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Exponential Stability and Tuning for a Class of Mechanical Systems

Carmen Chan-Zheng, Pablo Borja, Nima Monshizadeh, and Jacquelien M.A. Scherpen

Abstract— In this paper, we prove the exponential stability
property of a class of mechanical systems represented in
the port-Hamiltonian framework. To this end, we propose a
Lyapunov candidate function different from the Hamiltonian
of the system. Moreover, we study how the proposed analysis
can be used to determine the exponential stability and the
rate of convergence of some (nonlinear)-mechanical systems
stabilized by a passivity-based control technique, namely, PID
passivity-based control. We implement such a control approach
to stabilize a three-degree-of-freedom robotic arm at the desired
equilibrium point to illustrate the mentioned analysis.

I. INTRODUCTION

The port-Hamiltonian (pH) framework is suitable to represent
a wide variety of nonlinear physical systems from different
domains [1], [2]. This framework highlights the physical
properties of the system under study, particularly the roles
that the dissipation and the energy play in its behavior.
Moreover, the passivity property of these systems is verified
by selecting the Hamiltonian as the storage function. While
the passivity property can be related to certain types of sta-
bility, for instance, L2-gain stability and Lyapunov stability
[3], its relationship with stronger stability properties such as
exponential stability (ES) is not straightforward. In this work,
we focus on the study of the ES property of mechanical
systems.

Proving ES properties for nonlinear systems is, in general,
a challenging task. In particular, for mechanical systems,
the non-constant inertia matrix represents an obstacle to
prove such a stability property. To overcome this, the partial
linearization via change of coordinates (PLvCC) [4] repre-
sents a suitable tool as the inertia matrix becomes constant
for the transformed system. By adopting this approach, the
authors in [5], [6] prove global exponential stability (GES)
properties for fully-actuated mechanical systems in closed-
loop with passivity-based control (PBC) approaches. Also,
the complexity of proving GES properties increases when
the controlled mechanical system is underactuated since the
controller is unable to modify the damping of the unactuated
coordinates. For example, the results reported in [5] are only
valid when the damping matrix of the closed-loop system is
positive definite, which is not the case if the natural damping
is neglected. Some additional results for ES properties of
underactuated mechanical systems can be found in [7], [8].

Customarily, the Hamiltonian is chosen as the Lyapunov
candidate function to prove the stability properties of a pH
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system. While this approach is convenient to prove the effec-
tiveness of PBC techniques to stabilize mechanical systems,
it is, in principle, not adequate to prove ES properties for the
resulting closed-loop system. This drawback arises because
the Hamiltonian is not negative definite as there is no damp-
ing related to the dynamics of the generalized coordinates.
An alternative to address this issue is implementing the
PLvCC methodology that preserves the pH structure of the
system as reported in [5].

Another approach to prove ES properties of mechanical
systems consists of finding a new Lyapunov function differ-
ent from the Hamiltonian as it is proposed [9], [10]. However,
the proposed Lyapunov candidate in [9] only proves stability
for fully-actuated systems, while the proposed function in
[10] only proves asymptotic stability. Moreover, the men-
tioned references do not explore the effect of the control
gains–which may be related to physical quantities–on the rate
of convergence of the trajectories of the closed-loop system.
Albeit in [6] investigates the effect of the damping in the
rate of convergence of the controlled mechanical system, the
relationship between the physical quantities of the closed-
loop system–or open-loop if the system is uncontrolled–with
the decay rate of its trajectories remains rather unexplored.

In this paper, we employ both strategies, i.e., PLvCC plus
finding a suitable Lyapunov candidate function. This ap-
proach is suitable to prove the ES properties of a large class
of mechanical systems–including underactuated mechanical
systems—while preserving the mechanical structure for the
closed-loop system. By preserving this structure, we can
understand the effect of the damping and the energy of the
system on the rate of convergence of its trajectories.

The main contributions of this work are
(i) A novel analysis approach to prove ES properties for a
class of pH systems.
(ii) The proof of, under mild conditions, the desired equilib-
rium point for mechanical systems stabilized via PID-PBC
is exponentially stable.
(iii) An analysis of the effect of modifying the damping
and the energy of the closed-loop system on the rate of
convergence of its trajectories.

The remainder of this paper is structured as follows: in
Section II, we present the analysis to determine the ES prop-
erties of a class of pH systems. In Section III, we show how
the mentioned analysis is suitable for proving ES properties
for nonlinear mechanical systems stabilized via PID-PBC.
In Section IV, we present tuning guidelines that relate the
PID-PBC parameters to the decay rate of the closed-loop
system. In Section V, we illustrate the applicability of the
tuning guidelines by showing the experimental results of the
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stabilization of a robotic arm via PID-PBC. We finalize this
manuscript with some concluding remarks in Section VI.

Notation: We denote the n× n identity matrix as In and
the n × m matrix of zeros as 0n×m. For a given smooth
function f : Rn → R, we define the differential operator
∇xf := (∂f∂x )> and ∇2

xf := ∂2f
∂x2 . For a smooth mapping F :

Rn → Rm, we define the ij−element of its n×m Jacobian
matrix as (∇xF )ij := ∂Fi

∂xj
. For a given matrix A ∈ Rn×n,

we denote its symmetric part by Asym := 1
2 (A+A>). For

a given vector x ∈ Rn, we say that A is positive definite
(semi-definite), denoted as A > 0 (A ≥ 0), if A = A> and
x>Ax > 0 (x>Ax ≥ 0) for all x ∈ Rn − {0n} (Rn). For
a positive (semi-)definite matrix A, we define the weighted
Euclidean norm as ‖x‖A :=

√
x>Ax. For A = A>, we

denote by λmax(A) as the maximum eigenvalue of A. All
the functions considered in this manuscript are assumed to
be (at least) twice continuously differentiable.
Caveat: when it is clear from the context, we omit the
arguments and the subindex in ∇ to simplify the notation.

II. EXPONENTIAL STABILITY OF A CLASS OF PH
SYSTEMS

Consider a pH system whose dynamics are described byq̇
ṗ

 =

 0n×n A(q)

−A>(q) J(q, p)−D(q, p)

∇qH(q, p)

∇pH(q, p)


H(q, p) = 1

2p
>p+ U(q)

(1)

where q, p ∈ Rn, A : Rn → Rn×n is full rank, J : Rn ×
Rn → Rn×n is skew-symmetric, D : Rn ×Rn → Rn×n is
positive definite, H : Rn × Rn → R+ is the Hamiltonian
of the system, and U : Rn → R+ is potential energy of the
system.

The following assumptions characterize the class of sys-
tems under study throughout this paper:
• Assumption 1: U(q) is locally strongly convex and has an
isolated local minimum at 0n.
• Assumption 2: For all q ∈ Rn, every element of A(q) is
bounded, i.e., ‖A(q)‖ <∞. Furthermore, for all q, p ∈ Rn,
every element of D(q, p) is bounded, i.e., ‖D(q, p)‖ <∞.

The following theorem establishes the main results of this
paper.

Theorem 1: Consider the pH in (1) and x? := 02n, then:
(i) x? is an exponentially stable equilibrium point for (1)
with Lyapunov function

S(q, p) := H(q, p) + εp>Φ(q)∇qU(q), (2)

where ε > 0, and Φ : Rn → Rn×n satisfies
A(q)Φ(q) + Φ>(q)A>(q) > 0, (3)

and ‖Φ(q)‖ ≤ ∞.
(ii) Furthermore, x? is a globally exponentially stable equi-
librium point for (1) if U(q) is radially unbounded.

Proof: To prove (i), let x := col(q, p). As a conse-
quence of Assumption 1, there exists a neighborhood of x?
such that (see [11], [12])

βmin
2
‖x‖2 ≤ H ≤ βmax

2
‖x‖2 , (4)

where βmin, βmax > 0. Define C(q, p) := εp>Φ(q)∇qU(q).
Then, it follows that 1

C ≤
∥∥εp>Φ∇qU

∥∥ ≤ ε ‖Φ‖β2
max

2
‖x‖2 . (5)

Hence, from (4) and (5), we get that

k1 ‖x‖2 ≤ S ≤ k2 ‖x‖2 (6)

where k1 :=
βmin−ε‖Φ‖β2

max

2 , k2 :=
βmax+ε‖Φ‖β2

max

2 are posi-
tive constants. Furthermore, Ṡ = Ḣ+Ċ, where Ḣ = −p>Dp
and

Ċ = ε[−∇>q UAΦ∇qU + p>(J −D)>Φ∇qU
+ p>Φ∇2

qUAp+ p>Φ̇∇qU ].

Thus,
Ṡ = −∇>HΥ∇H, (7)

where the matrix Υ(q, p) is defined as

Υ :=

[
εAΦ 0n×n

ε(J +D)Φ− εΦ̇ D − εΦ∇2
qUA

]
. (8)

Recall that H(q, p) has a locally isolated minimum at x?.
Then, (7) implies that Ṡ(q, p) is locally negative definite if
there exist Φ(q), ε such that Υsym(q, p) is positive definite.
To prove the existence of such a pair, select Φ(q) = A>(q).
Hence,

Υsym =

Υ11 Υ12

Υ>12 Υ22

 ,
Υ11(q) := ε(A(q)A(q)> +A(q)>A(q)),

Υ12(q, p) := ε
2 [A(q)[D(q, p)− J(q, p)]− Ȧ(q)],

Υ22(q, p) := D(q, p)− ε(A(q)>∇2
qU(q)A(q)).

(9)

To verify the sign of (9), we employ a Schur complement
analysis, i.e., Υsym(q, p) is positive definite if and only if
its block (1,1) is positive definite and its Schur complement
is positive definite, see [13]. Note that Υ11(q, p) > 0
and there exists a sufficiently small ε > 0 such that the
Schur complement of Υsym(q, p) is also positive definite.
Therefore, for such an ε, Υsym(q, p) is positive definite and
Ṡ(q, p) is locally negative definite. Moreover, let µ(q, p) > 0
be the minimum eigenvalue of Υsym(q, p), then, it follows
that

Ṡ ≤ −µ ‖∇H‖2 ≤ −µβ2
max ‖x‖

2
. (10)

Therefore, from (6) and (10), x? is a locally exponentially
stable equilibrium point for (1) (see Theorem 4.10 of [14]).

To prove (ii), note that if U(q) is radially unbounded, then
the Lyapunov candidate S(q, p) is also radially unbounded,
i.e, S →∞ as ‖q‖ → ∞ and ‖p‖ → ∞.

Note that from (6) and (10), we get that

Ṡ ≤ − 2βmaxµ

1 + ε ‖A‖βmax
S.

Furthermore, from the comparison lemma (see [14]), we get

S ≤ S0 exp−
2βmaxµ

1+ε‖A‖βmax
t,

where t ≥ 0 is the time variable and S0 is the Lyapunov

1We have used Young’s inequality to obtain the third expresion.



function (2) evaluated at t = 0. Then, we get that

‖x‖ ≤
√
k2

k1
‖x0‖ exp−

βmaxµ
1+ε‖A‖βmax

t, (11)

where x0 ∈ R2n corresponds to the initial conditions vector.
Therefore, we establish the following result.

Corollary 1: The trajectories of (1) converge to the de-
sired equilibrium x? with a rate of convergence given by

βmaxµ

1 + ε ‖A‖βmax
. (12)

Remark 1: To ease the presentation of the results of
Section III, we have selected Φ(q) := A>(q) in the proof
of Theorem 1. We remark that this selection is not unique.
Indeed, another interesting option that verifies (3) is Φ(q) :=
A−1(q).

III. EXPONENTIAL STABILIZATION VIA PID-PBC

The stabilization of mechanical systems via PBC techniques
has been extensively studied. In particular, PID-PBC [15],
[16], [17] represents a constructive methodology to stabilize
mechanical systems without solving partial differential equa-
tions. Moreover, in this approach, the control parameters may
admit a physical interpretation.

In this section, we apply the analysis proposed in Section
II to establish conditions that guarantee the exponential
stability of mechanical systems stabilized via PID-PBC of
[15], [16]. Towards this end, we consider mechanical systems
that admit a pH representation of the formq̇

ṗ

 =

0n×n In

−In −D(q,p)

∇qH(q,p)

∇pH(q,p)

+

0n×n

G

u
H(q,p) =

1

2
p>M−1(q)p + U(q), y = G>M−1(q)p

(13)
where q,p ∈ Rn are the generalized positions and momenta
vectors, respectively, H : Rn×Rn → R+ is the Hamiltonian
of the system, U : Rn → R+ is the potential energy of
the system, M : Rn → Rn×n is the so-called mass inertia
matrix, which is positive definite, D : Rn ×Rn → Rn×n is
positive semi-definite and represents the natural damping of
the system, u, y ∈ Rm are the control and passive output
vectors, respectively, m ≤ n, and G ∈ Rn×m is the input
vector with rank(G) = m, which is defined as

G :=

[
0`×m
Im

]
, ` := n−m. (14)

The set of assignable equilibria for (13) is defined by
E := {q,p ∈ Rn | p = 0n, G

⊥∇U(q) = 0`},
where G⊥ := [I` 0`×m].

Proposition 1 establishes that the PID-PBC proposed in
[16] preserves the mechanical structure for the closed-loop
system. This result is essential in the stability analysis
presented in this section.

Proposition 1: Consider a mechanical system represented
by (13), and the desired configuration q? ∈ Rn, such that
(q?, 0n) ∈ E . Define the PID-PBC controller

u = −KP y −KI(G
>q + κ)−KDẏ (15)

where KI ∈ Rm×m is positive definite, KP ,KD ∈ Rm×m

are positive semi-definite matrices, and κ ∈ Rm is defined
as

κ := −G>q? −K−1
I G>∇U(q?). (16)

Then, the closed-loop system has a stable equilibrium point
at (q?, 0n) if there exists KI > 0 such that

∇2U(q?) +GKIG
> > 0. (17)

Moreover, the closed-loop system takes the form[
q̇
ṗ

]
= Fd(q,p)∇Hd(q,p) (18)

with

Fd(q,p) :=

 0n×n M−1(q)Md(q)

−Md(q)M−1(q) J(q,p)− Dd(q,p)


Hd(q,p) :=

1

2
p>M−1

d (q)p + Ud(q)

Ud(q) =
1

2
(G>q + κ)>KI(G

>q + κ) + U(q)

Md(q) = M(q)
[
M(q) +GKDG

>]−1
M(q)

J(q,p) = E−1(q)
[
B>(q,p)− B(q,p)

]
E−>(q)

Dd(q,p) = E−1(q)(D +GKPG
>)E−>(q),

B(q,p) := GKD (∇qy)
>
, E(q) := M(q)M−1

d (q).
(19)

�
Proof: Substituting (15) into (13), we obtain[

q̇
ṗ

]
= F̄

[
∇qH̄
∇pH̄

]
−
[
0n×m
G

]
KDẏ (20)

where

F̄(q,p) :=

[
0n×n In
−In −

(
D +GKPG

>)]
H̄(q,p) := Ud +

1

2
p>M−1(q)p.

Note that[
∇qHd
∇pHd

]
=

[
In (∇qy)KDG

>

0n×n In + (∇py)KDG
>

] [
∇qH̄
∇pH̄

]
(21)

with ∇py = M−1(q)G. Moreover, some manipulations
show that E(q) = In + GKDG

>M−1(q), which has full
rank. Hence, (21) can be rewritten as

∇Hd = Γ>(q,p)∇H̄, Γ(q,p) :=

[
In 0n×n

B(q,p) E(q)

]
. (22)

Note that, since E(q) has full rank, Γ(q,p) is invertible. On
the other hand,

ẏ = (∇qy)
> q̇ + (∇py)

> ṗ.

Thus, (20) is equivalent to

Γ

[
q̇
ṗ

]
= F̄∇H̄. (23)

Therefore, from (22), it follows that[
q̇
ṗ

]
= Γ−1F̄Γ−>∇Hd = Fd∇Hd. (24)

Note that, Fdsym(q,p) ≤ 0. Thus, Ḣd ≤ 0. Additionally,

∇Hd(q?, 0n) =

[
∇qHd(q?, 0n)

0n

]
= 02n (25)



where we have used (16). Furthermore,

∇2
qHd(q?, 0n) =

[
∇2U(q?) +KI 0n×n

0n×n M−1
d (q?)

]
.

Hence, (17) guarantees that
∇2

qHd(q?, 0n) > 0. (26)
The expressions (25) and (26) imply that Hd(q,p) has a
locally isolated minimum at (q?, 0n), which in combination
with (22) prove the stability of the equilibrium for the closed-
loop system.

Remark 2: For fully actuated mechanical systems, the
control law (15) can be modified as follows

u = ∇qU(q)−KP y −KI(G
>q− q?)−KDẏ,

where the first term compensates the gravity effects.
Remark 3: The PID-PBC scheme is applied to the passive

output signal–which for mechanical systems correspond to
the actuated velocities. On the other hand, the classical PID
controller is applied to an error signal–which for mechanical
systems is customarily given by the error between the actual
and the desired position of the system. For some cases, a
PI-PBC scheme coincides with the classical PD controller.

A. Proving the ES properties of the closed-loop system

As it is shown in the previous section, the stabilization of a
mechanical system via PID-PBC yields a new mechanical
system described by (18)-(19). In this section, we prove
that, under some mild conditions, (q?, 0n) is an exponen-
tially stable equilibrium point for the resulting closed-loop
mechanical system. To this end, we introduce the change of
coordinates described in [4]

p := T>d (q)p, q := q− q?, (27)
where Td : Rn → Rn×n is the upper Cholesky factor of
M−1
d (q), i.e., Td(q) is a full rank upper triangular matrix

with strictly positive diagonal entries such that M−1
d (q) =

Td(q)T>d (q). Hence, by using the change of coordinates (27)
and the results of Theorem 1, the following proposition
establishes conditions that guarantee that (q?, 0n) is an
exponentially stable equilibrium point for (18)-(19).

Proposition 2: Consider the system (18)-(19). Then, its
equilbrium point (q?, 0n) is ES if:
C1 Ud(q) is strongly convex.

C2 ‖M−1(q)Md(q)‖ <∞.

C3 Dd(q,p) > 0.

Moreover, the equilbrium is GES if Ud(q) is radially un-
bounded.

Proof: Note that the change of coordinates (27) trans-
forms (18)-(19) into (1), with

U(q) :=Ud(q + q?),

A(q) :=M̄−1(q)T̄d(q)
−>,

D(q, p) :=T̄>d (q)D̄d(q, p)T̄d(q),

J(q, p) :=J3(q, p) + T̄>d (q)J̄(q, p)T̄d(q),

J3(q, p) :=

n∑
i=1

[(
p>T̄−1

d (q)
∂T̄d(q)

∂qi

)>
(A>(q)ei)

>,

− (A>(q)ei)

(
p>T̄−1

d (q)
∂T̄d(q)

∂q

)]
,

(28)
where

M̄(q) := M(q + q?), J̄(q, p) := J(q + q?, T̄
−>
d (q)p)

T̄d(q) := Td(q + q?), D̄d(q, p) := Dd(q + q?, T̄
−>
d (q)p).

On the other hand, C1 implies that Assumption 1 is satis-
fied. Moreover, from C2, we have the following chain of
implications

‖M−1(q)Md(q)‖ <∞ =⇒ ‖Md(q)‖ <∞
=⇒ ‖Td(q)‖ <∞ =⇒ ‖T̄d(q)‖ <∞
=⇒ ‖A(q)‖ <∞.

Thus, Assumption 2 is satisfied. The rest of the proof follows
from Theorem 1, noting that C3 implies that D(q, p) > 0.

Remark 4: C2–thus, Assumption 2–is not restrictive from
a physical point of view. Some simple computations show
that C2 reduces to ‖M(q)‖ < ∞. The class of robot
manipulators that verify this condition is provided in [18].

Remark 5: The term C(q, p) can be regarded as a virtual
energy term. Particularly, for Φ(q) = A>(q), such a term
reduces to C(q, p) = εU̇d(q). Hence, considering ε as a
constant with unit of seconds [s], we have that C(q, p) is
expressed in units of Joules [J ] (energy).

B. Discussion

In Theorem 1 it is required that D(q, p) > 0. Note that,
this condition is translated to C3 in Proposition 2. For
some particular cases, additional constraints on the natural
damping of the system D(q,p) are needed to verify the men-
tioned requirement. From a physical perspective, C3 is not
restrictive as dissipation–in this case the natural damping–
is inherent to the nature of mechanical systems. However,
this physical phenomenon is usually neglected to simplify
the mathematical modeling of the system under study. Then,
to determine the range of applicability of the ES analysis
exposed in Section III-A, we analyze two particular cases of
interest:

(i) Fully-actuated mechanical systems (m = n): if
D(q,p) = 0n×n, then the control parameters are chosen such
that Dd(q,p) > 0, i.e., KP > 0 . Hence, the application of
results given in Proposition 2 is straightforward.
(ii) Underactuated mechanical systems (m < n): when the
open-loop system is underactuated, it is necessary to impose
some conditions on D(q,p) to ensure that Dd(q,p) > 0.
Such a condition is G⊥D(q,p)(G⊥)> > 0. Then, for KP >



TABLE I: Tuning Gains
KP KI

S1 diag(5,15,20) diag(200,250,350)
S2 diag(5,15,20) diag(200,250,200)
S3 diag(5,1,20) diag(200,250,350)

0, we have
D(q,p) +GKPG

> > 0 =⇒ Dd(q,p) > 0.

IV. A TUNING GUIDELINE

As shown in the ES analysis provided in Section II, the
trajectories of systems represented as in (1) have a rate of
convergence given by (12). Hence, by proving ES properties
for (18)-(19) via such an analysis, the rate of convergence
of mechanical systems stabilized by PID-PBC is also given
by (12).

Since the terms βmax, ‖A(q)‖, and µ(q, p) are associated
directly with the potential energy, the kinetic energy, and the
damping of the system, respectively, (12) provides insight
into how the mentioned physical quantities affect the rate
of convergence. This intuition can be exploited to design
the control parameters of PID-PBC. Thus, by considering
that each control parameter from these methodologies is
associated with at least one physical property of the closed-
loop system, we investigate the effect of such parameters on
the rate of convergence via the expression (12). Accordingly,
we can select the control parameters related to PID-PBC
such that closed-loop system (18)-(19) has a prescribed
performance in terms of its rate of convergence.

Note that the rate of convergence of the closed-loop system
is given in terms of four elements, namely, βmax, ‖A(q)‖,
µ(q, p), and ε. Therefore, a guideline to establish a relation-
ship between these elements and the control parameters of
PID-PBC is given as follows:
• βmax: the rate of convergence is proportional to βmax
since βmax := max{1, λmax(GKIG

>)}.
• ‖A‖: note that from (28), we get

‖A‖ =
∥∥M̄−1T̄−>d

∥∥ ≤ ∥∥M̄−1
∥∥∥∥T̄−>d ∥∥ . (29)

Therefore, from (12) and (29), the rate of convergence can
be increased by increasing

∥∥T̄−>d ∥∥. This term is related to
KD, see (19).
• ε and µ(q, p): the expression (12) provides intuition of the
effect of the control parameters even without performing the
cumbersome computations of ε and µ(q, p). For example, the
Schur complement of (9) is given by Z − Y >X−1Y with

X(q) := εM̄−1(q)M̄d(q)M̄
−1(q)

Y (q, p) :=
ε

2
[A(q)(D(q, p)− J(q, p))− Ȧ(q)]

Z(q, p) := D − ε(A>(q)∇2
qU(q)A(q)). (30)

Note that Y (q, p) increases as D(q, p) increases. Then, it
follows that ε must be reduced to guarantee that Z(q, p) > 0
and to ensure that the Schur complement is positive definite
as well.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the applicability of (12) as a tun-
ing guideline by showing the effect of modifying βmax and
µ(q, p) on the rate of convergence of a mechanical system.

Fig. 1: Experimental Setup: Philips Experimental Robotic
Arm (PERA)

To this end, we implement a PID-PBC to stabilize the Philips
Experimental Robotic Arm (PERA), depicted in Fig. 1. The
PERA is a seven degrees-of-freedom (DoF) experimental
robotic arm created by Philips Applied Technologies [19] to
mimic the motion of a human arm. To ease the presentation
of our results, we reduce the model to three DoF, namely,
• The yaw shoulder joint YS with angle q1.
• The pitch elbow joint PE with angle q2.
• The yaw elbow joint YE with angle q3.
The PERA system can be modeled by (13), with n = m = 3,
G = I3,U(q) = m2dc2g(1− cos(q2)), and

M(q) =

m11 0 m13

0 m22 0
m>13 0 m33


with

m11 :=

3∑
i=1

Ii +m2d
2
c2 sin2(q2), m13 := I3 cos(q2),

m22 :=

3∑
j=2

Ij +m2d
2
c2, m33 := I3,

where I1, I2, and I3 correspond to the moments of inertia
of the joints YS , PE , and YE , respectively2, m2 = 1 kg
is the mass of the link composed of the elbow and wrist,
dc2 = 0.16 m is the distance to the center of mass of m2,
and g = 9.81m/s2 is the gravity. We stabilize the PERA
at the desired configuration q? = col(−1.8, 1.57, 0.78) with
three set of tuning gains, namely, S1, S2, and S3. In the
three cases, we select KD = 03×3, which corresponds to a
PI-PBC scheme. The rest of the gains are shown in Table I.

A video of the experimental results can be found in:
https://youtu.be/-ty0D8VKQMs. Fig. 2.a shows the
effect of increasing βmax, in this case KI . Note that in (12),
by fixing the parameters µ(q, p), ε, and ‖A(q)‖, the rate
of convergence increases as βmax increases. Therefore, it
is expected that the rate convergence of S1 is faster than
the rate of convergence of S2, which is verified, particularly
in YE , by the results depicted in the mentioned figure. Fig.
2.b illustrates the effect of modifying KP , which is directly
proportional to µ(q, p). Therefore, it follows that the rate

2These values are not relevant for the analysis provided in this manuscript.

https://youtu.be/-ty0D8VKQMs
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Fig. 2: Comparison of trajectories of angular position:
a) S1 vs. S2. b) S1 vs. S3.

of convergence of S1 is faster than the rate of convergence
of S3, which is verified, particularly for PE and YE , by
the results shown in the mentioned figure. There is a small
steady-state error in the joint positions, particularly for YS .
This error may be due to non-modeled physical phenomena
such as dry friction or asymmetry of the motors (for further
details, see Remark 3).

VI. CONCLUDING REMARKS

In this paper, we have presented an analysis to demonstrate
ES properties for a class of pH systems. Furthermore, we
have proven that such an analysis is suitable, under some
mild conditions, to show ES properties for nonlinear me-
chanical systems stabilized via PID-PBC. Moreover, with the
proposed Lyapunov candidate function, we have established
a relationship between the physical quantities–i.e., damping
and energy–and the rate of convergence of the closed-loop
system. Since the PBC techniques control parameters are
associated with the energy shaping process and the damping
injection process, we have endowed with physical intuition
the process of control parameters selection to assign a
performance to the system in terms of its rate of convergence.
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