
 

 

 University of Groningen

Advancing presence and changes in body size of brown shrimp Crangon crangon on intertidal
flats in the western Dutch Wadden Sea, 1984–2018
Penning, Emma; Govers, Laura; Dekker, Rob; Piersma, Theunis

Published in:
Marine Biology

DOI:
10.1007/s00227-021-03967-z

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Penning, E., Govers, L., Dekker, R., & Piersma, T. (2021). Advancing presence and changes in body size
of brown shrimp Crangon crangon on intertidal flats in the western Dutch Wadden Sea, 1984–2018. Marine
Biology, 168(11), [160]. https://doi.org/10.1007/s00227-021-03967-z

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1007/s00227-021-03967-z
https://research.rug.nl/en/publications/6a1cec42-2768-45a7-902c-55bb2a767e7b
https://doi.org/10.1007/s00227-021-03967-z


Vol.:(0123456789)1 3

Marine Biology (2021) 168:160 
https://doi.org/10.1007/s00227-021-03967-z

ORIGINAL PAPER

Advancing presence and changes in body size of brown shrimp 
Crangon crangon on intertidal flats in the western Dutch Wadden Sea, 
1984–2018

Emma Penning1,2   · Laura L. Govers1,2 · Rob Dekker1 · Theunis Piersma1,2

Received: 1 March 2021 / Accepted: 2 September 2021 / Published online: 13 October 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Upon settlement after a pelagic larval phase, brown shrimp Crangon crangon depend on intertidal flats. During low as well 
as high tide the young brown shrimp play roles as predators of meiofauna and as prey for fish and birds. Unlike the biol-
ogy of the commercially important adults, knowledge on these juveniles remains sketchy. Here we provide an analysis of 
35 years (1984–2018) of brown shrimp monitoring in May–June on intertidal flats in the westernmost Dutch Wadden Sea. 
Intertidal shrimp densities were sampled bi-weekly at three stations during low tide, using sampling corers. We show that 
over this 35-year period the appearance of shrimp on mudflats advanced by 12 days (− 0.34 days yr−1). Simultaneously, 
densities on 7 May increased by more than 2.4 times, from 28 shrimp m−2 in 1984 to 69 shrimp m−2 in 2018. Across years, 
mean shrimp length decreased from 12.6 to 10.7 mm, but length in early May did not change. The advancement in settle-
ment and the increasing shrimp densities correlated with increases in the seawater temperatures in April more than during 
earlier times of the year. We propose four interpretations of these changes: (1) shrimp settle on the mudflat when they reach 
a certain ‘threshold’ length, (2) settlement of shrimp is controlled by a critical period of ‘threshold’ temperature sensitivity, 
(3) timing of shrimp settlement is a response to food availability on mudflats or (4) a direct response to inferred predation 
pressure. The different interpretations will lead to different scenarios of change in a warming world.

Keywords  Seasonal timing · Life cycle · Intertidal food web · Benthos · Wadden Sea · Long-term monitoring · Crangon 
crangon

Introduction

Intertidal flat systems often support high benthic primary 
production (Christianen et al. 2017) and a high number of 
primary and secondary consumers (Mathot et al. 2019). An 

abundance of bivalves, polychaete worms and crustaceans 
attracts birds and fish to these flats (Piersma et al. 1993). 
The international Wadden Sea, the most extensive intertidal 
system in the world, is visited on a yearly basis by hundreds 
of thousand shorebirds, who aggregate here to refuel during 
long-distance migrations between northern breeding areas 
and more southernly wintering areas (van de Kam et al. 
2004; Rakhimberdiev et al. 2018). Among the intertidal 
benthic invertebrates, brown shrimp Crangon crangon are 
important prey for e.g. Eurasian spoonbills Platalea leuc-
orodia (Jouta et al. 2018), sanderling Calidris alba (Pen-
ning et al. unpubl. data) and dunlin Calidris alpina (Nehls 
and Tiedemann 1993). When submerged, shrimp are prey 
for offshore pelagic fish like whiting Merlangius merlangus 
and cod Gadus morhua and in the Wadden Sea for demersal 
species like plaice Pleuronectes platessa and gobies Gobi-
idae (Tiews 1970; del Norte Campos and Temming 1994).

The Wadden Sea supports a high biomass of brown shrimp 
which are of ecological and commercial importance (Campos 
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and van der Veer 2008; Tulp et al. 2016). Shrimp play a central 
role in the food web, acting both as key prey and key preda-
tors (Pihl and Rosenberg 1984; Oh et al. 1999). The main food 
of large shrimp (> 20 mm) consists of juvenile plaice (van der 
Veer and Bergman 1987; Gibson et al. 1995) and several of the 
small benthic macrofaunal species (Pihl and Rosenberg 1984; 
Jensen and Jensen 1985; van der Veer et al. 1998); on this basis 
top–down control of bivalve recruitment by shrimp has been pro-
posed (van der Veer et al. 1998; Philippart et al. 2003; Beukema 
and Dekker 2005, 2014; Andresen and van der Meer 2010; van 
der Heide et al. 2014). On the mudflats, shrimp smaller than 
20 mm mainly eat meiofaunal organisms such as copepods and 
ostracods (Pihl and Rosenberg 1984; Boddeke et al. 1985; Jensen 
and Jensen 1985). Cannibalism of larger on smaller size classes 
is not uncommon (Marchand 1981; Pihl and Rosenberg 1984), 
but the impact on juvenile survival and mortality rates remains 
unknown (Campos and van der Veer 2008).

The life-cycle of shrimp can be sketched as consisting of 
three stages (Fig. 1) in which (1) the larvae are planktonic, (2) 
post-larvae settle on the intertidal flats, and (3) adults live demer-
sally in the subtidal zone (Lloyd and Yonge 1947). Females 
carry the eggs until they hatch, after which the larvae join the 
zooplankton (Smaldon 1979). The planktonic larvae go through 
different stages before they reach a length of 4.7 mm and settle 
on intertidal soft sediments supported by North Sea currents 
and selective tidal stream transport (Tiews 1970; Daewel et al. 
2011); by now they are called ‘post-larvae’ living in ‘nursery 
areas’ (Tiews 1970; Beukema 1992; Campos and van der Veer 
2008). Records of shrimp < 20 mm in the subtidal are scarce, 
but appropriate sampling to catch those small-sized shrimp 
has not been carried out (Janssen and Kuipers 1980; Boddeke 
et al. 1985; Beukema 1992). Therefore, it remains surprisingly 
unclear if post-larvae make use of the subtidal zone at all.

In autumn, adults make a seasonal migration to deeper 
waters, returning in spring with the incoming tides to coastal 

areas such as the Wadden Sea (Broekema 1941; van der 
Baan 1975; Boddeke 1976; Spaargaren 2000). In addition 
to seasonal migrations, adult shrimp show tidal migrations: 
they move to the mudflats with the incoming tide and move 
to deeper waters again with the outgoing tide (Hartsuyker 
1966; Al-Adhub and Naylor 1975). These movements may 
be triggered by changes in hydrostatic pressure which are 
sensed by adult shrimp (Tielmann et al. 2015). No such 
movements are known for the settling post-larvae and juve-
niles, which appear to remain on the intertidal flats during 
both low and high tide (Janssen and Kuipers 1980). Large 
juveniles have been reported to gradually leave the intertidal 
zone when they reach lengths of 20–25 mm, moving to the 
subtidal parts of the Wadden Sea and to the nearshore parts 
of the North Sea (van der Baan 1975; Kuipers and Dapper 
1981, 1984; Beukema 1992). However, in an experimental 
setting, shrimp 15–20 mm showed selective ebb tide activity, 
indicating that juvenile departure from intertidal mudflats 
may even start a bit earlier than at lengths of 20–25 mm 
(Hufnagl et al. 2014).

Male shrimp become sexually mature at smaller lengths 
(22–43 mm) than females (30–55 mm) (Lloyd and Yonge 
1947; ICES 2015). Spawning can take place in as long a 
period as 46 of the 52 weeks of the year, with egg-bearing 
females being observed year-round (Tiews 1970; Boddeke 
1982; Hünerlage et al. 2019). Nevertheless, there are peaks 
of egg-bearing females in winter and early summer (Bod-
deke and Becker 1979; Boddeke 1982; Kuipers and Dapper 
1984; Siegel et al. 2008; Hünerlage et al. 2019). Egg-bearing 
females are most abundant in shallow offshore waters up to 
20 m deep (Hünerlage et al. 2019). The average egg size 
gradually changes during the spawning season (Hünerlage 
et al. 2019), with winter eggs being larger than summer 
eggs (Boddeke 1982). The peak of post-larvae and juvenile 
shrimp on mudflats in spring mainly originates from winter 

Fig. 1   Illustration of the known and described life-cycle of shrimp 
(based on Tiews 1970, Janssen and Kuipers 1980, Kuipers and Dap-
per 1984 and Campos 2009). Adult females carry eggs until they 
hatch. The hatched eggs go through different larval stages as plank-

ton (up to zoea 5) before they settle on intertidal mudflats as post-
larvae. Here they continue to develop as juveniles. Before shrimp 
become adult, they leave the intertidal and move to deeper waters of 
the subtidal and offshore
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spawning (Temming and Damm 2002). Nevertheless, Tem-
ming et al. (2017) argue that later in spring and early sum-
mer, shrimp from summer eggs also contribute.

The extent to which the intertidal flats of the Wadden Sea 
act as nurseries for brown shrimp has been suggested to be 
affected by winter seawater temperatures (Beukema 1992), sed-
iment type (Beukema and Dekker 2005), surface water nutri-
ent loads (Boddeke and Hagel 1991; Boddeke 1996; Philippart 
et al. 2007), with obvious direct and indirect effects of fisher-
ies (cf. Tulp et al. 2020). Shrimp may be affected in different 
ways: cold winters would delay the settlement of post-larvae 
(Beukema 1992), shrimp densities may be higher in coarse 
sediments than fine sediments (Beukema and Dekker 2005), 
eutrophication may correlate with an increase in secondary pro-
duction (Philippart et al. 2007) boosting shrimp recruitment or 
growth as a result (Boddeke and Hagel 1991; Boddeke 1996). 
The trawling for shrimp disturbs the seafloor and make it less 
habitable for juvenile shrimp (Tulp et al. 2020).

Between 1983 and 2012, juvenile shrimp densities in 
spring on the mudflats increased (Beukema and Dekker 
2014). At the same time, long-term trends in the timing of 
shrimp settlement on mudflats remain unknown. The tim-
ing of settlement may be influenced by water temperature, 
as higher temperatures speed up the development of shrimp 
from eggs to adults (Criales and Anger 1986). With the 
mean water temperature of the Dutch Wadden Sea have 
increased over the past decades (van Aken 2008), this could 
have advanced the timing of shrimp settlement on intertidal 
flats. To update the situation and re-assess some previous 
correlations with environmental factors, we here provide an 
analysis of 35 years (1984–2018) of monitoring in May–June 
of post-larvae and juvenile shrimp on the intertidal flats in 
the westernmost Dutch Wadden Sea (Balgzand). We aimed 
to study shrimp in terms of: (1) timing of appearance on the 
intertidal flats, (2) abundance, and (3) body size. A lack of 
clear predictions and precise enough relevant environmental 
data made it impossible to simultaneously assess correla-
tions with factors such as sediment characteristics, nutrient 
loadings of the seawater and sediment and fishery pressures. 
Thus, rather than go out on a ‘fishing expedition’ to survey 
correlates with all possible environmental covariates, we 
made the choice to focus on the most obvious previously 
established relationship, i.e. to examine correlations with 
seawater temperatures over different time periods preceding 
the occurrence of post-larval settling shrimp in May–June.

Methods

Study area

The Balgzand area is a tidal flat system of 50 km2 in the 
western part of the Dutch Wadden Sea, at ~ 53ºN and 5ºE. 

The area is characterized by a semi-diurnal tide with an 
amplitude of 1.5–2.5 m, depending on the exact location, 
lunar phase and wind conditions (Dapper and van der 
Veer 1981). Height of intertidal mud- and sandflats ranges 
from ~ 70 cm above to ~ 80 cm below mean tide level (MTL). 
The majority of the area is located under MTL. Details of 
physical parameters of Balgzand can be found in Beukema 
and Cadée (1997).

Shrimp densities were measured at three sampling sta-
tions in the southwestern part of Balgzand (Beukema 1992; 
Beukema and Dekker 2005). For practical reasons, these 
stations were chosen to be close to each other but at differ-
ent heights (from ~ 0.1 m above to ~ 0.4 m below MTL) and 
with different sediment characteristics (silt content ranging 
from 2 to 10%). The stations were located along a transect 
roughly perpendicular to the coast, at distances of 0.1–1 km 
from the shore and 0.3–1 km from a major tidal channel. The 
coordinates of the 3 stations are (1): 52º55′02″N, 4º48′40″E, 
(2): 52º55′18″N, 4º48′51″E and (3): 52º55′26″N, 4º49′02″E.

Sampling

From 1983 to 2018 each spring, from April to at least late 
June, samples were collected weekly or bi-weekly during 
low tide (Fig. 2). The method, using a sampling corer, was 
used to include shrimps < 10–15 mm in the samples, which 
were lost in historic samples due to the 5 mm mesh size 
that was commonly used (Beukema 1992). For this study, 
three stations were visited, at each of these stations 4 sam-
ples consisting of 10 pooled cores of 0.009 m2 each were 
taken to a depth of ca. 5 cm and sieved over a 1 mm mesh 
(Beukema 1992). Up to and including 2009 material was 
taken back alive to the laboratory. From 2010 onwards all 
samples were preserved directly after sampling in the field 
with 4% formaldehyde and in the laboratory stained with 
rose bengal. After sorting the samples in the laboratory each 
individual shrimp was measured to the nearest mm from the 
tip of the scaphocerite to the end of the telson (Beukema 
1992). For calculations, the data on shrimp were pooled per 
sampling event, resulting in a total area of 1.08 m2 sampled 
per sampling day. The first year (1983) was excluded from 
further analyses as the sampling period did not match well 
with those in subsequent years (see Fig. 2). For the analy-
ses, the time window of 7 May–24 June was selected as the 
only one covered in all years from 1984 to 2018. Seawater 
temperatures were measured at the NIOZ jetty (53°00′06″N, 
4°47′21″E) at − 1.5 m (relative to Amsterdam Ordnance 
Datum, NAP). The jetty is located at the tidal inlet nearest 
to the sampling stations 9 km away from the center of the 
three sampling stations (see van Aken 2008). The water that 
passes the jetty is therefore representative for the water tem-
perature that the larvae experience. Monthly averages were 
calculated and the yearly cumulative sum of the seawater 
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temperatures from November until May. The cumulative 
sum of seawater temperatures was calculated with the water 
temperatures measured at 0800 h every day. Missing values 
were replaced by the mean of the measured temperatures 
before and after the gaps.

Shrimp length

To examine seasonal changes in mean shrimp length, the 
mean shrimp length per week was calculated (Fig. S1). 
After inspecting year-by-year patterns for consistency and 
change, we split the full period (1984–2018) into four decen-
nia: 1984–1989, 1990–1999, 2000–2009, 2010–2018. All 
measured lengths were plotted per time period per half 
month period. To find out if long-term changes in the aver-
age shrimp length happened, the mean shrimp lengths on 7 
May, 31 May and 24 June were calculated using linear inter-
polation between datapoints. The minimal shrimp length per 
sampling was calculated to see if changes in the length at 
settlement could be detected. The settlement of new shrimp 
on the mudflat may occur in waves that are related to the 
lunar cycle or large amplitude flood tides, as is the case in 
other Decapoda (Mense et al. 1995; Christy and Morgan 
1998). First, we calculated the median shrimp length per 
sampling. Then, we scrutinized the correlations between 
median shrimp length per sampling and moon phase or tidal 
height to see if such a mechanism could exist in shrimp too. 
The moon phase one day preceding each sampling date was 

extracted with software (see Statistics). Tidal heights in Den 
Helder (52°57′52″N, 4°44′42″E) were collected by Rijkswa-
terstaat (http://​www.​rijks​water​staat.​nl). The water height of 
the highest high tide of the day preceding each sampling day 
in Den Helder was selected to calculate correlations between 
shrimp length and tidal height.

Densities and cumulative densities per time period

The sum of shrimp per sampling day was divided by the 
sampling area (1.08 m2) to obtain the density of shrimp per 
square meter (Fig. S2). In years without a sampling occa-
sion on 7 May or 24 June, the density on these dates was 
obtained by linear interpolation between the adjacent data 
points. To show the timing of shrimps arriving on the sam-
pled mudflats, we computed the ‘standardized cumulative 
shrimp density’: the shrimp density of the current week plus 
the density of the previous week (except for the first sample). 
The timing and number of observations per year are given 
in Fig. 2. Between year comparisons were made using three 
computed variables: (1) the date when 50% of the annual 
cumulative shrimp density is reached, (2) the cumulative 
shrimp density on 31 May, halfway the sampling period, and 
(3) the shrimp density on 7 May, the starting date of sam-
pling periods. The values were obtained by linearly inter-
polating between datapoints. A Pearson’s product-moment 
correlation test determined the correlation between the date 
when 50% of the standardized annual cumulative shrimp 

Fig. 2   Sampling period per year 
from 1983–2018. Rectangle 
marks time window that was 
used in the analyses: 7 May–24 
June 1984–2018

http://www.rijkswaterstaat.nl


Marine Biology (2021) 168:160	

1 3

Page 5 of 12  160

density was reached and the standardized cumulative shrimp 
density on 31 May.

Statistics

All calculations and analyses were carried out using R (R 
Development Core Team 2020, R version 3.6.3). The distri-
bution of the data was tested for normality with the Shapiro 
Wilk test with no significant results. Temporal differences 
in shrimp density, timing and length were analyzed with 
linear models from the lm function in base R with year as 
an explanatory variable. To check if the change in preserva-
tion and staining improved the detection of small shrimp, a 
segmented regression analysis was carried out using the R 
package “segmented” (Muggeo 2008). With this analysis 
sudden changes in the slope of a trend, in this case a change 
in the mean length from 2010 onwards, could be detected. 
The results of the segmented regression were compared with 
linear regression of the same data. The best model explained 
most variation.

The existence of settlement waves was studied in rela-
tion to the moon phase. The moon phase one day before 
each sampling date was extracted using the package “lunar” 
(Lazaridis 2014). Differences in the median shrimp length 
between moon phases were analyzed in an analysis of vari-
ance (ANOVA). The association between the median shrimp 
length and the height of the tide was analyzed by linear 
regression.

To find out during which time of the year the water tem-
perature has the strongest association with the shrimp den-
sity on 7 May and the 50% date, several linear regression 
analyses were carried out. The same was done to assess dur-
ing which time of year the water temperature best explained 
the mean shrimp length on either 7 May, 31 May or 24 June. 
For each year, the mean water temperature of the separate 
months January, February, March and April were calculated 
to be used as explanatory variables. Second, the mean of 
the months January, February and March was calculated 
per year to represent the mean water temperature in winter, 
as in Beukema (1992). Lastly, the cumulative sum of the 
sea water temperature was calculated per year for the time 
period of November until May. The time of year (month, 
winter or cumulative sum) of which temperature showed the 
strongest correlation with shrimp density on 7 May and 50% 
density date was then further analyzed based on the amount 
of variation explained. The relative importance of water 
temperature and year in explaining (1) the date at which 
50% of the shrimp density was reached and (2) the shrimp 
density on 7 May, was analyzed with linear models. Time 
and temperature were tested separately and together, includ-
ing and excluding a two-way interaction. The best model 
was selected on the basis of Akaike’s Information Criterion 
(AIC; Burnham and Anderson 2002).

Finally, shrimp density may not be independent of year 
as density in one year may be influenced by shrimp den-
sity in the preceding year. Therefore, an autocorrelation 
function was plotted, based on the standardized residuals 
from the linear model that describes shrimp density. Visual 
inspection of this plot did not show indications for autocor-
relation. Still, we checked for temporal autocorrelation by 
adding two types of autocorrelation structures from the gls 
function to the final model. The autocorrelation structures 
we used were: Compound Symmetry Correlation Structure 
(CompSymm) and First Order Autoregressive Structure 
AR-1 (Zuur et al. 2007).

Results

Length

From 1984 to 2018 a total of 141 sampling occasions took 
place (Fig. 2). Over all the years, the estimated mean length 
on 7 May, the start of the study season, was 9.69 ± 0.091 mm 
and the shrimp length on the last day of the study season 
24 June was 12.93 ± 0.083 mm (Fig. 3a). Based on visual 
inspection of the histograms in Fig. 3c, in May smaller 
shrimp occurred more than in June. However, through-
out the years, median lengths as small as 5 mm occurred 
only on 1% of the sampling days. Across the 35 year study 
period, mean shrimp length in this time window decreased 
significantly from 12.6 mm to 10.7 mm (linear regression: 
r2 = 0.22, F1,33 = 9.49, p = 0.004) (Fig. 3b). Visual inspection 
of the boxplots in Fig. 3d did not suggest that such decreases 
in length occurred during specific years. Indeed, the mean 
lengths on either 7 May, 31 May or 24 June did not change 
over the years (linear regression: April F1,33 = 2.02, p = 0.16, 
May F1,33 = 1.03, p = 0.32, June F1,33 = 3.33, p = 0.07). Seg-
mented regression did not estimate a break point in the 
shrimp length after the year 2010 and the model explained 
less variation than the simple linear regression (segmented 
regression: r2 = 0.19, linear regression: r2 = 0.22). Therefore, 
there is no indication that the results have been biased by the 
change in preservation and staining of samples from 2010 
onwards.

Lengths on the dates when 50% of cumulative density 
was reached did not change over time either (linear regres-
sion: F1,33 = 1.70, p = 0.20). Furthermore, mean shrimp 
length on 7 May was not significantly correlated with the 
January temperature, nor the April water temperature but it 
was with water temperatures in winter, February and March 
(Table S3). The minimal shrimp length did not change over 
the season (linear regression: F1,141 = 0.0003, p = 0.99) and 
the median length per sampling was not correlated with 
a specific moon phase (ANOVA: F1,7 = 0.75, p = 0.63) or 
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the height of the preceding high tide (linear regression: 
F1,141 = 0.02, p = 0.89). The same analyses were carried out 
per month separately to see if the effect would be present in 
a specific time period but none of these tests results were 
significant either.

Density

Changes in shrimp density over time were analyzed using 
the standardized shrimp density and the density on 7 May 
(Fig. 4a). The date when 50% of the standardized annual 
cumulative shrimp density was reached was strongly cor-
related with the standardized cumulative shrimp density on 
31 May (Pearson’s product-moment correlation coefficient 
r = 0.93, n = 35, p < 0.001). Therefore, we only analyzed 
the date when 50% of the cumulative shrimp density was 
reached and dropped the cumulative shrimp density on 31 
May from further analyses. Mean shrimp density (calcu-
lated per year) remained stable over time (linear regres-
sion: F1,33 = 2.89, p = 0.10). The date when 50% of the 
yearly cumulative shrimp density was reached advanced 
significantly in the past 35 years at a slope of 0.34 days per 
year (Fig. 4b). In total, the 50% cumulative shrimp density 

advanced with 12 days in the 35 years study period. Between 
1984 and 2018 the shrimp density on 7 May increased signif-
icantly by more than 2.4 times, from 28 to 69 m−2 (Fig. 4c).

Seawater temperatures

The correlations between seawater temperature and the 
50% density date and shrimp density on 7 May were strong-
est with temperatures in April (Table S3). April seawater 
temperature increased significantly in the course of the 
35-year study period (Fig. 5a; linear regression: r2: 0.35, 
F1,33 = 17.58, p < 0.001). The date when the cumulative 
shrimp density reached 50% advanced by 3.4 days for every 
1 °C higher mean April seawater temperature (r2 = 0.24, 
F1,33 = 10.55, p = 0.003, Fig. 5b). In line with this, shrimp 
density on 7 May was significantly higher with high April 
seawater temperature (r2 = 0.44, F1,33 = 26.06, p < 0.001, 
Fig. 5c). Shrimp density increased with 14.7 m−2 per 1 °C 
higher mean April seawater temperature.

Based on the lowest AIC values, April water temperatures 
best explained the timing of arrival of shrimp on the mud-
flats (Table 1). For both response variables that were tested 
(timing of 50% of yearly cumulative density and shrimp 
density on 7 May), year did not contribute significantly to 

Fig. 3   The shrimp length over time: seasonal and annual changes 
a mean shrimp length during the sampling season, general additive 
model (GAM) was used as a smoother. b The mean shrimp length per 
year, linear regression line plotted (r2 = 0.22, F1,33 = 9.49, p = 0.004). 

c The length-frequency distribution from 1984 to 2018 in May (light 
grey, grey border) and June (dark grey, black border. d boxplots of the 
shrimp lengths per half month from 1984 to 2018. The titles give the 
time period that was selected for each graph
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the explanation of variation. Models including an autocor-
relation structure did not have a lower AIC value (model 
without autocorrelation structure AIC: 327.6, models with 
autocorrelation structure AIC: 329.6).

Discussion

We show that in the 35 years from 1984 to 2018 the settle-
ment of juvenile post-larval brown shrimp on the intertidal 
flats of the Dutch Wadden Sea advanced by 12 days. Addi-
tionally, densities at the start of the study season more than 
doubled, with an estimated overall average shrimp density 
on 7 May of 69 m−2. The mean length of shrimp at the start 
of the season did not change, nor was it correlated with water 
temperatures in April. Instead, mean shrimp length on 7 May 
was correlated strongest with the mean water temperature 
of the winter months. In summary, in warm springs we find 
higher shrimp densities earlier in the sampling season and 
at that time they are not of a larger size compared to colder 
springs.

The correlation between the advanced appearance of 
shrimp and sea water temperature was higher for the tem-
peratures in April than for the temperatures in the whole 
previous winter season, and indeed became better as the time 

approached the time of appearance of shrimp, with the high-
est correlations for the April seawater temperatures. This is 
consistent with various known biological processes such as 
egg development and larval growth, both of which speed 
up with higher water temperatures (Wear 1974; Criales and 
Anger 1986; Paschke et al. 2004; Hufnagl and Temming 
2011). For the field, such differences in development time 
also have implications for the spatial origin of the post-
larvae that settle in the Wadden Sea. Shrimp larvae drift 
passively with currents until they become post-larvae (Tem-
ming and Damm 2002). At low temperatures, the larvae will 
drift for longer because development is slower (Daewel et al. 
2011). The time period that larvae are exposed to pelagic 
predators is therefore also extended, possibly leading to 
higher mortality rates. Wind speed and direction influence 
the drifting track as well (Daewel et al. 2011) and could 
cause differences in the timing and abundance of post-larvae 
that settle in the Wadden Sea.

Post-larval settlement of other crustaceans is known to 
take place in waves correlated with the moon phase or the 
amplitude of the high tide. For the post-larval shrimp on the 
intertidal flats in the westernmost Dutch Wadden Sea, we 
did not find that median length was correlated with the moon 
phase or the height of the tide. This rejects a hypothesis for 
post-larval shrimp settlement to occur in moon or tide-driven 

Fig. 4   a The standardized cumulative shrimp density runs (0–1) and 
is plotted against time of year. Each year is plotted separately in a dif-
ferent color. The solid line marks the middle of the sampling period 
on 31 May. The dashed line marks the moment in time when 50% 
of the yearly shrimp density has been reached. b The time of year 
when 50% of the cumulative shrimp density has been reached through 

time (years). Linear regression line plotted (r2 = 0.14 F1,33 = 5.22, 
p = 0.029). c Shrimp density on 7 May, the start of the sampling 
season with the linear regression line plotted (r2 = 0.17, F1,33 = 6.72, 
p = 0.014). Shaded area in b and c mark the 95% confidence interval 
(CI)
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waves. The idea that settlement could especially happen dur-
ing nocturnal flood tides (Christy and Morgan 1998), could 
not be evaluated with our data.

Over the course of the sampling season, the mean shrimp 
length increased from 9.7 to 12.9 mm. This increase might 
suggest that post-larval shrimp move to the mudflat at larger 
sizes. However, this seems unlikely, as we did not find a 
change in the minimal shrimp length over the season. Also, 
the increase in mean length is too low to be attributed to 
growth. On the basis of measured individual growth rates 
of 0.28 mm per day for a 10 mm shrimp in the water of 
10 °C (Hufnagl and Temming 2011), the individual increase 
in body length would be expected to be 12.3 mm over the 
44 day study period, i.e. almost four times the ‘growth’ in 
the field. Even with this conservative scenario (the mean 
water temperature in May is actually 12 °C), the growth 
speed is clearly too high to explain the increase in the mean 
shrimp length. This suggests that the mean shrimp length 
decreased because of an increase in the turnover of the popu-
lation, with the larger juveniles leaving for deeper waters at 
ever faster rates. Indeed, departure of shrimp from intertidal 
flats may start at 15 mm (Hufnagl et al. 2014) instead of 
20 mm (Beukema 1992), which would have caused a steeper 
decrease of larger length classes which would have kept the 
observed increase in mean shrimp length across the season 
small. Whether the departure of juveniles is triggered by 

Fig. 5   a Average April seawater temperature over time. b The time of 
year when 50% of the cumulative shrimp density has been reached. 
Linear regression line plotted (r2 = 0.24, F1,33 = 10.55, p = 0.003). c 
the shrimp density on 7 May, plotted against the mean April seawa-

ter temperature. Linear regression plotted (r2 = 0.44, F1,33 = 26.06, 
p < 0.001). In b and c each point represents a year, the shaded areas 
mark the 95% CI

Table 1   Comparison of linear regression models describing 1) the 
timing of settlement: date when 50% of annual cumulative shrimp 
density is reached and 2) shrimp density on 7 May

Independent variables: year and April seawater temperature
Variance explained (r2) and the p value of the models with the lowest 
AIC are indicated in bold

Model terms ac-structure AIC r2 p

50% day ~ water temp. + year 253.82
50% day ~ water temp. × year 255.64
50% day ~ water temp 252.27 0.24 0.002
50% day ~ year 256.84
7 May density ~ water 

temp. + year
324.65

7 May density ~ water temp. 
× year

326.16

7 May density ~ water temp 322.68 0.44  < 0.001
7 May density ~ year 336.57
50% day ~ water temp. + year 262.88
50% day ~ water temp. + year CompSymm 264.88
50% day ~ water temp. + year AR1 264.88
7 May density ~ water 

temp. + year
327.63

7 May density ~ water 
temp. + year

CompSymm 329.63

7 May density ~ water 
temp. + year

AR1 329.63
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changes in the sensitivity to hydrostatic pressure just as in 
adults, will require further investigation.

The advanced settlement on intertidal flats was best 
correlated with the seawater temperatures in April (which 
increased over the years). The mechanisms underlying this 
pattern remain to be established, but on the basis of the 
observational data presented we propose four non-mutually 
exclusive interpretations of the changes in the timing of 
shrimp on the mudflat: (1) shrimp settle on the mudflat when 
they reach a certain ‘threshold’ length, (2) the settlement 
of shrimp is controlled by a critical period of ‘threshold’ 
temperature sensitivity, (3) the timing of shrimp settlement 
is a response to food availability on the mudflats and/or (4) 
shrimp settlement on intertidal flats is behaviour to avoid 
predation by other species and cannibalism by adult shrimp. 
Predictions on climate effects on future shrimp lengths at the 
time of settlement and shrimp densities in spring will differ 
between the four different hypotheses.

For the first interpretation, assuming a threshold length 
for settlement of 4.7 mm (i.e. the length when shrimp reach 
the post-larval phase; Kuipers and Dapper 1984), this length 
should be the dominant length, at least during the sampling 
early in the season. However, median lengths as small as 
5 mm occurred only on 1% of the sampling days. Either the 
peak of settlement already passed by the time that sampling 
started, or settled post-larval shrimp spend time elsewhere 
before moving onto the intertidal flats. Regardless of the 
precise threshold length at settlement, in the light of climate 
change no changes from this threshold length are expected 
if body length itself triggers settlement. Advancements in 
the timing of settlement would occur if this length would 
be reached earlier in the year. With increasing water tem-
peratures, growth rates will increase during all life stages of 
shrimp (Wear 1974; Criales and Anger 1986; Paschke et al. 
2004). This actually may occur, as Beukema and Dekker 
(1992, 2014) showed advanced shrimp settlement and higher 
spring shrimp densities after mild winters.

However, by comparing the correlations between shrimp 
density on 7 May and the water temperature in preceding 
time periods, we discovered that the water temperature 
in April shows the strongest correlations. This cannot be 
explained by greater growth rates at higher water tempera-
tures, but rather hints at the existence of a threshold tem-
perature during a sensitive time window. Here, we assume 
that shrimp go through a developmental period during which 
they are sensitive for a threshold in the seawater tempera-
ture. When this threshold is reached, the shrimp settle on the 
mudflat. Under this interpretation shrimp would settle on the 
mudflat when the temperature conditions are right (rather 
than when they reach a certain length or life stage). With 
increasing water temperatures, the temperature threshold 
may be reached earlier in the year, leading to the observed 
advancement in the timing that shrimp settle on intertidal 

mudflats. That the water temperature in the preceding 
months will lead up to the water temperature in April may 
then explain why water temperatures during the preceding 
months also correlate with shrimp densities in May. In the 
presence of a temperature threshold, shrimp may actually 
settle on the mudflat at the minimal post-larval length of 
4.7 mm after warm winters and at larger sizes after cold 
winters. Due to the timing of sampling we can not confirm 
this with our data. Survival and growth rates are lower at 
low temperatures, but shrimp may still grow in water below 
10 °C (Rochanaburanon and Williamson 1976; Hufnagl and 
Temming 2011). Therefore, during a cold spring, the tem-
perature threshold will be reached later, leading to individu-
als that settle on the mudflat when they are larger. Again, 
assuming that in the subtidal shrimp do show growth, in 
warm springs the temperature threshold would be reached 
earlier in the year, resulting in smaller individuals that settle 
on the mudflat.

The third interpretation is that the advance in shrimp set-
tlement is based on increases or peaks in food availability 
occurring earlier. The diet of shrimp < 20 mm mainly con-
sists of meiofauna (Pihl and Rosenberg 1984; del Norte-
Campos and Temming 1994). As a result of increased water 
temperatures, the phenology of meiofauna may be advanced. 
Shrimp may follow their prey, with advanced settlement on 
the mudflats as a result. Assuming that with increased water 
temperatures the food of shrimp becomes available earlier 
in the year, shrimp will advance settlement on the mudflat. 
Additionally, they could still be of a smaller size, as earlier 
in the growing season shrimp will still be smaller.

Our fourth and last alternative interpretation is an 
advancement of high predation pressure in the subtidal 
induces post-larval shrimp to move to intertidal mudflats 
earlier in the year. Currently, post-larval settled shrimp are 
thought to be absent in the subtidal—they have rarely been 
found there in the past. At the same time, because previously 
used mesh sizes were too wide, sampling may have failed 
to detect small shrimp < 10 mm properly (Beukema 1992), 
or started too late. Earlier we already concluded that settled 
post-larval shrimp may spend time somewhere deeper before 
moving onto the intertidal flats.

Observational studies (including comparisons between 
different areas in e.g. the Wadden Sea), and experimental 
studies on the mechanisms on shrimp settlement, are now 
required to elucidate why our measurements of ‘settlement’ 
are correlated with water temperatures especially in April. 
Noting that the different interpretations will lead to different 
scenarios of change in a warming world, without them it will 
be impossible to interpret the striking changes in phenology. 
As shrimp are now present in the intertidal earlier in the 
year, different predators may benefit from their presence. To 
fully understand the consequences for higher trophic levels, 
it is necessary to look into the juvenile shrimp abundances 
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over a longer time in the year and identify if new matches or 
mismatches between shrimp and consumer exist.
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