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The ‘un‑shrunk’ partial correlation 
in Gaussian graphical models
Victor Bernal1,2, Rainer Bischoff2, Peter Horvatovich2*† , Victor Guryev3*† and Marco Grzegorczyk1*† 

Background
An important goal in systems biology is to elucidate gene regulatory and protein inter-
action patterns. To accomplish this task, many network models have been proposed in 
the literature, such as Relevance networks (RNs) [1], Bayesian networks (BNs) [2], and 
Gaussian graphical models (GGMs) [3]. For more details, see [4].

Abstract 

Background: In systems biology, it is important to reconstruct regulatory networks 
from quantitative molecular profiles. Gaussian graphical models (GGMs) are one of 
the most popular methods to this end. A GGM consists of nodes (representing the 
transcripts, metabolites or proteins) inter-connected by edges (reflecting their partial 
correlations). Learning the edges from quantitative molecular profiles is statistically 
challenging, as there are usually fewer samples than nodes (‘high dimensional prob-
lem’). Shrinkage methods address this issue by learning a regularized GGM. However, it 
remains open to study how the shrinkage affects the final result and its interpretation.

Results: We show that the shrinkage biases the partial correlation in a non-linear way. 
This bias does not only change the magnitudes of the partial correlations but also 
affects their order. Furthermore, it makes networks obtained from different experi-
ments incomparable and hinders their biological interpretation. We propose a method, 
referred to as ‘un-shrinking’ the partial correlation, which corrects for this non-linear 
bias. Unlike traditional methods, which use a fixed shrinkage value, the new approach 
provides partial correlations that are closer to the actual (population) values and that 
are easier to interpret. This is demonstrated on two gene expression datasets from 
Escherichia coli and Mus musculus.

Conclusions: GGMs are popular undirected graphical models based on partial cor-
relations. The application of GGMs to reconstruct regulatory networks is commonly 
performed using shrinkage to overcome the ‘high-dimensional problem’. Besides it 
advantages, we have identified that the shrinkage introduces a non-linear bias in the 
partial correlations. Ignoring this type of effects caused by the shrinkage can obscure 
the interpretation of the network, and impede the validation of earlier reported results.

Keywords: Gaussian graphical models, Partial correlations, Shrinkage, Gene regulatory 
networks
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A GGM consists of a network structure of nodes (representing genes, transcripts, 
metabolites, or proteins), which are inter-connected by edges reflecting significant par-
tial correlations. Partial correlations measure linear associations between pairs of ran-
dom variables, where the contribution from the remaining variables is adjusted for. 
Unlike RNs, which are based on Pearson’s correlation, GGMs remove the spurious cor-
relations caused by confounded variables (e.g. when genes share a common regulator). 
Compared to BNs, GGMs scale up more efficiently to large network analyses and often 
yield comparable network reconstruction accuracies [5]. Although the edges in a GGM 
are undirected, there are various methods to learn their directions [6, 7]. These afore-
mentioned features made GGMs a popular tool in bioinformatics and biomedical stud-
ies of colon cancer [8], immunological diseases [9], diabetes [10], respiratory diseases 
[11], functional connectivity between brain regions [12], and chronic mental disorders 
[13].

Partial correlations can be computed from the (standardized) inverse of the covariance 
matrix (i.e. the precision matrix). In principle, the covariance matrix is unknown and has 
to be estimated from data. The estimated covariance matrix must be well-conditioned 
to ensure that its inverse exists, and that numerical (or estimation) errors are not mag-
nified during its computation. The sample covariance, as obtained from a dataset of n 
samples and p variables, is (i) invertible and well-conditioned when n is greater than p, 
(ii) invertible but ill-conditioned when n is comparable to p, and (iii) not invertible when 
n is smaller than p [14]. The last case is known as a ‘high-dimensional problem’, ‘small n, 
large p’, or ‘n ≪ p’. This scenario is common in omics’ studies, where often a large set of 
genes, proteins or metabolites is quantified in relatively few samples.

Shrinkage approaches are widely applied to deal with the ‘high-dimensional prob-
lem’. They produce a more stable estimator at the cost of some bias. The most popular 
shrinkage approaches for estimating GGMs are graphical least absolute shrinkage and 
selection operator (gLASSO) [15] and the Ledoit-Wolf (LW) shrinkage [14, 16]. gLASSO 
estimates a ‘shrunk’ precision matrix using L1 regularization, which forces some entries 
to be equal to zero. The LW-shrinkage estimates a ‘shrunk’ covariance (or ‘shrunk’ corre-
lation) matrix, which is invertible and henceforth allows the indirect computation of the 
partial correlations. Although both approaches have been successfully applied in bioin-
formatics, to the best of our knowledge, it has not been studied in the literature yet how 
the shrinkage affects/biases the estimated partial correlations.

In this paper, we present an improvement for the ‘shrunk’ partial correlations inferred 
with the LW-shrinkage [17]. While in our previous work we focused on the estimation of 
p-values accounting for the shrinkage [18], here we study a fundamental source of bias, 
namely the effect of the shrinkage value on the ‘shrunk’ partial correlation. Most impor-
tantly, we show that this effect is non-linear, so that the magnitudes and also the order 
of the estimated partial correlations change with varying the shrinkage value. This has 
unexpected consequences on the results, as GGMs learnt from different experiments 
(e.g. datasets differing in sample size or number of nodes) have unequal shrinkage val-
ues, and thus are affected differently. Therefore, to compare studies, or to decide whether 
partial correlations are relevant, the users require (i) a ‘shrunk’ test of significance, and 
(ii) an accurate assessment of the ‘shrunk’ partial correlation coefficients. The first points 
was addressed in our recent study [18], and the second is the focus of this article.
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Results
Analysis of simulated data

Here we demonstrate the advantages of the new ‘un-shrunk’ estimator over the 
‘shrunk’ estimator (which uses a fixed shrinkage value � ). The evaluation consists of 
comparing the magnitudes of the estimates to their actual (population) values, and 
assessing their order using the Area Under the Receiver Operator Curve (AUROC). 
For the ‘shrunk’ and ‘un-shrunk’ estimators we compute the shrinkage-based p-val-
ues via Eq.  (13) with λ equal to the optimal value and to zero, respectively [18]. We 
will used Cohen’s criterion to threshold the magnitude of the partial correlations [24]. 
This criterion establishes a cut-off of 0.1 to classify as weak the correlation coefficient. 
In total, 2702 data sets were simulated (see Additional file 1: Table S2).

First, we study the shrinkage distortion on the partial correlations coefficient. We 
create a (random) network structure and simulate 10 datasets with sample sizes 
n = 10, 20, …, 90. Figure 1 shows the average ‘shrunk’ and ‘un-shrunk’ partial correla-
tions as a function of n. The size of the symbols is proportional to the standard error 
to reflect their uncertainty.

The new ‘un-shrunk’ partial correlation approaches the actual (population) values 
as n increases, while the shrunk counterpart stays biased. In Additional file 1: Figure 
S2 we see how a GGM structure (i.e. its edges) changes with varying λ. We used p = 10 
and n = 1000 (a large sample size) to reduce the sampling variability, such that the 
observed effect on the edges order can be attributed to λ. Additional file 1: Table S1 
lists the edges sorted by their magnitudes. Additional file 1: Figure S3 compares the 
performance of both methods for different combinations of p and n for a single par-
tial correlation equal to 0.5. The results are presented in the form of a heatmap over 
a p-n grid. The color scale shows the L1 distances to the population value of 0.5. We 
see that the proposed ‘un-shrunk’ estimation is consistently closer to the population 
value. In Additional file 1: Figure S4 we illustrate how, in general, partial correlations 
are deflated when the samples size is very small, e.g. n = 10.

To assess the order of the estimates we use the Area Under the Receiver Operator 
Curve (AUROC). The AUROC shows the trade-off between the true positive rate (TPR) 
and the false positive rate (FPR) for every threshold. A higher AUROC means that the 

Fig. 1 Partial correlation versus sample size. We create a fixed network structure for p = 50, and simulated 
data for sample size n ranging from 10 to 90. a, b show the average ‘shrunk’ and ‘un-shrunk’ partial 
correlations (over 10 simulations). The proposed ‘un-shrunk’ partial correlations are closer to their actual 
values
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order of the estimates is superior. Tables 1 and 2 reports the AUROC for the ‘un-shrunk’, 
‘shrunk’, and for gLASSO [15, 19] for a random network with 1% and 3% of true posi-
tives and simulated data with varying sample sizes. It can be seen that the ‘un-shrunk’ 
estimates have a significantly higher AUROC than its ‘shrunk’ counterpart in most of the 
cases.

Next, we study whether the methods produce comparable networks in datasets with 
the same partial correlation patterns but different sample sizes n (and thus different 
optimal � ). We proceed as follows, (i) simulate a network structure, (ii) simulate a data-
set from this network, (ii) create a copy of the dataset and concatenate it with the first 
dataset. The concatenated dataset encodes the same information as the first dataset but 
with doubled sample size. Besides the number of samples, every other characteristic in 
the two datasets remain fixed. Figure 2 shows that the new ‘un-shrunk’ partial correla-
tions are comparable (differences in partial correlations are in the order of  10–07).

Table 1 Area Under the Receiver Operator Curve (AUROC)

The table provides the average AUROC score across 25 data sets for a network with p = 100 nodes with 1% of true positives 
edges and varying sample size n

*Two‑sides t‑test between the ‘un‑shrunk’ and ‘shrunk’ methods are statistically significant at 0.05

**STAR model selection is used from the R package ‘huge’ [15, 19]

p = 100 ‘un-shrunk’ ‘shrunk’ gLASSO**

n = 10 0.984772* 0.957152 0.995724

n = 20 0.992656* 0.960648 0.995772

n = 30 0.994636* 0.961956 0.995928

n = 40 0.995132* 0.963972 0.99576

n = 50 0.99556* 0.965676 0.995932

n = 60 0.995804* 0.968264 0.995788

n = 70 0.995896* 0.970764 0.995896

n = 80 0.995956* 0.973992 0.995964

n = 90 0.996052* 0.975976 0.99588

n = 100 0.996044* 0.977428 0.995896

Table 2 AUROC Area Under the Receiver Operator Curve (AUROC)

The table provides the average AUROC scores across 25 data sets for a network of p = 100 nodes with 3% of true positives 
edges and varying sample size n

*Two‑sides t‑test between the ‘un‑shrunk’ and ‘shrunk’ methods statistically significant at 0.05

**STAR model selection is used from the R package ‘huge’[15, 19]

p = 100 ‘un-shrunk’ ‘shrunk’ gLASSO**

n = 10 0.732364 0.727612 0.6232

n = 20 0.819128 0.814088 0.7409

n = 30 0.862744* 0.8546 0.811604

n = 40 0.884656* 0.87488 0.83344

n = 50 0.899008* 0.889684 0.881036

n = 60 0.90848* 0.89878 0.888068

n = 70 0.914616* 0.904952 0.890632

n = 80 0.920464* 0.90786 0.906792

n = 90 0.929408* 0.917688 0.91554

n = 100 0.929864* 0.91908 0.915912
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An additional comparison of ROC curves can be found in Additional file 1: Figure S5. 
There it can be observed how the novel method is particularly superior for the strongest 
partial correlations (the left most part of the curve).

Analysis of experimental data

Data

Escherichia coli microarray data This data set consists of Escherichia coli microar-
ray gene-expression measurements  from a study of the temporal stress response upon 
expression of recombinant human superoxide dismutase (SOD) [20]. SOD expression 
was induced by isopropyl β-D-1-thiogalactopyranoside (IPTG), which is a lactose ana-
logue inducer of the lac operon, and measured at 8, 15, 22, 45, 68, 90, 150, and 180 min. 
The authors identified 102 out of 4289 protein coding genes as differentially expressed in 

Fig. 2 Partial correlations obtained with different shrinkage values. This Bland–Altman plot compares 
partial correlations obtained from two datasets. a, b The axes represent the difference versus the average of 
the estimated partial correlation. c, d The axes represent the difference versus the average of the p-values. 
Datasets were simulated to encode the same associations differing only in their sample sizes (and thus their 
optimal shrinkage values). We proceed as follows: (i) simulate a network structure, (ii) simulate a dataset from 
this network, (ii) create a copy of the first dataset and concatenate them. The new concatenated dataset 
encodes the same association structure as the first, however it has double the sample size. The optimal 
shrinkages are 0.42 and 0.54. In grey: The ‘shrunk’ estimates. In red: The new ‘un-shrunk’ estimates. Unbiased/
comparable estimates must be around zero. The new ‘un-shrunk’ method provides coefficients that are 
directly comparable with differences in the order of  10–07
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one or more samples after induction. Data pre-processing included  log2-ratio transfor-
mation with respect to the first time point. The final data set consists of expression values 
of 102 genes with 9 time points and was obtained from the R package GeneNet version 
1.2.13. Accessed May 15, 2020.

Mus musculus RNA sequencing data

This dataset corresponds to single end RNA-Seq reads from 21 male mice from two 
strains (B6, n = 10 and D2, n = 11), and is available at ReCount: http:// bowtie- bio. 
sourc eforge. net/ recou nt/ under the identifier 21455293 [21]. Accessed May 15, 2020. 
Genes with low count’s averages across samples (less than 5) were excluded. After cor-
recting by strain type, 223 genes out of 9431 were identified as differentially expressed 
using the R package limma and Benjamini-Hochberg (BH) adjusted p-values < 0.05 
[22, 23]. We applied upper quartile normalization,  log2-transformation and a correc-
tion by strain type using linear models. The final data set consists of 223 genes with 21 
samples.

Effects of human superoxide dismutase (SOD) protein expression on transcript expression in E. 

coli

Following previous works, the dataset is treated as static and nominal p-values are 
considered significant at the 0.05 level [17, 18]. The optimal shrinkage used in the 
‘shrunk’ approach is 0.18.

A Volcano plot of partial correlations and their p-values is presented in Fig. 3. The 
panels are segmented into four regions using a threshold of |pcorr|= 0.1 and p-val-
ues = 0.05. Points in the outer quadrants are simultaneously the strongest and most 
significant edges.

The ‘shrunk’ network has 126 significant edges at 0.05 (involving 61 genes) with 
only 15 stronger than 0.1. Following previous analysis, we proceed further only with 
the significant edges regardless of their magnitudes. The ‘un-shrunk’ network has 78 
significant edges that are stronger than 0.1 (involving 22 genes). The enriched Gene 

Fig. 3 Comparison of partial correlations from Eschericha coli microarray data. Volcano plot of the partial 
correlations pcorr and the –log10(p-values). [18] The figure is segmented into four regions using a threshold 
of |pcorr|= 0.1 and p-values = 0.05 (dashed lines). In grey: The ‘shrunk’ estimates. In black: The new ‘un-shrunk’ 
estimates

http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/
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Ontologies (GOs) are reported in Additional file 1: Tables S4 a-b. [25, 26]. The com-
plete set of 102 genes was set as background, which mapped 96 proteins.

The 102 genes retrieved 289 reported interactions (p-value = 1.0  10–16) in STRINGdb. 
The expected number of interactions for a random set of proteins of similar size was 
105. The connected genes for the ‘shrunk’ method mapped onto 58 proteins with 108 
interactions (expected = 36, p-value = 1.0  10–16). For the ‘un-shrunk’ it mapped onto 41 
proteins with 23 interactions (expected = 23, p-value = 6.69 10 −12). Both methods are 
enriched for molecular processes related to (i) lactose metabolic process (GO:0005988) 
and (ii) galactitol transport (GO:0015796). The network structures can be found in Addi-
tional file 1: Figure S6.

Analysis of M. musculus RNA‑seq dataset

Figure 4 presents a Volcano plot of partial correlations and their p-values. The optimal 
shrinkage used in the ‘shrunk’ approach is 0.69. The panels are segmented into four 
regions using a threshold of |pcorr|= 0.1 and p-values = 0.01. It can be observed that the 
‘shrunk’ |pcorr| are less than 0.1 as the shrinkage affects their scale, and thus cannot be 
assessed directly. Thus, we proceed further only with the significant edges regardless of 
their magnitudes.

The ‘shrunk’ and ‘un-shrunk’ networks have 133 and 136 edges, involving 118 and 
161 genes, respectively. The 223 genes mapped onto 161 proteins (STRINGdb) with 76 
interactions (p-value = 3.02  10–09), while for a random set of proteins of similar size, the 
expected number of interactions was 36. The connected genes in the ‘shrunk’ network 
mapped onto 104 proteins with 36 interactions (expected = 15, p-value = 2.37  10–06). 
The new ‘un-shrunk’ method mapped 146 proteins with 63 interactions (expected = 30, 
p-value = 7.74  10–08). The Gene Ontologies (GOs) terms are reported in Additional 
file 1: Tables S5 a-b. The ‘shrunk’ connected genes are enriched for Complement recep-
tor activity (GO:0004875), and the ‘un-shrunk’ is not enriched for any GO term. The 
network structure can be found in Additional file 1: Figure S7.

Fig. 4 Comparison of partial correlations from Mus musculus RNA-seq data. Volcano plot of the partial 
correlation pcorr and the –log10(p-values) [18]. The figure is segmented into four regions using a threshold 
of |pcorr|= 0.1 and p-values = 0.01 (dashed lines). In grey: The ‘shrunk’ estimates. In black: The new ‘un-shrunk’ 
estimates. The ‘shrunk’ |pcorr| are less than 0.1 as the shrinkage affects their scale and thus cannot be assessed 
directly
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Discussion
GGMs are undirected graphical models that represent pairwise partial correlations in 
the form of a network. They are widely used in many fields, because they are computa-
tionally fast and simple to interpret. Despite of that, the estimation of partial correla-
tions from gene-expression data is challenging whenever there are fewer samples than 
genes. This motivated the development of estimators based on shrinkage; however, we 
have observed an unexpected effect of the shrinkage and we have investigated it.

In particular, we have identified a bias in the ‘shrunk’ partial correlations. The bias is 
a non-linear effect caused by the shrinkage value, which modifies the magnitudes and 
order of the partial correlations, see Fig. 5, S1, S2. Both the Ledoit Wolf shrinkage and 
gLASSO estimates can be subject to this non-linear effect. As partial correlations are 
full-conditional correlations, the shrinkage value affects the configuration of all random 
variables. As the order is affected non-linearly, re-scaling the ‘shrunk’ partial correlations 
(e.g. dividing it by 1− � ) is not sufficient (see Additional file 1: Figure S1). Consequently, 
GGMs learnt from different experimental conditions use different shrinkage values, and 
are not comparable.

To correct for this bias, we have introduced the concept of ‘un-shrinking’ the partial 
correlation. On the theoretical side, the ‘un-shrunk’ partial correlation is a generaliza-
tion of the classical partial correlation, and it is defined even for singular matrices. For 
the well-conditioned case, the shrinkage effect can be considered as a transformation 
of the original dataset into a new ‘shrunk’ dataset, see Fig.  5b. Hence, ‘un-shrinking’ 
could be interpreted as the limit of the partial correlations when the ‘shrunk’ data points 
approach their original values. For the corrected ‘un-shrunk’ estimator, p-values were 
computed with the shrinkage-based test using a shrinkage value equal to zero [18]. On 
the applied side, the ‘un-shrunk’ partial correlation is easy to interpret, because its mag-
nitude is between – 1 and 1 and it is closer to its actual (population) value (Figs. 1, 2, and 
S3). Additionally, it provides a superior trade-off between the true positive rate (TPR) 

Fig. 5 Non-linear effects of the shrinkage. a partial correlations obtained from Eqs. (3–4) while varying the 
shrinkage value. Lines represent ‘shrunk’ partial correlations, and their intersection reflects the changes in 
their order. b Scatter plot of ‘shrunk’ data points (for two variables) that change as the shrinkage increases. 
We simulated data (n = 10) from a random network (p = 8), and the effect of the shrinkage at the data 
level is obtained via the Singular Value Decomposition of the data matrix, see Additional file 1: S3. In black: 
the original data points. In grey: the data points changing their positions for �ǫ(0, 1) . The dots’ sizes are 
proportional to � . In white: the ‘shrunk’ data points for the optimal shrinkage of 0.65
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and the false positive rate (FPR), as reported in Tables  1 and 2, and Additional file  1: 
Figure S5.

Our empirical results show that they are local (edge-wise) shrinkage distortions in the 
GGM. For the E. coli dataset, the strongest edges (in both models) were lacA-lacZ, lacY-
lacZ, and lacA-lacY, all related to the lac operon (that was induced by IPTG in the exper-
iment). The result is in agreement with previous analyses [17, 18]. For the M. musculus’ 
dataset, all samples come from healthy mice. Consequently, it is expected that the new 
method have not retrieved any enriched GO term, and that the ‘shrunk’ approach found 
a normal inflammatory term. However, as non-linear effect on the partial correlations 
translates into a non-linear effect on their p-values, the final inferred network structure 
are different, see Additional file 1: Figures S6-7.

In Additional file 1: Figure S3 we see that for every p and n ≥ 30, the ‘un-shrunk’ coef-
ficients are closer to their actual values. From this figure the new method seems particu-
larly superior when p / n > 2. For very small samples, e.g. n = 10 or 20, we see that both 
methods are suboptimal because the model’s assumptions are not necessarily fulfilled, 
see Additional file 1: Figure S4a. Very often in bioinformatics the data is transformed e.g. 
log transformed, scaled. The transformed data is approximately a sample from a Gauss-
ian distribution, where the approximation improves for larger samples. This mismatch 
is not necessarily negligible for very small samples. For instance, the Law of large num-
bers ensures that the sample mean converges to the population mean when n approaches 
infinity. The Central limit theorem states that the scaled sample mean is asymptotically 
normal, with an error that depends on n, see Berry–Esseen theorem [27]. The same 
applies to the sample correlation [28], and consequently, for very small samples the dis-
tributional assumptions of GGMs are not always met.

To the best of our knowledge, this is the first study aiming to de-regularize the esti-
mates. While the ‘un-shrunk’ partial correlation can be found algebraically, we employed 
an approximation to achieve feasible computational costs for large scale applications. In 
principle, large samples can cause weak associations to be statistically significant, and 
small samples can cause strong associations to be non-significant. A proper discussion 
should therefore report the magnitude and significance of the estimates, as they provide 
different pieces of information. In this case, it must be accounted for the fact that the 
partial correlations are ‘shrunk’ (biased), before concluding about the result. While one 
may be tempted to say that the ‘shrunk’ estimates are just less variable, due to the vari-
ance-bias trade-off their magnitudes and order are biased. Ignoring the shrinkage value 
would divorce the analysis from the original data (and its biological meaning), what 
could obscure the interpretation and impede the validation of earlier reported results 
(e.g. in biomarker’s discovery).

Methods
In this section, we review Gaussian graphical models (GGMs) and the Ledoit-Wolf (LW) 
shrinkage [14, 16]. We illustrate how the shrinkage modifies the network structure (i.e. 
the magnitudes and orders of the partial correlations) in a non-linear way. To overcome 
this pitfall, we propose the ‘un-shrunk’ partial correlation and discuss its properties. 
Throughout the text, uppercase bold letters are used for matrices (e.g. Ρ is the matrix 
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of partial correlations) and the hat symbol denotes the statistical estimators (e.g. P̂ is an 
estimator of P).

The ‘shrunk’ partial correlation

The partial correlation is a measure of (linear) association between Gaussian variables, 
where confounding effects coming from the other variables are removed (i.e. a full-con-
ditional correlation). A GGM is represented by a matrix P of partial correlations, where 
the element Pij is the partial correlation between the i-th and j-th variable [29]. Partial 
correlations can be computed via the relationship

where � is the inverse of the covariance matrix C (or equivalently, the inverse of the 
correlation matrix R , see Additional file 1: S1). For a dataset D that consists of p variables 
and n samples, C is a p × p matrix that can be estimated from data, e.g. by the sample 
covariance matrix ĈSM . However, estimating C is challenging when n is comparable to, 
or smaller than, p as the estimator then becomes ill-conditioned (numerically unstable) 
or non-invertible.

The LW-shrinkage estimator Ĉ[�] consists of a convex linear combination of ĈSM and a 
target matrix T (e.g. a diagonal matrix of variances), and it is defined as

where � ǫ (0, 1) , also called the shrinkage value, represents the weight allocated to T . 
The inverse of Ĉ[�] , denoted by �̂

[�] , can then be plugged into Eq. (1), yielding

This is the ‘shrunk’ partial correlation [17], and an edge in the GGM is selected 
according to its magnitude and/or statistical significance [18]. The operations involved 
in Eq. (3) (i.e. matrix inversion, square roots, and standardization) suggest that P̂[�]

ij  is a 
non-linear function of λ. In addition, the value of λ is usually optimized by minimizing 
the mean square error between Ĉ[�] and C , but this λ does not necessarily minimize the 
MSE between �̂

[�] and �.

Pitfalls of the ‘shrunk’ partial correlation

Let us consider the following covariance matrix C and its inverse �,

(1)Pij =
−�ij√
�ii�jj

(2)Ĉ
[�] := (1− �)ĈSM + �T

(3)P̂
[�]
ij =

−�̂
[�]
ij√

�̂
[�]
ii �̂

[�]
jj

(4)C =





1 1
2

−1
4

−1
8

1
2 1 −3

4
−3
4

−1
4

−3
4 1 3

4
−1
8

−3
4

3
4 1



, � =





160
97

−152
97

−8
97

−88
97

−152
97

416
97

124
97

200
97

−8
97

124
4

272
97

−112
97

−88
97

200
97

−112
97

320
97




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The matrix C is invertible, its eigenvalues are 2.66, 0.94, 0.25, and 0.15, its determinant 
is 0.09, and its condition number 16.89. On the one hand, from Eq. (1) we find the partial 
correlations P12 = 152/

√
160

√
416 = 0.63 and P34 = 112/

√
272

√
320 = 0.37 , conclud-

ing that P12 is stronger than P34 . On the other hand, computing Ĉ[�] with Eq. (2) and sub-
stituting it into Eq. (3) gives the ‘shrunk’ partial correlations P̂[�]

12  and P̂[�]
34  . As λ increases, 

the value of the two ‘shrunk’ partial correlations change. Figure  5a shows that for λ 
greater than 0.3, P̂[�]

12  gets weaker than P̂[�]
34  and their relative order reverses. Although 

Eq. (2) is a linear shrinkage on Ĉ[�] , operations like matrix inversion and standardization 
in Eq. (3) propagate the effect of λ to P[�] in a non-linear way. An equivalent plot for the 
estimator gLASSO [15, 19] is presented in Additional file 1: Figure S1.

Additional properties

Partial correlations can be found from the covariance matrix C , or equivalently, the 
inverse of the correlation matrix R , see Additional file 1: S3.1. Without loss of generality, 
we now switch to the correlation matrix R (the standardized C ). Using Eq. (2), R (instead 
of C ) can be ‘shrunk’ towards its diagonal ( T is the identity matrix). For small samples 
sizes, the sample correlation R̂SM (the standardized ĈSM ) is not positive definite. Some 
eigenvalues of R̂SM can be (i) near to zero, (ii) equal to zero, or (iii) slightly negative. This 
translates into R̂SM being (i) ill-conditioned, (ii) singular, or (iii) indefinite, respectively. 
The case of an indefinite matrix arises from a numerical inaccuracy that can make zero 
eigenvalues slightly negative.

Let αk (k = 1, 2, . . . , p) denote the eigenvalues of R̂SM . Equation (2) yields R̂[�] , which 
has eigenvalues:

and the shrinkage � ǫ (0, 1) transforms each αk into a positive α[�]
k , so that R̂[�] 

becomes positive definite (see Additional file 1: S2). Accordingly, the eigenvalues of R̂[�] 
that are  obtained by inversion:

are positive as well. This ensures that R̂[�] is a positive definite matrix.

Shrinking the data

Traditionally, the shrinkage is interpreted as a modification of the statistical model (a 
‘shrunk’ covariance/correlation/partial correlation), where the data remains unchanged. 
However, most research questions need to be interpreted in terms of the dataset. We 
therefore propose to discuss the shrinkage from a different perspective, namely from 
the data level. To this end, we use the Singular Value Decomposition (SVD) of the data 
matrix D , and that the shrinkage only modifies the eigenvalues of ĈSM = 1

n−1D
t
D , while 

the eigenvectors stay identical, see Additional file 1: S2. As singular values are the posi-
tive square roots of the eigenvalues α[�] given in Eq. (5), we can derive the SVD of the 
‘shrunk’ data matrix D[�] as

(5)α[�]
k = (1− �)αk + �(k = 1, 2, . . . , p)

(6)
1

α[�]
k
=

1

(1− �)αk + �
(k = 1, 2, . . . , p)
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Here U and V are the matrices of (left and right) singular vectors of D , and the sin-
gular values are replaced by their ‘shrunk’ counterparts. This relationship allows us to 
study the shrinkage effect at the data level. That is, analyzing the original dataset D 
with a ‘shrunk’ model Ĉ[�] is equivalent to analyzing D[�] with the classical model ĈSM . 
To illustrate this, we generate data from a network (p = 8, n = 10) and investigate what 
happens to the original data points as the shrinkage increases; see Fig. 5b and Addi-
tional file 1: S3 for more details.

The ‘un-shrunk’ partial correlations

Here we propose the concept of the ‘un-shrunk’ partial correlation, which we define 
as the limit of P̂[�]

ij  as λ approaches zero,

A proof that P[�]
ij is a continuous and bounded function of � , as well as a general 

proof of the existence of this limit, can be found in Additional file 1: S4 and S5. The 
key idea is that there is no divergence in Eq. (8), and to illustrate this we start with the 
eigen-decomposition,

where V is a matrix whose columns are the eigenvectors of R̂[�] , and diag
(
1/α[�]) is 

the diagonal matrix of eigenvalues 1/α[�]
k (k = 1, 2, . . . , p).

Let us assume that R̂SM is singular and recall two facts from the previous subsec-
tion. First, R̂[�] has a zero eigenvalue αk = 0 which is transformed into α[�]

k = � in 
Eq. (5), and that the corresponding eigenvalue of R̂[�] is 1/α[�]

k = 1/� by Eq. (6). Sec-
ond, R̂SM and R̂[�] have the same eigenvectors, because the shrinkage only changes the 
eigenvalues (see Additional file 1: S2). Substituting Eq. (9) in Eq. (3), and factorizing 
out the term 1/� gives

Any singularity disappears by cancelling the term 1/� . As α[�]
k > � , the diago-

nal elements �/α[�] in Eq. (10) have limits equal to (i) zero for αk  = 0 , or (ii) one for 
αk = 0 , see Equations (S43, S48, S52, S55, S58). In this sense, the ratio that defines the 
‘shrunk’ partial correlation in Eq. (10) does not diverge when removing the shrinkage. 
For a general proof of the existence of this limit, see Additional file 1: S5. We propose 
this limit as a generalization of the classical partial correlation.

(7)D
[�] = Udiag

(√
(n − 1)α[�]

)
V
t

(8)P
[0]

ij := lim
�→0

P
[�]

ij

(9)R̂
[�] = Vdiag

(
1

α[�]

)
V
t

(10)P
[�]

ij =
− 1

�

[
Vdiag

(
�

α[�]

)
V
t
]

ij

1
�

√[
Vdiag

(
�

α[�]

)
Vt

]

ii

[
Vdiag

(
�

α[�]

)
Vt

]

jj
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The idea resembles the classical example from Calculus, where the limits to zero of 
x−1 and x−2 are both infinite; while the limit of their ratio x−1/x−2 is finite (i.e. zero). 
For illustration, let us consider a 3 × 3 correlation matrix of ones (all variables are 
maximally correlated). The matrix is singular as all αk = 0 , and Eq. (2) gives

using Eq. (3) we obtain

and we see that P[0]
ij = lim

�→0
P
[�]

ij = 1/2 . Here it is worth noting that a simple linear re-

scaling by (1− �) is not sufficient to remove the shrinkage effect (see Additional file 1: 
Figure S1). In this example, P[�]

ij would become 1/(2− �) which for � = 1/3 gives 
P
[1/3]

ij = 3/5 = 0.6 , and for � = 2/3  is P[2/3]
ij = 3/4 = 0.75 . More toy examples can be 

found in Additional file 1: S6.

Practical implementation

From a mathematical perspective, Eq.  (8) can be computed by means of the analytical 
results in Equations (S43, S48, S52, S55, S58). However, these results are un-practical as 
numerical inaccuracies make the elements of V unreliable, and often render zero eigen-
values (slightly) positive/negative. To circumvent numerical issues, we apply a simple 
approximation. We compute the ‘shrunk’ partial correlation P[�]

ij for different � ǫ (0, 1) 
values, and apply Fisher’s transformation to ensure they are normally distributed. Finally, 
we fit a weighted smoothing splines through these points. Considering that small shrink-
age values cause uncertain estimates, we use weights according to the reciprocal condi-
tion number of the correlation matrix. By extrapolating the fitted function to � = 0 , the 
limit in Eq. (8) is approximated. For more details, we refer the reader to the Additional 
file 1: S7.

P-values are computed from the probability density of the ‘shrunk’ partial correlation 
ρ
[�] (under the null-hypothesis)

where Beta denotes the beta function, and df  are the degrees of freedom, which can be 
found via Maximum Likelihood Estimation. Further details can be found in our previ-
ous work [18]. The parameter � is the optimal shrinkage value for the ‘shrunk’ partial 

(11)R
[�] =




1 (1− �) (1− �)

(1− �) 1 (1− �)

(1− �) (1− �) 1





(12)P
[�] =

(1−�)
�

1
�




1 (2− �)−1 (2− �)−1

(2− �)−1 1 (2− �)−1

(2− �)−1 (2− �)−1 1





(13)f0
[�]
(
ρ
[�]
)
=

(
(1− �)2 −

(
ρ
[�])2

)(df−3)/2

Beta
(
1
2 ,

df−1
2

)
(1− �)(df−2)
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correlation, and zero for the ‘un-shrunk’ partial correlation. All computations are per-
formed with the R package GeneNet version 1.2.13.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04313-2.

Additional file 1. The Additional file 1 contains additional theory, figures and tables. It contains theory on: 1. 
Standardization of the inverse covariance and inverse correlation matrix. 2. Eigenvectors of the correlation matrix, 3. 
Singular value decomposition of the data matrix, 4. Properties of the ‘un-shrunk’ partial correlation such as continuity 
and bounds, 5. The existence of the ‘un-shrunk’ partial correlation with examples, 7. Spline-based approximation of 
the ‘un-shrunk’ partial correlation. 7 supplementary figures and 5 tables with captions and description can be found 
at the end of the document.
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