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Abstract. Labeling data can be an expensive task as it is usually per-
formed manually by domain experts. This is cumbersome for deep learn-
ing, as it is dependent on large labeled datasets. Active learning (AL) is a
paradigm that aims to reduce labeling effort by only using the data which
the used model deems most informative. Little research has been done on
AL in a text classification setting and next to none has involved the more
recent, state-of-the-art NLP models. Here, we present an empirical study
that compares different uncertainty-based algorithms with BERTbase as
the used classifier. We evaluate the algorithms on two NLP classification
datasets: Stanford Sentiment Treebank and KvK-Frontpages. Addition-
ally, we explore heuristics that aim to solve presupposed problems of
uncertainty-based AL; namely, that it is unscalable and that it is prone
to selecting outliers. Furthermore, we explore the influence of the query-
pool size on the performance of AL. Whereas it was found that the
proposed heuristics for AL did not improve performance of AL; our re-
sults show that using uncertainty-based AL with BERTbase outperforms
random sampling of data. This difference in performance can decrease
as the query-pool size gets larger.

Keywords: Active Learning · Text Classification · Deep Learning ·
BERT.

1 Introduction

Deep Learning (DL) is a field in machine learning in which neural networks
with a large number of layers are made to perform complicated human tasks.
These networks have to be trained on a large amount of data to be able to learn
the underlying distribution of the task they are trying to model. In supervised
learning, this data is required to be labeled with the desired output. This allows
the network to learn to map the input to the desired output. This study will focus
on an instance of supervised learning, called text classification. Data labeling is
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usually done manually and can grow to be an expensive and time-consuming
task for larger datasets, like those used in DL. This begs the question of whether
there is no way to reduce the labeling effort while preserving good performance
on the chosen task. Similarly to lossy compression [1], we want to retain a good
approximation of the original dataset while at the same time reducing its size as
much as possible. More specifically: given a training set, how can we optimally
choose a limited number of examples based on the amount of relevant information
they contain for the target task?

Conceptually, answering this question requires quantifying the amount of
information contained in each datapoint. This finds its roots, like lossy compres-
sion, in information theory [26]. A model trained on limited data has an entropy
associated with its target variable predictions. Our goal is to greedily select the
data for labeling, while reducing entropy as much as possible, similar to how it
is done in research on decision trees [11]. In essence, we aim to incrementally,
optimally select a subset of datapoints; such that the distribution encoded by
the learned model maximizes the information gain or equivalently minimizes the
Kullback-Leibler divergence [18] with respect to the unknown distribution of
the full labeled data. However, there are two problems. First, the labels of the
data are not known until labeling, and additional heldout labeled data to aid
the selection is typically not available either. This contrasts with the easier case
of summarizing a known dataset by a subset of data, in which the Kullback-
Leibler divergence of a selected subset with the full set can be measured and
minimized. Second, because the parameters of a neural network change during
training, predictions and certainty of new datapoints also change. Because of
these two problems, examples can only be greedily selected based on their ex-
pected utility for improving the current, incrementally improved model. As the
actual labels for examples are lacking before their selection, their real utility
cannot be known during selection. Therefore, only proxies for this utility such
as model uncertainty can be used, as discussed next.

A machine-learning technique called Active Learning (AL) [25] can be used
to combat these problems. In AL, a human labeler is queried for datapoints that
the network finds most informative given its current parameter configuration.
The human labeler assigns labels to these queried datapoints and then the net-
work is retrained on them. This process is repeated until the model shows robust
performance, which indicates that the data that was labeled is a sufficient ap-
proximation of the complete dataset. There are multiple types of informativeness
by which to determine what data to query the oracle for. For instance calculating
what results in the largest model change [3] or through treating the model as
a multi-arm bandit [2]. However, the existing literature predominantly utilizes
different measures of model uncertainty [5,7,8,9,31], which is also done in this
research. Bayesian probability theory provides us with the necessary mathemat-
ical tools to reason about uncertainty, but for DL has its complications. The
reason is that (typical) neural networks, as used for classification and regres-
sion, are discriminative models. These produce a single output, a so called point
estimate. Even in the case of softmax outputs this is not a true probability den-
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sity function [7,8]. Another view on this is that modern neural networks often
lack adequate confidence calibration, meaning they fail at predicting probability
estimates representative of the true correctness likelihood [12].

This poses a problem to Bayesian probability theory as it prevents us from
being able perform Bayesian inference. With Bayesian inference we can deter-
mine the probability of a certain output y* given a certain input point x*:

p(y ∗ |x∗, X, Y ) =

∫
p(y ∗ |x∗, ω)p(ω,X, Y )dω (1)

Unfortunately, for the discriminative neural network models there is no prob-
ability distribution: the output is always the same for a given input. What is
more, even if we suppose the network was generative (Eq. 1), the integral is not
analytically solvable due to the fact that we need to integrate over all possible
parameter settings ω. However, it can be approximated. Existing literature has
explored different methods of achieving this, with Monte Carlo Dropout (MCD)
being the most popular one [5,8,32]. In MCD, the network applies dropout [29] to
make the network generative. Multiple stochastic forward passes are performed
to produce multiple outputs for the same input. The outputs can then be used
to summarize the uncertainty of the model in a variety of ways.

This research uses the MCD approximation to compare different uncertainty-
related AL query methods for text classification, noting there is still little liter-
ature on the usability of AL for modern NLP models. We strive to answer the
following research question:

Research Question. How can uncertainty-based Active Learning be used to
reduce labeling effort for text classification tasks?

Where previous literature focused on comparing AL strategies on small datasets
and on the test accuracy of the final classifier, this paper will try and explore
the usability of AL on a real-world setting, in which factors like the effect of
transfer learning and considerations such as scalability have to be taken into
account. The goal is to reach a performance similar to the state-of-the-art text-
classification models that use a large randomly sampled set of labeled examples
as training set. This should show whether AL can be applied to reduce labeling
effort.

2 Methods

This section will go on to describe the general AL loop, the model architecture,
the used query functions, the implemented heuristics, and finally the experimen-
tal setup.

2.1 Active Learning

An implementation of the general AL loop/round is shown in Appendix A.3
(Algorithm 1). It consists of four steps:
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1. Train: The model is reset to its initial parameters. After this, the model is
trained on the labeled dataset L. The model is reset before training because
otherwise the model would overfit on data from previous rounds [15].

2. Query: A predefined query function is used to determine what data is to
be labeled in this AL round. As discussed, this can be done in various ways,
but the guiding principle is that the data that the model finds most useful
for the chosen task gets queried.

3. Annotate: The queried data is parsed to a human expert, often referred to
as the oracle. The oracle then labels the queried examples.

4. Append: The newly-labeled examples are transferred from the unlabeled
dataset U to L. The model is now ready to be retrained to recompute the
informativeness of the examples in U now that the underlying distribution
of L has been altered.

Please note that the datasets used for the experiments (Section 2.5) were fully
labeled and the annotation step thus got skipped in this research. U existed
out of labeled data that was only trained on from the moment it got queried.
This was done to speed up the process and to enable scalable and replicable
experiments with varying experimental setups.

2.2 Model Architecture

BERT The model used to classify the texts was BERTbase [4], a state-of-the-art
language model which is a variant of the Transformer model [33]. Specifically, we
used the uncased version of BERTbase, as the information of capitalization and
accent markers was judged to be not helpful for the used tasks and datasets. Due
to computational constraints, only the first sentence of the used texts was put
into the tokenizer and the maximal length to which the tokenizer either padded
or cut down this sentence was set to 50. To better deal with unknown words and
shorter text, we used the option of the BERTbase tokenizer to make use of special
tokens for sentence separation, padding, masking and to generalize unknown
vocabulary. Finally, a softmax layer was added to the end of BERTbase, which is
essential as the implemented query functions (Section 2.3) compute uncertainty
based on sampled output probability distributions.

Monte Carlo Dropout Monte Carlo dropout (MCDO) is, as discussed in
Section 1, a technique that enables reasoning about uncertainty with neural net-
works. Dropout [29] essentially ’turns off’ neurons during the forward pass with
a predefined probability. Dropout is normally used during training to prevent
overfitting and create a more generalized model. In MCDO though, it is used to
approximate Bayesian inference [8] through creating T predictions for all data-
points, using T slightly different models induced by different dropout samples.
The result of these so-called stochastic forward passes (SFP’s) can then be used
by the query function to compute the uncertainty, as will be explained in Section
2.3. The way MCDO is incorporated in the AL loop is shown in green in the
Appendix (Algorithm 2). BERTbase has two different types of dropout layers:
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hidden dropout and attention dropout. Both were turned on when perform-
ing a stochastic forward pass. Note that there are other ways of approximating
Bayesian inference with neural networks. Frequently used ones are:

– Having an ensemble of neural networks vote on the label [17].
– Monte Carlo Batch Normalization (MCBN) [31].

MCDO was chosen over the ensemble method due to it being easier to implement
and quicker to train. MCBN was not chosen as it has been shown to be more
inconsistent than MCDO [5].

SentenceBERT Textual data offers the advantage of having access to the use
of pre-trained word embeddings. These are learned representations of words into
a vector space in which semantically similar words are close together. Textual
embeddings can be computed in a variety of ways. BERT specific ones include
averaging the pooled BERT embeddings and looking at the BERT CLS token
output. Other more general ways are averaging over Glove word embeddings [22]
and averaging embeddings created by a Word2Vec model [20]. We have opted
to make use of SentenceBERT [23], a Siamese BERT architecture trained to
produce embeddings that can be adequately compared using cosine-similarity.
For our purposes this provides better performance than the other embedding
computations. SentenceBERT was used separately from the previously discussed
BERTbase model, and was used only for assigning embeddings to each sentence
in the dataset that were used by the heuristics described in Section 2.4.

2.3 Query Functions

The query functions determine the model its data selection choices in the AL
loop. This paper will focus on functions that reason about uncertainty, obtained
from approximated Bayesian distributions [8]. For every datapoint, the distribu-
tion is derived from T stochastic forward passes and resulting T (in our case)
softmax probability distributions. The three implemented query functions are:

1. Variation ratio
2. Predictive entropy
3. Bayesian active learning by disagreement (BALD).

These query functions are discussed in more detail Appendix A.1 as well as
by Gal [7].

2.4 Heuristics

Redundancy Elimination In AL, a larger query-pool size (from now on re-
ferred to as q) results in the model being retrained less and the uncertainties
of examples being re-evaluated less frequently. Consequently, the model gets to
make less informed decisions as it uses less up-to-date uncertainty estimates.
Larger q could therefore theoretically cause the model to collect many similar
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examples for specific example types with high model uncertainty in an AL round.
Say for instance we were dealing with texts about different movie genres. Sup-
pose the data contained a lot of texts about the exact same movie. When the
model would be uncertain about this type of text, a large q would result in a
large amount of these texts getting queried. This could be wasteful, as querying
this type of text a small amount of times would likely result in the model no
longer being uncertain about that type of text. Note however, that low model
uncertainty by itself is no guarantee for robustly making accurate predictions for
a type of examples. Yet provided such robust performance is achieved, additional
examples of the same type would be a waste.

The above could form a problem as although a smaller q should theoreti-
cally provide us with better results, it also requires more frequent uncertainties
re-computation. Every computation of the uncertainties requires T stochastic
forward passes on the unlabeled dataset U . This entails that, next to the com-
putation, the time required to label a dataset would increase as well, which is
not in line with our goal. In hopes of improving performance with larger q, we
propose two heuristics:

1. Redundancy Elimination by Training (RET)
2. Redundancy Elimination by Cosine Similarity (RECS)

For both of these heuristics, a new pool, which we will refer to as the
redundancy-pool RP, is introduced. The query-pool QP will be a subset of
RP of which we will try to select the most dissimilar examples.

RET tries to eliminate redundant data out of RP by using it as a pool to
retrain on. The datapoint with the highest uncertainty is trained on for one
epoch and then the uncertainties of the examples in RP are recomputed. This
process gets repeated until QP is of the desired size. Note that although this
strategy seems similar to having a q of one, it is less computationally expensive
as only the uncertainties for the examples in RP have to be recomputed (which
also shrinks after each repetition). Algorithm 3 of Appendix A.3 shows how RET
is integrated in the AL loop.

The main purpose of RET is to enable the use of larger q. However, one needs
to be mindful of the fact that when q is increased, RP is to be increased in size
well. This being due to the fact that smaller differences between the sizes of RP
and QP result in less influence of the heuristic. In the RET algorithm, forward
passes over RP contribute to the total amount of forward passes. Furthermore,
this contribution increases linearly with the redundancy-pool size (|RP|) and
in practice coupled query-pool size q. Using |RP| = 1.5 × q, this contribution
starts to dominate the total amount of forward passes (approximately) once
q >

√
|data|. This is explained in more detail in Appendix A.2. This limits its

use for decreasing computation by increasing q. Because of this, RECS is aimed
at being computationally cheaper.

Instead of retraining the model and constantly taking into account recom-
puted uncertainties, RECS makes use of the sentence embeddings created by
SentenceBERT (Section 2.2). The assumption made is that semantically similar
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data conveys the same type of information to the model. The examples are se-
lected based on their cosine similarity to other examples. RP is looped through
and examples are only added to QP if their cosine similarity to all other points
that are already in QP is lower than the chosen threshold l. If not enough ex-
amples are selected to get the desired q, the threshold gets decreased by 0.01.
Algorithm 4 of Appendix A.3 shows how this heuristic is added to the AL loop.

Sampling by Uncertainty and Density (SUD) Schomaker and Oosten [21]
showed that the distinction between separability and prototypicality is impor-
tant to account for. In their use case of the SVM, datapoints that had a high
margin to the decision boundary were not always representative of the class pro-
totype. Uncertainty sampling also tries to sample examples close to the decision
boundary, but has been shown to often select outliers [24,30]. Outliers contain a
lot of information that the model has not encountered yet, but this information
is not necessarily useful. As with the previously described RECS heuristic, we
hypothesize that semantically similar sentences provide the same type of infor-
mation. In that situation, outliers are very far from other examples in embedding
space.

Zhu et. al [34] proposed a K-Nearest-Neighbor-based density approach called
Sampling by Uncertainty and Density (SUD) to avoid outliers based on their dis-
tance in embedding space. In this approach, the mean cosine similarity between
every datapoint and its K most similar neighbors is computed. A low value indi-
cates that a datapoint is not very similar to others. This value is then multiplied
with the uncertainty and the dataset is sorted based on this Uncertainty-Density
measure. They showed that this measure improved performance of the maximum
entropy model classifier. We will explore whether this approach also works for
BERT combined with the embeddings computed by SentenceBERT. The ad-
justed pseudocode is shown in Appendix A.3 (Algorithm 5).

2.5 Experimental Setup3

Data Two datasets were used to validate and compare the performance of the
different AL implementations. Table 1 shows an overview of the amount of exam-
ples and classes of each dataset. The first of the used datasets was the Stanford

Table 1. An overview of the two datasets used in the experiments

Dataset Examples Number of Classes
SST 11,850 5
KvK 2212 15

3The code used for the experiments can be found at https://github.com/
Pieter-Jacobs/bachelor-thesis

https://github.com/Pieter-Jacobs/bachelor-thesis
https://github.com/Pieter-Jacobs/bachelor-thesis
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Sentiment Treebank [28] (SST). SST exists out of 215,154 phrases from movies
with fine-grained sentiment labels in the range of 0 to 1. These phrases are con-
tained in the parse trees of 11,855 sentences. Only these full sentences were used
in the experiments, and the sentiment labels were mapped to five categories in
the following way:

– 0 ≤ label < 0.2: very negative
– 0.2 ≤ label < 0.4: negative
– 0.4 ≤ label ≤ 0.6: neutral

– 0.6 < label ≤ 0.8: positive
– 0.8 < label ≤ 1: very positive

The second dataset that was used consists of the of descriptions of companies
located in Utrecht. The companies are all registered at the Dutch Chamber of
Commerce, or Kamer van Koophandel (KvK) and were mapped to their cor-
responding SBI-code. The SBI code denotes the sector a company operates in,
as defined by the KvK. The HTML of the companies websites was scraped and
the meta content that was tagged as the description was extracted. In nearly all
cases, this contained a short description about what the company was involved
in. This dataset will not be shared and is not available online due to the fact
that it was constructed as part of an internship at Dialogic.

Evaluation Metrics To evaluate and compare the performance of the different
AL strategies, two evaluation metrics were reported: the accuracy and an altered
version of the deficiency metric proposed in [34].

The variant of deficiency that was used is shown in Eq. 2, in which n denotes
the amount of accuracy scores, acc(R) denotes the accuracy of the reference
strategy and acc(C) the accuracy of the strategy to be compared to this reference
strategy. Instead of using the accuracy that was achieved in the final AL round
like in [34], we use the overall maximum accuracy. This accounts for the fact
that the last achieved accuracy in a classification task is not necessarily the best
value, while still returning a metric which provides a summary of the entire
learning curve. A value of <1 indicates a better performance than the reference
strategy whereas a value of >1 indicates a worse performance.

DEF (AL,R) =

∑n
t=1(max(acc(R))− acct(C)∑n
t=1(max(acc(R))− acct(R))

(2)

Experiments The goal of the experiments was to answer the question of
whether overall labeling effort could be reduced through making use of AL.
We split this into the following three sub-questions:

1. Does AL achieve better performance with less data when compared to plain
random sampling?

2. What is the relation between query-pool size q and the achieved perfor-
mance?

3. Do the proposed heuristics (SUD, RET, RECS) improve the performance of
AL?



Active learning for reducing labeling effort in text classification tasks 9

Table 2. The statistical setup used for both datasets. The percentages used are relative
to the full dataset size.

Dataset Seed U Dev Test
SST 594 (5%) 7951 (67%) 1101 (9%) 2210 (19%)
KvK 111 (5%) 1659 (75%) 221 (10%) 1659 (10%)

The statistical setup used for the experiments can be found in Table 2. The
setup for SST was based on the proposed setup in [28]. To reiterate, the following
AL strategies were implemented:

1. Variation Ratio
2. Predictive Entropy
3. BALD

4. RET (Section 2.4)
5. RECS (Section 2.4)
6. SUD (Section 2.4)

To answer subquestion 1, these strategies were compared to the performance
of random sampling using a q of 1% of the dataset size. For subquestion 2, the
three query functions were be compared across three q: 0.5%, 1% and 5% of
the dataset size. Finally, to be able to answer subquestion 3, RET, RECT and
SUD were compared with a q of 1%. As RET, RECS and SUD were meant as
additions to general problems of uncertainty-based AL, they were only tested
for the variation ratio query function. This function was chosen, because it was
reported in [7] to give the best result. To make the results more generalizable,
all the experiments mentioned above were run three times.

Moreover, to test the assumption of the RECT strategy, we measured whether
there was a relation between how the model softmax predictions changed towards
the one-hot vector of the actual label and the cosine similarity to the datapoint
that was trained on. The relationship was quantified by means of Kendall’s τ
between the ranking of the examples based on which one had the largest change
in KL divergence after training on the top example and the ranking of the
examples based on cosine similarity to the example being trained on.

Hyperparameters Table 4 gives an overview of used hyperparameters. Both
dropout rate and l (the cosine-similarity threshold used in RECS) were chosen
based on a grid search across both datasets. The amount of stochastic forward
passes T was based on [6] and was set to 10 across all experiments.4 Early
stopping was applied on each training phase of the AL loop, Table 3 shows the
amount of epochs used for each dataset. The model yielding the lowest validation
loss across all epochs was used for evaluation and uncertainties computation.
Note that in a normal AL setting, validation sets are usually not available due
to the labelling effort required and this strategy would be less feasible.

The Adam algorithm [16] was used for optimization and its learning rate
was tuned based on the CLR method [27]. The best performing computationally

4Larger values up to 100 were tested, but induced much larger training times with-
out noteworthy performance gains.
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Table 3. The amount of epochs used for
early stopping for the different datasets.

Dataset # Epochs
SST 15
KvK 25

Table 4. Hyperparameters values

Parameter Value
Dropout rate 0.2
T 10
l 0
β1, β2 0.9, 0.999
ε 1 * 10−8

Learning rate 2 * 10−5

Batch size 128
RP size 1.5*q
Embedding dim. 768

feasible batch size (128), out of the tried batch sizes (32, 64, 128, 256), was used
in all experiments. The betas and ε were set to their default values. The size of
RP was chosen arbitrarily, determining its optimal choice is left future research.

Finally, dimensionality reduction using PCA was tried to determine whether
this would result in better class-separability. For every datapoint in the full
dataset, the classes of the group of ten most similar datapoints (based on cosine
similarity) were determined. By maximizing the average of the number of within-
group same-class datapoints, the used dimensionality was determined.

3 Results

This section will go onto visualize and describe the achieved results for all three
experiments described in Section 2.5. Note that for all figures, the results were
averaged over three runs with the error bars showing one standard deviation.
Furthermore, all deficiencies were rounded to two decimal places. For deficiency
values <1 (improvements over the reference strategy), we show the smallest value
in the comparison in bold. For the sake of readability and to keep graph points
aligned, in the graphs for query-pool sizes of 0.5% and 1% the points shown are
respectively those at every 10th and 5th and interval.

3.1 Active Learning

Figure 1a shows how the query functions performed on the KvK dataset. All
query functions outperform random sampling when the labeled dataset is less
than 200 examples large. After this, in particular BALD and variation ratio
continue to mostly outperform random sampling until near the maximum labeled
data size. Notably, many of the performance differences are larger than one
standard deviation.

Figure 1b shows how random sampling and the implemented query functions
performed on the SST dataset. On this dataset the results for the random sam-
pling baseline and the other systems is much smaller, and there does not seem
to be a clear winner.
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Fig. 1. The achieved test accuracy on the KvK dataset (a) and on the SST dataset (b)
by random sampling and the uncertainty-based query functions.

Finally, the deficiencies shown in Table 5 show a positive result (< 1) for all
query functions except for predictive entropy for the SST dataset. Matching the
graphs, the performance gains as measured by the deficiency scores are overall
more substantial on the KvK dataset. BALD has the lowest deficiency for both
datasets.

Table 5. The deficiencies (Eq. 2) of the uncertainty-based query functions. Random
sampling was the reference strategy.

Dataset VR PE BALD
SST 0.95 1.01 0.89
KvK 0.67 0.9 0.64

3.2 Query-pool Size

Figure 2a shows the performance of variation ratio across different q when used
on the KvK dataset. In the middle range of the graph, variation ratio with a q
of 5% has a worse performance than the other q. The q of 0.5% and 1% achieve
similar performance with the accuracy scores always staying within one standard
deviation of each other.

Figure 2b shows the performance of the different q on the SST dataset. The
performance of variation ratio with a q of 0.5% fluctuates more when compared
to the other q. Moreover, it results in an overall worse performance when com-
pared to the other sizes. The q of 5% shows to have the best and most consistent
performance over the whole learning curve in terms accuracy. However, the q of
0.5% manages to outperform the other q at about 5000 labeled examples.
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Fig. 2. The achieved test accuracy on the KvK dataset (a) and the SST dataset (b)
by using the variation ratio query function with different q.

The deficiencies for the different q across both datasets are shown in Table 6.
For the SST dataset, the q of 5% had a lower deficiency across the learning curve
whereas the q of 0.5% shows a relatively high deficiency. For the KvK dataset
however, we see that the q of 5% has a relatively high deficiency when compared
to the similarly performing q of 0.5% and 1%.

Table 6. The achieved deficiencies (Eq. 2) by the different q for the different datasets.
A q of 1% was the reference strategy.

Dataset 0.5% 5%
SST 1.65 0.62
KvK 0.91 1.33

3.3 Heuristics

Figure 3a shows the performance of using variation ratio with heuristics together
with the performance of solely using variation ratio on the KvK dataset (also
shown in Figure 1b). Both RET and RECT show no clear improvement over
solely using variation ratio. The same can be gathered from the results of the
SST dataset shown in Figure 3b as their accuracy scores stay within one standard
deviation for the entire learning curve. Moreover, Table 7 shows that the average
Kendall’s τ is around 0 with a relatively large standard deviation; indicating that
there is no relationship between the compared rankings.

Lastly, SUD shows an overall worse performance for both the SST and KvK
datasets. The deficiencies shown in Table 8 also show high values for SUD across
both datasets.



Active learning for reducing labeling effort in text classification tasks 13

600 800 1000 1200 1400 1600
Size of 

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0
Ac

cu
ra

cy
 (%

)
KvK: Heuristics compared to Variation Ratio

Variation Ratio
Variation Ratio + RET
Variation Ratio + RECT
Variation Ratio + SUD

(a)

1000 2000 3000 4000 5000 6000 7000 8000
Size of 

40

42

44

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

SST: Heuristics compared to Variation Ratio

Variation Ratio
Variation Ratio + RET
Variation Ratio + RECT
Variation Ratio + SUD

(b)

Fig. 3. The achieved test accuracy on the KvK dataset (a) and on the SST dataset (b)
by the different heuristics.

Table 7. The mean and the 1 SD range
of Kendall’s τ from the described rank-
ing experiment across the two datasets
(rounded to two decimal places).

Dataset Mean σ

SST 0.14 0.33
KvK 0.02 0.47

Table 8. The achieved deficiencies by the
different heuristics. Variation ratio was
the reference strategy.

Dataset RET RECT SUD
SST 1.02 1.05 1.23
KvK 0.98 0.96 1.33

4 Discussion

This research investigated whether AL could be used to reduce labeling effort
while at the same time maintaining similar performance to a model trained on
a full dataset. To achieve this, the performance and scalability of different AL
query-strategies was tested for the state-of-the-art NLP model: BERT.

Conclusions The results showed that uncertainty-based AL can provide im-
proved performance over random sampling for cut-down datasets. This differ-
ence was not consistent throughout the whole training curve: at specific points
AL outperformed random sampling and at others at it achieved similar per-
formance. Unfortunately, the results found for the KvK dataset show that the
found improvement can diminish as query-pool sizes get larger. Moreover, the
two proposed heuristics aimed at improving scalability did not help in improving
performance for either dataset and the heuristic aimed at avoiding outliers even
resulted in worse performance. An unexpected result was found in that the as-
sumption that semantically similar data conveyed the same type of information
did not hold according to the conducted ranking experiment. A possible expla-
nation for this could be that the texts were not mapped to embeddings in a
way in which semantically similar data was close enough to each other. Another
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curious finding was that for the SST dataset, the smallest q resulted in the worse
performance, especially at the beginning of the learning curve. This is counter-
intuitive due to the fact that performance seems to suffer from more frequent
uncertainty estimates. Moreover, for the KvK dataset we did see that the largest
q had the worst performance overall but also had similar performance to the
other q. A potential justification for this could be that updating too frequently
at the beginning of the learning curve results in the model not being able to train
enough on high frequency classes and focuses too much on the long tail of the
class distribution due to the fact that the model is more uncertain about texts
with low frequency classes at the start of the learning curve. Further research is
needed to build a better understanding of this.

From the above, we conclude that uncertainty-based AL with BERTbase can
be used to decrease labeling effort. This supports what was concluded by [10].

When looking at the bigger picture, we showed that AL can still provide an
improvement in performance over random sampling for large datasets. The im-
provement of performance of AL with BERT is however limited when compared
to what it achieved for older NLP models [34,30,24] and even more so when
compared to image classifiers [14,5,9]. Performance did show to increase more
when used on the smaller dataset. A possible explanation for this is that BERT
is pretrained on a large amount of data and that it only needs fine-tuning for
achieving good performance on a specific task. Transfer learning models [13] like
BERT have the ability to perform well on new tasks with just a limited amount
of data. The power of this few-shot learning also became apparent on a dataset
which we decided not to use. Here, BERT was able to get a low validation error
on the seed alone, while at the same time having a training accuracy of 100%.

Future Research This work focused on classification tasks. A future direc-
tion could be to investigate the influence of AL on BERT’s performance in the
context of regression tasks and also to examine how the proposed heuristics per-
form there. Moreover, more recent BERT variants, like for instance RoBERTa
[19], could be tested to see whether AL still outperforms the random sampling
benchmark. Furthermore, the used query functions were mostly developed for
and used in computer vision. Query functions aimed at text classification or at
the fact that BERT is a pretrained model could be further investigated.

Lastly, an important direction for future work remains making AL more
scalable, by finding ways to preserve performance with larger query-pool sizes.
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Appendix

A.1 Query Functions

Variation Ratio The variation ratio is a measure of dispersion around the class
that the model predicts most often (the mode). The intuition here is that the
model is uncertain about a datapoint when it has predicted the mode class a
relatively small number of times. This indicates that it has predicted other classes
a relatively large number of times. This can also be gathered from Equation 3,
where fx denotes the mode count and T the number of stochastic forward passes.

v[x] = 1− fx
T

(3)

The function attains its maximum value when the model predicts all classes an
equal amount of times and its minimum value when the model only predicts
one class across all stochastic forward passes. Variation ratio only captures the
uncertainty contained in the predictions, not the model, as it only takes into
account the spread around the most predicted class. It is thus a form of predictive
uncertainty.

Predictive Entropy Entropy H(x) in the context of information theory is
defined as:

H(x) = −
n∑

i=1

p(xi) log2 p(xi) (4)

This formula expresses the entropy in bits per symbol to be communicated,
in which p(xi) gives the probability of the i-th possible value for the symbol.
Entropy is used to quantify the information of data. In our case we want to
know the chance of the model classifying a datapoint as a certain class given
the input and model parameters (p(y = c|x,ω)). We can compute this chance
by averaging over the softmax probability distributions across the T stochastic
forward passes. This adjusted version of entropy is denoted in Equation 5, where
ω̂t denotes the stochastic forward pass t, and c the number associated to the
class-label.

H[y|x,Dtrain] = −
∑
c

(
1

T

∑
t

p(y = c|x, ω̂t)

)

log

(
1

T

∑
t

p(y = c|x, ω̂t)

) (5)

To exemplify: in binary classification, the predictive entropy is highest when
the model its softmax classifications consist of T times [0.5, 0.5]. In that case,
expected surprise when we would come to know the real class-label is at its
highest. The uncertainty is computed averaging over all predictions and thus
falls under predictive uncertainty.
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Bayesian Active Learning by Disagreement Predictive entropy (Section
A.1) is used to quantify the information in one variable. Mutual information or
joint entropy is very similar but is used to calculate the amount of information
one variable conveys about another. In our case, we’ll be looking at what the
average model prediction will convey about the model posterior, given the train-
ing data. This is a form of conditional mutual information, the condition or the
third variable being the training data Dtrain. [14] used this form of mutual infor-
mation in an AL setting and dubbed it Bayesian active learning by disagreement
(BALD).

I[y, ω|x,Dtrain] = −
∑
c

(
1

T

∑
t

p(y = c|x, ω̂t)

)

log

(
1

T

∑
t

p(y = c|x, ω̂t)

)

− 1

T

∑
c,t

p(y = c|x, ω̂t)

log p(y = c|x, ω̂t)

(6)

The difference between Equation 6 and 5 is that the conditional entropy is
subtracted from the predictive entropy. The conditional entropy is the probabil-
ity of the full output being generated from the training data and the input. This
is the reason we do not average the predictions for every single class. We first
sum over all classes, so that we do not average over the model parameters for
every single class and thus take into account the fact that we are looking at the
chance of the complete probability distribution being generated.

BALD is maximized when the T predictions are strongly disagreeing about
what label to assign to the example. So in the binary case, it would be highest
when the predictions would alter between [1,0] and [0,1] as these two predictions
are each others complete opposite. Unlike the variation ratio and predictive
entropy, BALD is a form of model uncertainty. When the softmax outputs would
be equal to T times [0.5,0.5], the minimal BALD value would be returned as
the predictions are the same and the model is thus very confident about its
prediction.
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A.2 RET Algorithm Computational Cost Analysis

The number of forward passes required by the RET algorithm depends on two
factors:

1. Basic passes: The forward passes required by the “normal” computation of
uncertainty at the beginning of the computation for every query-pool.

2. RP passes: The forward passed required for intermediate updates, using the
redundancy pool RP .

In this analysis we will assume that the size of the redundancy pool |RP|
is chosen as a factor f > 1 of the size of the query-pool q. A reasonable as-
sumption, considering that making |RP| larger than needed incurs unnecessary
computational cost, whereas a too small value is expected to diminish the ef-
fect of the RET algorithm. We furthermore notice that given this assumption,
and assuming a fixed total number of examples to label, there are two factors
influencing the required amount of RP passes:

– Linearly increasing the query-pool size and coupled redundancy pool size
causes a quadratic increase in the number of required forward passes per
query pool round.

– At the same time, a linearly increased query-pool size also induces a corre-
sponding linear decrease in the number of required query-pool rounds.

We will see that these two factors will cause a net linear contribution to the
number of RP passes starts causing a net increase of total passes once the query-
size comes above a certain value. Looking at (1) more precisely, the amount
of passes over RP that needs to be performed per query-pool round can be
computed as an arithmetic progression:

|RP|+ (|RP| − 1) + (|RP| − 2) + . . .+ (|RP − q) = (7)
1

2
× (q + 1)× (|RP|+ |RP| − q) = (8)

1

2
× (q + 1)× ((2f − 1)× q) = (9)

1

2
× (q + 1)× f ′ × q) = (10)

1

2
× f ′ × (q2 + q)) (11)

Let’s assume we use f = 1.5 (as also used in our experiments), and conse-
quently, f ′ = 2f − 1 = 2. The number of forward passes over RP then becomes
exactly q2 + q.

The complexity can then be expressed by the following formula:

T × d#Samples
q

e × (|data|+ q2 + q) (12)
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This can be approximately rewritten as:

T ×#Samples× (
|data|
q

+
q2 + q

query-pool
) = (13)

T ×#Samples× (
|data|
q

+ q + 1) (14)

Note that the second term query-pool-size + 1 only starts dominating the
number of forward passes in this formula as soon as:

q + 1 ≈ q > |data|
q

This is the case when

q >
√
(|data|)

Until then, the computational gains of less basic passes outweighs the cost of
more RP passes. In practice though, this may happen fairly quickly. For example,
assuming we have a data size of 10000 examples, and we use as mentioned
q = 1.5| × RP|, then as soon as q ≥ 100 the increased computation of the
RP passes starts dominating the gains made by less basic passes when further
increasing the query-pool size, and the net effect is that the total amount of
computation increases.

In summary, for the RET algorithm, RP passes contribute to the total
amount of forward passes. Furthermore, this contribution increases linearly with
redundancy-pool size and coupled query-pool size, and starts to dominate the
total amount of forward passes once redundancy-pool-size >

√
data-size. This

limits its use for decreasing computation by increasing the query-pool size.
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A.3 Algorithms

Algorithm 1 The general AL loop.
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired length of L
2: q ← Query-pool size
3: Q(x)← Query Function
4: while L length < n do
5: Retrain f(x; θ) on L
6: Sort U based on Q(U)
7: Let Oracle assign labels to Uq

0

8: Insert Uq
0 into L

9: Remove Uq
0 from U

10: end while

Algorithm 2 The AL loop with MCD.
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: q ← Query-pool size
3: Q(x)← Query Function
4: T ← Number of SFP’s
5: while L length < n do
6: Retrain f(x; θ) on L
7: P ← ∅
8: for t = 0, ..., T do
9: insert f(U ; θt) into P
10: end for
11: Sort U based on Q(P )
12: Let Oracle assign labels to Uq

0

13: Insert Uq
0 into L

14: Remove Uq
0 from U

15: end while
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Algorithm 3 The AL loop with Redundancy Elimination by Training (RET).
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: r ← Redundancy-pool size
3: q ← Query-pool size
4: T ← Number of SFP’s
5: Q(x)← Query Function
6: while L length < n do
7: Retrain f(x; θ) on L
8: P ← ∅
9: for t = 0, ..., T do
10: insert f(U ; θt) into P
11: end for
12: Sort U based on Q(P )
13: U ← ∅
14: queried← 0
15: while queried < q do
16: for t = 0, ..., T do
17: insert f(RP; θt) into U
18: end for
19: i← argmin(U)
20: Let Oracle assign label to Ui
21: Train f(x; θ) on Ui
22: Insert Ui into L
23: Remove Ui from U
24: queried← queried+ 1
25: end while
26: end while
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Algorithm 4 The AL loop with Redundancy Elimination by Cosine Similarity
(RECS).
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: u← Redundancy-pool size
3: q ← Query-pool size
4: l← Cosine similarity threshold
5: T ← Number of SFP’s
6: Q(x)← Query Function
7: Cos(x, y)← Cosine similarity between x and y
8: while L length < n do
9: Retrain f(x; θ) on L
10: P ← ∅
11: for t = 0, ..., T do
12: insert f(U ; θt) into P
13: end for
14: Sort U based on Q(P )
15: U ← ∅
16: while Ulength < q do
17: for i = 0, ..., u do
18: if Cos(Ui, UUlength

0 ) < l then
19: insert Ui into U
20: end if
21: end for
22: l← l − 0.01
23: end while
24: Reset l to initial value
25: Let Oracle assign labels to U
26: Insert U into L
27: Remove U from U
28: end while
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Algorithm 5 The AL loop with SUD.
Input Labeled dataset L = {(xi, yi)}ni , the unlabeled data U = {(xi, ∅)}ni and the
untrained classifier f(x; θ).
Output Fully labeled dataset L = {(xi, yi)}ni and trained classifier
f(x; θ)

1: n← Desired dataset length
2: q ← Query-pool size
3: k ← Amount of similar examples to compute density with
4: T ← Number of SFP’s
5: Q(x)← Query Function
6: Cos(x, y)← Cosine similarity between x and y
7: while L length < n do
8: Retrain f(x; θ) on L
9: P ← ∅
10: E ← ∅
11: for t = 0, ..., T do
12: Insert f(U ; θt) into P
13: end for
14: for example in U do
15: similar ← Sort(Cos(example, U))

16: Insert sum(similark0 ))

k
into E

17: end for
18: Sort U based on Q(P∗E)
19: Let Oracle assign labels to Uq

0

20: Insert Uq
0 into L

21: Remove Uq
0 from U

22: end while
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