistic Regression Simulation: Population Values of the Regression Coefficients for CCR ¼60%, 65%, 70%, and 75% for the Three Cases

Case 1: H1 : h11þh13¼h21þh23¼h33¼ 0; fh11; h21; h31g > 0 is true

Group 1 Group 2 Group 3

CCR h10 h11 h12 h13 h20 h21 h22 h23 h30 h31 h32 h33

60% �0.15 0.62 �0.10 �0.62 �0.15 0.62 �0.10 �0.62 �0.15 0.61 �0.10 0.00
65% �0.15 1.09 �0.10 �1.09 �0.15 1.09 �0.10 �1.09 �0.15 1.20 �0.10 0.00
70% �0.15 2.22 �0.10 �2.22 �0.15 2.22 �0.10 �2.22 �0.15 1.61 �0.10 0.00
75% �0.15 3.22 �0.10 �3.22 �0.15 3.22 �0.10 �3.22 �0.15 3.19 �0.10 0.00

Case 2: H2 : h11þh13¼h21¼h23¼h33¼ 0; fh11; h31g > 0 is true

Group 1 Group 2 Group 3

CCR h10 h11 h12 h13 h20 h21 h22 h23 h30 h31 h32 h33

60% 0.66 0.62 �0.55 �0.62 0.66 0.00 �0.55 0.00 0.66 0.31 �0.55 0.00
65% 0.66 0.62 �0.55 �0.62 0.66 0.00 �0.55 0.00 0.66 1.71 �0.55 0.00
70% 0.97 1.90 �0.65 �1.90 0.97 0.00 �0.65 0.00 0.97 1.70 �0.65 0.00
75% 0.97 2.90 �0.65 �2.90 0.97 0.00 �0.65 0.00 0.97 4.78 �0.65 0.00

Case 3: H3 : h11; h13; h21; h23; h31; h33 is true

Group 1 Group 2 Group 3

CCR h10 h11 h12 h13 h20 h21 h22 h23 h30 h31 h32 h33

60% 0.14 0.98 �0.02 �0.55 0.14 0.97 �0.02 �0.51 0.14 0.12 �0.02 �0.30
65% 0.14 1.18 �0.02 �0.55 0.14 1.10 �0.02 �0.51 0.14 0.92 �0.02 �0.30
70% 0.14 1.58 �0.02 �0.55 0.14 1.40 �0.02 �0.51 0.14 1.32 �0.02 �0.30
75% 0.14 2.09 �0.02 �0.55 0.14 1.90 �0.02 �0.51 0.14 1.74 �0.02 �0.30

Note. CCR = correct classification rate.
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agreement with H1, the (log) likelihood differences between H1

and H2 outweigh their penalty differences. This causes H2 not be
selected 100% of the times for even large samples while it is the
true hypothesis.
The performance of the GORICA when correctly preferring the

unconstrained hypothesis H3 is less convincing than that when the
other hypotheses are the true hypotheses. This is because the h’s
used to simulate the data for the true unconstrained hypothesis H3

are more or less in accordance with the restrictions of hypothesis
H1. Therefore, sometimes the effect size and/or sample size is not
large enough for correctly preferring the unconstrained hypothesis

H3 over hypothesis H1. We could have chosen a population
which does not agree with the restrictions of hypotheses H1 and
H2 at all. Assuming that a strong hypothesis (e.g., H1) is not
completely true but at the same time is not completely different
from the full reality, it is more reasonable to believe that the
restrictions of a hypothesis representing the theory are partly in
agreement with the restrictions of the true hypothesis. This makes it
harder to distinguish the strong hypothesis from the unconstrained
hypothesis. However, even in this case, the probability of correctly
preferring the unconstrained hypothesis H3 is higher with increasing
values of the effect size and/or sample size.

Figure 1
Percentages of Choosing Hypotheses for the Logistic Regression Simulation

Note. Percentage of times that the hypotheses H1, H2, and H3 are selected by the GORICA for the four classification rates (CCR = 60%, 65%, 70%, and
75%) for the three cases in which H1, H2, and H3 are the true hypothesis, respectively. See the online article for the color version of this figure.
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Example 1 (Continued): Logistic Regression Modeling

In the previous subsection, we have shown by means of a simula-
tion study that the performance of the GORICA is satisfactory in our
logistic regression model. Now, we analyze the replication (N = 310)
of the study in Nederhof et al. (2014, p. 689) to evaluate hypotheses
H1 and H2, and the unconstrained hypothesis H3. Parameter esti-
mates and their covariance matrix are displayed in Table 2.
The order-restricted MLEs for the three hypotheses H1, H2, and the
unconstrained hypothesis H3 are given in Table 3. Note that the
order-restricted MLEs are always in agreement with the constraints
of the corresponding hypothesis. The values of the likelihood and
penalty parts, GORICA values and GORICA weights are displayed
in Table 4. The hypothesis with the smallest GORICA value and,
therefore, the highest GORICA weight is the best one among the
three hypotheses. Both hypotheses H1 and H2 have higher GORICA
weights when compared to that of the unconstrained hypothesis H3.
Therefore, it is concluded that both hypotheses H1 and H2 are sup-
ported by the data. In the replication data, the theory in Nederhof and
Schmidt (2012); which is represented by hypothesis H1, has more
support than hypothesis H2, specified based on the results in Neder-
hof et al., (2014; p. 689). Based on the GORICAweights, hypothesis
H1 has 0.761/0.207 � 3.68 times more support than hypothesis H2.
Note that hypothesis H2 is more specific than hypothesis H1, and
thus, it has a lower penalty part when compared to hypothesis H1.
However, also note that hypothesis H1 fits the data better than hy-
pothesis H2 such that the difference between their fits outweighs the
difference between their penalties in favor of hypothesis H1. Thus,
based on the data at hand, we concluded that the mismatch expecta-
tion applies to both the sustainers and the shifters, and the cumulative
stress expectation applies to the comparison groups.

Multilevel Regression Modeling

In this section, we illustrate how (in)equality constrained
hypotheses can be evaluated with the GORICA and investigate its
performance in the context of a multilevel regression model.

Example 2: Multilevel Regression Modeling

Multilevel regression models are an extension of ordinary regres-
sion models that involve populations of interest with hierarchical
data structures. We utilize the study in Hox (2010, p. 16) to illustrate
how to evaluate (in)equality constrained hypotheses for GLMMs

using a two-level multilevel regression model. In the study, the out-
come variable PS represents the popularity scores of pupils that range
from 0 (very unpopular) to 10 (very popular) for J = 100 classes
with Nj pupils in each class. The popularity scores are predicted by
pupil level predictors gender (G: 0 = boy, 1 = girl) and pupil extra-
version scores (PE) that range from 1 (introversion) to 10 (extraver-
sion), a class level predictor teacher experience (TE), and the cross-
level interaction between PE and TE. Because standardization is
recommended when the model contains interactions (Gelman, 2008),
we standardize PS, PE, and TE by means of utilizing grand mean
centering (Algina & Swaminathan, 2011, pp. 285–312). That is, we
first subtract the overall means of the continuous variables PS, PE,
and TE from each of their values, before dividing these values by

their standard deviations (i.e., PSSji ¼ PSji�PS
sdðPSjiÞ ; PE

S
ji ¼ PEji�PE

sdðPEjiÞ , and

TES
j ¼ TEj�TE

sdðTEjÞ ). The resulting multilevel regression model for the ith

student in the jth class is:

PSSji ¼ h00 þ h10Gji þ h20PE
S
ji þ h01TE

S
j þ h11GjiTE

S
j

þ h21PE
S
jiTE

S
j þ l0j þ l2jPE

S
ji þ eji; (11)

where h00 is the intercept, h10, h20, h01, and h21 are the regression
slopes for the pupil level variables gender and pupil extraversion,
class level variable teacher experience, and the cross-level interaction
between pupil extraversion and teacher experience, respectively, l0j
and l2j are the random effects at the class level, and eji �Nð0;r2Þ is
the pupil level error for j ¼ 1; 2; . . . ; J and i ¼ 1; 2; . . . ;Nj. The ran-
dom effects l0j and l2j are assumed to have a bivariate normal distri-
bution with mean vector 0 and covariance matrix:

W ¼ w2
0 w02

w02 w2
2

" #
:

Table 2
Estimates ðĥÞand Covariance Matrix ðR̂ĥÞof the Structural
Parameters for the Logistic Regression Example

R̂ ĥ

ĥ ĥ11 ĥ13 ĥ21 ĥ23 ĥ31 ĥ33

ĥ11 = 0.48 0.17

ĥ13 = 0.28 �0.17 0.63

ĥ21 = 0.87 0.00 0.00 0.21

ĥ23 = �0.44 0.00 0.00 �0.21 0.37

ĥ31 = 0.81 0.00 0.00 0.00 0.00 0.14

ĥ33 = �0.25 0.00 0.00 0.00 0.00 �0.14 0.18

Note. The respective terms are made bold because they are either vector
or matrix.

Table 3
The Order-Restricted MLEs, ~h

m ¼ ðehm11; ~hm13; . . . ; ~hm33ÞT, for
Hypothesis Hm (m = 1, 2, 3) for the Logistic Regression Example

Hm
ehm11 ehm13 ehm21 ehm23 ehm31 ehm33

H1 0.48 �0.48 0.87 �0.87 0.62 0.00
H2 0.48 �0.48 0.00 0.00 0.62 0.00
H3 0.48 0.28 0.87 �0.44 0.81 �0.25

Note. MLE = maximum likelihood estimates. The respective terms are
made bold because they are either vector or matrix.

Table 4
The Likelihood ðLð~hm j ĥ; R̂ĥÞÞand Penalty ðPTmÞParts, GORICA
Values ðGORICAmÞ, and GORICA Weights ðwmÞ of Hypothesis
Hm (m = 1, 2, 3) for the Logistic Regression Example

Hm Lð~hm j ĥ; R̂ĥ Þ PTm GORICAm wm

H1 �1.373 1.499 5.743 0.761
H2 �3.168 1.004 8.343 0.207
H3 �0.045 6.000 12.089 0.032

Note. GORICA = generalized order-restricted information criterion
approximation. The respective terms are made bold because they are either
vector or matrix.
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The model in Equation 11 can be converted into separate mod-
els for boys and girls:

PSSji¼
h00þh20PES

jiþh01TES
j þh21PES

jiTE
S
j þl0jþl2jPE

S
jiþeji ifG¼0ðboyÞ

ðh00þh10Þþh20PES
jiþðh01þh11ÞTES

j þh21PES
jiTE

S
j þl0jþl2jPE

S
jiþeji ifG¼1ðgirlÞ:

8<:
For this example, we do not have a solid theoretical back-

ground, like in the sustainers-versus-shifters hypotheses in the
logistic regression example. This example serves to illustrate the
applicability of the GORICA in the context of multilevel regres-
sion. Nevertheless, we did base the hypotheses under evaluation
on theory as well.
The study in Hox (2010) regards mainly whether teacher’s ex-

perience moderates the impact of gender and pupil extraversion on
popularity scores. Here, we assume that the researcher has two
competing hypotheses/theories regarding the sign and size of the
population parameters:

H1 : h10 > 0; h20 > 0; h11 , 0; h21 , 0;
H2 : h10 , 0; h20 > 0; h11 ¼ h21 ¼ 0;
H3 : h10; h20; h11; h21:

(12)

Hypothesis H1 states that girls and extraverted pupils have
higher popularity scores than boys and introverted pupils, respec-
tively, when the teacher in the jth class has no teaching experience
(i.e., TEj ¼ 0 for j ¼ 1; 2; . . . ; 100; and thus h10 > 0; h20 > 0) and
that the difference in popularity scores between boys and girls and
between extraverted and introverted pupils become smaller with
more experienced teachers (i.e., h11 , 0; h21 , 0). Namely, this hy-
pothesis states that teacher experience moderates the association
between popularity scores and both gender and pupil extraversion.
Hypothesis H2 specifies that boys and extraverted pupils have
higher popularity scores than girls and introverted pupils (i.e.,
h10 , 0; h20 > 0), but teacher’s experience does not moderate the
effects of gender and pupil extraversion on popularity scores (i.e.,
h11 ¼ h21 ¼ 0). In other words, teacher experience moderates the
association between popularity scores and gender, but has no
impact on the association between popularity scores and pupil
extraversion. The unconstrained hypothesis H3 states that there
is no restriction on the model parameters, which is included in
the set as a safeguard against choosing a weak hypothesis as the
best hypothesis. Thus, the structural parameters of the model
are h ¼ ðh10; h20; h11; h21Þ and the nuisance parameters are

n ¼ ðh00; h01;w2
0;w

2
2;w02;r

2Þ. We will first conduct a simulation
study to evaluate the performance of the GORICA on choosing
the best hypothesis out of the set of the three hypotheses above
in the context of multilevel regression, and then, we will ana-
lyze the data for this study.

Performance of the GORICA for the Multilevel
Regression Example

We conduct a simulation study to evaluate the performance of
the GORICA in the context of multilevel regression. The model
for the multilevel regression simulation, as being a representative
of GLMMs, is the same model as in Equation 11. The simulation

contains three different cases, where in Cases 1 and 2, the h’s are
in accordance with H1 and H2, respectively. In Case 3, the popula-
tion values of the parameters are only concordant with the uncon-
strained hypothesis H3. Choose the h’s using Cohen’s f 2 (Cohen,
1992, p. 157) which is an adequate effect size measure for the
fixed part of the model in the context of multilevel regression
(Lorah, 2018). Table 5 displays our choices for the h’s where we
use only the medium effect size f 2 ¼ 0:15 when determining pop-
ulation values for the h’s in line with Maas and Hox (2005). Fol-
lowing the suggestions provided in Hox (2010, pp. 244–249), we
choose the population values for the intercept variance and the

slope variance: (a) w2
0 ¼ 0:05 and w2

2 ¼ 0:05 for small variances,

(b) w2
0 ¼ 0:11 and w2

2 ¼ 0:10 for medium variances, and (c) w2
0 ¼

0:18 and w2
2 ¼ 0:15 for large variances, with w02 ¼ 0, so that the

random effects are independent from each other. We choose the
number of groups as J ¼ 30; 50; or 100 and the number of observa-
tions in each group as Nj ¼ 5; 30; or 50, in line with the suggestions
made in the simulation design presented in Maas and Hox (2005,
p. 88). For more details on data generation in the two-level multile-
vel regression simulation see the section “Simulation Steps” in the
online supplementary material.

Figure 2 displays the proportion of times each of the hypotheses
was chosen by the GORICA in 1,000 independent samples. The
GORICA performs well with respect to choosing the true hypothe-
sis out of the three hypotheses for the model in Equation 11.
Increasing the random variation in the data (i.e., more noise) by
increasing both intercept and slope variances does not exert much
influence on the probability of choosing the true hypothesis. The
GORICA performs better for the data sets containing more groups
(J) and/or more observations in each group (Nj) no matter the val-
ues of the intercept and slope variances. In many cases where Nj =
30 or 50, the GORICA chooses the correct hypothesis 100% of the
times no matter the values of the number of groups, the values of
the intercept and slope variances, and which hypothesis is the true
hypothesis. Thus, the performance of the GORICA on correctly
preferring the true hypothesis is convincing.

Example 2 (Continued)

For the study in Hox (2010, p. 16), the parameter estimates and their
covariance matrix are displayed in Table 6. Because these estimates
are in agreement with the constraints in hypotheses H1 and the uncon-
strained hypothesis H3 : h10; h20; h11; h21, the order-restricted MLEs
of these hypotheses are equal to the MLEs (see Table 7). Thus, these

Table 5
Multilevel Regression Simulation: Population Values of the
Regression Coefficients When f 2 ¼ 0:15 for the Three Cases

Case 1: H1 : h10 > 0; h20 > 0; h11,0; h21,0 is true

h10 h20 h11 h21
0.070 0.070 �0.265 �0.265

Case 2: H2 : h10,0; h20 > 0; h11¼h21¼ 0 is true
h10 h20 h11 h21

�0.245 0.247 0.000 0.000

Case 3: H3 : h10; h20; h11; h21 is true
h10 h20 h11 h21

�0.219 �0.227 0.128 �0.128
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two hypotheses have the same log likelihood and, therefore, the
GORICA distinguishes among them only through the penalty term
(see Table 8). Based on the GORICA weights in Table 8, hypothesis
H1 is a strong hypothesis (i.e., it has 0:889=0:111 � 8 times more sup-
port than the unconstrained hypothesis H3), while hypothesis H2 is a
weak hypothesis (i.e., it has 0=0:111 ¼ 0 times more support than
H3). Because at least one of the hypotheses of interest is not a weak
hypothesis, one can compare their strengths: Hypothesis H1 is infinite
times better than hypothesis H2. Thus, we concluded that girls and
extraverted pupils have higher popularity scores than boys and intro-
verted pupils and teacher’s experience moderates the influences of
gender and pupil extraversion on the popularity scores.

Structural Equation Modeling (SEM)

In this section, we illustrate how to evaluate (in)equality con-
strained hypotheses for a structural equation model and investigate
the performance of the GORICA for this model.

Example 3: Structural Equation Modeling

In this example, the specification of (in)equality constrained
hypotheses for structural equation models is exemplified based
on the study in Stevens (1999, p. 596). This study evaluates the
effects of the first year of the Sesame Street TV series in a

sample of 3- to 5-year-old children in the U.S. (N = 240). Two
latent variables can be constructed using these data. The first
latent variable prewatch (x1) is the knowledge before watching
the Sesame Street TV series for a year, using prebody ðy1; pretest
on knowledge of body parts), prelet (y2; pretest on letters), pre-
form (y3; pretest on forms), prenumb (y4; pretest on numbers),
prerelat (y5; pretest on relational terms), and preclas (y6; pretest
on classification skills) as indicators. The second latent variable
postwatch (x2) is the knowledge after watching the Sesame Street
TV series for a year, using the postbody (y7; posttest on knowl-
edge of body parts), postlet (y8; posttest on letters), postform (y9;
posttest on forms), postnumb (y10; posttest on numbers), postrel
(y11; posttest on relational terms), and postclas ðy12; posttest on
classification skills) as indicators. Both latent variables are
regressed on two observed predictors: age in months (A) and the
Peabody score (P), that is, a mental age score which is obtained
from the Peabody Picture Vocabulary test. Table 9 displays the
descriptives for each observed variable. Moreover, Figure 3 shows
the path diagram indicating the relationship between these variables.
To be able to compare the structural parameters to each other, we
used the R package lavaan (Rosseel, 2012) to obtain the standardized
structural parameter estimates and their covariance matrix.

Structural equation models typically contain two submodels: the
measurement model and the structural model. The measurement

Figure 2
Percentages of Choosing Hypotheses for the Multilevel Regression Simulation

Note. Percentage of times that hypotheses H1, H2, and H3 are chosen by the GORICA using varying values of the number of groups J, number of obser-
vations in each group Nj (j ¼ 1; 2; . . . ; J), and the intercept and slope variance w2

0and w2
1for the three cases in which H1, H2, and H3 are the true hypothe-

sis, respectively. See the online article for the color version of this figure.
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model represents the connections between unobserved latent varia-
bles and observed indicators, while the structural model describes the
relations between latent variables and between latent variables and

observed predictors. Let yi = ðy1; y2; . . . ; y12ÞT and gi ¼ ðg1;g2ÞT
denote the vectors of indicators and latent variables, respectively, for
person i ¼ 1; . . . ; 240. The measurement model for these indicators
and latent variables is defined as:

yi¼Kgiþυi; (13)

where

K ¼ k1 k2 k3 k4 k5 k6 0 0 0 0 0 0
0 0 0 0 0 0 k7 k8 k9 k10 k11 k12

� �T
is a 12 3 2 matrix of factor loadings relating these indicators and
latent variables, υi is a vector of measurement errors in the indica-
tors for person i, which are normally distributed with the 12 3 1
mean vector 0 and 12 3 12 covariance matrix Hυ, that is,
υi �Nð0;HυÞ.
The structural model for the Sesame Street data that relates

these two latent variables to the two predictors, namely, age and
Peabody score, is defined as:

gi ¼ hxi þ fi; (14)

where

h ¼ h1 h2
h3 h4

� �
is a 2 3 2 matrix that relates the two latent variables to the two

predictors, xi ¼ ðAi;PiÞT is a 2 3 1 vector of the two predictors,

and fi �Nð0;HfÞ is the vector of residuals with Hf a 2 3 2 covar-
iance matrix. Note that we only need the estimates of structural pa-
rameters and their covariance matrix when evaluating hypotheses
using the GORICA. The estimates of all parameters used in the
model are displayed in Figure 3. Notably, the off-diagonals of the
covariance matrix for measurement errors in the indicators, Hυ,
are not displayed in this figure, since they are set equal to zero in
the model.

For this example, we do not have a theoretical background. The
hypotheses are formulated to illustrate the applicability of the
GORICA for SEM. We focus on the comparison of the effects of
age and Peabody on each latent variable. The following hypothe-
ses can be of interest regarding the regression relations between
latent variables and predictors:

H1 : h2 > h1; h4 > h3;
H2 : h1 > h2; h3 > h4;
H3 : h1; h2; h3; h4:

(15)

Hypothesis H1 states that Peabody has more impact on each
latent variable than age; hypothesis H2 specifies that the ordering of
parameters for these variables should be reversed, namely, the
effect of age for each latent variable is larger than that of Peabody;
and the unconstrained hypothesis H3 states the absence of informa-
tion about the relationship between model parameters, which is
included in the set as a fail-safe hypothesis against choosing H1 or
H2 in the case both of them are weak hypotheses. Here, the h’s that
are used to formulate the hypotheses above are the structural param-
eters, while all the other parameters (i.e., factor loadings and covari-
ance parameters) are the nuisance parameters.

One may consider to test measurement invariance in the con-
text of SEM, where hypotheses of interest contain only equality
restrictions between factor loadings (i.e., the k’s). Because these
hypotheses contain only equality restrictions between the k’s,
the GORICA reduces to the AIC. Therefore, we will not investi-
gate the evaluation of measurement invariance using the
GORICA. For more details on how to obtain the estimates of fac-
tor loadings and their covariance matrix in R, which can be used
to evaluate measurement invariance, see the section “Structural
Equation Modeling Example” in the online supplementary material.
We will first perform a simulation study investigating the perform-
ance of the GORICA on choosing the best hypothesis out of the set
of hypotheses containing regression coefficients in the context of
structural equation model, and afterward, we will analyze the data
for the example.

Table 8
The Likelihood ðLð~hm j ĥ; R̂ĥÞÞ and Penalty ðPTmÞParts, GORICA
Values ðGORICAmÞ, and GORICA Weights ðwmÞ of Hypothesis
Hm (m = 1, 2, 3) for the Multilevel Regression Example

Hm Lð~hm j ĥ; R̂ĥ Þ PTm GORICAm wm

H1 11.911 1.918 �19.986 0.889
H2 �635.462 1.030 1,272.984 0.000
H3 11.911 4.000 �15.822 0.111

Note. GORICA = generalized order-restricted information criterion
approximation. The respective terms are made bold because they are either
vector or matrix.

Table 7
The Order-Restricted MLEs, ~h

m ¼ ð~hm10; ~h
m
20; ~h

m
11; ~h

m
21ÞT , for Hypothesis

Hm (m = 1, 2, 3) for the Multilevel Regression Example

Hm
~h
m
10

~h
m
20

~h
m
11

~h
m
21

H1 0.90 0.41 �0.01 �0.15
H2 0.00 0.46 0.00 0.00
H3 0.90 0.41 �0.01 �0.15

Note. MLE = maximum likelihood estimates. The respective terms are
made bold because they are either vector or matrix.

Table 6
Estimates ðĥÞ and Covariance Matrix ðR̂ĥÞ of the Structural
Parameters in the Multilevel Regression Example

R̂ĥ

ĥ ĥ10 ĥ20 ĥ11 ĥ21

ĥ10 = 0.90 6:9e�4

ĥ20 = 0.41 �3:4e�5 2:5e�4

ĥ11 = �0.01 �1:6e�5 1:4e�5 7:6e�4

ĥ21 = �0.15 1:4e�5 3:4e�6 �4:9e�5 2:3e�4

Note. The respective terms are made bold because they are either vector
or matrix.
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Performance of the GORICA for the SEM Example

We conduct a simulation study to investigate the perform-
ance of the GORICA when evaluating hypotheses containing
regression coefficients in the context of SEMs. The measure-
ment model and the structural model for the SEM simulation
are the same models as in Equations 13 and 14, respectively.

We create three different cases, where in Cases 1 and 2, the h’s
are in agreement with H1 and H2, respectively. In Case 3, the
population values of the parameters are only in agreement with
the unconstrained hypothesis H3. Table 10 gives our choices
for the h’s such that it holds that f 2 ¼ 0:02; 0:15, or .35 (Cohen,
1992, p. 157). Because the standardized factor loadings have
little effect on choosing the true hypothesis out of the set of

Figure 3
Structural Equation Model for the Sesame Street Data

Note. See the online article for the color version of this figure.

Table 9
Descriptives for the Variables in the SEM Example

Type of descriptive Prebody Prelet Preform Prenumb Prerelat Preclas Postbody

Min: 6.000 1.000 2.000 1.000 2.000 0.000 11.000
M: 21.400 15.940 9.921 20.900 9.938 12.240 25.260
Max: 32.000 55.000 19.000 52.000 17.000 24.000 32.000
SD: 6.390 8.536 3.737 10.685 3.074 4.658 5.412

Postlet Postform Postnumb Postrel Postclas Age Peabody

Min: 0.000 0.000 0.000 0.000 0.000 34.000 27.000
M: 26.700 13.740 30.050 11.650 15.740 51.520 46.770
Max: 54.000 20.000 54.000 17.000 24.000 69.000 99.000
SD: 13.272 4.001 12.846 2.832 5.151 6.281 15.987

Note. SEM = structural equation models.
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hypotheses when they concern regression coefficients, we choose
k ¼ 0:65 as population values of the factor loadings to relate the
indicators with the latent variables in the simulation in line with
Wolf et al. (2013, p. 917). We choose a sample of size N ¼
120; 150; or 200 and the correlation between latent variables q ¼
0:3 or 0.5 in line with Wolf et al. (2013). We use the correlation
between the two predictors age and Peabody score for each latent
variable as q ¼ 0:3. For more details on data generation in the
SEM simulation see the section “Simulation Steps” in the online
supplementary material.
Figure 4 shows the proportion of the times each of the hypothe-

ses containing regression coefficients was chosen by the GORICA
for 1,000 independent samples created from the population dis-
played in Table 10. Increasing the effect size and/or sample size
(almost in all simulation conditions) improves the performance of
the GORICA with respect to selecting the true hypothesis out of
the three hypotheses under evaluation. Therefore, we conclude
that the GORICA performs well on choosing the true hypothesis
for the hypotheses under evaluation.

Example 3 (Continued)

For the study in Stevens (1999, p. 596), the standardized param-
eter estimates and their covariance matrix for (structural) regres-
sion coefficients are shown in Table 11.1 The order-restricted
MLEs for hypotheses H1, H2, and the unconstrained hypothesis H3

are given in Table 12. Based on the GORICA weights in Table 13,
hypothesis H1 is a strong hypothesis, while hypothesis H2 is a
weak hypothesis, because it has a GORICA weight of zero. Note
that, because the restrictions of hypothesis H1 are in agreement
with the data, the log likelihood for H1 is equal to the log likeli-
hood for the unconstrained hypothesis H3. Additionally, the for-
mer has a smaller penalty than the latter. Therefore, the relative
weight between these hypotheses is at its maximum value (i.e., H1

is 0:693=0:307 � 2:26 times better than the unconstrained hypoth-
esis H3). These results imply that when assessing social and men-
tal intelligence of children before and after watching the Sesame
Street TV series, the Peabody score (P) is a more important predic-
tor for intelligence than age (A).

In the next section, we describe how the GORIC and GORICA
evaluate hypotheses containing range restrictions (e.g., H8 :

�2, h1 , 2; h2 in the section “GORIC and GORICA”).

Range Restrictions

The fit part of the GORIC and GORICA can be uniquely cal-
culated under range restrictions, the challenge is in determin-
ing the penalty part. The penalty part of a hypothesis is
uniquely defined for restrictions of the type Smh ¼ smRmh >

rm in Equation 5 where
Sm

Rm

� �
is of full rank (after discarding

redundant restrictions). As shown in the section “GORIC and
GORICA”, the restriction matrix for hypothesis H8 :

�2, h1 , 2; h2 is not of full rank because there is a linear de-
pendency between its two rows, and thus, the penalty part for this
hypothesis is not uniquely defined. Stated otherwise, many solutions
exist to determine the space of range restriction �2, h1 , 2 in H8.
The scaling of the covariance matrix of estimates is the main factor
when determining the space of range restrictions in these solutions.
Figure 5 shows how this scaling influences determining the space
of range restriction �2, h1 , 2 in the whole parameter space.
Each of the six plotted choices would lead to a different penalty
value. In Plot (2, 3), one can see that the range restriction is like a
line. Hence, when inspecting the complete parameter space, the
range restriction is like an equality restriction. This is the way
the penalty is calculated in current software. In that case,
when calculating the penalty, h1 is set equal to a constant and
thus leads to zero expected distinct parameters. When inspect-
ing the full hypothesis, H8 : �2, h1 , 2; h2, its penalty is 1,
because h2 is one free parameter and h1 is a constant and thus
no parameter.

Next, we exemplify how the GORIC and GORICA deal with
range restrictions in the context of an ANOVA model using the
PlantGrowth data in R. The outcome the weight of plant (N = 30)
is measured in a control and two treatment groups (1: control, 2:
Treatment 1, 3: Treatment 2). The ANOVA model for comparing
the means of these groups is defined as:

yji ¼ hj þ eji; (16)

where yji is the weight of the ith plant in the jth group, hj is the
mean of the weights of the plants in the jth group and eji �Nð0;r2Þ
is corresponding residual with variance r2 for j = 1, 2, 3 and
i ¼ 1; 2; . . . ; 10. To illustrate the applicability of the GORIC and
GORICA for range restrictions, we utilize Cohen’s d (Cohen, 1992)
effect size measure where 0.2, 0.5, and 0.8 indicate small, medium,
and large effect sizes, respectively.

Table 10
SEM Simulation: Population Values of the Regression
Coefficients With f 2 ¼ 0:02, 0.15, and 0.35 for the Three Cases

Latent
variable h1

Latent
variable h2

f 2 h1 h2 h3 h4

Case 1: H1 : h2 > h1; h4 > h3 is true

0.02 0.000 0.140 0.000 0.140
0.15 0.000 0.361 0.000 0.361
0.35 0.000 0.509 0.000 0.509

Case 2: H2 : h1 > h2; h3 > h4 is true

0.02 0.140 0.000 0.140 0.000
0.15 0.361 0.000 0.361 0.000
0.35 0.509 0.000 0.509 0.000

Case 3: H3 : h1; h2; h3; h4 is true
0.02 0.140 0.000 0.000 0.140
0.15 0.361 0.000 0.000 0.361
0.35 0.509 0.000 0.000 0.509

Note. SEM = structural equation models. The effect size f 2 is Cohen’s f 2

(Cohen, 1992, p. 157). The population value of each factor loading is cho-
sen as .65. The correlation between the two predictors for latent variables
h1 and h2 is chosen as q ¼ 0:3.

1 For more details on how to obtain these estimates and their covariance
matrix (together with the estimates of the factor loadings and their
covariance matrix) using R, see the section “Structural Equation Modeling
Example” in the online supplementary material.
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We compare the means of plant weight in control and treatment
groups and we evaluate whether the expected effect size is
between medium and large when comparing the means in treat-
ment groups. Since we have only one hypothesis of interest, we
evaluate this hypothesis against its complement (see Step 1(a) on
the guidance presented in the section “GORIC and GORICA”):

H1: h1 > h2; h3 > h1; 0:5rp , fh3 � h2g, 0:8rp;

H2: The complement of hypothesisH1;
(17)

where H1 specifies that the first treatment distorts the plant growth
(i.e., h1 > h2) while the second treatment improves the plant
growth (i.e., h3 > h1) relative to the control group and the corre-
sponding Cohen’s d is between medium and large when comparing
the means of these treatment groups (i.e., 0:5rp , fh3 � h2g,
0:8rp). Here, because the pooled standard error (rp) is unknown,
we use an estimate of it based on the sample, that is, the pooled
standard deviation (r̂p ¼ 0:623). The estimates of population

means and their covariance matrix are displayed in Table 14. The
order-restricted MLEs for hypothesis H1 and its complement hy-
pothesis H2 are displayed in Table 15. This table shows that the
GORIC and GORICA produce the same order-restricted MLEs for
the hypotheses of interest of the data. The values of the likelihood
and penalty parts, GORIC and GORICA values, and GORIC and
GORICA weights are displayed in Table 16. Notably, the restric-
tions in H1 are a two-dimensional plane because the difference in
means h2 and h3 are set equal to a constant. Therefore, the restric-
tions in the complement of H1 practically cover the three-dimen-
sional whole parameter space, and thus, the penalty for the
complement is 3. Notably, the range restriction 0:5rp , fh3 �
h2g, 0:8rp in H1 is almost a line in a two-dimensional whole pa-
rameter space (see Plot (2, 3) in Figure 6). The results show that
hypothesis H1 is 0.745/0.255 � 2.92 and 0.757/0.243 � 3.12 times
more supported by the data using the GORIC and GORICA,
respectively, when compared with its complement H2. This again
shows that the GORICA is an adequate approximation of the

Figure 4
Percentages of Choosing Hypotheses for the SEM Simulation

Note. Percentage of times that the hypotheses H1, H2, and H3 are selected by the GORICA with the effect size values f 2 ¼ 0:02; 0:15, and 0.35; sample
sizes N = 120, 150, and 200; and the correlation between latent variables q ¼ 0:3 and 0.5 for the three cases in which H1, H2, and H3 are the true hypoth-
esis, respectively. SEM = structural equation model. See the online article for the color version of this figure.
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GORIC, because these ratios are reasonably close to each other.
Although the ratios are close to each other, we recommend the
reader to rely on the results for the GORIC in this example,
because each group contains only 10 observations when compar-
ing the means of plant growth across these groups. The working
scheme for calculation of the penalty term to obtain GORICA
weights are displayed in Figure 7. For more details on how to
evaluate the set of hypotheses containing the range restrictions
in Equation 17 using the restriktor package, see the section
“ANOVA Example with Range Restrictions” in the online
supplementary material.

Conclusion and Discussion

The GORIC evaluation of (in)equality constrained hypothe-
ses requires different formulations for each family of models
outside the family of normal linear models. Thus, the computation
and application of the GORIC for these model families is compli-
cated. Therefore, we have proposed an approximation, the GORICA,
to extend the applicability of the GORIC to a large class of statistical
models, that is, GLMs, GLMMs, and SEMs. The GORICA is a sim-
ple function that requires parameter estimates and their covariance
matrix to evaluate (in)equality constrained hypotheses for GLMs,
GLMMs, and SEMs. Researchers can specify theories and their
expectations for the GORICA and evaluate them using the accompa-
nying gorica package in R.

We performed two simulation studies to compare the perform-
ance of the GORIC and GORICA in the context of normal linear
models (see Section 1 of the online supplementary material). We
have empirically verified that the performance of the GORICA is
similar to that of the GORIC on choosing the true hypothesis out
of a set of hypotheses for the ANOVA and multiple regression
models. Moreover, we showed that the GORIC and GORICA
weights are asymptotically the same (see Appendix A). Then, we
performed three more simulation studies in the context of a logis-
tic regression, multilevel regression, and structural equation mod-
els, respectively, to further investigate the performance of the
GORICA (see the main text and some additional information in
Section 2 of the online supplementary material). Empirical evi-
dence obtained from each simulation study shows that the
GORICA can be used to evaluate (in)equality constrained hypoth-
eses in the context of GLMs, GLMMs, and SEMs. Evidently, the
GORICA performed better when increasing the sample size and/or
effect size unless one or more hypotheses in the set behave like a
null hypothesis. Subsequently, we illustrated how to evaluate (in)
equality constrained hypotheses using the GORICA for logistic
regression, multilevel regression, and structural equation models
(see the main text and some additional information in Section 3
of the online supplementary material). The examples rendered
GORICA weights that quantified the evidence in the data with
respect to hypotheses under evaluation. In all our examples and
simulations, the hypothesis of interest contained limited numbers
of restrictions on structural parameters. It is known that the Bayes
factor cannot easily be determined in high dimensional settings
(Berger et al., 2003; Shang & Clayton, 2011). This is because the
area in agreement with the restrictions of the hypothesis of interest
is too small, which could also influence the calculation of the pen-
alty in information criteria like the GORICA. Therefore, we inves-
tigated the calculation of the penalty for the GORICA under a
high dimensional setting in the context of multiple regression (see
Section 4 of the online supplementary material). We found that the
penalty for the GORICA can still be accurately determined when
the hypothesis of interest contains restrictions on 100 structural
parameters.

Although the GORICA is a more easy-to-apply and flexible in-
formation criterion than the GORIC, it has some limitations
when evaluating (in)equality constrained hypotheses under the
general class of models. Here, we elaborate on three main limita-
tions of the GORICA. First, the GORICA is an approximation of
the GORIC which assumes that there is an adequate sample size

Table 13
The Likelihood ðLð~hm j ĥ; R̂ĥÞÞ and Penalty ðPTmÞParts, GORICA
Values ðGORICAmÞ, and GORICA Weights ðwmÞ of Hypothesis
Hm (m = 1, 2, 3) for the SEM Example

Hm Lð~hm j ĥ; R̂ĥ Þ PTm GORICAm wm

H1 9.209 3.186 �12.047 0.693
H2 0.470 3.185 5.429 0.000
H3 9.209 4.000 �10.419 0.307

Note. SEM = structural equation models; GORICA = generalized order-
restricted information criterion approximation. The respective terms are
made bold because they are either vector or matrix.

Table 11
Estimates ðĥÞand Covariance Matrix ðR̂ĥÞof the Standardized
Structural Regression Coefficients for the SEM Example

R̂ĥ

ĥ ĥ1 ĥ2 ĥ3 ĥ4

ĥ1 = 0.29 2:3e � 3

ĥ2 = 0.59 � 1:2e � 3 1:6e � 3

ĥ3 = 0.18 1:5e � 3 � 7:6e � 4 3:2e � 3

ĥ4 = 0.51 � 7:2e � 4 9:8e � 4 � 1:3e � 3 2:3e � 3

Note. SEM = structural equation models. The vector of the estimates for fac-
tor loadings is ð̂k1; k̂2; k̂3; k̂4; k̂5; k̂6; k̂7; k̂8; k̂9; k̂10; k̂11; k̂12Þ = (0.79,
0.68, 0.79, 0.91, 0.78, 0.80, 0.75, 0.85, 0.81, 0.91, 0.73, 0.86). For more details
on how to obtain these estimates and their covariance matrix using R, see the
section “Structural Equation Modeling Example” in the online supplementary
material. The respective terms are made bold because they are either vector or
matrix.

Table 12
The Order-Restricted MLEs, ~h

m ¼ ð~hm1 ; ~h
m
2 ; ~h

m
3 ; ~h

m
4 ÞT, of the

Standardized Structural Regression Coefficients for Hypothesis
Hm (m = 1, 2, 3) for the SEM Example

Hm
~h
m
1

~h
m
2

~h
m
3

~h
m
4

H1 0.29 0.59 0.18 0.51
H2 0.45 0.45 0.37 0.37
H3 0.29 0.59 0.18 0.51

Note. MLE = maximum likelihood estimates; SEM = structural equa-
tion models. The respective terms are made bold because they are either
vector or matrix.
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when evaluating hypotheses. Therefore, caution should be taken
when using the GORICA in case of small samples. In this case,
the GORICA sometimes was not able to correctly prefer the
unconstrained hypothesis in the set when the other hypotheses
under evaluation were not correct in the population. Note that

this issue is not related only to the GORICA, but also to the
GORIC. Moreover, this problem vanishes when sample size
and/or effect size are large enough, that is, it asymptotically
chooses the correct hypothesis (and in case of multiple correct
hypotheses the most parsimonious one). Second, like all ICs,

Figure 5
The Effect of Scaling the Covariance Matrix of Estimates on Determining the Space of Range Restriction �2, h1 , 2

Note. See the online article for the color version of this figure.

Table 15
The Order-Restricted MLEs, ~h

m ¼ ð~hm1 ; ~h
m
2 ; ~h

m
3 ÞT , for Hypothesis

Hm (m = 1, 2) for the ANOVA Example

Method Hm
~h
m
1

~h
m
2

~h
m
3

GORIC H1 5.03 4.84 5.34
H2 5.03 4.66 5.53

GORICA H1 5.03 4.84 5.34
H2 5.03 4.66 5.53

Note. MLE = maximum likelihood estimates; GORICA = generalized
order-restricted information criterion approximation. The respective terms
are made bold because they are either vector or matrix.

Table 14
Estimates ðĥÞand Covariance Matrix ðR̂ĥÞof the Population
Means for the ANOVA Example

R̂ĥ

ĥ ĥ1 ĥ2 ĥ3

ĥ1 = 5.03 0.04

ĥ2 = 4.66 0.00 0.04

ĥ3 = 5.53 0.00 0.00 0.04

Note. The respective terms are made bold because they are either vector
or matrix.
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the results of the GORICA is dependent of the method used for
estimation. Occasionally, researchers may prefer to use another
estimation technique than the MLE in conjunction with the
GORICA. For example, it is well known that the MLE may

produce bias parameter estimates and their asymptotic standard
errors when the data at hand contain outliers, which influences
the performance of the GORICA. In such a case, one may con-
sider to apply an outlier robust method to estimate structural
model parameters and their covariance matrix. The third limita-
tion is a general limitation that applies not only to the GORICA
but also to other statistical methods. Like with hypothesis test-
ing or using other information criteria, the GORICA results
depend on many other aspects of the study such as study
design, the power of study, data quality and so forth. The focus
of this study is to investigate the GORICA itself as an alterna-
tive to hypothesis testing and other information criteria. When
applying the method in practice, these aspects should of course
be taken into account.

The GORICA is implemented in the gorica package in R for
each example presented in this article which is elaborated in the
online supplementary material. This enables researchers to
evaluate (in)equality constrained hypotheses in a wide range of
statistical models.

Figure 6
The Effect of Scaling the Covariance Matrix of Estimates on Determining the Space of Range Restriction 0:5rp , fh3 � h2g, 0:8rp

Note. See the online article for the color version of this figure.

Table 16
The Likelihood ðLð~hmjĥ; R̂ĥ ÞÞ and Penalty ðPTmÞ Parts, GORIC
and GORICA Values ðGORICm;GORICAmÞ, and GORIC and
GORICA Weights ðwmÞ of Hypothesis Hm (m = 1, 2) for the
ANOVA Example

Hm Lð~hmjĥ; R̂ĥ Þ PTm GORICm wm

H1 �27.739 2.000 59.478 0.745
H2 �26.810 4.000 61.619 0.255
Hm Lð~hmjĥ; R̂ĥ Þ PTm GORICAm wm

H1 1.252 1.000 �0.503 0.757
H2 2.115 3.000 1.770 0.243

Note. GORICA = generalized order-restricted information criterion approxi-
mation. The respective terms are made bold because they are either vector or
matrix.
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Appendix A

Derivation of the GORICA

In this appendix, we will derive the GORICA, which is the as-
ymptotic expression of the GORIC (when leaving out the nui-
sance parameters). Hence, the derivation of the GORICA is
based on that of the GORIC (Kuiper et al., 2012, pp.
2455–2458), in which it is assumed that the density of the data
follows a normal distribution. For the more general class of
models that we inspect in this article (e.g., logistic regression
models and mixed models), this normality assumption holds
asymptotically (Gelman et al., 2013, pp. 83–88). When the like-
lihood is unimodal, roughly symmetric and twice differentiable,
we can usually accurately approximate it by a normal distribu-
tion centered at the MLE. The second order Taylor expansion of
the log likelihood centered at the MLE ĝ is given by:

log Lðg jY Þ � log Lðĝ jY Þ þ 1
2
ðg� ĝÞT d2

dg2
log Lðg jY Þ

" #
g¼ĝ

ðg� ĝÞ;

with g is the vector of the model parameters and Y denotes the
data at hand, where we have used that the first derivative of the
log likelihood is zero at its MLE.

This equation yields:

Lðg jY Þ � Nðg j ĝ; R̂ĝÞ: (18)

with R̂ ĝ the covariance matrix of ĝ.2

In the asymptotic expression for the GORIC, we will maxi-
mize this likelihood (i.e., the asymptotic likelihood) under the
restrictions in hypothesis Hm for m ¼ 1; . . . ;M.

The asymptotic expression for the GORIC is thus given by:

�2 log Lð~gm j ĝ; R̂ ĝÞ þ 2PTmðgÞ;with
~gm ¼ argmaxg2Hm

logLðg j ĝ; R̂ ĝÞ; (19)

where PTmðgÞ denotes the penalty term for Hypothesis Hm and
~gm is the order-restricted MLE of g, that is, the value of g that
maximizes the likelihood under the restrictions in HypothesisHm.

Notably, g in Equation 19 contains all the model parame-
ters: both structural (h) and nuisance parameters (n). In the
next section, we will show for the asymptotic expression of
the GORIC in Equation 19 that we can leave out the nuisance
parameters. We will do this for both the (log) likelihood part
and the penalty part. Afterwards, we will define the expres-
sion of the GORICA.

When using ICs like the AIC, GORIC or GORICA, the val-
ues of these ICs themselves are not of importance but differen-
ces between two IC values are. To clarify, let the IC values for
hypotheses H

m

and Hm0 be

ICm ¼ �2 logLm þ 2PTm;
ICm0 ¼ �2 logLm0 þ 2PTm0 ;

respectively, where logL stands for the log likelihood and PT
for the penalty. Using this notation, if ICm is smaller than ICm0 ,
then the support for Hm is stronger than that for Hm0 . Stated oth-
erwise, the support for Hm is stronger if ICm � ICm0 , 0, that is,

(Appendices continue)

2 The covariance matrix in the normal approximation equals the
inverse of the expected Fisher information ðIð ĝÞ�1Þ, with

IðgÞ ¼ �E d2

dg2 logLðg jY Þ
h i

, where the random variable Y has been

averaged out. Based on the Cramér-Rao bound, Ið ĝÞ�1 is a lower
bound on the covariance matrix of ĝ, that is, R̂ ĝ$Ið ĝÞ�1; where the
bound is attained in case of a consistent estimator. Consequently,
since the MLE is consistent, we can use Ið ĝÞ�1 ¼ R̂ ĝ .
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logLm þ PTm � ðlogLm0 þ PTm0 Þ ¼ logLm � logLm0 þ PTm�
PTm0 , 0. Hence, parts that are constant over hypotheses will
cancel out when comparing hypotheses.

In this section, we will demonstrate that the nuisance pa-
rameters can be left out in the log likelihood part and in the
penalty part of the asymptotic expression of the GORIC in
Equation 19. Let R̂ ĝ consist of four block matrices:

R̂ ĝ ¼
R̂ĥ ĥ R̂ ĥ n̂

R̂n̂ ĥ R̂ n̂ n̂

264
375:

The likelihood Lðg j ĝ; R̂ĝÞ that needs to be maximized under
the restrictions in Hm can now be written as:

Lðgjĝ; R̂ĝÞ ¼ Lðh; njĥ; n̂; R̂ ĥ ĥ ; R̂ ĥ n̂ ; R̂ n̂ ĥ ; R̂ n̂n̂Þ
¼ Lðhjĥ; n̂; R̂ ĥ ĥ ; R̂ ĥ n̂ ; R̂ n̂ĥ ; R̂ n̂ n̂Þ � Lðnjh; ĥ; n̂; R̂ ĥ ĥ ; R̂ ĥ n̂ ; R̂ n̂ ĥ ; R̂ n̂n̂Þ
¼ Lðhjĥ; R̂ ĥ ĥÞ � Lðnjh; ĥ; n̂; R̂ ĥ ĥ ; R̂ ĥ n̂ ; R̂ n̂ ĥ ; R̂ n̂ n̂Þ

(20)

By definition, this likelihood is maximized for the order-re-
stricted MLEs ~h

m
and ~n

m
. Hence, the maximized likelihood

can be written as

Lð~gm jĝ;R̂ ĝÞ¼Lð~hm jĥ;R̂ ĥ ĥÞ �Lð~n
m jh;ĥ;n̂;R̂ ĥ ĥ ;R̂ ĥ n̂ ;R̂ n̂ ĥ ;R̂ n̂ n̂Þ

¼Lð~hm jĥ;R̂ ĥ ĥÞ �Lð~n
m jl̂

njh¼~h
m ;R̂

njh¼~h
mÞ; (21)

with l̂
n j h¼~h

m and R̂
n j h¼~h

m , the conditional mean and condi-
tional covariance matrix of n, respectively:

l̂
n j h¼~h

m ¼ n̂ þ R̂n̂ ĥ R̂
�1
ĥ ĥ
ð~hm � ĥÞ;

R̂
n j h¼~h

m ¼ R̂ n̂ n̂ � R̂n̂ ĥ R̂
�1
ĥ ĥ
R̂ ĥ n̂

¼ R̂n:

Note that, when maximizing the likelihood under the
restrictions in Hm, the order-restricted MLE of the nuisance pa-
rameters (~n

m
) will equal l̂n j h, which value is dependent on ~h

m
,

while the conditional covariance matrix is not (hence the nota-
tion R̂n). Note further that

Writing out the likelihoods in Equation 21 as log likelihoods gives:

logLð~hm jĥ;R̂ ĥ Þ¼constantþlogjR̂ ĥ ĥ j�
1
2
ðĥ�~h

mÞTR̂�1
ĥ ĥ
ðĥ�~h

mÞ;
logLð~nm jl̂

njh¼~h
m ;R̂nÞ¼constantþlogjR̂n j�1

2
ðl̂njh¼~hm�~nmÞTR̂�1

n ðl̂
njh¼~h

m �~n
mÞ

¼constantþlogjR̂n j;

using ~n
m ¼ l̂

n j h¼~h
m in the last line. This implies that the maxi-

mized joint log order-restricted likelihood, used in the asymp-
totic GORIC expression in Equation 19, can be written as:

log Lð~gm j ĝ; R̂ ĝ Þ ¼ constant þ log j R̂ ĥ ĥ j �
1
2
ðĥ � ~h

mÞTR̂�1
ĥ ĥ
ðĥ � ~h

mÞþ
constant þ log j R̂n j :

Note that both constants, log j R̂ ĥĥ j , and log j R̂n j are inde-
pendent of the hypothesis of interest (Hm).

We will first focus on the log likelihood part, that is,
logLm � logLm0

logLm�logLm0 ¼ logLð~gmjĝ;R̂ ĝ Þ�logLð~gm0 jĝ;R̂ ĝ Þ
¼constantþlogjR̂ ĥ ĥ j�

1
2
ðĥ�~h

mÞT R̂�1
ĥ ĥ
ðĥ�~h

mÞþconstantþlogjR̂nj�

constantþlogjR̂ ĥ ĥ j�
1
2
ðĥ�~h

m0
ÞT R̂�1

ĥ ĥ
ðĥ�~h

m0
ÞþconstantþlogjR̂nj

� �
¼�1

2
ðĥ�~h

mÞT R̂�1
ĥ ĥ
ðĥ�~h

mÞ�ð�1
2
ðĥ�~h

m0
ÞT R̂�1

ĥ ĥ
ðĥ�~h

m0
ÞÞ;

where the last line does not contain nuisance parameters any-
more, but only the structural ones and their covariance matrix.

Thus, when comparing hypotheses using the asymptotic
GORIC expression, only the differences for Hm and Hm0 with
respect to the first term on the last line of Equation 21 is
needed, that is, only the normal approximation of the likelihood
of the structural parameters is needed. Stated otherwise, when
comparing hypotheses and inspecting the log likelihood, one
can leave out the nuisance parameters.

The same line of reasoning holds for the penalty part. The pen-
alty part with respect to the nuisance parameters, PTmðnÞ,
equals the number of distinct nuisance parameters, even though
the values of the nuisance parameters are dependent on the hy-
pothesis of interest, they are all unrestricted and thus distinct.
Hence, the penalty term for hypothesis Hm is:

PTm ¼ PTmðgÞ
¼ PTmðh; nÞ
¼ PTmðhÞ þ PTmðnÞ:

Thus, PTmðnÞ ¼ PTðnÞ is constant over all hypotheses and,
when comparing hypotheses, it will cancel out:

PTm � PTm0 ¼ PTmðhÞ � PTm0 ðhÞ:

Hence, we can leave out the nuisance parameters also in the
penalty term.

In sum, we took the following steps:
• We use the asymptotic expression for the likelihood, which

is a normal distribution: Lðg j ĝ;RĝÞ, with g ¼ ðh; nÞ;
• Because we compare models, we can replace this likeli-

hood by a likelihood based on just the structural parame-
ters: Lðh j ĥ;Rĥ ĥÞ;

• Note that the log likelihood is maximized under the restric-
tions under Hm, which then results in: logLð~hm j ĥ;Rĥ ĥÞ;

• Because we compare models, we can also replace the pen-
alty part by the one based on just the structural parame-
ters: PTmðhÞ.

This leads to the following GORICA expression:

GORICAm ¼ logLm þ PTmðhÞ; with
logLm ¼ log Lð~gm j ĥ; R̂ ĥ ĥÞ:

(Appendices continue)
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For readability, we use R̂ĥ instead of R̂ ĥĥ in the main text
and in online supplemental material.

When comparing this to the GORIC expression in
Equation 19, we see that this expression is no longer asymp-
totically the same in case there are nuisance parameters.

However, when comparing two hypotheses, the differ-
ence in GORICA values is asymptotically the same as the
difference in GORIC values. This implies that the GORIC
weights and the GORICA weights will asymptotically
equate.

Appendix B

The GORICA (Continued)

In this appendix, we elaborate on the GORICA in terms of
how to obtain the order-restricted MLEs, ~h

m
, and how to com-

pute the penalty part, PTmðhÞ, respectively. These calculations
are similar to that of the GORIC.

The Order-Restricted MLEs

The order-restricted MLEs of the structural parameters
~h
m 2 IRK31 are obtained by

~h
m ¼ argmin

h2Hm

½ðĥ � hÞðR̂ĥÞ�1ðĥ � hÞT �; (22)

which maximizes the log likelihood in Equation 9 subject to
the restrictions in Hm. For example, if ĥ1 , 0; ĥ2 > 0, and hy-
pothesis H1 : h1 > 0; h2 > 0, then the corresponding order-re-
stricted MLEs are ~h

1
1 ¼ 0 and ~h

1
2 ¼ ĥ2. When the hypotheses

under evaluation are more complex, the calculations of the
order-restricted MLEs become more complex as well. In our
software, a quadratic programming algorithm the solve.QP
subroutine of the quadprog package (Turlach, 2014, pp. 2–4) in
R is used to calculate the values of ~h

m
.

Computing the Penalty

The penalty part PTmðhÞ is used to penalize hypothesis Hm

while taking into account the equality and/or inequality con-
straints imposed on the parameters in Hm. Next, we describe
the steps to be taken when computing the penalty part of the
GORICA.

First, a vector z ¼ ðz1; z2; . . . ; zKÞT 2 IRK31, with K is the
number of the structural model parameters that are used to for-
mulate the hypotheses under evaluation, is sampled from a nor-
mal distribution with mean vector 0 and covariance matrix
R̂ĥ 2 IRK3K (see Step 1 in Figure 7). Second, the vector of
order-restricted estimates ~zm ¼ ðezm1 ;ezm2 ; . . . ;ezmKÞT 2 IRK31 is
computed using the values of z (see Step 2 in Figure 7). Third,
the number of the levels in ~zm is calculated, that is, K � Am,
where K is the number of structural parameters and Am is the
number of active constraints in Hm (see Step 3 in Figure 7).
Note that a constraint becomes active when it is imposed on z.
For example, if z1 , 0 and z2 > 0 for hypothesis H1 : h1 >
0; h2 > 0 where K = 2, then the first constraint in H1 is an
active (or a violated) constraint but the second constraint is
inactive (or in agreement). The first three steps are repeated to
calculate the level probabilities (wlð:Þ; Silvapulle & Sen, 2005,

pp. 78–81), that is, the probabilities that the vector of order-re-
stricted estimates ~zm has l levels (see Step 4 in Figure 7), with
l ¼ f1; 2; . . . ;Kg and K is the number of the structural parame-
ters in hypothesis Hm, for example, for T = 100, 000 times
(which is an adequate number of iterations). The penalty part
PTmðhÞ (see Step 5 in Figure 7) is defined as:

PTmðhÞ ¼
XK
l¼1

wlðK; R̂ĥ ;HmÞ l: (23)

For example, suppose K = 3 and R̂ ĥ ¼ I 3, where I 3 denotes
a 3 3 3 identity matrix. Then for hypothesis
H1 : h1; h2; h3; PT1 ¼ w131þ w232þ w333 ¼ 3, with w1 ¼
w2 ¼ 0 and w3 ¼ 1. Note that, in general, the unconstrained
hypothesis HM implies no restriction on the parameters, which
is represented by wK = 1 and K � AM ¼ K; consequently,
PTMðhÞ ¼ K. When calculating the level probabilities for hy-
pothesis H2 : h1 > h2 > h3, there are six possible orders
between the structural model parameters:

h1 > h2 > h3;
h1 > h3 > h2;
h2 > h1 > h3;
h2 > h3 > h1;
h3 > h1 > h2;
h3 > h2 > h1:

Analogously, suppose we sample from a population for
which h1 ¼ h2 ¼ h3 and R̂ĥ ¼ I 3, where I 3 indicates a 3 3 3
identity matrix. Note that, when looking at the first level, h1 is
bigger than both h2 and h3 as in hypothesis H2 in two out of the
six cases, and thus, w1 ¼ 0:333. When looking at the second
level, h1 is bigger than h2 in three out of the six cases, and thus,
w2 ¼ 0:500. When looking at the third level, h1 is bigger than
h2 which in turn is bigger than h3 in only one out of the six
cases, and thus, w3 ¼ 0:167. Thus, for hypothesis
H2 : h1 > h2 > h3; PT2 ¼ w131þ w232þ w333 ¼ 1:834.
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