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Supélec, CNRS, Plateau de Moulon,
Gif-sur-Yvette, France
2Faculty of Science and Engineering –
Engineering and Technology Institute
Groningen, University of Groningen, Groningen,
The Netherlands

Abstract

Stabilization of physical systems by shaping
their energy function is a well-established
technique whose roots date back to the
work of Lagrange and Legendre. Potential
energy shaping for fully actuated mechanical
systems was first introduced in Takegaki and
Arimoto (Trans ASME J Dyn Syst Meas
Control 12:119–125, 1981) more than 30
years ago. In Ortega and Spong (Automatica
25(6):877–888, 1989) it was proved that
passivity was the key property underlying the
stabilization mechanism of these designs, and
the, now widely popular, term of passivity-
based control was coined. In this chapter
we summarize the basic principles and some
of the main developments of this controller
design technique.

Keywords
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Introduction

Energy is one of the fundamental concepts in
science and engineering practice, where it is com-
mon to view dynamical systems as energy trans-
formation devices. This perspective is particu-
larly useful in studying complex nonlinear sys-
tems by decomposing them into simpler subsys-
tems which, upon interconnection, add up their
energies to determine the full system’s behavior.
The action of a controller may be also understood
in energy terms as another dynamical system –
typically implemented in a computer – intercon-
nected with the process to modify its behavior.
Then, the control problem can be recast as finding
a dynamical system and an interconnection pat-
tern such that the overall energy and dissipation
functions take the desired form. This “energy-
shaping plus dissipation” approach is the essence
of the controller design technique – known as
passivity-based control (PBC) – that is reviewed
in this chapter.

We consider dynamical systems represented as
multiports with port variables .u; y/2Rm�Rm.
In physical systems, the port variables are con-
jugated, in the sense that their product repre-
sents power. In this case, passivity captures the
well-known property that the energy that can be
extracted from the system is bounded, that is,
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2 Passivity-Based Control

there exists ˇ 2 R such that

�

Z t

0

u>.s/y.s/ds � ˇ:

Motivated by practical applications, we
assume that the system admits a state-space
representation given in the input-state-output
form

Px D f .x/C g.x/u

y D h.x/; (1)

where x 2 R
n is the state, and we view the

system as a mapping ˙ W u 7! y. It is said to
be passive if there exists a function H.x/ � 0 –
called the storage function – such that the power-
balance inequality

PH � u>y (2)

holds. In physical systems a reasonable candidate
for H.x/ is the energy of its energy-storing ele-
ments, e.g., capacitors, inductors, dampers, and
masses.

An algebraic description of passive systems of
the form (1) is given in Hill and Moylan (1980),
where it is shown that a necessary condition for a
system to be passive is that

h.x/ D g>.x/rH.x/: (3)

A geometric characterization of systems than can
be rendered passive via state feedback is reported
in Byrnes et al. (1991).

The objective of PBC, in the simplest static
state-feedback formulation, is to find a function
Ou W Rn ! R

m such that the system (1) in closed-
loop with the control law u D Ou.x/C v satisfies
the new power balance inequality

PHd � v
>yd ; (4)

where .v; yd / 2 R
m � R

m are the new port
variables and Hd .x/ � 0 is the desired storage
function. This first step of PBC is known as
energy shaping. The second step in PBC, known

as damping injection, is to set v D �KDIyd , with
KDI > 0, then PHd � �y>d KDIyd .

Chapter notation All mappings are supposed
smooth. Consider the mapping F W Rn ! R

m.
We define the ij -th element of the n � m matrix

rxF.x/ as .rxF /ij WD
@Fj
@xi

. When clear from

the context, the subindex in r is omitted. For
any F and the distinguished element x? 2 R

n,
we define the constant matrix F ? WD F.x?/.
Consider the case n � m and rank fF g D m.
Then, the pseudoinverse of F is denoted by F �,
that is, F � WD .F>F /�1F> and F �F D Im.
The left annihilator of F is represented as F?,
where rank fF?g D n � m, and F?F D

0.n�m/�m.

Equilibrium Stabilization via PBC

PBC is often used for Lyapunov stabilization of
equilibria. For this task, the key observation is
that if Hd .x/ verifies

x? D arg minHd .x/; (5)

where f .x?/ C g.x?/Ou.x?/ D 0n, then x? is a
stable equilibrium of the system in closed-loop
with u D Ou.x/, with Lyapunov function Hd .x/.
Moreover, adding the damping injection step, the
equilibrium x? will be asymptotically stable if yd
is a detectable output for the closed-loop system –
see van der Schaft (2016, Corollary 4.2.2).

Energy-Balancing PBC and the Dissipation
Obstacle
The most natural way to carry out the energy
shaping is to fix yd D y, to look for a function
Ha W R

n ! R�0, solution of the equation

PHa D �h
>.x/Ou.x/; (6)

and to define Hd .x/ D H.x/ C Ha.x/. This
variation of PBC is called energy balancing (EB)
(Ortega et al. 2001), because Hd .x/ consists of
the sum of the systems energy and the energy
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provided by the controller, e.g., y>u. In spite of
this appealing interpretation, EB-PBC has two
serious shortcomings. On one hand, the Eq. (6),
which is a partial differential equation (PDE) of
the form

ŒrHa.x/�
>Œf .x/C g.x/Ou.x/� D �h>.x/Ou.x/;

is not amenable for an easy interpretation –
because of its explicit dependence on the
feedback signal that we are looking for. On the
other hand, it is applicable only to systems that
are not constrained by the dissipation obstacle,
that is, systems where dissipation is absent in
steady state and can, therefore, be stabilized
extracting a finite amount of energy from the
controller. Indeed, it is clear that a necessary
condition for the existence of a solution of (6) is
that h>.x?/Ou.x?/ D 0.

The main domain of application of EB-PBC is
in regulation of the position q 2 R

` of mechan-
ical systems, where ` D n

2
. In this case, the

dissipation obstacle is conspicuous by its absence
because the passive output is velocity Pq. More-
over, since in this case we are only interested
in adding a new function Va.q/ to the potential
energy function, the PDE to be solved reduces to
G?.q/rVa.q/ D 0`�m, where the input matrix

is of the form g.q; Pq/ D
�
0>
`�m

G>.q/
�>

. In
the particular case of fully actuated mechani-
cal systems, it is possible to remove the open-
loop potential energy and assign a desired one.
This idea was introduced in the pioneering work
Takegaki and Arimoto (1981).

Generating Alternative Passive Outputs
One way to overcome the dissipation obstacle
is to enforce the power balance inequality (4)
with outputs yd ¤ y. To achieve this end, it
is convenient to restrict our attention to port-
Hamiltonian (pH) systems, that is systems where

f .x/ D ŒJ.x/ �R.x/�rH.x/; (7)

where J.x/ D J>.x/ is the interconnection
matrix and R.x/ � 0 is the dissipation matrix.
See van der Schaft (2016) for an extensive dis-

cussion, and well-founded practical motivation,
of this class of systems. The following result,
which characterizes all passive outputs of the pH
system with storage function H.x/, was recently
established in Zhang et al. (2018).

Lemma 1 Consider the pH system (1) and (7).
Introduce the factorization R.x/ D �>.x/�.x/;

where �.x/ 2 R
q�n, with q � rank fR.x/g

and define yd WD h.x/ C j.x/u: The following
statements are equivalent.

(S1) The mapping u 7! yd is passive with
storage function H.x/.

(S2) The mappings h.x/ and j.x/ can be
expressed as

h.x/ D Œg.x/C 2�>.x/w.x/�>rH.x/

j.x/ D w>.x/w.x/CD.x/;

for some mappings w.x/ 2 R
q�m and

D.x/ 2 R
m�m, with D.x/ D �D>.x/.

One particularly attractive output that allows
us to overcome the dissipation obstacle is the
so-called power-shaping output. With a suitable
selection of the mappings w.x/ and D.x/ in
Proposition 1, it is possible to generate the output

yd D �g
>.x/ŒJ.x/ �R.x/��> fŒJ.x/

�R.x/�rH.x/C g.x/ug ;

where, for ease of presentation, it is assumed
that the matrix J.x/ � R.x/ is full rank. Since
yd D 0m at the equilibrium, it is clear that
the dissipation obstacle is absent for the system
u 7! yd .

Interconnection and Damping Assignment
(IDA)-PBC
A variation of PBC that has been very successful
in many practical applications is IDA-PBC. The
main result of IDA-PBC is the following propo-
sition, whose proof may be found in Ortega et al.
(2002a).

Proposition 1 Consider the system (1). Assume
there are matrices Jd .x/ D �J>d .x/, Rd .x/ D



4 Passivity-Based Control

R>d .x/ � 0; and a function Hd .x/, that verify
the matching equation

g?.x/f .x/ D g?.x/ŒJd .x/ �Rd .x/�rHd :

(8)
Then, the closed–loop system with u D Ou.x/,
where

Ou.x/ WD g�.x/fŒJd .x/ �Rd .x/�rHd � f .x/g;

takes the pH form Px D ŒJd .x/ � Rd .x/�rHd :

Moreover, if x? 2 fx j g?.x/f .x/ D 0n�mg
and (5) holds, it is a stable equilibrium.

Conversely, if there exists Ou.x/ that globally
asymptotically stabilizes (1), then there exist
Jd .x/;Rd .x/, and Hd .x/ which satisfy (8).

The key step in the IDA-PBC design is, of
course, the solution of (8), and there are sev-
eral approaches to carry out this task. In the
non-parameterized IDA-PBC , we fix Jd .x/ and
Rd .x/, and (8) becomes a PDE for Hd .x/. In
algebraic IDA-PBC (Fujimoto and Sugie 2001),
we fix Hd .x/, and (8) becomes an algebraic
equation in Jd .x/ and Rd .x/. In some appli-
cations, it is of interest to fix the structure of
the desired energy function, for instance, for
mechanical systems, it is reasonable to propose

Hd .q; p/ D
1

2
p>M�1d .q/p C Vd .q/I

whence (8) becomes a PDE in the desired inertia
matrix Md .q/ and the desired potential energy
function Vd .q/ – this approach is called param-
eterized IDA-PBC (Ortega et al. 2002b), with a
Lagrangian version given in Bloch et al. (2000).
Clearly, fixing this structure imposes some par-
ticular constraints on Jd .x/ and Rd .x/. Finally,
for nonlinear systems of the form Px D f .x; u/,
Poincare’s Lemma states that a necessary and suf-
ficient condition for the solution of the matching
equation

rHd .x/ D ŒJd .x/ �Rd .x/�
�1f .x; Ou.x//

is that the right-hand side is a gradient vector
field. Fixing Jd .x/ and Rd .x/, this condition
translates into a PDE directly for Ou.x/.

Proportional-Integral-Derivative (PID)-PBC
PID controllers overwhelmingly dominate engi-
neering applications where the control objective
is to regulate some measurable signal y around
a constant desired value y?. Commissioning of
PIDs reduces to the suitable selection of the
controller gains, which is a difficult task for wide-
ranging operating systems, where the validity of a
linearized approximation is limited, compromis-
ing the stability of the closed-loop. Although gain
scheduling, auto-tuning, and adaptation provide
some help to overcome this problem, they suffer
from well-documented drawbacks. In contrast to
this scenario, in PID-PBC, where the PID is
wrapped around a passive output, the gain tuning
step is trivialized. Indeed, PIDs

Pxc D y

u D �KPy �KIxc �KD Py; (9)

define, (output-strictly) passive maps u 7! �y,
with storage function 1

2
y>KDyC

1
2
x>c KIxc , for

all positive gains. Therefore, convergence of the
output to zero and L2-stability of the closed-loop
system is always guaranteed – and the designers
task is only to select the gains that ensure best
transient performance.

Shifted Passivity
It is often the case that the reference output
y? ¤ 0, that suggests to wrap the PID around
the error signal y � y?. Unfortunately, for
general nonlinear systems, passivity of the
mapping u 7! y does not imply passivity of
.u�u?/ 7! .y�y?/ – a property called “shifted
passivity” in van der Schaft (2016). The
strongest conditions under which the implication
holds for pH systems have been reported in
Monshizadeh et al. (2019) where, in particular,
the following easily verifiable necessary and
sufficient condition is given for systems with
quadratic nonlinearities.

Lemma 2 Consider the pH system (1) and (7)
with g and R constants,
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H.x/ D
1

2
x>Qx; Q > 0; J.x/ D J0C

nX
iD1

Jixi :

Fix

.x?; u?/ 2 f.x; u/ 2 R
n � R

m j

ŒJ.x/ �R�rH.x/C gu D 0ng:

The system satisfies PH � .y�y?/>.u�u?/; with
H.x/ WD 1

2
.x � x?/>Q.x � x?/, if and only if

� nX
iD1

Ji �R
�
Qx? e>i Q

�1

C

"� nX
iD1

Ji �R
�
Qx? e>i Q

�1

#>

� 2R � 0;

where ei 2 R is the i -th element of the orthogonal
basis.

Leveraging Lemma 2, we can confidently
wrap a PID around the shifted output y � y?.
One important observation is that, in the
implementation of the PID, there is no need
to know u?. Indeed, by shifting the storage
function, we can establish passivity of the map
u 7! y � y?.

Lyapunov Stabilization via PID-PBC
Another scenario of practical interest is when
the control objective cannot be captured by the
behavior of an output signal, for instance, when
it is desired to drive the full system state to
a desired equilibrium x?. To treat this case, it
is necessary to create a Lyapunov function for
the closed-loop system, an approach taken for
pH systems in Zhang et al. (2018). The main
difficulty in this case is how to ensure the posi-
tivity (with respect to x?) of the function. Indeed,
although for a passive system (1) in closed-loop
with a PID (9), we can prove that the function

U.x; xc/ WD H.x/C
1

2
h>.x/KDh.x/C

1

2
x>c KIxc

satisfies PU � �y>KPy and the function
U.x; xc/ is not positive definite – therefore, it
does not qualify as a Lyapunov function. One way
to overcome this obstacle is to find a mapping
�.x/ 2 R

m such that the multilevel set

� WD f.x; xc/2R
n�Rm j xcD�.x/C �; �2R

mg

(10)
is invariant and the function

Hd .x/ WD H.x/C U.x; �.x/C �/ (11)

verifies (5), for some � 2 R
m. As expected, this

involves the solution of a PDE, as shown below.

Lemma 3 Consider the pH system (1), (7), and
Pxc D yd , with yd defined in Lemma 1. Assume
there exists mappings w.x/ and D.x/ such that
the PDE

�
ŒrH.x/�> F>.x/

g>.x/

�

r�.x/ D

�
ŒrH.x/�> Œg.x/C 2�>.x/w.x/�

w>.x/w.x/ �D.x/

�

admits a solution �.x/ 2 R
m. Then, the set � ,

given in (10), is invariant.
Combining Lemmata 1 and 3, we can com-

plete the design of the PID-PBC as follows.

Proposition 2 Consider the pH system (1) and
(7) in closed-loop with the PID-PBC

u D �KPyd �KI Œ�.x/C �� �KD Pyd :

where � D �.�? C K�1I u?/ and yd is defined
as in Lemmata 1 and 3. Assume that Hd .x/,
given in (11), verifies (5). Then, the closed–loop
system has a stable equilibrium at x? with Lya-
punov function (11). Moreover, the equilibrium is
asymptotically stable if yd is a detectable output
for the closed–loop system.

Standard PBC of Euler-Lagrange (EL)
Systems
Another variation of PBC, particularly suitable
for systems described by Euler-Lagrange equa-
tions of motion is the so-called standard PBC,
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that was thoroughly explored in Ortega et al.
(2013).

Mathematical Model and Passivity Property
In this case we deal with dynamical systems
with ` degrees-of-freedom, generalized coordi-
nates q 2 R

`, and external forces Q 2 R
`, which

are described by the EL equations

d

dt

�
r PqL.q; Pq/

�
� rqL.q; Pq/ D F; (12)

where L.q; Pq/ WD T .q; Pq/ � V.q/ is the
Lagrangian function, T .q; Pq/ D 1

2
Pq>M.q/ Pq; is

the kinetic (co-energy) function, with M.q/ > 0

the generalized inertia matrix, and V.q/ is
the potential energy function. The vector F is
the external forces that take the form F D

�rF. Pq/ C G.q/u, where u 2 R
m; m � `

are the control and dissipation forces and F. Pq/
is the Rayleigh dissipation function verifying
Pq>rF. Pq/ � 0.

It is well-known that the EL system (12)
defines a passive operator u 7! G>.q/ Pq with
storage function, the system’s total energy
H.q; Pq/ D T .q; Pq/ C V.q/; see Proposition 2.5
in Ortega et al. (2013). Moreover, it is possible to
prove a “stronger” property. Namely, if we define
an ` � ` matrix C.q; Pq/ – called in the robotics
literature the “Coriolis and centrifugal forces”
matrix – with ik–th entry

Cik.q; Pq/ D
X̀
j

cijk.q/ Pqj :

where

cijk.q/ WD
1

2

�
rqjmik.q/Crqimjk.q/

�rqkmij .q/
�

are the Christoffel symbols of the first kind
(Ortega and Spong 1989). Then, the EL system
becomes

M.q/ RqCC.q; Pq/ PqCrF. Pq/CrV.q/ D G.q; Pq/u;
(13)

where

PM.q/ D C.q; Pq/C C>.q; Pq/

, ´>Œ PM.q/ � 2C.q; Pq/�´ D 0;

8 ´ 2 R
`: (14)

Standard PBC
The skew-symmetry property (14), which identi-
fies the work-less forces, is the key component of
standard PBC. The main result, for regulation of
q, of this technique is given as follows.

Proposition 3 Consider the EL system (13) ver-
ifying (14). Fix the desired position q? 2 fq 2
R
` jG?.q/rV.q/ D 0`�mg. Assume it is possible

to find signals qd 2 R
` satisfying the equation

G?.q/ ŒM.q/ Rqd C C.q; Pq/ Pqd CrF. Pq/

CrV .q/ �KD PQq �KP Qq
i
D 0`�m;

where KD; KP > 0, Qq WD q � qd , and that for
the system

M.q/ RQq C C.q; Pq/ PQq CKd PQq CKp Qq D 0`; (15)

it is possible to prove that

Qq; PQq 2 L1; PQq.t/! 0`) q; Pq 2 L1; q.t/!q?:
(16)

Under these conditions, the system (13) in closed-
loop with the control

u D G�.q/ ŒM.q/ Rqd C C.q; Pq/ Pqd CrF. Pq/

CrV .q/ �KD PQq �KP Qq
i

ensures q.t/ ! q? with all internal signals
bounded.

The gist of the proof is the observation that
the error system is given by (15) and that for this
system we have the following

Hd . Qq/ WD
1

2
PQq>D PQq C Qq>Kp Qq ) PHd

D �PQq>Kv PQq:
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Then, some easy signal chasing and the implica-
tion (16) allow us to complete the proof.

The procedure described above is an extension
of the well-known controller for fully actuated
robot manipulators of Slotine and Li (1988).
In that case, G.q/ D I` and stabilization (or
tracking) of q? are ensured by selecting

qd WD q
? ��.q � q?/; � > 0:

For underactuated systems, it is not possible to
fix all signals qd to desired values; whence some
of them are defined as states of the controller
dynamics. In Ortega et al. (2013) the method
is applied to a large variety of physical sys-
tems, including underactuated mechanical sys-
tems, electrical motors, power converters, and
levitated systems. Particularly noteworthy is the
proof that applying standard PBC to induction
motors yields a controller that contains, as a par-
ticular case, the industry standard field-oriented
control. One major drawback of the method is
that the calculation of the controller involves an
implicit inversion of the system dynamics; hence
its application is restricted to minimum phase
systems. This limitation is conspicuous by its
absence in IDA-PBC.

Summary and Future Directions

In physical systems, the concepts of energy and
dissipation are well defined. Therefore, passivity
theory and PBC techniques emerge as natural
options to analyze and control, respectively, this
kind of systems. However, the range of applica-
bility of PBC is not constrained to physical sys-
tems; as a matter of fact, the possibility of decom-
posing complex nonlinear systems into simpler
subsystems makes this approach appealing to
tackle down modern problems in control, such as
stabilization of biological systems or smart grids.
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