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both on ground and in space, are unable to measure the net circular polarization of an
isotropic Stochastic Gravitational Wave Background (SGWB). In this paper, we explore the
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space-based detectors planned to be launched around 2034: LISA and Taiji. We compute
the response of such a network to chirality and we perform a Fisher forecast analysis on the
I and V Stokes parameters for the SGWB. We find that a clear measurement of chirality
can be claimed for a maximally chiral flat signal with amplitude h2 ΩGW ' 10−12 at the
frequency scales of LISA and Taiji.
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1 Introduction

The recent claim of the NANOGrav collaboration of a detection of a stochastic common-
spectrum process from the 12.5-yr data set [1], has pushed the attention towards the pos-
sibility to detect a cosmological Stochastic Gravitational Wave Background (SGWB), using
current and future GW detectors. The gap in frequency between Pulsar Timing Array and
ground-based detectors will be covered by space-based interferometers, which will work in
the mHz regime. For the next future, planned space-based detectors will be the Laser Inter-
ferometer Space Antenna (LISA) [2] and Taiji [3], that will both consist of a constellation of
three satellites forming a nearly equilateral triangle with 2.5 and 3 million km arm lengths
respectively. Since such detectors will be probably flying on the same time, it is interesting
to study the capability of such network of extracting information on the SGWB.

Recently, a lot of effort has been dedicated to the development of techniques and tools
to characterize the SGWB using a triangular detector like LISA [4–14] or correlating different
experiments [15]. For an isotropic GW background, single planar detectors are limited by
their symmetry in detecting crucial observables, like chirality, which would be very important
in the process of characterization and disentanglement of a cosmological signal from an
astrophysical one [16–18]. The reason is that a planar interferometer responds in the same
way to a left-handed GW arriving perpendicular to the plane of the detector and to a right-
handed GW of the same amplitude coming from the opposite direction. On the contrary,
if the SGWB is anisotropic then a single planar detector (like LISA) becomes sensitive to
chiral signals. For a recent estimate of the sensitivity of LISA to circular polarization using
a dipolar anisotropy see [19].

It has recently been pointed out [20] that in the case of an isotropic background, by
cross-correlating the data streams of the LISA and Taiji, we can measure the chirality of the
SGWB, described by the Stokes parameter V , which characterizes the asymmetry between the
amplitudes of the left- and right-handed polarized waves. Such a measurement is important
to test many early universe theories which predict a sizable degree of parity violation, like

– 1 –
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models where the inflaton is coupled with gauge-fields or when Chern-Simons couplings1 are
present [27–52].

In this paper, as original contribution, we perform a detailed Fisher forecast analysis
for the I and V Stokes parameters, with the aim of quantifying how well we can constrain
chirality with the LISA-Taiji network. As expected, we find that the self-correlations between
channels of the same detector only contribute to the measurement of I, while the cross-
correlations of different detector channels contribute also to V . By taking into account Taiji
orbit specifications given in recent papers [53–55], the most up-to-date LISA instrument
specifications [10, 56, 57], and assuming same mission duration and scan strategy for LISA
and Taiji, we derive the expected 1 and 2σ error bars around the best fit value in the I-V
plane. We analyze both the case of an unpolarized background and of a maximally chiral
background for different signal amplitudes. In the latter case, we find that the estimated
error on V is roughly between 1 and 2 orders of magnitude larger than the estimated error
on I. From our results, we can state that a clear measurement of chirality can be claimed
for a maximally chiral flat signal with amplitude h2 ΩGW ' 10−12 at the frequency scales of
LISA and Taiji.

Throughout the paper, we also derive the (cross-correlated) detector responses to a
SGWB, working in the TDI 1.5 AET channel basis [58, 59] and compute the Signal-to-Noise
Ratio (SNR) for the detection of chirality, comparing our results with [20].

The structure of the paper is the following: in section 2 we describe the orbit configura-
tion of the two interferometers and we compute the response functions for measuring the net
circular polarization of the SGWB with the LISA-Taiji network. In section 3 we compute
the corresponding SNR for chiral SGWB. In section 4 we perform a Fisher forecast analysis
on the Intensity (I) and Circular Polarization (V ) parameters. In section 5 we draw our
conclusions. Finally, in appendix A we report some useful formulae for the computation of
the response functions and noise spectra, mainly taken from [10].

2 LISA-Taiji detector network and detection of chirality

We begin this section with a brief description of the LISA-Taiji detector network (see, e.g., [53]
and refs. therein for more details). LISA is expected to move in an heliocentric (elliptical)
orbit staying 20o behind the Earth, with its three spacecrafts forming an equilateral triangle
with the arm length LLisa = 2.5 × 106 km. The Taiji detector will share the same geometry
and path of LISA, but staying 20o ahead the Earth and having a larger arm length of
LTaiji = 3 × 106 km. For both LISA and Taiji, the planes of the three spacecrafts will be
inclined of 60o with respect to the ecliptic plane. Moreover, the detectors have an internal
spinning motion (the so-called cartwheel rotation) with a period of 1 year. See figure 1 for a
qualitative representation of the LISA-Taiji network configuration. Since the Earth orbital
eccentricity (and thus LISA and Taiji) e is small, i.e. e ' 0.0167, throughout this paper we
neglect the eccentricity and assume circular orbits.

Each detector consists of three interferometers (data channels) which simultaneously
measure the differential Doppler frequency shifts induced by GWs passing between the test
masses. In general, the data stream (in time domain) measured in any of these channels
(labeled by the index i) can be modeled as

di(t) = si(t) + ni(t) , (2.1)
1Notably this coupling also provides a very efficient channel for gauge preheating [21–23] which typically

produces a sizable GW signal peaked at high frequencies [24–26].

– 2 –
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Figure 1. Plot of the Lisa-Taiji network configuration. On the left, we show the global geometry
of the LISA-Taiji network, with LISA having an orbital phase angle θL = 20o behind the Earth, and
Taiji an orbital phase angle θT = 20o ahead the Earth. The angular separation between the two
detectors is β = 34.46o. On the right, we show the plane of the two detectors forming an angle of
αL = αT = 60o with the ecliptic plane.

where ni(t) is the noise of the instrument and si(t) is some residual signal. Typically, it is
more convenient to work in frequency domain, which can be achieved through a finite-time
Fourier transform:

d̃i(f) =
∫ T/2

−T/2
dt e2πift di(t) , (2.2)

where T is the observation time. In the following we assume the signal and the noise to
be Gaussian (with zero mean) and uncorrelated (i.e., 〈s̃i(f)ñj(f ′)〉 = 0). In this case, the
information is contained in the signal and noise power spectra which, for stationary signals,
can be expressed as2

〈s̃i(f)s̃∗j (f ′)〉 = 1
2Sij(f) δ(f − f ′) ,

〈ñi(f)ñ∗j (f ′)〉 = 1
2Nij(f) δ(f − f ′) ,

(2.3)

where the quantity Sij(f), Nij(f) are respectively the so-called “one-sided” signal and noise
power spectra, obeying to Sij(−f) = Sij(f), Nij(−f) = Nij(f). By taking the Fourier
transform of eq. (A.20), it is possible to show that Sij can be expressed as:

Sij(f) =
∑
λ

Rλij(f)Pλ(f) =
∑
λ

Pλ(f)
[
(2πkLi)(2πkLj)W (kLi)W ∗(kLj)R̃λij(f) + h.c.

]
,

(2.4)

where λ = L/R identifies left and right-handed polarizations (see appendix A.1), Li, Lj are
the detector armlengths, Rλij is the so-called detector response function and Pλ is the GW
power spectrum defined as

〈h̃λ(k1)h̃∗λ′(−k2)〉 = δ(3)(k1 + k2)Pλ(k1)
4πk2

1
δλλ′ , 〈h̃λ(k1)h̃λ′(k2)〉 = 0 . (2.5)

2We have already replaced the finite-time delta function with an ordinary Dirac delta function, assuming
infinite observation time T .
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For the scope of this work, it is more useful to switch to the so-called I and V Stokes
parameters defined as

I = PR + PL , V = PR − PL . (2.6)

Here I defines the overall total amplitude of gravitational waves, while V defines its circular
polarization, i.e. the asymmetry between the L and R-handed power spectra. The latter
could be induced by mechanisms of parity violation in the Universe, thus representing a clear
channel for looking to parity breaking signatures in the gravitational interaction. Clearly, it
is possible to express Sij(f) in terms of I and V as

Sij(f) = I(f)RIij(f) + V (f)RVij(f) , (2.7)

where we have introduced the I and V detector responses as

RIij(f) =
RRij(f) +RLij(f)

2 , RVij(f) =
RRij(f)−RLij(f)

2 . (2.8)

Before considering cross-correlations between different detectors, let us focus on the case
where i and j denote two channels of the same detector. In this case, RIij(f) matches
with the function Rij(f) of [10]. A plot of this quantity for both LISA and Taiji is shown
in figure 2a. Since both LISA and Taiji are planar detectors, they are insensitive to parity
violations [17, 60]. This can be shown by checking that in the two cases we have RLij = RRij
and thus RVij(f) = 0. We introduce GW spectral energy density using

h2Ωλ
GW(f) = 4π2f3

3(H0/h)2Pλ(f) , h2ΩGW(f) = 4π2f3

3(H0/h)2 I(f) , (2.9)

where H0/h = 3.24× 10−181/s is the value of the Hubble parameter at present time (h is its
dimensionless parameter normalization).

Both for LISA and Taiji it is possible to interpret the three output channels as data
measured by three interferometers which share theirs arms. As a consequence, the noises in
the three channels are correlated.3 Assuming that the noise spectra for all links are identical,
it is possible to exploit the internal symmetry of each detector and build three noise-diagonal
data combinations [61], i.e. Nij = 0 for all i 6= j (see appendix A.3 for more details). For
LISA these data combinations are typically dubbed A, E, T and, throughout this paper, the
analogous combinations for Taiji will be dubbed C, D, S. In the following we will always
proceed using these bases. In the LISA noise diagonal basis we have

NAA(f,A, P ) = NEE(f,A, P ) =

= 8
(2πfL

c

)2
sin2

(2πfL
c

){
4
[
1 + cos

(2πfL
c

)
+ cos2

(2πfL
c

)]
×

×A
2

L2
fm2

s4 Hz

[
1 +

(0.4mHz
f

)2
] [

1 +
(

f

8mHz

)4]( 1
2πf

)4
+

+
[
2 + cos

(2πfL
c

)]
× P 2

L2
pm2

Hz

[
1 +

(2mHz
f

)4
]}

,

(2.10)

3For the expressions of NXX and NXY for LISA and Taiji see eq. (A.23) and eq. (A.24).
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where A and P are amplitude of the acceleration and of the IMS noise,4 and

NTT(f,A, P ) = 16
(2πfL

c

)2
sin2

(2πfL
c

){
2
[
1− cos

(2πfL
c

)]2
×

×A
2

L2
fm2

s4 Hz

[
1 +

(0.4mHz
f

)2
] [

1 +
(

f

8mHz

)4]( 1
2πf

)4
+

+
[
1− cos

(2πfL
c

)]
× P 2

L2
pm2

Hz

[
1 +

(2mHz
f

)4
]}

.

(2.11)

Identical expressions can be used for the CC/DD and SS Taiji noise power spectra. For the
two detectors we respectively take A = 3, P = 15 and A = 3, P = 8 [53]. In order to directly
compare the injected signal with the noise, it is customary to define the strain sensitivities
(see, e.g, [10]) as

Sn,ij(f) = Nij(f)∑
λRλij(f)

, (2.12)

which can be expressed in ΩGW units as:

h2Ωn,ij(f) = 4π2f3

3(H0/h)2Sn,ij(f) ≡
NΩ
ij (f)∑

λRλij(f)
. (2.13)

A plot of the sensitivities for the different data combinations for both LISA and Taiji (AA
is equal to EE and CC is equal to DD) is shown in figure 2b.

So far, we have assumed that the two channels i, j belong to a single detector. However,
a lot of extra information can be unveiled by cross-correlating the signals of LISA and Taiji.
In particular, since the LISA/Taiji network is not planar, by cross-correlating data streams
from the two detectors it is possible to get information on V . In figure 2c, figure 2d
we respectively show5 R̃Iij(k), R̃Vij(k). Notice that the maximum of R̃Vij(k) is roughly an
order of magnitude smaller than R̃Iij(k) for the same combination. Despite this suppression,
the non-zero value of R̃Vij(k) in this combination constitutes a remarkable improvement with
respect to self-correlations of planar detectors where this quantity was shown to be identically
vanishing. This open up a new channel for searching the chirality of gravitational waves with
networks of space-based interferometers. In the next section, we estimate the SNR expected
to be measured by the LISA-Taiji network and we study detection prospects of (chiral) GWs
employing a Fisher-matrix forecast.

To conclude this section we introduce the quantity

χ(f) ≡ PR(f)− PL(f)
I(f) = V (f)

I(f) , (2.14)

which quantifies the strength of parity violation and is usually referred as chirality of the
SGWB (see, e.g., [29]). By definition |χ| ≤ 1, and |χ| = 0, 1 correspond to zero/maximal
parity violation respectively. Notice that we can rewrite Sij in terms of χ as

Sij(f) = 3(H0/h)2

4π2f3

[
h2ΩI

GW(f)RIij(f) + h2ΩV
GW(f)RVij(f)

]
, (2.15)

where we defined ΩI
GW(f) = ΩGW(f) and ΩV

GW(f) = χΩGW(f).
4See appendix A.3 for details.
5Notice that these are the R̃λij and not the Rλ

ij of eq. (2.4).
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Figure 2. Response functions and sensitivity curves for the Lisa-Taiji detector network. In panel (a)
we show the single detector Rij(f) = RL

ij(f) +RR
ij(f) response functions. In panel (b) we show the

sensitivity curves for LISA and Taiji noise-diagonal channels. In panel (c) we show the cross-correlation
R̃I

ij(f) response function. In panel (d) we show the cross-correlation R̃V
ij(f) response function.

3 The optimal Signal-to-Noise Ratio

Given the data streams d̃i for the two detectors (for the moment let us keep this general
so that it applies both to self and cross-correlations), we can build a frequency integrated
estimator F̂ for the signal as [17, 18, 60]

F̂ ≡
∑
i≥j

∫
df1 df2W

ij(f1, f2)
[
d̃i(f1) d̃j(f2)− 1

2δ(f1 + f2)Nij(f1)
]
, (3.1)

where Nij is the noise power spectrum for channels ij and W ij(f1, f2) is a filter function
which satisfies W ij(f1, f2)∗ = W ij(−f1, −f2) and is ij symmetric. Notice that the sum runs

– 6 –
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over i ≥ j to avoid double counting. The expectation value of F̂ clearly reads

〈F̂〉 =
∑
i≥j

∫ ∞
−∞

df1 df2W
ij(f1, f2)

[
〈d̃i(f1) d̃j(f2)〉 − 1

2δ(f1 + f2)Nij(f1)
]

= 1
2
∑
i≥j

∫ ∞
−∞

df1df2W
ij(f1, f2)Sij(f1)δ(f1 + f2) ,

(3.2)

where Sij (f) is the signal power spectrum given in eq. (2.7).
In order to compute the SNR we have to evaluate the expectation value of F̂ over its

variance in a noise-dominated regime, i.e.

SNR ≡ 〈F̂〉√[
〈F̂2〉 − 〈F̂〉2

]
Sij=0

. (3.3)

In order to evaluate the variance of our estimator, let us first compute the following four
point correlation function6

F̃2
ijkl≡

〈(
di(f1)dj(f2)− 1

2δ(f1+f2)Nij(f1)
)(

dk(f3)dl(f4)− 1
2δ(f3+f4)Nkl(f3)

)〉
,

=Dth
ijD

th
kl +Dth

ikD
th
jl +Dth

il D
th
jk−

1
2δ(f3+f4)Dth

ijNkl(f3)+

− 1
2δ(f1+f2)Dth

lkNij(f1)+ 1
4Nij(f1)Nlk(f3)δ(f1+f2)δ(f3+f4) ,

(3.4)

where we used

〈didj〉 = 〈sisj〉+ 〈ninj〉 ≡ Dth
ij = 1

2δ(f1 + f2) [Sij +Nij ] . (3.5)

Since for Sij = 0 we clearly have 〈F̂〉 = 0 and F̃2
ijkl reduces to

F̃2
ijkl

∣∣∣
Sij=0

= 1
4Nik(f1)Njl(f2)δ(f1+f3)δ(f2+f4)+ 1

4Nil(f1)Njk(f3)δ(f1+f4)δ(f2+f3) ,
(3.6)

the denominator of eq. (3.3) in the noise-dominated regime is directly given by

〈F̂2〉
∣∣∣
Sij=0

=
∑

i≥j k≥l

∫
df1df2df3df4W

ij(f1, f2)W kl(f3, f4) F̃2
ijkl

∣∣∣
Sij=0

= 1
4
∑

i≥j k≥l

∫ ∞
−∞

df1df2W
ij(f1, f2)W ∗kl(f1, f2) [Nik(f1)Njl(f2)+Nil(f1)Njk(f2)] .

(3.7)
We can now distinguish between self and cross-correlation. In the case of self-correlations i
and j are both LISA (or Taiji) channels so that we have

〈F̂2〉
∣∣∣
Sij=0

= 1
2
∑
i≥j

∫ ∞
−∞

df1df2W
ij(f1, f2)W ∗ij(f1, f2)Nii(f1)Njj(f2) , (3.8)

6The four-point correlators is expressed as a sum of products of two-point correlators using the Wick
theorem.
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where we used the fact that Nij is diagonal in the AET/CDS bases and the two terms in the
square bracket of eq. (3.7) are equal. On the other hand for cross-correlation we have

〈F̂2〉
∣∣∣
Smn=0

= 1
4
∑
mn

∫ ∞
−∞

df1df2W
mn(f1, f2)W ∗mn(f1, f2)Nmm(f1)Nnn(f2) , (3.9)

where the index m runs over LISA channels and n runs over Taiji channels. Notice that in
this case one of the two terms in the square bracket of eq. (3.7) is zero.7 Let us first focus
on the case of self-correlations. The SNR in this case reads

SNRself =
∑
i≥j

∫∞
−∞ df1df2W

ij(f1, f2)Sij(f1)δ(f1 + f2)[
2
∑
i≥j

∫∞
−∞ df1df2W ij(f1, f2)W ∗ij(f1, f2)Nii(f1)Njj(f2)

]1/2 . (3.10)

It’s possible to show [62] that, up to an irrelevant normalization constant, the SNR is maxi-
mized by

W ij(f1, f2) ∝ δ(f1 + f2) Sij(f1)
Nii(f1)Njj(f2) . (3.11)

Finally the SNR for the self-correlation is given by8

SNRself =

∑
i≥j

T

2

∫ ∞
−∞

df1
Sij(f1)2

[Nii(f1)Njj(f2)]

1/2

=

T
∑
i≥j

∫ ∞
0

df

[
h2 ΩI

GW(|f |) RIij(k) + h2 ΩV
GW(|f |) RVij(k)

]2
NΩ
ii (|f |)NΩ

jj(|f |)


1/2

, (3.12)

where T denotes the total observation time and we used eqs. (2.13) and (2.15) to express
both the noise and the signal in Ω units. Since for self-correlations RVij is zero, only ΩI

GW
contributes to the SNR.

On the other hand, with an analogous procedure, it is possible to show that for cross-
correlations we get

SNRcross =

2T
∑
mn

∫ ∞
0

df

[
h2 ΩI

GW(|f |)RImn(k)+ h2 ΩV
GW(|f |)RVmn(k)

]2
NΩ
mm(|f |)NΩ

nn(|f |)


1/2

, (3.13)

where again the index m runs over LISA channels and the index n runs over Taiji channels.
Notice the extra factor 2 with respect to eq. (3.12) which is due to the different prefactor in
eq. (3.9) with respect to eq. (3.8). In this case since RVmn is non-zero, the SNR is sensitive
to chiral contributions too.

We have seen that by using the self-correlations only I contributes to the SNR. By
combining eqs. (3.12) and (3.13) we can thus disentangle the contribution of V in eq. (3.13).
Assuming a flat GW spectrum for ΩV we can thus write

SNRV = h2 ΩV
GW(|f |)

2T
∑
ij

∫ ∞
0

df

[
RVmn(k)

]2
NΩ
mm(|f |)NΩ

nn(|f |)


1/2

, (3.14)

7This assumes that all the components contributing to the noises of the two detectors are uncorrelated.
While this is surely true for laser noises, this assumption must be tested for what concerns acceleration noise.

8The observation time appears after one of replaces one of the δs with a δT which keeps track of the finite
observation time.
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which becomes

SNRV ' χ
(

T

3yrs

)1/2
(
h2 ΩGW(|f |)
2.50× 10−13

)
, (3.15)

where in performing the frequency integral of eq. (3.14) we have used the same prescriptions
for the noise and response functions as discussed in section 2 and we used the definition of χ
given in eq. (2.14).

As discussed e.g. in [18], the optimal configuration for the detection of chirality is
obtained by taking the planes of the detectors (separated by a given distance D) to be
parallel. In our case this would correspond to choosing θL + θT = π (i.e. diametrically
opposite) and parallel. By performing the integral in eq. (3.14) for such case it’s possible to
show that the denominator in (3.15) would become 1.43 × 10−13, which corresponds to an
improvement of almost a factor 2 in the SNR.

4 Likelihood and Fisher forecasts

In this section we perform a Fisher forecast for both the intensity and the parity violating
contributions. For this purpose we start by writing a likelihood function to describe the data
in terms of some theoretical model. Using the definition in eq. (3.5) we can easily compute
the four point correlation function

D̃2
ijkl ≡

〈(
di(f1)dj(f2)−Dth

ij (f1)
) (
dk(f3)dl(f4)−Dth

ij (f3)
)〉

=
{1

4 [Sik(f1) +Nik(f1)] [Sjl(f2) +Njl(f2)] δ(f1 + f3)δ(f2 + f4)+

+ 1
4 [Sil(f1) +Nil(f1)] [Sjk(f2) +Njk(f2)] δ(f1 + f4)δ(f2 + f3)

}
.

(4.1)

Let us directly work in Ω units so that, similarly to [10, 13], we can build our likelihood as

− lnL = Nc

2
∑
ΛΛ′

∑
k

wkΛΛ′

[
Dk

ΛΛ′ −Dth
ΛΛ′(fk)

]2
σ2
s,ΛΛ′

+ N
′
c

2
∑
ττ ′

∑
k

wkττ ′

[
Dk
ττ ′ −Dth

ττ ′(fk)
]2

σ2
s,ττ ′

+

+ N
′′
c

2
∑
Λτ

∑
k

wkΛτ

[
Dk

Λτ −Dth
Λτ (fk)

]2
σ2
c,Λτ

,

(4.2)

where Nc, N
′
c, N

′′
c denote the number of data segments (chunks) used in the analysis,9

the apex k runs over frequencies, Dk
ij here denotes the average over data segments of

3(H0/h)2dki d
k
j /(4π2f3

k ), we denote with wkij the weights associated to the point (in the ij
channels combination) at frequency fk, the indexes Λ,Λ′ run over noise-diagonal LISA chan-

9This is directly set by the choice of the segmentation of the time domain data stream to convert it into
frequency domain. In principle these are different for the two experiments and in particular N

′′
c , number

of data segments we can use for the correlation, could be different from either Nc and N
′
c . For the sake of

simplicity in the following we will ultimately assume Nc = N
′
c = N

′′
c .
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nels, the indexes τ, τ ′ run over noise-diagonal Taiji channels and we introduced

σ2
s,ΛΛ′ =

(∑
λ

RλΛΛ h
2 Ωλ

GW +NΩ
ΛΛ

)(∑
λ

RλΛ′Λ′ h2 Ωλ
GW +NΩ

Λ′Λ′

)
,

σ2
s,ττ =

(∑
λ

Rλττ h2 Ωλ
GW +NΩ

ττ

)(∑
λ

Rλτ ′τ ′ h2 Ωλ
GW +NΩ

τ ′τ ′

)
,

σ2
c,Λτ = 1

2

∑
λ,λ′

RλΛτRλ
′

Λτ h
2 Ωλ

GW h2 ΩλGW
h +

+
(∑

λ

RλΛΛ h
2 Ωλ

GW +NΩ
ΛΛ

)(∑
λ

Rλττ h2 Ωλ
GW +NΩ

ττ

) .

(4.3)

Notice that similarly to eq. (3.8) we summed over the two identical contributions in the
self-correlations. Using the definitions of the Stokes parameters and of the corresponding
responses given in eq. (2.6) and eq. (2.8), we can directly use I and V in Ω units as given
in eq. (2.15) as parameters to model the data. In particular, since RV is zero for the self-
correlations, it’s easy to show that

Dth
ΛΛ′ = h2 ΩI

GWRIΛΛ′ +NΩ
ΛΛ′ , (4.4)

Dth
ττ ′ = h2 ΩI

GWRIττ ′ +NΩ
ττ ′ , (4.5)

Dth
Λτ = h2 ΩI

GWRIΛτ ′ + h2 ΩV
GWRVΛτ ′ . (4.6)

This clearly shows that self-correlations only contribute to the measurement of I while, as
expected, cross-correlations also contribute to V . Let us proceed by directly using ΩI

GW

and ΩV
GW as free parameters to model the data i.e. defining θ the vector of parameters we

have θα = {h2 ΩI
GW , h

2 ΩV
GW }. As customary the best fit θ̄ is defined by maximizing the

likelihood as
− ∂ lnL

∂θα

∣∣∣∣
θ=θ̄

= 0 , (4.7)

and the Fisher matrix as

Fαβ ≡ −
〈
∂2 lnL
∂θα∂θβ

〉∣∣∣∣∣
θ=θ̄

= δαIδβI

[
Nc

∑
ΛΛ′

∑
k

wkΛΛ′

σ2
s,ΛΛ′

[
RIΛΛ′

]2
+N

′
c

∑
ττ ′

∑
k

wkττ ′

σ2
s,ττ ′

[
RIττ ′

]2]

+N
′′
c

∑
Λτ

∑
k

wkΛτ
σ2
s,Λτ

∂Dth
Λτ (fk)
∂θα

∂Dth
Λτ (fk)
∂θβ

∣∣∣∣∣
θ=θ̄

. (4.8)

Once again, this manifestly shows that self-correlations only contribute to the II entry and
the cross-correlations also contributes to the IV and V V entries as well.

To conclude this section we present in figure 3 the results obtained by assuming that
LISA and Taiji will perform their measurement simultaneously and with the same data seg-
mentation (implying Nc = N

′
c = N

′′
c ) for a total observation time of 4 years with 75%

efficiency. Assuming time segments of roughly 11.5 days (leading to a maximal frequency
resolution of ∼ 10−6Hz) we obtain ∼ 95 data segments during the whole missions’ dura-
tion. The plots show the 1 and 2σ regions (respectively in blue and orange) for the best-fit
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Figure 3. Joint IV forecasts using the LISA/Taiji network for six different choices of h2 ΩI
GW ,

h2 ΩV
GW . The three columns respectively correspond to h2 ΩI

GW = [2.5× 10−13, 10−12, 10−11] and the
two rows are h2 ΩV

GW = [0, h2 ΩI
GW ]. The gray shaded areas correspond to regions of the parameter

space with h2 ΩI
GW < |h2 ΩV

GW | which is theoretically unacceptable.

parameters (represented by a red star) in the h2 ΩI
GW − h2 ΩV

GW planes. The gray shaded
areas, while being perfectly viable in the Bayesian framework depicted by our likelihood,
are theoretically inconsistent since they correspond to |χ| > 1, where χ is the quantity in-
troduced in eq. (2.14). By looking at the second row, where the signal is chosen to be
maximally chiral, i.e. h2 ΩI

GW = h2ΩV
GW, it possible to notice that the estimated error on

h2 ΩV
GW is roughly between 1 and 2 orders of magnitude larger than the estimated error on

h2 ΩI
GW. This can be explained by noticing that, as shown in eq. (4.8), the Fαβ is propor-

tional to the response squared. Since the plots of RI and RV shown in figure 2 show that
the maximum of RI is roughly 1 order of magnitude larger than the maximum of RV (which
however is located at larger frequencies), the error bars in figure 3 are order-of-magnitude
consistent. As a last comment, the bottom left plot show that, for a maximally chiral signal
with h2 ΩI

GW = 2.5 × 10−13 it will not be possible to claim a detection of parity violation.
While, on the other hand, a detection is clearly possible for maximally chiral signals with
h2 ΩI

GW = 10−12 (bottom central plot). Therefore, the minimal value for detecting h2 ΩV
GW

for maximally chiral signals should sit somewhere between these two values for h2 ΩI
GW.

Finally, in figure 4 we show the same forecasts as in figure 3 but placing Taiji at its
optimal location for detecting chirality i.e. θL + θT = π. We clearly notice an improvement
with respect to figure 3 and in particular, by comparing the bottom left plots of these two
figures, we see that in the optimal case we have a 1σ detection of chirality and we start to
disfavor some values for h2 ΩV

GW at 2σ. In general, by comparing the error bars for h2 ΩV
GW

in figure 3 and figure 4, we see approximately a factor two improvement in the determination
of this quantity. This is consistent with the estimate for the SNR performed in section 3.
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Figure 4. Same plot structure and injected signals as figure 3 but with Taiji at its optimal location
for detecting chirality (see text for details).

5 Conclusions

In this paper we have estimated the sensitivity of the LISA-Taiji detector network to a
chiral isotropic SGWB background, taking into account self and cross-correlation of all the
channels of the two interferometers. LISA and Taiji are two space-based detectors which
will be sensitive in the milli-Hertz regime and will probably fly at the same time, around
2034. While independently the two detectors will be unable to detect parity violation of an
isotropic SGWB, due to their planar configuration, in this paper we have shown that, cross-
correlating the output of the two detectors we will be able constrain the Stokes parameter
V , which characterizes the asymmetry between the amplitudes of the left- and right-handed
polarized waves.

We have computed the network response functions to a SGWB working in the TDI
1.5 channel basis, considering the expected Taiji orbit specifications and using the most up-
to-date LISA instrument specifications. We have then estimated the significance of such a
detection through a SNR estimator, finding that a clear measurement of chirality can be
claimed for a maximally chiral signal with h2 ΩI

GW ' 10−12, in accordance with a recent
similar analysis.

Finally, as a novel contribution, we have also performed a Fisher analysis to estimate
the errors on the I and V parameters in the case of an un-polarized background and in the
case of a maximally chiral background. In the second case, we have seen that the estimated
error on V is roughly between 1 and 2 orders of magnitude larger than the estimated error
on I. We have motivated this from the fact that the Fisher matrix Fαβ is proportional to the
response squared and, since the maximum of RI is roughly 1 order of magnitude larger than
the maximum of RV , this can explain the error bars order-of-magnitude difference. This can
be graphically seen from the response plots RI and RV shown in figure 2.
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Even if our analysis has been performed under the assumption of a flat spectrum
(nT = 0) for stochastic gravitational waves, we argue that our final claims are general. Models
of inflation predicting detectable GW at the frequency scales of space-based interferometers
are accompanied with a blue-tilted GW spectrum, nT > 0 (see, e.g., [6]). However, the
cross-correlations considered here are sensitive to GW in a relatively small frequency window
where a soft scale dependence can be neglected if one is interested to have a model indepen-
dent order-of-magnitude estimate. Conversely, for strong scale dependence one can adapt
our analysis to specific models of inflation in order to obtain model dependent exact results.

Our analysis can be extended to include also other detector satellites, like for instance
TianQin [63], which is another Chinese space-based detector planned to be launched in the
second half of the next decade. We leave this for future works.
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A Useful formulae

In this appendix we briefly summarize the key ingredients for the definition of the TDI
variables and for the computation of the detector response function. We closely follow the
notation of appendix A of [10] to which we remand for further details.

A.1 GW expansion

Let us work in natural units and in the Lorentz transverse-traceless gauge. Given a coordinate
system {êx, êy, êz} arbitrarily oriented and at rest with respect to the isotropic SGWB we are
considering, for a single wave-vector k of an incoming plane GW we can define the following
orthonormal basis [19, 64]

û(k̂) = k̂ × êz
|k̂ × êz|

, v̂(k̂) = k̂ × û , (A.1)

where k̂ is unit vector in the direction of k and we will denote its magnitude by k = |k|.
Using this basis, we can define the so-called “plus” (+) and “cross” (×) polarization tensors

e
(+)
ab (k̂) = ûaûb − v̂av̂b√

2
, e

(×)
ab (k̂) = ûav̂b + v̂aûb√

2
. (A.2)

Since û(−k̂) = −û(k̂) and v̂(−k̂) = v̂(k̂), the tensors e(+)
ab and e

(×)
ab fulfill the following

conditions

e
+/×
ab (k̂) = e

+/×∗
ab (k̂) , e+

ab(k̂) = e+
ab(−k̂) , e×ab(−k̂) = −e×ab(k̂) ,

e+
ab(k̂)e+

ab(k̂) = 1 , e×ab(k̂)e×ab(k̂) = 1 , e+
ab(k̂)e×ab(k̂) = 0 .

(A.3)
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Analogously, we introduce the “right-handed” (R) and “left-handed” (L) polarization tensors

eRab(k̂) = ûa + i v̂a√
2

ûb + i v̂b√
2

, eLab(k̂) = ûa − i v̂a√
2

ûb − i v̂b√
2

. (A.4)

These are related to the plus and cross polarization basis by means of the relationships

eRab(k̂) = e+
ab + i e×ab√

2
, eLab(k̂) = e+

ab − i e
×
ab√

2
. (A.5)

We can express the superposition of all GWs reaching the position x at the time t in terms
of incoming plane waves as

hab(x, t) =
∫ +∞

−∞
df
∫

Ω
dΩk̂ e

2πif(t−k̂·x) ∑
P

h̃P (f, k̂) ePab(k̂) , (A.6)

where P is the GW polarization (either +/× or L/R), f = k/2π is the frequency of each plane
wave, dΩk̂ is the infinitesimal solid angle from which the incoming wave with wave-vector k
arrives, and finally h̃P (f, k̂) ≡ f2 h̃P (k). In terms of k we can thus write

hab(x, t) =
∫

d3k e−2πik·x∑
P

[
e2πikt h̃P (k) ePab(k̂) + e−2πikt h̃∗P (−k) eP ∗ab (−k̂)

]
. (A.7)

From now on we will use the L/R basis which will be denoted with λ.

A.2 TDI variables and response functions

In the following, we neglect the motion of the detector satellite (either LISA or Taiji). Con-
sider two test masses labelled 1 and 2, inside two of the three detector spacecrafts, located at
x1 and x2 and separated by the vector Ll̂12, with l̂12 = (x2 − x1)/|x1 − x2|. In the following
we assume |x1−x2| to be constant (and equal to L = 2.5× 109 m for LISA or L = 3× 109 m
for Taiji). When a GW crosses the detector, a photon leaving test mass 2 at time t − L is
received at test mass 1 with a time shift [65, 66]

∆T12(t) = l̂a12 l̂
b
12

2

∫ L

0
ds hab(t(s),x(s)) . (A.8)

At the lowest order the photon path satisfies t(s) = t−L+ s and x(s) = x2− sl̂12. It follows

∆T12(t) = L

∫
d3k e−2πik·x2

∑
λ=L,R

[
e2πik(t−L)M(k, l̂12) h̃λ(k) Gλ(k̂, l̂12)

+ e−2πik(t−L)M∗(−k, l̂12) h̃∗λ(−k) Gλ ∗(−k̂, l̂12)
]
,

(A.9)

where we introduced the two quantities

GAi (k̂, l̂ij) ≡
l̂aij l̂

b
ij

2 eAab(k̂) , M(k, l̂ij) ≡ eπikL(1+k̂·l̂ij)sinc
[
πkL(1 + k̂ · l̂ij)

]
, (A.10)

and the definition of sinc: sinc(x) ≡ sin(πx)/(πx).
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In practice LISA will not measure time shifts but rather differential Doppler frequency
shifts defined as ∆F12(t) ≡ ∆ν12(t)/ν = −d∆T12(t)/dt. Moreover, given the uncertainty on
the mass positions and on the laser frequency, LISA employs Time Domain Interferometry
(TDI) techniques. This requires the usage of the same laser light pulse split into different path
to enforce better noise control. Since the techniques to be adopted are still under discussion,
in the following we chose simplified light paths which contain the keys ingredients which will
ultimately be used. Without loss of generality, in the following we assume Taiji will use the
same observable (i.e. differential Doppler frequency shifts) and similar TDI techniques as the
ones to be adopted in LISA.

The simplest interferometric measurement one could define is just

∆F1(23)(t) ≡ ∆F21(t− L) + ∆F12(t)− [∆F31(t− L) + ∆F13(t)] . (A.11)

By substituting eq. (A.9) into eq. (A.11), one can see that the signal contribution to
∆F1(23)(t) is

∆F1(23)(t) = −
∫

d3k e−2πik·x1(2πkL)
∑
λ

[
e2πik(t−L)Rλ1 (k, l̂12, l̂13)h̃λ(k)+

− e−2πik(t−L)Rλ1
∗(−k, l̂12, l̂13)h̃∗λ(−k)

]
,

(A.12)

where we introduced the functions Rλi

Rλi (k, l̂ij , l̂ik) ≡ Gλ(k̂, l̂ij)T (k, l̂ij)− Gλ(k̂, l̂ik)T (k, l̂ik) , (A.13)

and the so-called detector transfer function T defined as

T (k, l̂ij) ≡ eπikL(1−k̂·l̂ij)sinc
[
πkL(1 + k̂ · l̂ij)

]
+ e−πikL(1+k̂·l̂ij)sinc

[
πkL(1− k̂ · l̂ij)

]
. (A.14)

Introducing the detector characteristic frequency f∗ ≡ (2πL)−1, we can interpret the detector
transfer function as a low-pass filter, which is nearly constant for f � f∗ and rapidly decays
as the GW frequency becomes larger than f∗. The functions Rλi also contain geometrical
information and describe how the detector responds to a plane wave of wave-vector k when
the detector test masses i and j are oriented along the direction l̂ij . A more robust TDI
variable is the so-called TDI 1.5 X variable (TDI variables Y and Z are obtained as well by
cyclic permutation), defined as [10]

∆F 1.5
1(23)(t) = ∆F1(23)(t−2L)+∆F1(32)(t)

=−
∫

d3k e−2πik·x1(2πikL)
∑
λ

[
e2πik(t−L)W (kL)Rλ1 (k, l̂12, l̂13)h̃λ(k)+

− e−2πik(t−L)W ∗(kL)Rλ1
∗(−k, l̂12, l̂13)h̃∗λ(−k)

]
,

(A.15)

with W (kL) ≡ e−4πikL − 1. In order to ease the notation, from now on we use the simplified
notation si(t) ≡ ∆F 1.5

i(jk)(t). Notice that we also drop the two indexes jk since in each detector
they could trivially be determined (via cyclic permutations) given i.

As explained in section 2, the information is contained in two-point correlation functions
of data streams. In the following, we proceed in complete generality, i.e. without assuming
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that the two data streams are from the same detector. Let us denote with Li (Ll) the
armlength of the detector associated with si(t) (sj(t)) so that:

〈si(t)sj(t)〉 =
∫

d3k e−2πik·(xi−xj)(2πkLi)(2πkLj)
∑
λ

Pλ(k)
4πk2 ×

×
[
e−2πik(Li−Lj)W (kLi)W ∗(kLj)Rλi (k, l̂ik, l̂il)Rλj

∗(k, l̂jm, l̂jn)+

× e2πik(Li−Lj)W ∗(kLi)W (kLj)Rλi
∗(−k, l̂ik, l̂il)Rλj (−k, l̂jm, l̂jn)

]
,

(A.16)

where we have used the definition of GW power spectrum given in eq. (2.5). Notice that
for Li = Lj = L we get |W (kL)|2 = 2 [1− cos(4πkL)] = 4 sin2(2πkL). By using the
symmetry properties of T it is possible to show that Rλi

∗(−k, l̂ik, l̂il)Rλj (−k, l̂jm, l̂jn) =
Rλi (k, l̂ik, l̂il)Rλj

∗(k, l̂jm, l̂jn), so that (A.16) reduces to:

〈si(t)sj(t)〉 =
∫

dk (2πkLi)(2πkLj)
∑
λ

Pλ(k)
[
e−2πik(Li−Lj)W (kLi)W ∗(kLj)R̃λij, (kl)(mn)(k) + h.c.

]
,

(A.17)
where we defined (again we drop the indexes between parenthesis)

R̃λij(k) ≡ 1
4π

∫
d2k̂ e−2πik·(xi−xl)Rλi (k, l̂ik, l̂il)Rλj

∗(k, l̂jm, l̂jn) . (A.18)

As a last step we can also compact the notation by defining

RL/Rij (k) ≡ (2πkLi)(2πkLj)W (kLi)W ∗(kLj) R̃L/Rij (k) + h.c. , (A.19)

to get

〈si(t)sj(t)〉 =
∫

dk
[
RLij(k) PL(k) +RRij(k) PR(k)

]
. (A.20)

Notice that if i, j are both LISA channels, we can trivially recover the response function
Rij(k) defined in [10] as:

Rij(k) = RLij(k) +RRij(k) = 16(2πkL)2 sin2 (2πkL) R̃ij(k) , (A.21)

where R̃ij(k) = R̃Lij(k) = R̃Rij(k).
To conclude this section we stress that, by applying (2.2) to eq. (A.20), we get

〈
s̃i(f)s̃∗j (f ′)

〉
= 1

2
[
RLij(|f |) PL(|f |) +RRij(|f |) PR(|f |)

]
δT (f − f ′) , (A.22)

where10 δT (f − f ′) ≡ T sinc(f − f ′). Notice that while k is only positive, the f and f ′

appearing in this equations can be both positive and negative which is compensated by the
1/2 prefactor.

10In the limit of infinite observation time the δT can be replaced with a proper Dirac delta.
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A.3 Noise spectra and AET basis
The precise determination of the properties of the noise power spectra of the different channels
is one of the main technical challenges of both the LISA and Taiji missions, and we will not
treat this issue in detail here. The only current knowledge we have about the noise of space-
based interferometers come from the Pathfinder experiment of LISA [67] and laboratory tests.
Following [10], we will use the following expressions of the total power spectral density for
the noise self-correlations of a single detector

Nii(f,A, P ) = 16 sin2(2πfL) + {[3 + cos(2πfL)]Pacc(f,A) + PIMS(f, P )} , (A.23)
Nij(f,A, P ) = −8 sin2(2πfL) cos(2πfL) + [4Pacc(f,A) + PIMS(f, P )] , (A.24)

where i, j ∈ X,Y, Z and i 6= j, L denotes the detector arm-length, and

Pacc(f,A) = A2 fm2

s4 Hz

[
1 +

(0.4mHz
f

)2
] [

1 +
(

f

8mHz

)4]( 1
2πf

)4 (2πf
c

)2
, (A.25)

PIMS(f, P ) = P 2 pm2

Hz

[
1 +

(2mHz
f

)4
](2πf

c

)2
, (A.26)

where Pacc and PIMS denote, respectively, the “acceleration” (acc) noise (associated with the
random displacements of the masses caused, e.g., by local environmental disturbances), and
the “Interferometry Metrology System” (IMS) noise (which includes shot noise). For more
technical details we refer the reader to [10, 68, 69]. The noises of different detectors are as-
sumed to be uncorrelated i.e. 〈ñij(f)ñjj(f ′)〉 = 0 if i is a LISA channel and j is a Taiji channel.11

The derivation presented in appendix A.2 was carried out in terms of the so-called XYZ
basis. We now introduce another commonly used basis of TDI channels, the so-called AET
basis, which diagonalizes noise covariance matrix [58, 59] for the single detector.12 In order
to distinguish between the channels of different detectors, we use AET when referring to
LISA and CDS when referring to the corresponding “AET channels” of Taiji. Assuming that
the noise spectra for all links are identical i.e.

NXX = NYY = NZZ , (A.27)
NXY = NY Z = NXZ , (A.28)

it is trivial to show that the new basis

d̃A = 1√
2

(d̃Z − d̃X) , (A.29)

d̃E = 1√
6

(d̃X − 2d̃Y + d̃Z) , (A.30)

d̃T = 1√
3

(d̃X + d̃Y + d̃Z) , (A.31)

diagonalizes the LISA noise matrix (and an identical definition of CDS channels for Taiji
diagonalizes the Taiji noise matrix). With these definitions it is trivial to show that

NAA = NEE = NXX(f)−NXY(f) , (A.32)
NTT = NXX(f) + 2NXY(f) . (A.33)

11As stated in the main text this assumes that both noise components are uncorrelated among the two
detectors. This assumption must be tested for what concerns acceleration noise.

12Due to the detector symmetries, it is possible to show that also the signal is diagonal in the AET basis [10].
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The complete expressions of NAA and NTT are given in eq. (2.10) and eq. (2.11). It is
possible to show that at low frequency RXY ' −RXX/2 and as a consequence, in that regime
we have RTT � RAA so that T is signal orthogonal and it can be used to measure the noise
parameters.13
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