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Abstract

This article is a public deliverable of the EU project Memory technologies with
multi-scale time constants for neuromorphicarchitectures (MeMScales, memscales.eu/,
Call ICT-06-2019 Unconventional Nanoelectronics, project number 871371). This
arXiv version is a verbatim copy of the deliverable report, with administrative in-
formation stripped. It collects a wide and varied assortment of phenomena, models,
research themes and algorithmic techniques that are connected with timescale phe-
nomena in the fields of computational neuroscience, mathematics, machine learning
and computer science, with a bias toward aspects that are relevant for neuromor-
phic engineering. It turns out that this theme is very rich indeed and spreads out
in many directions which defy a unified treatment. We collected several dozens
of sub-themes, each of which has been investigated in specialized settings (in the
neurosciences, mathematics, computer science and machine learning) and has been
documented in its own body of literature. The more we dived into this diversity, the
more it became clear that our first effort to compose a survey must remain sketchy
and partial. We conclude with a list of insights distilled from this survey which give
general guidelines for the design of future neuromorphic systems.
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1 Introduction and overview

The original topic for this deliverable, agreed more than a year ago and specified in
the project proposal, was Report on literature survey and analysis of STDP and RC [=
spike-time dependent plasticity and reservoir computing, respectively] guidance for the
design of indeterminate hardware, with the understanding that the guiding focus of this
survey would lie on timescale aspects. When we started to carry out this survey we
perceived that, first, the restriction to STDP and RC would exclude many technically
and algorithmically important phenomena in general analog (spiking) microchips — so
we extended our perspective to neuromorphic computing in general. Second, we realized
that the phenomenology of “timescales” is very rich, and this word is applied to quite
different phenomena in different contexts. Therefore, an important contribution of this
deliverable report is to stake out the conceptual dimensions of this scintillating word.
Hence our new title, Dimensions of “timescales” in neuromorphic computing systems.

The report is structured as follows. In Section 2 we unfold the conceptual dimensions
of the timescales concept, by pointing out different uses and subconcepts of this notion
in different formal-theoretical, computational and physical contexts. In the following
three sections we compile the findings of a literature survey, sorted into the fields of
neuroscience (Section 3), mathematics and theoretical physics (Section 4), and computer
science / machine learning (Section 5). Section 6 distils a number of take-home messages
distilled from the findings in this deliverable which we hope are helpful for informing
future research in MemScales and beyond. A final Section 7 gives concrete physical-
timescale related guidelines for the design of indeterminate hardware which result from
the specific givens in recent developments in STDP and RC research.

2 Talking and thinking about timescales: dimensions of a

very rich concept

In this section we give a “travel guide” for the landscape of timescale phenomena, and
point out terminologies that are used. We found it not possible (at least, not at present)
to develop a unified, comprehensive conceptual framework. Therefore, we present our
findings in the form of a collection of objects and places of interest, as in a tourist guide
where showplaces are paid passing visits.

A “Speed” and “memory”. There are at least two different, but likewise fundamen-
tal, understandings of “timescales”.

The first one is to speak of fast or slow timescales when a dynamical system evolves
faster or slower, as one could for instance mathematically determine by changing time
constants in ordinary differential equations (ODEs). When the system is “fast”, its
rates of change in numerical dynamical variables are high — timeseries will exhibit
many high absolute first derivatives, have strong components in the high-frequency
end of its Fourier spectrum, etc. We note, however, that there is no unique math-
ematical criterion to measure “speed”. For instance, if an ODE-defined dynamical
system (DS) is close or in a fixed point attractor, even very small ODE time constants
will not translate to large numerical change rates.
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The second is to speak of long or short memory durations. In this view, a DS is
evolving on a slow timescale when it has long “memory spans”. This means that
some information that is encoded in the system state at some time t can be decoded
again at (much) later times. Instead of using the word “memory”, which is too
closely suggestive of neural and cognitive processing, we find it preferable to speak of
“preservation of information across time”. Exploring the preservation of information
across time has been one of the main themes in the theoretical literature on reservoir
computing (RC) in the last 20 years.

B State variables, control parameters. In mathematical models of DS, it is cus-
tomary to distinguish dynamical state variables from control variables. Both appear
as arguments in the defining function of iterated maps and differential equations (and
other formalisms), as in the generic ODE ẋ = f(x,a) where x is the state vector and
a denotes the vector of control parameters. The idea is that the latter are “fixed” or
“given” and are not affected by the system state update operators. However, this role
distribution dynamical vs. fixed is not always clear-cut. Often one considers scenarios
where the control parameters are subject to slow changes, for instance induced by
top-down regulatory input in hierarchical neural processing architectures.

C Absolute and relative timescales. Some systems, formal or physical, can be “run”
faster or slower and the speed is the only thing that changes. Examples are systems
defined by differential equations, whose “velocity” can be set by time constants; or
digital microprocessor systems whose clock cycle duration can be varied. To describe
this “velocity” one needs an absolute reference time which can be formal (as in ODE
systems) or physically “real”, as in physical microprocessors. Absolute timescales
are important for computing systems that are interacting with their input/output
environment “in realtime”.

Many of the fascinating properties of complex dynamical systems arise not from
its absolute “velocity” but from the fact subsets of dynamical variables, or subsys-
tems, evolve faster or slower than other subsystems. Temporal multiscale properties
can also be attributed to the dynamics of a single variable: In a single-variable
timeseries one may identify a spectrum of short- and longrange “correlations”, or
“memory traces”, or statistical dependencies, etc. Multiscale dynamics are a general
and maybe essential characteristic of complex systems, although this concept has no
single, commonly agreed definition.

It is remarkable that there seems to be no good word for the “velocity” of a dynamical
system, which is why we put this word in quotes. In speaking about “velocity”, one
says “the system is slow” or “the fast subsystem”, but no-one says “the speed (or
velocity) of the system is high”.

D Measuring time. For a physicist or signal processing engineer, time is given by
nature and invariably denoted by t. Mathematicians do not care about real time
and speak of “unit time steps” or “the unit time interval”, an arbitrary convention
to associate the unit inverval on the real line as a reference to quantify time. When
a mathematician talks with a signal processing engineer, the former tends to be
puzzled (if not disturbed) by the fact that the latter keeps talking about “seconds”,
a word that one will not find in mathematical textbooks on dynamical systems.
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Theoretical computer scientists ignore the aspect of temporal duration entirely. The
formal models of computing automata only know of “state update steps”, where the
only aspect that is left over from physical time t or unit time [0, 1] is serial order
and causation: the next state comes after the previous and the latter determines
the former. A most interesting challenge with regards to measuring time arises for
computational neuroscientists when they want to explain how a brain can “estimate”
or “experience” time. What mechanism in neural dynamics can enable a subject to
estimate the presentation duration of a stimulus? Proposed answers include the use
of neural delay lines, neural reference oscillators that function as clocks, or stimulus-
duration-characteristic patterns in high-dimensional neural transients. We find that
a general theoretical treatment of how “clocks” or “time-meters” can be defined in
dynamical systems would be a rewarding subject of study.

E Collective and derived variables. In statistical physics, neural field models, pop-
ulation dynamics and many other domains where one investigates systems made from
large numbers of interacting small subsystems or “particles”, one often describes the
global dynamics of the “population” or “ensemble” through derived collective vari-
ables. Their timescale is typically slower than the native, local timescales of the
interacting subsystems; and one typically tries to capture the global dynamics with a
small number of such collective variables. Slowness is here connected with dimension
reduction, simplification or abstraction.

F Sub- and supersampling. In discrete-time models of dynamical systems one can
create “speedups” by subsampling and “slowdowns” by supersampling / interpola-
tion. This however makes sense only for discrete-time models that can be understood
as sampled versions of a continuous-time process. It makes no sense to supersample,
for instance, the state sequence of a Turing machine.

G Slowing-down by discretization. When a real-valued timeseries is discretized by
binning, or a fine-grained discrete-valued timeseries is further simplified by coarsen-
ing, high-frequency detail (which can be regarded as fast-timescale information) gets
lost in cases where there are oscillatory fluctations within bins in the original time-
series. Thus, discretization or binning procedures may cut the spectrum of effective
timescales.

H Frequency filtering. Applying frequency filters to trajectories deletes dynamical
components on the timescales corresponding to the cancelled frequencies. In the
special case of low-pass (smoothing) filters, fast timescale information is lost. In
the special case of high-pass (baseline normalization) filters the opposite effect is
achieved.

I What is a “moment”? We are used to think of a timeline as an ordered sequence of
time points - let us call them “moments”. Even when one leaves out the complications
of relativity theory, seeing time as a succession of zero-time moments is not always
the most helpful view. Cognitive neuroscientists tell us that the subjective experience
of “now” in some ways integrates over several milliseconds. When neuroscientists try
to detect or define “synchrony” in neural spike patterns, they must soften the math-
ematical notion of point-sharp co-temporality to short intervals. Signal processing
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engineers would sometimes like to get rid of delays in their equations but can’t. Ab-
stractly speaking, in high-dimensional dynamical systems with nonzero-length signal
travel pathways, relevant information-carrying “patterns” arise not instantaneously
but need some minimial duration to realize themselves. Such observations suggest
that in hierachically structured complex dynamical systems, a hierarchy of “nowness-
windows” might be an appropriate concept, with short-duration “moments” defined
for small, local subsystems and increasingly longer-duration “moments” as one goes
up in the subsystem hierarchy.

J Homeostasis, stability, robustness. Biological organisms, brains, non-digital mi-
crochips made from unconventional materials, and many other computing or cogniz-
ing systems must preserve their functionality in the presence of external perturba-
tions, change of environment, aging, parameter drift and other challenges. They do
so through a wide spectrum of stabilization mechanisms which exploit, for example,
redundancies, attractor-like phenomena, stabilizing feedback control, adaptation and
learning, or robust network topologies for system architectures. A common denom-
inator in this diversity of mechanisms is that they aim to ensure that vital system
variables stay within a (narrow) viability window, often by attempting to stabilize
them close to an optimal value. This has a twofold aspect of slowness. First, change
rates of variables that are being stabilized are slow (when the stabilization is success-
ful). Second, these critical variables must be stabilized through long timespans —
vital variables through the entire system lifetime.

K Nonstationarity and mode hierarchies. Computing systems exhibit nonstation-
ary dynamics, be it because they are input-driven or because they “learn” or because
they execute a sequence of subprograms. System trajectories (timeseries) resulting
from nonstationary dynamics can be qualitatively or quantitatively described through
temporal hierarchies of dynamical modes. For instance, a neuronal spike train can be
characterized on a very short timescale by an interspike interval, on a short timescale
by burst modes, on a longer timescale by locally averaged firing frequency, and on a
very long timescale by asymptotic measures.

In information processing systems, one may find ways to characterize what the cur-
rent mode “represents”. For instance, the neural activity trajectories in a speech-
processing brain might be described as “encoding” or “representing” linguistic phonemes,
syllables, words, phrases, sentences, texts.

There exists no unique, general mathematical characterization of modes. Modes of
an evolving DS might, for instance, be characterized in terms of frequency spectra,
signal shapes, signal energy, attractor structures, degrees of chaoticity, or regions
of the system’s state space, to name but a few. Describing temporal multiscale
dynamics is very much the same task as characterizing modes, and there seems to be
an unlimited repertoire of options.

L Hierarchical architectures. The human brain, most autonomous robot control
systems, and many multiscale signal processing and control systems are hierarchi-
cally structured. The “bottom” layers are in direct contact with incoming signals
and generate output signals, while “higher” processing layers carry out increasingly
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“cognitive” tasks based on increasingly abstracted and condensed representations of
the information contained in the input signals.

We find it a wide-spread, even paradigmatic view that higher levels operate on slower
timescales than lower levels. This view is supported by evidence from biological
brains, and guides the design of artificial signal processing and control systems that
have to cope with temporal multiscale data. It also agrees with the view of classical
AI, where action planning architectures generate goals and subgoals, plans and sub-
plans, procedures and subprocedures in a nested way, where higher nesting levels are
taken care of by higher processing layers.

A formidable challenge arises for formal modelers and concrete system developers
(in computational neuroscience, machine learning and robotics). It concerns the
nature of “top-down” influences: in what sense, and by which concrete mechanisms,
do higher layers influence the processing on lower layers? Should this influencing
be understood and realized as attention, prediction, context setting, or modulation?
Many questions, both conceptual and algorithmic/mathematical, still are open.

M Characterizing multiscale dynamics from left to right and from the side.
In symbolic dynamics and theoretical computer science, a theme related to multi-
timescale dynamics is infinite-length symbol sequences. They can be characterized
by automata models, where some type of automaton generates the sequence “from
left to right” — that is, the sequence is seen as the trajectory of a dynamical sys-
tem. But such sequences are also described and analyzed as being the fixed points of
applying grammar rules. This method of characterizing the structure of an infinite
sequence is a-temporal but directly yields a transparent account of its multiscale, hi-
erarchical structure. Research to connect these two views has only recently started.
It seems likely (even obvious) that multiscale properties of DS trajectories are related
to memory mechanisms that are effective in the generating DS.

In theoretical modeling of timeseries data (in theoretical physics and economics in
particular), stochastic dynamics with long memories are discussed in terms of the
shape of the corresponding power spectrum. One speaks of fat or heavy tailed or 1/f
power laws. Such long-memory behavior is associated with self-induced criticality or
edge of chaos conditions, and is often claimed as a characteristic of complex natural
processes, for instance in economics, neural dynamics, or speech.

Theoretical computer science offers a canonical repertoire of methods to specify au-
tomata with increasing memory capacities (from finite-state autonomata through a
variety of stack automata to Turing machines), and how they relate to an equivalent
grammar. It would be interesting to investigate how such memory mechanism hier-
archies of symbolic automata and their grammars can be transfered into the domain
of continuous-time, continuous-value DS and the power spectrum proporties of their
trajectories.

N Time warping. In real-life timeseries one frequently finds local speed-ups or slow-
downs, for example a speaker stretching out the pronounciation of a vowel for empha-
sis. A related effect occurs when different realizations of a signal are originating from
slower or faster generators, for example from slower or faster speakers. Biological
brains can, within limits, compensate for such time warping in inputs. For artificial
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temporal pattern recognition systems — often recurrent neural networks (RNNs) —
this poses serious challenges.

O Online and real-time processing. Many applications of signal processing and
control systems must generate output responses to incoming data streams without or
only minimal delay. This is the generic case for control systems, but also for many
other applications, for instance speech-to-speech translation, medical cardiographic
monitoring. One speaks of online or real-time processing. One may make a fine
distinction (not always observed) between these two concepts.

In online processing, the signal processing system is “entrained” to the driving input
stream. Its internal states directly “synchronize” with the input, where “synchroniz-
ing” is understood in a generalized way that includes nonlinear transformations and
memory effects. The processing dynamical system can appropriately be mathemat-
ically regarded as a dynamical system. Analog signal processing devices and RNNs
are prototypical examples.

In real-time processing — a natively digital-computing notion — the algorithmics of
the system-internal processing is decoupled from the input. The input signal stream
is sampled and buffered, processing subtasks are identified and solved by algorithms
which must run fast enough to deliver results within predefined time limits. On
universal computers this may require the use of an underlying real-time operating
system.

P Time complexity classes. In theoretical CS, input-output tasks that can be al-
gorithmically solved (i.e., computable tasks) are ordered into a hierarchy of time
complexity. In theoretical CS, input arguments are always formatted as finite-length
symbol strings (“words”). The runtime of an algorithm is measured by the number of
machine update steps (concretely, clock cycles) needed from the presentation of the
input word until the output word has been generated. To define a complexity class,
the runtime is related to the length |w| of the input word w. For example, the class
P of polynomially computable tasks comprises all tasks for which some algorithm
(or deterministic machine) and some polynomial p exist, such that the algorithm
terminates within p(|w|) update steps, for all input words w.

We remark that the concept of time complexity is tied to understanding “computing”
as “running a Turing machine from presenting an input word until it terminates with
an output word”. This concept of time complexity cannot be naturally transfered to
online processing tasks.

Q Different names for different timescales. Biological brains exhibit dynamical pro-
cesses on many timescales, and different processes affect different physical elements
in brains in different ways. This leads to a entangled maze of dynamical phenomena
in which it is hard to not get lost. A coarse orientation is provided by the conceptual
sequence inference → adaptation → learning → development → evolution. These
terms denote denote bundles of dynamical phenomena which manifest themselves on
increasingly long timescales. None of them has a precise definition, but all of them are
used in computational science, cognitive science and neural-networks based machine
learning with more or less similar semantic intuitions:
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• Inference processes refer to the fast operations of sensor processing, motor con-
trol and “reasoning” which do not essentially rely on structural or parametric
changes of the neural processing system, using the system “as is”. In machine
learning one often speaks of “inference” when a ready-trained neural network
(or other ML model) is used to process task instances for which it has been
trained.

• Adaptation is a particularly broad and vague concept. A common denominator
of its uses seems to be that adaptation works on slower timescales than infer-
ence, and is in principle reversible. It often describes processes when a cognitive
/ neural system re-calibrates, or re-focusses itself when the environmental con-
text of operation changes. In formal models, adaptation processes often are
expressed through changes of control parameters in neural subsystems, induced
by “top down” regulatory mechanisms or subsystem-inherent homeostatic self-
stabilization mechanisms. While this seems to us the most common intuition
connected to the word “adaptation”, it is also used in a much more generalized
way to denote any change of any sort of system (from a single synapse to a
biological population in an ecological niche) that improves the system’s “perfor-
mance” or “viability”. In those cases, adaptation is not usually reversible.

• Learning refers to processes which expand the functionality of a cognitive system
on the basis of experience. Learning processes are usually considered irreversible
(“forgetting” are processes in their own right which cannot be understood as
time-reversed learning). Learning processes are commonly associated with irre-
versible changes in system parameters — in neural networks typically “synaptic
weights”. Structural changes (like deletion of neural connections or adding neu-
rons to a network) may also result from learning, though this aspect seems less
central to the “learning” concept than mere parametric change.

• Development is a notion which is much more common in the cognitive and neu-
rosciences than in machine learning. It refers to the life-long history of an indi-
vidual, autonomous cognitive system (animal, human, or generalized “agent”).
The development history is often segmented into life periods like pre-natal de-
velopment, stages of infancy, youth, adolescence, old age which are in turn
associated with specific structure-changing processes in the agent’s brain. We
foresee that developmental change will also become an important theme in neu-
romorphic computing systems based on non-digital hardware which cannot be
“programmed” and whose physical substrate is subject to aging.

• Evolution is the longest-timescale item in our list of process categories. It de-
scribes the adaptive change of entire populations, across generations, to fit a
(possibly changing) environmental “niche”.

Mathematical models of cognitive systems describe inference and adaptations pro-
cesses (typically) through changes in the values of system variables (dynamical state
variables and/or control parameters). The system equations do not structurally
change. In contrast, models of development and evolutionary processes must ac-
count for structural changes in the system equations. Formal tools for effecting and
simulating structural change in system equations exist in the form of genetic / evolu-
tionary algorithms. However, mathematical theories that can be used to characterize
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and analyse structural change in qualitative terms are scarce, heuristic, and gener-
ally still under-developed. We find that certain tools in mathematical logic (“non-
monotonic logic”) come closest. However, these formalisms are not connected yet to
dynamical systems modeling.

R Philosophy of time. Time is a fundamental quality of human experience, and philo-
sophical inquiries have approached this theme from many angles. This lies outside our
competences and we only list some of the aspects of time that have been investigated
by philosophers (gleaned from Callender (2011)).

• Time and metaphysics. What are the ontological realities (“presentalist”, “possi-
bilist”, “eternalist”) of the past, the present, and the future? Is time continuous
or discrete?

• The direction of time. What is the difference between the past and the future? Is
the arrow of time inherent in time, an effect of causality, or of thermodynamical
laws?

• Time, ethics and experience. Themes include: the subjective “now”; memory,
anticipation, decisions and free will; development of time concepts in children;
benefit and harm in the past and the future.

• Time in physics. Are (which) physical laws time reversible? How is time related
to space? How is time understood in relativity theory and quantum theory?
What are clocks? How is time affected by the uncertainty principle? Is there
time at all?

This listing of aspects of time’s ways of flowing faster or slower, or of our ways to
observe a system for shorter or longer durations, makes it clear that a systematic, uni-
fied account of “timescales” is out of reach. In order to give instructive initial input to
the MemScales project, the best we can currently do is to compile a “tourist guide”-
like collection of concrete empirical findings, mathematical models and theories, and
machine learning approaches which have a bearing on some of the listed dimensions of
“timescales”. We coarsely sort these collection items into three sections Brains, Math-
ematics and Computing, which is somewhat arbitrary since many lines of research
cross-connect these areas. Our survey will be all but complete: firstly because we largely
omit entire domains of science (in particular biology, physics, psychology and philoso-
phy), and secondly because even in the three domains that we did explore (the wider
neurosciences, mathematics and computer science / machine learning), our bounded
expertise and the breadth of the subject put limits on what we could effectively cover.
At the end of each section we list themes that we know should be included in future
extensions of such a survey.

3 Brains

This section collects perspectives of research, empirical findings and models from the
wider neurosciences including (some of) cognitive science.

The title of the first four subsections are the consequence of frameworking towards
a theory of neuromorphic signal processing, which we hope to work out more fully and
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more systematically in our future work in Mem-Scales. A metaphor to motivate our
strategy is that it is incredibly difficult to solve a Rubik’s cube by just focusing on one
side at a time. In that analogy, it is even undefined which parts of the cube correspond
to an open problem. For in some definitions, there already are reasonable solutions
to so-called open problems like the binding problem (Skarda, 1999), stability-plasticity
dilemma (Shouval et al., 2002), and systems memory consolidation (Van Kesteren et al.,
2012). But these solutions do not bind together to a comprehensive theory. The orga-
nization of material in our four subsections below arises from distinguishing two axes of
discussing neural timescales, an individual (neuron) — recurrent axis and a dynamical
processing — plastic adaption axis.

3.1 Single-neuron processing

A biological neuron has multiple timescales of phenomena due to voltage-gated (Doyle et al.,
1998) and ligand-gated (Katz, 1971) ion channels (Ranjan et al., 2011), spatiotemporal
filtering across dendritic cables (Rall, 2009), hierarchical synaptic-dendritic-membrane-
somatic processing (Gao et al., 2018) and biochemical pathways involving multiple chem-
ical compounds (Bray, 1995; Barkai and Leibler, 1997; Bargmann, 2006). Thus, a single
neuron has enormous capacity for signal processing, much better than the McCulloch-
Pitts and LSTM units in presently widespread artificial neural networks.

A special primitive for spatiotemporal processing at the dendritic level is coincidence
detection. It can explain concentration-invariant signal recognition, for example in ol-
factory (Hopfield, 1995) networks. Chaining of multi-timescale transient units with a
coincidence detector results in transient synchrony (Hopfield and Brody, 2001) and can
explain uniform time-warping invariant signal recognition.

A pioneering model of temporal processing at the membrane level is due to Hodgkin
and Huxley (Hodgkin and Huxley, 1952), which considers the membrane potential and
ion channel activation numbers as a coupled system of nonlinear ODEs. A generaliza-
tion of the Hodgkin-Huxley model with multiple ion channels whose conductances are
nonlinear and modulatable at multiple timescales is now the gold standard for modelling
the membrane dynamics of a neuron. Note that if the ion channel activation numbers do
not have any inter-neuronal immediate effects, then just modelling the membrane poten-
tial is sufficient for a complete neurodynamical understanding. For example, Izhikevich
(2004) showed that a reduced 2-dimensional threshold-reset ODE system is sufficient to
explain a possible set of 20 kinds of temporal processing in cortical neurons including
tonic spiking, phasic spiking, spike bursting, spike latency, subthreshold oscillations,
rebound, bistability, and spike frequency adaptation.

3.2 Recurrent processing

Here we will focus on the workings of recurrent neural network, ignoring plasticity.
Functionally, a worm brain can be understood to operate in sensory-inter-command-
motor layers (Gray et al., 2005). The human brain is similar but more complicated
(Eliasmith et al., 2012), i.e. the command-layer is split into functional regions perform-
ing action selection and motor processing, and the inter-layer is split into functional re-
gions performing information encoding, transform calculation, reward evaluation, work-
ing memory and information decoding.
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Three noteworthy observations arise from the study of recurrent processing with
multiple timescales. Firstly, there often exists a behavioural hierarchy (Davis, 1979) re-
sulting in a ‘singleness of action’ where a long timescale state controls shorter timescales.
For example, the mating state of stickleback fish activates a stereotypical dance move-
ment (Tinbergen, 1951), honeybees in a communicative state employ a waggle dance
routine (Von Frisch, 1967). Secondly, the behavioural hierarchy can be deep, as in a
reproductive instinct that activates sub-behaviours such as nest-building or defensive
fighting. Experiments have shown that a three level hierarchy explains worm locomo-
tion both behaviorally and in neuroanatomy (Kaplan et al., 2020). Lastly, there need
not always be an equivalence between anatomical and behavioral hierarchy, for example
chains of neurons can generate birdsongs (Long et al., 2010).

3.3 Neuron-neuron plasticity

Here we will consider the form of synaptic plasticity as postulated by Hebb (Hebb, 1949),
where any change in the synaptic weight from one neuron to another neuron, is only
based on signals due to the activity of the two neurons i.e. deterministic bi-terminal
interactions. Networks with Hebbian plasticity, with or without memory of the neu-
ronal activity (an extreme case is a strict ”spike-time” dependence (Caporale and Dan,
2008)), are theoretically capable of signal processing primitives such as principal compo-
nent analysis (Oja, 1982), self-organizing maps (Kohonen, 1982), and independent com-
ponent analysis (Jutten and Herault, 1991). So, at a network level, Hebbian learning
can be much deeper than the popular maxim of “cells that fire together, wire together”.
Also, Hebbian-like learning is possible within a single cell (Fernando et al., 2009) if they
contain motifs of chemical cycles where the concentration of different chemical species
(such as in gene regulatory networks or phosphorylation cycles) can mimic the func-
tionality of synaptic weights (slow-varying control parameters) and action potentials
(fast-varying state variables).

Among the gamut of possible Hebbian plasticity rules, the most noteworthy is the
Bienenstock-Cooper-Munro (BCM) model (Bienenstock et al., 1982) because it has been
experimentally justified (Cooper and Bear, 2012). The BCM model has the rate of
change of the synaptic weight equal to a fast timescale times the correlations in the
neuron-neuron activity times a saliency factor equal to a mean-deviation of the postsy-
naptic activity, minus a slow timescale times the synaptic weight. Thus, the BCM model
has an increased rate of forgetting on introducing uncorrelated noise, can converge in
whitened environments by means of higher-order statistics, can learn direction sensitiv-
ity without relying on neuroanatomical asymmetry, and can have a single neuron to be
both directionally and orientationally sensitive by learning on video stimuli.

Also noteworthy is that a biophysical model of bidirectional synaptic plasticity
(Shouval et al., 2002) can be phenomenologically reduced to a voltage-based STDP
(Clopath et al., 2010), which under certain input conditions is equivalent to the BCM
model. Experimental measurements of STDP on the visual cortex, somatosensory cortex
and hippocampus could be fit to the phenomenological model and distinct timescales
were extracted.
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3.4 Recurrent plasticity

We can look at recurrent plasticity as having two sides : deterministic effects and non-
deterministic effects.

All deterministic effects that are beyond bi-terminal interactions can be subsumed
under the banner of neo-Hebbian plasticity (Gerstner et al., 2018), including neuromod-
ulated STDP (Frémaux and Gerstner, 2016) due to some form of reward or punishment
(leading to the concept of an eligibility trace and three-factor rules) and heterosynap-
tic plasticity due to some conservation law (Oh et al., 2015) such as the spatial con-
servation of the total synaptic weight (Von der Malsburg, 1973) or the normalization
of the synaptic weights (Hyvärinen and Oja, 1998) to energetically sustainable levels
(Walker and Stickgold, 2006; Kandel et al., 2014). Note that neo-Hebbian plasticity
combined with a suitable inter-layer (that is capable of generating rewards internally for
congruent or novel information) is sufficient for effective systems memory consolidation
(Van Kesteren et al., 2012), but of course in reality non-determinism will also play a
supplementary role as discussed below.

All non-deterministic effects (including bi-terminal interactions) can be subsumed
under the banner of neural Darwinism (Edelman, 1993), also known as neuroevolution
(Stanley et al., 2019). It is plasticity that is based on the principle of selection upon
variation, and hence is biased towards generating a hierarchical organization. Exper-
imental evidence supports a hierarchical organization in the basal ganglia to generate
action sequences (Jin and Costa, 2015), so it can play an important role in learning
procedural memory. Of course, at some level genetics can also enforce a hierarchy
(Felleman and Van Essen, 1991), but there is a reason to believe that neural Darwin-
ism plays a major role given that hierarchies in the brain themselves are adaptive. For
example, even people with cerebellar agenesis learn to walk (Boyd, 2010) and spoken
language perception colonizes the visual cortex in blind children (Bedny et al., 2015;
Lane et al., 2015). Also, neural Darwinism can work for hard problems like nonlinear
blind source separation for which deterministic and global optimization methods like
slow-feature analysis end up failing in high dimensions (Wiskott and Sejnowski, 2002).

3.5 Some topics not covered

We list a number of themes that would warrant a closer inspection but for which we
lacked time or expertise on this occasion. Surely there is an endless list of such themes.
Nevertheless, with deeper thought or moments of serendipity, we should work towards
an ideal where newer themes are assimilated or accommodated into older themes (the
Piagetian pun is intended (Piaget, 1952)).

• Neural clock circuits and entrainment of neural dynamics to clock signals.

• Variable binding through theta-wave phase synchronization.

• Hierarchies of memory mechanisms — a large research field in the cognitive and
neurosciences which would need a separate, extensive treatment. Surveys are
given, for example, by Durstewitz et al. (2000) or Fusi and Wang (2016).

• The role of cerebellar processing in timing fine-control.
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• Experimental demonstrations of different time constants in cortical processing
(Bernacchia et al., 2011).

• Perception of temporal patterns (Large and Palmer, 2002).

• Stages in ontogenetic development.

4 Mathematics

In this section we collect “pure” mathematical themes and formal modeling methods
from dynamical sytems theory and some areas of theoretical physics. Topics in formal
logic are treated in Section 5.

4.1 Singular perturbation theory

Arguably the most popular mathematical approach to studying multiple timescale dy-
namics has been via singular perturbation theory (SPT) of systems of ODEs. Intuitively,
this theory studies perturbations with small parameters where the dynamics cannot
straightforwardly be approximated by the limiting case where the parameters vanish
(O’Malley, Jr., 1991; Verhulst, 2005). A geometric approach to singular perturbation
theory (GSPT) was first set up by the works of A.N. Tikhonov and those of N. Levin-
son (Vasil’eva and Volosov, 1967; Kaper, 1999), later worked out in more detail by N.
Fenichel (Fenichel, 1979). This geometric approach formalizes interpretations of cer-
tain singularly perturbed systems as ‘slow-fast’ systems, where some variables operate
on a relatively fast timescale compared to other slower evolving variables. An enor-
mous amount of research has been done on these slow-fast systems, as they are relevant
for the mathematical description of many processes in the life sciences. An extensive
modern overview of mathematical theory on slow-fast ODE systems is given by Kuehn
(2015). In particular, slow-fast systems have become a big research topic in math-
ematical neuroscience, see for example Rubin and Terman (2002); Izhikevich (2007);
Ermentrout and Terman (2010); Pusuluri et al. (2020). Another notable application of
SPT is for control science, where the classical text is Kokotovic et al. (1999).

To illustrate the mathematical approach to slow-fast ODEs, consider the two-dimensional
system

τ1
dx

dT
= f(x, y),

τ2
dy

dT
= g(x, y),

(1)

with f and g some possibly non-linear functions. We assume τ1, τ2 > 0 to represent the
intrinsic timescales of respectively the x and y variables. Now define a new parameter
ǫ = τ1/τ2. Then system (1) can be transformed both into

ǫ
dx

ds
= f(x, y),

dy

ds
= g(x, y),

(2)
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and into

dx

dt
= f(x, y),

dy

dt
= ǫg(x, y),

(3)

via reparameterizations of time T = s · τ2 and T = t · τ1 respectively. As long as ǫ > 0,
systems (2) and (3) can be considered equivalent. Suppose that τ1 ≪ τ2; intuitively
this means the x-variable operates on a much faster timescale than the relatively slow
y-variable. In that case 0 < ǫ ≪ 1, and we might consider how systems (2) and (3)
for ǫ > 0 behave when approaching the singular limit ǫ → 0. We may now also call s
the slow timescale, and t the fast timescale. For ǫ = 0, it is important to remark that
systems (2) and (3) are not equivalent anymore. The case ǫ = 0 for system (2) is also
referred to as the slow subsystem or reduced problem, while the case ǫ = 0 for system
(3) may be called the fast subsystem or layer problem.

Intuitively, for 0 < ǫ ≪ 1 the layer problem approximately describes the dynamics
of the system on a short timescale, where the slow variable y can be approximated by
a constant. Therefore, y can be interpreted as a bifurcation parameter of the fast sub-
sytem. The reduced problem describes the dynamics at ǫ = 0 of the slow variable on
a one-dimensional manifold C0, also called the critical manifold, which is given by the
zeros of f . Observe that C0 can alternatively be said to be given by the equilibria of the
fast subsystem (3). Close to attracting hyperbolic parts of C0, the slow subsystem ap-
proximately describes the dynamics of the system for 0 < ǫ≪ 1 on the longer timescale
represented by τ2. This is formalized by Fenichel’s Theorem, see for example Fenichel
(1979); Kaper (1999) or Chapter 3 of Kuehn (2015).

Orbits starting close to an attracting hyperbolic part of C0 for 0 < ǫ ≪ 1 can
be predicted to stay close to C0 by Fenichel’s Theorem, approximating the flow of
the reduced problem, until nearing a point on C0 where hyperbolicity is lost. This
happens at bifurcations, with respect to y, of the fast subsystem. What happens after
reaching such a bifurcation point, requires careful analysis of the full system. One
might find jumps between attractors of the fast subsystem (stable equilibria in the
two-dimensional example under consideration here), as the system converges towards
the vicinity of another attracting hyperbolic part of C0. While this type of behavior
often occurs in slow-fast ODE models, immediate jumps between attractors of the fast
subsystem cannot be predicted in general from a decomposition of the full system into
fast and slow subsystems at ǫ = 0. Indeed, a peculiar type of behavior might occur
where the full system for some time approximately follows a non-attracting hyperbolic
part of C0. This phenomenon is known as a canard, and for example plays a role in the
analysis of spike adding for models of bursting neurons in mathematical neuroscience
(Terman, 1991; Linaro et al., 2012).

The theory of slow-fast ODE systems has been extended to multiscale stochastic
differential equations (SDEs) incorporating noise, and more generally to the context of
random dynamical systems, see Chapter 15 of Kuehn (2015). Theory on slow-fast SDEs
has for example been applied to give a rigorous analysis of certain multiscale synaptic
plasticity models for neural networks in Galtier and Wainrib (2012, 2013b). Also, slow-
fast systems of maps can be studied with similar techniques, and have been applied
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to neuron models as well, see for example Mira and Shilnikov (2005) and Ibarz et al.
(2011).

4.2 Delay equations

Multiple timescales can also be introduced in differential equations via delays (Yanchuk and Giacomelli,
2017; Ruschel, 2020). The simplest such delay systems are modelled by

τLẋ(t) = −x(t) + F (x(t− τD)), (4)

where τL is the intrinsic time scale of the system, F (x) is a nonlinear function of x
and τD is the time delay. When τD is large compared to τL, it is known that these
type of systems can exhibit a host of interesting spatio-temporal dynamical phenomena
(Yanchuk and Giacomelli, 2017). Intuitively, a comparatively large delay introduces a
slow timescale next to the fast intrinsic dynamics of the system. Such delay systems with
large delay have recently been shown to be relevant for approaches to reservoir computing
with opto-electronic hardware (Hart et al., 2019). These opto-electronic delay systems
can be viewed as an alternative method for implementation of high-dimensional neural
networks. Space-time representations allow the dynamics of a delay system with low
spatial dimension to be interpreted as spatio-temporal dynamics of spatially extended
systems. As such, delay systems have recently also been thought of as useful for the
study of complex dynamical behavior in large-scale connected networks. Although delay
systems were originally thought of as similar to ring networks of identical neurons,
Hart et al. (2019) propose that delay systems can be used to implement networks with
arbitrary topologies.

By defining ǫ = τL/τD, equation (4) can be rewritten into the singularly perturbed
delay equation

ǫẋ(t) = −x(t) + F (x(t− 1)).

Such type of such systems have been studied for example in Chow and Mallet-Paret
(1983) and Ivanov and Sharkovsky (1992).

4.3 Some topics not covered

We list a number of themes that would warrant a closer inspection but for which we
lacked time or expertise on this occasion:

• Critical slowdown of dynamics close to bifurcations

• Characterizing multiscale structure in infinite symbol sequences via fixed points
of grammar rule applications

• Reaction-diffusion systems

• Variables of multi-dimensional iterative maps can be given differing update fre-
quencies. Little (if any) formal mathematical theory seems to exist on this topic.

• Line attractors and their generalizations.

• Statistical physics modeling of collective phenomena and generalized synchroniza-
tion, slaving principle (Haken, 1983).
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5 Computing

This section collects topics, techniques and models from computer science — machine
learning and artificial neural networks in particular. The ordering of subsections is
arbitrary.

5.1 Neuron models with time constants

In neural network (NN) architectures used in machine learning, a variety (but not a
very large variety) of formal/algorithmical neuron models is used. The neuron models
used in feedforward NNs always have a-temporal state update equations of the kind
xi = fi(

∑

j wijxj + b), where the xj are the activations of neurons feeding into neuron i
and fi is a (almost always) monotonically growing “activation function”. Time becomes
a relevant theme only in recurrent neural networks (RNNs). Besides the a-temporal
models xi = fi(

∑

j wijxj + b), which can also be used in discrete-time RNNs (which
then mathematically can be regarded as implementing iterated maps), here we find a
diversity of neuron models that either are specified by ordinary differential equations
(ODEs) — from the simple leaky integrator neuron cẋi = −xi + fi(

∑

j wijxj + b) with
time constant c to LSTM units (Hochreiter and Schmidhuber, 1997) to multi-variable
circuit equations for use in analog VLSI neuromorphic microchips (Chicca et al., 2014))
— or by discretized versions of such ODE models, typcially using the elementary Eu-
ler approximation; or spiking versions which include a discontinuous neural state reset
operation. All of these contain time constants. In complex neuron models (often with
a biological motivation), different time constants can be set for different variables. For
instance, slow synaptic efficiency adaptation rules (“slow” relative to the soma potential
dynamics) are crucial for creating dynamical memory traces in liquid state machines
(Maass et al., 2002). When these neurons are “executed” in digital simulations, they
can be made to “run” faster or slower over a wide range (limited only be numerical
stability conditions) compared to each other or to some reference timescale. In analog
neuromorphic hardware realizations however, these time constants are fixed by physical
givens and changing them is only possible if the chip design allows one to access and
“set” the physical correlates of time constants (for instance voltages), and within limited
ranges.

5.2 Time and memory in digital computing

It is easy to simulate multiscale temporal dynamics of time-discretized ODE models on
digital machines — all one has to do is to set different desired time constants in the
various variable equations.

It is not always easy to realize multiscale dynamics of time-discretized ODE models
on digital machines when the computed dynamics must match physical “real-time” in
online signal processing and control applications. The system state update equations
must be simple enough, or implemented cleverly enough, or parallelized enough, to
ensure that the digital processing needed to compute the next time slice state takes
at most as much time as the physical time allotted for a sampling interval. This may
become demanding in robot control applications, in particular in compliant robots where
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the sampling frequency must be high (order of 1000 Hz) in order to react fast enough
to sensor signals signifying effector impact.

In serial-data “cognitive level” AI / machine learning tasks like text processing or
visual gesture analysis, the processing algorithm must have a working memory which
has (at least) the power of a stack memory. This is needed to process the hierarchically
nested temporal structure in “grammatically” organized input sequences. Realizing
such a stack memory is of course not a problem for digital computers when they execute
symbolic-AI programs. When RNNs that have been set up or trained for such tasks are
simulated on digital machines, the hierarchical memory organization cannot be directly
mapped to the (easily available) physical stack memory mechanisms of the digital com-
puter. Instead, this memory functionality must become encoded and realized in terms
of the RNNs dynamics. One way to do so is to train binary context-level switching neu-
rons which can set the (single) RNN into a temporal hierarchy of dynamical processing
modes (Pascanu and Jaeger, 2011).

5.3 Time complexity

In theoretical (symbolic-digital) computer science the concept of time complexity refers
to upper bounds on the maximal number of processing steps needed by a Turing machine
to compute its result when it is started on a (any) input word of length n (Jaeger, 2019)
This leads to a classification scheme for the “difficulty” of computing problems. For
instance, the time complexity class P is the set of all input-output computing tasks such
for a task T ∈ P that there exists some Turing machineM and some polynomial function
p : N → N such that M always terminates within p(n) update steps. Some of the deepest
unsolved problems in theoretical computer science (and indeed, in mathematics) concern
such time complexity classes, in particular the famous P =?NP problem (Cook, 2000).

This standard usage of the term “time complexity” is confined to characterizing the
computational demands of evaluating functions — a Turing machine (and all other,
equivalent mathematical definitions of an algorithm, of which there are many) incorpo-
rates an input-word to output-word mapping. In the context of neuromorphic comput-
ing and recurrent neural networks, a dynamical systems interpretation of “computing”
seems more adequate than a function-evaluation interpretation. Some models of “com-
puting” have been proposed in theoretical computer science which account for continual
online processing of unbounded-length, symbolic input streams, in particular interac-
tive Turing machines (van Leeuwen and Wiedermann, 2001) and more recently stream
automata (Endrullis et al., 2019). In followship of the traditional questions that are
considered in classical complexity theory, this research aims at classifying continual
input-output stream processing tasks into complexity classes. The adopted perspec-
tive on discussing such complexity classes is however still tightly tied to the classical,
function-based concepts of time complexity, in that such automata are designed in a
way that upon reading a new input symbol, they can “detach” from the input stream,
do a possibly highly complex computation in traditional Turing machine fashion, and
after this computation terminates, produce an output symbol (or not). Complexity
class hierarchies investigated in such research typically include classes of continual serial
input-output tasks which are inaccessible by physical machines — super-Turing tasks
— in that oracles are invoked, that is, external additional input (outside the input data
stream) is allowed which provides information that itself is not Turing-computable.
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There is also a body of research which aims at transfering concepts and methods
from symbolic complexity theory to RNNs with real-valued activations and/or weights
(Siegelmann and Sontag, 1994; Sima and Orponen, 2003). One common theme and find-
ing in this line is that a single infinite-precision real numbers allows one to encode an
infinite amount of information, which gives rise to super-Turing computing powers (that
is, symbolic input-output functions can be computed which no Turing machine can com-
pute). However, there is no evidence that super-Turing performance cannot be physically
realized due to noise and limited precision (observability) of physical state variables.

5.4 Logic formalisms for capturing time

A traditional topic in classical (symbolic) AI is “reasoning about action and change”, or
“reasoning about action and time” (with several conferences and workshops and a wealth
of publications that have these expressions in their titles). The objective of this research
is to extend the expressive powers of logic-based knowledge representation and inference
formalisms to facilitate the representation of, and formal reasoning about, a cluster of
themes that includes action, change, planning, intentions, time, events, causation and
more. Such formalisms are algorithmically processed with so-called theorem provers (also
called inference engines). These are heuristic, discrete combinatorial search algorithms
whose processing steps are not interpreted as temporal steps but as logical arguments.
Time, timing, measuring time, comparing durations, ordering events on a timeline etc.
are objects that are logically reasoned about, in reasoning steps whose ordering is con-
ceived as logical, not temporal. More than four decades of research have produced a
rich body of representation formalisms. We can only pinpoint a few examples. Allen
(1991) is an early survey. Fundamental figures of reasoning about time are captured
by modal operators in temporal logics (also known as tense logics) (Garson, 2014). A
related classical subfield of AI, qualitative physics (Forbus, 1988) (closely related: naive
physics, qualitative reasoning) explores logic-based formalisms which capture the every-
day reasoning of humans about their mesoscale physical environment. A rather recent
development is hybrid logic / dynamical-systems formalisms to reason about physical
dynamical sytems (Geuvers et al., 2010) in ways that capture the measurement metrics
of “real” continuous time. Such formalisms are intended for formal verification of hybrid
physical-computational systems in systems engineering.

5.5 Slow feature analysis

Slow feature analyis (SFA), developed by L. Wiskott (Wiskott and Sejnowski, 2002;
Franzius et al., 2008), is a method to extract features from timeseries data (in particular
video streams) which are defined by the fact that they change slowly. SFA has been used
to explain the functioning of feature detection cells in visual cortex (Berkes and Wiskott,
2003) and hippocampal place cells (Schönfeld and Wiskott, 2015). Interestingly (and
possibly, limitingly), the slow features found by SFA are functions of single input frames,
not — as one might expect — functions of input episodes that last nonzero time.
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5.6 Speed control in RNNs

Biological brains can generate and recognize instances of output patterns which differ
from each other only in speed (for instance, generating or recognizing slow and fast hand-
waving or dance or music pattern generation). For a mathematical model of an RNN
written in ODEs with time constants, it would be straightforward to adjust the process-
ing speed in generation or recognition by scaling all time constants with the same factor.
But physical neural systems, whether biological or in neuromorphic hardware, cannot
scale all physical time constants with a global factor. This leads to a very interesting
mathematical and biological (and algorithmical) question: how can the qualitative dy-
namics of an RNN be speeded up / slowed down without a globel time constant scaling?
We are aware of two approaches which both make use of the fact that when a RNN is
excited by different-speed versions of the same input pattern, the elicited network states
populate different regions of state space. By characterizing the geometry of these differ-
ent regions with (cheaply computable) variables, and subesquently actively controlling
these variables by elementary linear controllers (wyffels et al., 2014) or conceptor filters
(Jaeger, 2014), speed variations up to a factor of 10 for pattern generating tasks have
been achieved.

5.7 Space to time transformation

Even outside relativistic physics, space and time depend on each other. In particular,
travelling solitons and waves need time proportional to travel distance. This may become
exploitable for the design of neural mechanisms for variable-speed pattern recognition
and generation. The idea is to encode the target pattern spatially on a neural surface
and let it be “read” by a travelling wave or soliton whose travel speed is determined by a
single or very few variables that can be controlled physically or algorithmically. Neural
field theories of cognitive cortical processing, which are based on solitons and waves, are
worked out in some detail (Engels and Schöner, 1995; Lins and Schöner, 2014), but as
far as we can see, so far not with the aim of explaining speed control.

5.8 Behavior control hierarchies

In robotics and intelligent agent modeling, the cognitive control of action selection and
motor control is typically organized in a hierarchy of planning and controlling layers.
Higher layers in such hierarchies operate on slower timescales than lower layers. The
lowest layers Hierarchical agent “architectures” are so common and have been proposed
abundantly since 50 years, such that we can give only a few, exemplary ad hoc point-
ers. Examples: In classical AI architectures, such hierarchies are explained in terms
of plan-subplan hierarchies (Saffiotti et al., 1995). In control engineering, hierarchical
control architectures have become an explicit industry standard (Albus, 1993). In the
archetype subsumption architecture (Brooks, 1989) in behavior-based robotics, higher-
level “behaviors” can suppress lower ones. An influential early model in neural networks
/ machine learning constitutes the control hierarchy in a format of trainable hierarchical
mixture of experts where higher-level experts can gate lower-level experts. A simi-
lar structure, based on ODEs where higher-layer behavior-controlling ODEs were run
with slower time constants, powered several winners in RoboCup world championships
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(Jaeger and Christaller, 1998). When mulit-layered RNNs are trained for robot tasks,
timescale-differentiated layers of control emerge automatically (Yamashita and Tani,
2008).

5.9 Eligibility traces

In reinforcement learning (RL), a key submechanism is to represent and compute eligi-
bility traces (Sutton and Barto, 1998). This refers to a number of algorithmic methods
to maintain a memory trace (with weighted decay) of past actions (of a complete agent
or a single neuron, in the latter case the action being spike generation) and input signals
(sensor input to an agent or spike input to a neuron), paired with information about the
(estimated) utility of the action history to receive reward. The setting of the decay rate
determines the memory horizon. Reinforcement learning can be expected to play a large
role in neuromorphic training. Recently eligibility traces have also become instrumental
in designing neurally plausible (and hence potentially implementable in physical spiking
neuromorphic microchips) approximate methods to emulate backpropagation learning
in spiking neural networks (Bellec et al., 2019).

5.10 Time (un)warping

In many temporal machine learning tasks, the incoming signal can be sometimes faster,
sometimes slower. This can happen when signal sources change (for instance, there are
slow and fast speakers), but it can also happen within a single instance of an input
signal (for instance, when a speaker gets excited and speaks faster, or when his/her
way of pronunciation has temporal ideosyncrasies like stretching vowels longer than
average speakers). This is a problem for machine learning algorithms. In brute-force
learning paradigms (deep learning in particular), such time warping effects are caught
by providing exhaustive training samples that cover all sorts of warping effects. A more
training-data-economical approach is to send input signals through some time-unwarping
preprocessing filter before feeding it to the RNN in training and exploitation, such that
the RNN only has to cope with speed-normalized input signals. Another approach that
we find the most elegant is to leave the input stream in its original time-warped version
and adapt the processing speed of the RNN, speeding it up when the input signal slows
down such that each RNN state update step (in discrete-time RNN models) or unit-time
state evolution (in continuous-time RNN models) covers the same phenomenological
change increment in the input stream (Lukoševičius et al., 2006).

5.11 Continual learning

Continual learning refers to the machine learning challenge to make a neural network
(feedforward or recurrent) learn a sequence of tasks, one after the other, such that when
the next task is trained into the network, the new weight adaptations do not destroy
what the network has previously learnt in other tasks. This catastrophic forgetting (or
catastrophic interference) problem has remained without a convincing solution since it
was first acknowledged decades ago (French, 2003). Only recently, a number of novel ap-
proaches in deep learning found effective algorithmic ways to de-fuse this problem. This
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is today a very active strand of research in deep learning, now called continual learn-
ing, which has yielded a variety of effective algorithmic paradigms and a differentiated
view on variants of the problem statement (Parisi et al., 2019; He et al., 2019a). The
continual learning problem is closely related to the theme of transfer learning (which
concerns the generalization and carry-over of competences learnt on other tasks to a
new task), the theme of federated learning (which concerns the integration of learn-
ing progress made in the peripheral nodes in a network of decentralized local learners
(Kairouz et al., 2019)), and the theme of meta-learning (which concerns the learning of
learning strategies).

Continual learning is connected to timescale and memory topics in several ways.
First, in some continual learning algorithms, weight changes in synapses that are deemed
important for previously learnt tasks are discouraged, reducing (= slowing down) their
adaptation rate. Second, the continual learning problem in its most demanding form
poses itself on the longest possible, namely the lifelong learning timescale. Third, some
continual learning algorithms rely on generative memory replay of previously learnt
tasks.

5.12 Dynamical memory in RNNs

The simple linear readout which is typically used for training RNNs in the reservoir com-
puting (RC) field can be used to define natural numerical measures for “how much” mem-
ory about previous input is preserved in the current network state. In its most basic for-
mat, the memory capacity of a discrete-time “echo state” reservoir network is measured
by (i) feeding it with white noise input, (ii) training linear readout units yd by linear re-
gression on the task to recover the input value u(t−d) from d steps before, (iii) adding all
correlation coefficients between signals yd and u(t−d) to get the desired measure (Jaeger,
2002). Note that the training of readout units here is not done to soleve a “useful” task
but solely for quantifying an core characteristic of an RNN (or, for that matter, any other
dynamical system). Note further that the “memory” which can be determined in this
way is a purely dynamical short-term memory and involves no learning inside the RNN.
This concept of memory capacity has become the anchor point for a (by now) extensive
literature of mathematical analyses which explore memory in RNNs under aspects like
the impact of noise (Antonik et al., 2018), continuous time (Hermans and Schrauwen,
2010a), high-dimensional input (Hermans and Schrauwen, 2010b), infinite-dimensional
neural networks constructed by kernel methods (Hermans and Schrauwen, 2012), differ-
ent neuron models (Büsing et al., 2010), or nonlinear readouts Grigoryeva et al. (2016),
to name but a few. The literature is by now extensive and a systematic survey would
be welcome. Frady et al. (2018) develop a classification scheme for dynamical mem-
ory tasks and measures which highlights the richness of phenomena and perspectives
associated with dynamical memory in RNNs.

The memory capacity of reservoir networks has become a standard metric to quantify
or predict the “goodness” of reservoir networks for cognitive tasks in studies where differ-
ent network architecures (Strauss et al., 2012), reservoir pre-training methods (Schrauwen et al.,
2008), or reservoir control parameter tuning are compared. The latter is often associated
with investigations of reservoir performance “close to the edge of chaos” (Legenstein and Maass,
2007) (which in most cases we find an incorrect usage of terminology; correctly it should
be “close to the loss of the echo state property”).
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Measuring delayed-input to trained output correlations is not the only way is not the
only way of quantifying the dynamical memory capacity of RNNs or general input-driven
dynamical systems. If one adopts a probabilistic perspective, information-theoretic mea-
sures like the Fisher memory matrix (Ganguli et al., 2008) are more informative, albeit
harder to estimate empirically.

We point out that dynamical memory cast as state-based information carry-over
from the past to the present, as discussed above, is not the same as working memory.
Working memory is a complex concept used in the cognitive and neurosciences for a
spectrum of transient recall phenomena in animal and human remembering (Baddeley,
2003; Botvinic and Plaut, 2006; Fusi and Wang, 2016). Working memory phenomena
usually entail additional control mechanisms to encode and decode context information
and insertion of knowledge stored in long-term memory.

Neither “dynamical memory”, “working memory”, nor “short-term memory” have
generally shared, precise definitions and when one studies the literature one must be
careful to appreciate the specific meaning of such terms intended by the author.

5.13 Some topics not covered

We list a number of themes that would warrant a closer inspection but for which we
lacked time or expertise on this occasion:

• Generating and detecting timing and rhythm patterns in music, speech or gesture
recognition / production (Eck, 2002a,b, 2007).

• Methods for dynamical adapation of learning rates in gradient-descent training of
neural networks.

• Timescales in connection with statistical efficiency of neural sampling and Markov-
chain Monte Carlo sampling algorithms (Neal, 1993; Jaeger, 2020).

• Interactions between adaptation rates, memory duration, and residual approxima-
tion errors in online adaptive signal processing (Farhang-Boroujeny, 1998).

• The role of delays in (neural network based) architectures for motion control.

• Subsampling and supersampling in digital signal processing.

• Attention and working memory mechanisms in deep learning, especially for lan-
guage processing (Bahdanau et al., 2015).

6 Take-homes

Our meandering journey through the landscape of temporal and timescale phenomena in
natural and artificial “cognitive” systems has delivered a large and speckled collection of
findings. We could not bind them together in a unifying “story” (we tried this in a first
write-up but had to abandon the attempt because there were many themes left that did
not fit into the unified picture that we started to draw). But despite the heterogeneity
of our findings, there are some lessons learnt that we believe provide useful input to the
MemScales consortium at an early time in the project:
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Timescales is a multidimensional concept. There are many ways in which “timescale”
themes come to the surface when thinking about cognitive systems. One consequence
for hardware and computational methods research in MemScales: there is not a single
good (or even best) way to design neuromorphic systems with regards to timescales.
How multiple timescales have to be physically and algorithmically supported depends
on the use scenario of the targeted system.

Timescales cannot be ignored. Our belief that timescales and memory hierarchies
are important was a raison d’être for launching our project. Our findings substantiate
and underline this initial belief and convince us that a dedicated project focus on
timescales is a necessary topic of dedicated research in the further development of
neuromorphic computing.

More complex cognitive processing needs more timescales. A task’s cognitive
complexity seems closely linked to the spectrum of memory timescales needed for it.
This indicates that for a systematic development of neuromorphic technologies it is
helpful to work out a complexity hierarchy of task types and initially not “reach for
the stars” but concentrate on tasks of modest complexity that require to integrate
information only across a few timescales only (or even a single one).

Relative and absolute timescales. A neuromorphic computing system (hardware
plus algorithms) must support a range of timescales that widens as the cognitive
task complexity grows. If the system is used in offline mode (for instance, text pro-
cessing), one only needs to aim for a wide range of relative timescales. If the system
is targeting online processing tasks (for instance robot control or cardiac monitoring),
in addition one must match the system’s absolute timescales to the task data streams.
The main challenge here is probably to physically realize slow enough timescales.

Tricks to avoid many physical timescales. It is not easy to realize a wide spectrum
of timescales directly in physical effects on a non-digital neuromorphic microchip.
There are a number of workarounds that may alleviate this challenge:

• Digital-analog hybrid processors where slow timescales are made possible by
digital buffering. Needs a development of dedicated digital-analog algorithmics.

• Large (possibly very large) RNNs can encode large amounts of information from
past input in the current network state and thus have longer dynamic memory
spans. Needs microchip technologies for realizing (very) large RNNs.

• Reservoir transfer methods may have some potential for realizing long memory
spans even in modestly sized RNNs if these are explicitly trained for the specific
memory functionalities demanded by the target task.

• Designing RNN architectures that include explicit mode switching mechanisms
(possibly trainable) may realize temporally nested processing levels. Needs the
development of dedicated architectures and learning algorithms, and a clear
understanding of the “stack memory” demands of a task.

Delays may make neuromorphic computing difficult. Signal travel delays in un-
clocked analog neuromorphic microchips become a problem when delay times are not
well separated from the fastest timescales demanded by the processing task (in which
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case delays can be ignored). For high-frequency online processing tasks (for instance
in future neuromorphic low-energy communication nodes), an explicit modeling and
algorithmic compensation for physical delays is needed. For multi-timescale offline
tasks, an upper limit for task throughput rates is given by the necessity to separate
physical delays from the fastest task timescale.

We note that delays are no mathematical or algorithmical problem in digital com-
puting as long as physical on-chip delay times are much shorter than clock cycle
times.

Delays may make neuromorphic computing easy. If one would find a way to phys-
ically realize tapped delay lines (by traveling waves or solitons, maybe skyrmionic?),
multiple timescale dynamics (with longest scale given by longest signal travel time
on the delay line) might become explicitly designable. Needed: mathematics and
algorithms embedding tapped delay lines in analog computing architectures.

Life history timescale. If the motto of brain-like computing is taken seriously, the
“lifespan” timescale of an individual hardware system becomes relevant. While dig-
ital microchips don’t age and don’t have an individuation history: if they start pro-
cessing 0’s and 1’s differently from when they were sold, they are called “broken”
and are replaced by an identical twin. Analog neuromorphic microchips will likely
be individual from the moment when they leave the fab (due to device mismatch);
they will often exhibit slow parameter drift and physical aging; and they cannot be
“programmed” in the traditional sense but will likely have to be trained. This will
lead to individual lifelong learning and adaptation histories. Needed: novel mathe-
matical tools to describe qualitative change and continual/lifelong learning schemes
(algorithms and training schemes) that are appropriate for physically aging systems,
which in particular will require a collaboration between learning and homeostatic
self-stabilization mechanisms.

7 Timescale requirements for neuromorphic hardware de-
signs for STDP and RC processing

Today, virtually all analog spiking neuromorphic hardware demonstrations are based
on either STDP, RC, or sometimes a combination of the two. This also holds true
for our research in the predecessor project NeuRAM3 (for instance He et al. (2019b);
Yousefzadeh et al. (2018); Cove et al. (2018)). Although our survey has made it clear
that biological brains as well as machine learning techniques derive their strength from
a much wider range of computational / learning principles than STDP and RC, at
the current point in time it makes sense to focus on these two paradigms, identify the
current state of development in the theory and the practical uses thereof, and from that
derive concrete (minimal) requirements for physical timescales that have to be delivered
by analog spiking neuromorphic hardware. We treat STDP and RC in turn, but start
with a general summary of timescales and their biological, algorithmical and hardware
realizations.
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7.1 Timescales: biological, algorithmical, hardware

Research in the neurosciences has identified a plethora of neural adaptation mechanisms.
They are based on a wide spectrum of physical and physiological mechanisms and operate
on all levels of the brain’s hierarchical architecture, from synapses to membranes to entire
neural assemblies and projection pathways; and they serve many functions (as far as one
can identify them today) in homeostatic regulation, fast and slow adaptation to input
characteristics, short-term, working and long-term memory, learning and ontogenesis.
This richness is far from being fully understood in the neurosciences, and there exists
no unified or comprehensive mathematical model.

Nonetheless, it is instructive to be aware of some core concepts and findings from
neuroscience. Table 1 gives a highlevel indicative overview which reflects the ongoing
discussions in the consortium. It remains to be explored which physical effects of hard-
ware devices can serve which biologically motivated mechanism. This is an intricate
question because it is not the physical device / effect per se that serves a computa-
tional/biological mechanism, but a complex interplay of the core physical effect with
circuit designs and control schemes, like for instance pulse pattern schemes for setting
PCM resistances.

Biological
plasticity phe-
nomenon

Timescale Mechanism Candidate physical de-
vice / effect

Short-term plas-
ticity

1 ms – 10 ms STDP, SDSP capacitors

Long-term plas-
ticity

10 ms – 500 ms
for weight change;
1 h – years for
weight preserva-
tion

LTP/LTD non-volatile memristive de-
vices (for preserving the re-
sults of LTP)

Intrinsic plastic-
ity

0.5 s – 10 s threshold
adaptation

volatile ReRAM, TFT, ...

Homeostatic plas-
ticity

1 s – 1 h synaptic scal-
ing

volatile ReRAM, PCM
drift, TFT, ...

Structural plas-
ticity

1 h – lifetime architecture
reorganisation

reconfigurable / extend-
able architectures

Table 1 Overview of plasticity phenomena

The large number of physiological mechanisms underlying this spectrum of phe-
nomena, as well as the wealth of formal models in theoretical neuroscience that capture
these phenomena at different levels of abstraction, as well as physical differences between
brain physiology and electronics, make it impossible to copy biological mechanisms 1-1
to electronic microchips. Furthermore, it is not necessarily the most promising engineer-
ing strategy to even try to copy brain mechanisms exactly into analog spiking hardware.
On the one hand, many biochemical mechanisms will be hard to replicate in electronic
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systems, and on the other hand, electronic systems may offer opportunities (especially,
faster timescales or very long-term non-volatile memory states) that are not affored in
physiological brain substrates. Yet, Table 1 teaches a clear lesson: in order to endow
artificial with proxies of the biological inference, adaptation and learning mechanisms,
a wide range of timescales must be covered.

How this is concretely done will depend on the available hardware, targeted perfor-
mance and use-cases, and algorithmic models. In the following subsection we will work
this out in an examplary case study.

7.2 Timescale requirements resulting from demands for STDP learn-
ing: a worked-out case study

There is not a single, well-defined STDP adaptation rule in biological brains. In fact, it
is an experimental challenge to localize, measure and formulate STDP mechanisms in
mammalian brains. In the machine learning / computational neuroscience / neuromor-
phic engineering communities, a broad variety of STDP variants and combinations of
them with other neural adaptation mechanism have been explored — Joshi and Triesch
(2009); Clopath et al. (2010); Graupner and Brunel (2012); Galtier and Wainrib (2013a);
Klampfl and Maass (2013); Roclin et al. (2013); Bengio et al. (2017); Thiele et al. (2018)
are but a small selection of approaches that document this variability. The initial specific
concept of STDP (as described in the landmark paper by Markram et al. (1997), with
many forerunners) does not cover this variability. The term “spike-timing-dependent
synaptic plasticity” and the acronym STDP was introduced in Song et al. (2000). The
term Spike-Driven Synaptic Plasticity (SDSP), apparently introduced by Fusi et al.
(2000) in a formal model of an adaptive synapse independent of, but potentially ef-
fective in a variety of learning/adaptation mechanisms, should be preferred over the
term STDP when one considers spike-driven synaptic plasticity phenomena in a more
general setting than the original STDP framing. Since neuromorphic electronic circuits
and neural network learning algorithms used in them explore and exploit more general
mechansism than STDP proper, we will use the term SDSP in this section.

In order to become concrete, we must however settle on a specific model, and this
should not be a repetition of what we already developed in NeuRAM3. Instead, our
choice should open doors for the currently most promising line of SDSP exploits, the so-
called 3-factor rules. Again, this principle comprises many different variants. Generally
speaking, in 3-factor SDSP rules, the adaptation effects determined by the basic two
factors (pre- and postsynaptic activations) of SDSP become multiplicatively modulated
by a third factor, which represents some kind of global control signal, which can be
variously interpreted as a reward signal, a derivate of a supervised target signal, a
temporal coordination / synchronization guide, or a mean-field population activity signal
for achieving homeostatic regulation of a neuron’s average activity level (summarized in
Kusmierz et al. (2017)).

Our choice is to opt for the first among the mentioned interpretations, and concretely
for the model recently proposed by Bellec et al. (2019, 2020). This model, named the
e-prop model, imports mechanisms from reinforcement learning and utilizes them to re-
alize an approximation of stochastic gradient descent (SGD) with an SDSP mechanism.
SGD is the main enabling learning principle that empowers deep learning techniques,
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and is thus of great potential value for neuromorphic technologies since the current state
of the art in machine learning is defined through SGD trained neural networks. However,
in the deep learning field, one does not use spiking neuron models. Much effort has been
spent in the last 10 years to find approximations of SGD that also work in spiking neural
environments, with limited success. The model of Bellec et al. has immediately created a
strong resonance, building on and transcending previous approaches to apprximate SGD
in spiking networks, is mathematically transparent, can be adopted to a variety neuron
models, has been explicitly formulated with analog spiking hardware implementations
in mind, and furthermore MemScales members (Indiveri, Jaeger) enjoy a long-standing
collaboration with the group of Wolfgang Maass where this model originates. Closely
related SDSP-realized approximations of SGD are currently being explored in a number
of research groups. Nefti and Averbeck (2019) review approaches of transferring neu-
robiological models of reinforcement learning to artificial neural networks, emphasizing
the benefits of neuron models that include sub-mechanisms that operate on different
timescales, and report brackets for biological time constants. Payvand et al. (2020)
(whose first author is a member of the INI) present an analog circuit for an on-chip real-
ization of (a version of) such learning rules, and demonstrate it in a simulation. Concrete
values of effective time constants are unfortunately not provided. The documentation
of mathematical formalism in Bellec et al. (2019, 2020) is particularly detailed, which
gives us the option to analyse conditions on time constants, which we now proceed to
do.

Following Bellec et al. (2020), we first give a brief summary of e-prop for the case
of leaky integrate-and-fire (LIF) neurons (formulated in a discrete-time setting, using
a unit timestep of δt = 1 millisecond), the most simple and arguably most popular
spiking neuron model in neuromorphic engineering theory. The core of SGD algorithms
in supervised learning for the adapation of a synaptic weight wji from pre-synaptic
neuron i to post-synaptic neuron j is the error gradient dE

dwji
, which can be factorized as

dE

dwji

=
∑

t

dE

dztj
·

[

dztj
dwji

]

=:
∑

t

Lt
j e

t
ji, (5)

where ztj is the postsynaptic spike train (a binary signal), the summation goes over the
time points of the learning history, the factor dE/dztj =: Lt

j is the learning signal, and
the factor dztj/dwji =: etji is the eligibility trace. The elegibility trace depends on pre-
and postsynaptic spiking (see below) and are thus a form of SDSP. The learning signal
is the “third” factor in the customary terminology when one speaks of 3-factor rules.

Note that this formulation (5) captures the weight change gradient obtained from
accumulating information about a whole training sequence or a training batch. For an
instantaneous weight adapation in a single model update step from time t to t+δt = t+1,
as needed for adaptive hardware implementations, (5) reduces to the online learning rule

∆twji = −η Lt
j e

t
ji, (6)

where η is a learning rate. We now take a closer look first at the elibility trace and
the “third factor”, the learning signal, in that order. We first give an brief summary
account of the formalism in Bellec et al. (2020), which is geared toward discrete-time
simulations on a digital computer, and then discuss what conditions on physical time
constants in unclocked event-based analog hardware implementations can be derived.
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Since spike pre- or postsynaptic spike trains ztj are not differentiable, they are re-
placed by exponentially smoothed filtered versions

z̄t := Fα(z
t) := αFα(z

t−1) + zt (7)

when needed. Bellec et al. (2020) derive that the eligibility trace etji can then be re-
written as

et+1
ji = ψt+1

j z̄ti , (8)

where ψt
j is a pseudo-derivative of ∂ztj / ∂v

t
j (used variously in the literature for making

spike trains differentiable under consideration of the post-synaptic neuron’s j refractory
period r; Bellec et al. (2020) refer back to Bellec et al. (2018)), given by

ψt
j :=

{

0 for t inside r
1

vth
γpd max

(

0, 1 −
∣

∣

∣

vtj−vth
vth

∣

∣

∣

)

else,
(9)

where in turn vtj is the membrane potential of neuron j, vth its firing threshold, and γpd
is a heuristic damping parameter that is set to γpd = 0.3 by Bellec et al; the role of this
damping parameter is to improve numerical stability of approximated gradient descent
in networks that have many layers. The membrane potential vtj evolves according to

vt+1
j = αvtj +

∑

i 6=j

W rec
ji zti +

∑

i

W in
ji x

t+1
i − ztj vth, (10)

ztj = H(vtj − vth), (11)

where W rec
ji ,W

in
ji are the recurrent and input weights to neuron j, xt is the input signal

and H is the Heaviside step function. The decay rate α is can be expressed in terms of
an exponential decay function by

α = exp(−δt/τm), (12)

where τm is the membrane time constant. A biologically plausible value is τm = 20 ms.
With a stepsize δt = 1 ms (which is used in the simulations in Bellec et al. (2020)), this
gives α ≈ 0.95.

The learning signal Lt
j in (5) measures the deviation between the output signals yk

generated by the network output neurons k (which are not recurrently connected to each
other), defined by the leaky integration rule

ytk = κyt−1
k

+
∑

j

W out
kj ztj + boutk , (13)

and the target outputs y∗,tk by a simple linear combination of the errors

Lt
j =

∑

k

Bjk(y
t
k − y∗,tk ). (14)

The error backprojection weights Bjk are determined in Bellec et al. (2020) according
to various heuristics, among them fixing them at random values. While this works sat-
isfactorily in the demonstrations given in Bellec et al. (2020), we see this dependence on
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heuristic intuition to define the learning signal as an opportunity for further improve-
ments of this model. Which values of κ were chosen in the demonstrations in Bellec et al.
(2020) remained un-documented there. However, it is clear that for tasks where the tar-
get outputs y∗,tk are smooth signals, they must be assumed to be high-pass filtered to
preclude arbitrary baseline drifts which cannot be learnt by neuronal outputs. To con-
nect our following discussion of synaptic/neuronal time constants with task-specific time
constants, we will consider the period length T ∗ (in milliseconds) of the lowest signifi-
cant frequency in y∗,tk as the slowest task-relevant timescale. The challenge for online
learning with spiking neurons is to be slow enough to be able to integrate task-relevant
information on that timescale T ∗.

We now consider the question how this model, which is formulated in a discrete-
time set-up for simulation on digital computers, translates into requirements for RNN
implementations in unclocked, event-based, spiking hardware.

We first consider the second factor z̄ti in the eligibility trace (8), which represents
pre-synaptic spikes arriving at the synapse wji. Note that the 1 ms time difference
between t+ 1 and t in (8) is due to the discrete-time simulation scenario, where a unit
time step is assumed for propagating the information from neuron i to neuron j. For
electronic event-based neuromorphic hardware we may assume that the travel delays of
electric signals are negligible, hence instead of (8) we will consider

etji = ψt
j z̄

t
i . (15)

According to (7) and (12), z̄ti is an exponentially smoothed version of zti with an ex-
ponential time constant that we will call τpre. In order to exploit (7) in analog unclocked
hardware, a physical variable available at the physical implementation of synapse wji

must represent z̄ti , that is, a physical leaky integration of the incoming spike train zti with
time constant τpre must be effected somewhere in the circuit — either at the sending
neuron i (then this signal must be sent to all receiving neurons j), or at the receiving
synapse wji (then the integration must by physically repeated at all synapses to which
i sends out its spike train).

We note that it is not possible to derive general rules for how τpre should be set
for the network to solve its learning task. Whether a specific setting will be successful
depends on many design variables, for instance the size of the RNN (in larger RNNs,
less precision per synapse is needed), functional specialization of neurons i and j (they
might specialize on high-frequency components in the outward task, leading to more
relaxed constraints on τpre), the average firing rate of the feeding neuron i (the higher,
the smaller can τpre be), and importantly, a model of how task-relevant information is
encoded in zti . We must make further assumptions to arrive at a well-defined problem.
We will proceed under the following assumptions.

1. Task-relevant information is encoded in the network by rate coding.

2. The synapse wij contributes significantly to the network’s functionality with re-
gards to the slowest task-relevant timescale T ∗.

The leaky integration of zti should be such that a significant memory trace of spikes
that lie T ∗ in the past is still present in z̄ti . What “significant” means is subject to an
essentially arbitrary commitment. Here we opt for a plausible heuristic and require that
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the contribution of zt−T ∗

i to z̄ti is reduced by a forgetting factor F of at most 1/2 at time
t. This leads to the condition

exp(−T ∗/τpre) ≥ 1/2, (16)

that is

τpre ≥ T ∗ −1

log(1/2)
≈ 1.4 · T ∗. (17)

Next we turn to the first factor ψt
j in the eligibility trace (15). This factor accounts

for the postsynaptic spike timing when interpreted in an SDSP perspective. Inspecting
(9) we see that this factor follows the temporal profile of the membrane potential vtj of
neuron j, which in turn (see (10)) is a leaky integration of recurrent and input spike
trains arriving at j. We have to transfer the discrete-time formulation of Bellec et al.
to the continuous-time, event-based situation in analog unclocked hardware, that is,
we must translate the discrete timestep discount factor α in (10) to an exponential
decay rate that we will call (like Bellec et al. do) τm. Again we must make additional
assumptions to arrive at a specific statement of our problem. Repeating the assumptions
and the heuristic that we committed above, we arrive at the same conclusion as in (17):

τm ≥ T ∗ −1

log(1/2)
≈ 1.4 · T ∗. (18)

This suggests that membrane leaking time constants are needed that are in the
order of the slowest relevant task time constants. Bellec et al. (2020) used a biologically
motivated value of τm = 20 ms. They demonstrated their model on a supervised task
of phoneme recognition, where T ∗ is 10 ms, which satisfies our constraints (17) and
(18). However, in another experiment, where e-prop was adapted to a reinforcement
learning situation, the task-relevant slowest timescale was in the order of T ∗ = 2000
ms, still with τm = 20 ms. This is at odds with (18). The solution to this puzzle is an
argument that combines the influence of network size with the choice of the forgetting
factor F = 1/2. If we plug in smaller forgetting factors in (17), (18), we end up
with smaller admissible time constants τpre, τm. They result in smaller T ∗-delayed task-
relevant additive components in the signals z̄ti , ψ

t
j , a source of variation which in turn

can however be compensated by the linear combinations effected through W rec
ji ,W

in
ji .

This efficacy of this compensation scales with the size N of the RNN and the numerical
accuracy of the used computing environment. Bellec et al. used floating-point precision
arithmetics and large networks (with 2400 neurons in the phoneme recognition demo,
not documented for the reinforcement learning task). In this light, our suggestions (17),
(18) should be considered as extremely conservative if not pessimistic, relevant (only)
for very small networks with a few neurons and low numerical precision (or with noise).

We summarize our findings:

• For implementing the e-prop algorithm for supervised training or RNNs in analog
spiking neuromorphic hardware on the basis of elementary LIF neuron models,
two leaky integration mechanisms are needed, one for the membrane potential and
one for the smoothing of spike trains arriving at a synapse.
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• Lower bounds on the minimally necessary time constants for these two integration
mechanisms depend on a number of design variables (in particular network size
and realizable numerical accuracy) and task specifics (in particular slowest task-
relevant time constant in task signals). Under the most conservative assumptions
(very small network, low numerical accuracy) one can reason that the leaky inte-
gration time constants for the membrane and synapse integrations must be in the
order of the slowest task-specific time constant. As network size and/or available
numerical accuracy increases, increasingly faster neuronal/synaptic time constants
can be expected to be sufficient for realizing the e-prop algorithm.

• Not all membrane or synapse time constants need to satisfy the conditions de-
scribed here. In order to enable a RNN architecture to cope with the slowest
task-relevant timescales, it is enough if some neurons / synapses are capable of
the required slow integrations. Specifically, hierarchical network architectures are
often designed in a way that “higher” layers operate in slower timescale modes
than “lower” layers.

We emphasize that the considerations made above are tied to the specifics of the
e-prop algorithm, with its specific version of SDSP and its specific training objective
and system architecture proposed in Bellec et al. (2020). There are many other SDSP
rules, other training objectives (in particular, unsupervised ones, or tasks based on non-
temporal data) and architectures, where other considerations would have to be done. In
particular, the necessity of leaky-integrating incoming spike trains at each synapse is a
consequence of the specific e-prop mathematics and will not be required in many other
SDSP versions, tasks or architectures.

The main lesson to be drawn from this case study is that there should be a mecha-
nism in the neuromorphic system whose time constant matches the slowest timescale T ∗

of the outward task (where “matching” needs to be qualified, it need not be identity but
can mean that the corresponding hardware mechanism has a faster timescale that can be
expanded to the task timescale through computational effects). We found the same les-
son taught to us in a quite different experimental and algorithmic scenario too, as will be
reported in Section 7.3. If that lesson holds true, then a very wide range of task-dictated
timescales T ∗ must be served: ranging from milliseconds in robot/prosthetics control to
days or weeks or even years in environmental monitoring, just to name two application
tasks that have been proposed as targets for neuromorphic computing technologies.

We emphasize that this case study does not imply a recommendation to for Mem-
Scales research to implement this specific model. We chose it as a representative because
the article of Bellec et al. (2020) gave a mathematical model in all detail, from which
we could develop an exemplary analysis. Other SDSP models have been or are being
explored in our consortium, like Yousefzadeh et al. (2018) or Cartiglia et al. (2020). It
is impossible to provide a theoretical analysis that covers all options, and it would be
inappropriate to try to identify a “best” one.

We finally point out that the e-prop algorithm has recently been employed in a reser-
voir computing set-up, where it was used to optimize the recurrent weights of a reservoir
for an entire class of learning tasks in a “learning to learn” scenario (Subramoney et al.,
2021).
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7.3 Timescale requirements for RC systems based on analog spiking
event-based neuromorphic hardware

Reservoir computing based on physical reservoirs is a flourishing research area. Physical
RC systems have been built on the basis of many different non-digital physical substrates.
Popular media include optics (Antonik et al., 2018), nano-mechanics (Coulombe et al.,
2017), carbon nanotubes (Dale et al., 2016), magnetic skyrmions (Prychynenko et al.,
2018), spintronics (Torrejon et al., 2017), or gold nanoparticle thin films (Minnai et al.,
2018) (survey in Tanaka and et al (2019)). These studies are mostly experimental. The-
oretical analyses, or at least systematic explorations of dynamical phenomena in con-
trolled simulations, are scarce. We are aware only of one work in the optical RC commu-
nity (Grigoryeva et al., 2016) and another one in memristive electronics based reservoirs
(Sheldon et al., 2020), which is however still rather rudimentary.

An inherent obstacle to general theoretical analyses is that every physical systems
comes with ideosyncratic dynamical properties that leave their mark on the computa-
tional properties of the respective system, and would have to be analysed on a case by
case basis. While a large body of analytical research has accumulated over the last two
decades for reservoirs that are mathematically defined on the simplest possible rate-
based neuron model (the echo state networks), insights made there do not easily carry
over to other sorts of reservoirs. Specifically, no theoretical analyses of computational
/ learning characteristics of reservoirs based on analog spiking continuous-time neural
networks are yet available.

A natural starting point for such analyses, with special attention paid to timescale
phenomena, would be to study the memory capacity (MC) of analog spiking reservoir
RNNs. In its original format, which was expressed for discrete-time non-spiking reser-
voirs of the echo state network type, the MC is a measure for how many previous inputs
of a one-dimensional white noise signal can be recovered by trained linear readouts,
weighted with an accuracy factor. In the work that started this research line (Jaeger,
2002) it was shown that MC is bounded by the number of neurons in the reservoir. This
triggered a large number of follow-up studies (a Google Scholar query on “echo state

network” “memory capacity” returns more than 600 papers) which extended the original
analysis with regards to input signal type, neuron model, noise robustness, input di-
mension, network architecture, alternative definitions of MC, and more. Contributions
came from mathematics, theoretical physics, the neurosciences and machine learning.
The broad interest in this question can be explained by the fundamental nature of the
question of information transport in dynamical systems in general, the relevance for
machine learning tasks (see Dambre et al. (2012) for the intimate connection between
memory properties and general computational capacities), and the relevance for under-
standing dynamical short-term memory in biological brains. We are however not aware
of mathematical analyses of MC in spiking RNNs, although it has been experimentally
measured in a number of simulation studies.

In the group of Jaeger at the University of Groningen, the PhD student Dirk
Doorakkers, whose position is funded through MemScales and who is a mathemati-
cian with a specialization in dynamical systems theory (and who authored Section 4
of this deliverable report), will carry out a dissertation project that centrally addresses
the question of information transport in spiking RNNs. His project, with the work-
ing title Double transients in multi-timescale systems provide a geometric description
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for dynamic coding with activity-silent working memory, plans a rigorous analysis of
mechanisms in spiking RNNs where

1. an input signal is initially encoded in a temporal activation pattern of the RNN,
which

2. propagates in time through the RNN for a delay (“memory”) period d, undergoing
a sequence of transformations, until

3. upon a cue signal a desired output transform of the input signal is recovered by a
decoding (“readout”) mechanism.

This analysis will be done with the tools of contemporary dynamical systems theory,
in particular slow-fast systems (singular perturbation methods) and bifurcation theory,
aiming for a characterization of such memory mechanisms in terms of generic geomet-
rical dynamical systems concepts, which to a certain degree would render the analyses
transferable to general classes of multi-timescale hardware reservoirs. This will consti-
tute a substantial contribution to task T 1.4, Toward a general model of unconventional
computing.

For the time being, the best that we can offer is a summary of findings that we col-
lected in the NeuRAM3 forerunner project to MemScales. Jaeger’s group was charged
to realize an online heartbeat anomaly classifier on the Dynap-se, a spiking analog neuro-
morphic microchip developed at the Institute of Neuroinformatics in Zurich (Moradi et al.,
2018). The challenge was that the natural time constant of human heartbeats is 1 sec,
while the slowest available time constants for spike train integration on the Dynap-se
were much faster. Our findings and methods are reported in He et al. (2019b). Here we
give a summary account, which agrees well with our observations in Section 7.2:

• In earlier simulations (not reported in He et al. (2019b)) we found that the learning
task was possible with spike train integration time constants that matched the task
time constants.

• The unavailability of physical time constants that were as slow as the 1 sec time
constant of the heartbeat data led to failures in “direct-attack” attempts to train
a Dynap-se based reservoir.

• The task became solvable on the Dynap-se when a novel reservoir transfer method
was employed to pre-configure the synaptic weights in the hardware reservoir in a
way that allowed linear combinations of spike trains arriving at a receiving neuron
to compensate for the small forgetting factors (see Section 7.2) inherent in the
Dynap-se physics. The reservoir comprised about 750 neurons.
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J. Lins and G. Schöner. Neural fields. In S. Coombes, P. beim Graben, R. Potthast,
and J. Wright, editors, Neural fields: theory and applications, pages 319–339. Springer
Verlag, 2014.

Michael A Long, Dezhe Z Jin, and Michale S Fee. Support for a synaptic chain model
of neuronal sequence generation. Nature, 468(7322):394–399, 2010.
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