

EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder

Levy, Jonathan; Schell, Berenice; Nasser, Hala; Rachid, Myriam; Ruaud, Lyse; Couque, Nathalie; Callier, Patrick; Faivre, Laurence; Marle, Nathalie; Engwerda, Aafk

Published in: **Clinical Genetics**

DOI: 10.1111/cge.14017

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Levy, J., Schell, B., Nasser, H., Rachid, M., Ruaud, L., Couque, N., Callier, P., Faivre, L., Marle, N., Engwerda, A., van Ravenswaaij-Arts, C. M. A., Plutino, M., Karmous-Benailly, H., Benech, C., Redon, S., Boute, O., Boudry Labis, E., Rama, M., Kuentz, P., ... Tabet, A-C. (2021). EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder. *Clinical Genetics*. https://doi.org/10.1111/cge.14017

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

DOI: 10.1111/cge.14017

ORIGINAL ARTICLE

EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder

Revised: 21 June 2021

Jonathan Lévy ¹ 💿 Bérénice Schell ¹ Hala Nasser ¹ Myriam Rachid ¹
Lyse Ruaud ^{1,2,3}
Nathalie Marle ^{5,6} Aafke Engwerda ⁷ Conny M. A. van Ravenswaaij-Arts ⁷
Morgane Plutino ⁸ Houda Karmous-Benailly ⁸ Caroline Benech ⁹
Sylvia Redon ¹⁰ Odile Boute ¹¹ Elise Boudry Labis ¹² Mélanie Rama ¹²
Paul Kuentz ^{6,13} Jessica Assoumani ¹⁴ Lionel Van Maldergem ^{14,15}
Céline Dupont ¹ Alain Verloes ^{1,2,3}

¹Genetics Department, APHP, Robert-Debré University Hospital, Paris, France

²Université de Paris Medical School, Paris, France

³INSERM UMR1141, Paris University, APHP, Robert-Debré Hospital, Paris, France

⁴Centre de Génétique et Centre de référence "Anomalies du Développement et Syndromes Malformatifs", Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France

⁵Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France

⁶UMR-Inserm 1231 GAD Team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France

⁷Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands

⁸Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, Nice, France

⁹Etablissement Français du Sang, Brest, France

¹⁰Laboratoire de Génétique Moléculaire et Histocompatibilité, Service de Génétique Médicale, CHRU, Brest, France

¹¹CHU Lille, Clinique de Génétique "Guy Fontaine", Lille, France

¹²CHU Lille, Institut de Génétique Médicale, Lille, France

¹³Génétique Biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France

¹⁴Clinical Investigation Center 1431, INSERM, Besançon, France

¹⁵Center of Human Genetics, University of Franche-Comté, Besançon, France

¹⁶Neuroscience Department, Human Genetics and Cognitive Function Unit, Pasteur Institute, Paris, France

Correspondence

Jonathan Lévy, Genetics Department, Robert-Debré University Hospital, 48 Bd Sérurier, 75019 Paris, France. Email: jonathan.levy@aphp.fr

Abstract

Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (*EPHA7*) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing *EPHA7* in 6q16.1. We report 12 additional patients from nine unrelated pedigrees

Bérénice Schell, Hala Nasser, and Myriam Rachid or Alain Verloes and Anne-Claude Tabet contributed equally to this study.

with similar deletions. The deletions were inherited in nine out of 12 patients, suggesting variable expressivity and incomplete penetrance. Four patients had tiny deletions involving only *EPHA7*, suggesting a critical role of *EPHA7* in a neurodevelopmental disability phenotype. We provide further evidence for *EPHA7* deletion as a risk factor for neurodevelopmental disorder and delineate its clinical phenotype.

KEYWORDS

6q16.1 microdeletion, EPHA7, intellectual disability, microcephaly, neurodevelopmental disorder, speech and language development

1 | INTRODUCTION

Ephrin receptors (Eph) are the largest family of transmembrane receptor tyrosine kinases. They have a single kinase domain and an extracellular region containing a Cys-rich domain and two fibronectin type III repeats.¹ Eph interact with membrane bound ephrins (Efn) ligands: binding Efn activates the tyrosine kinase activity of the Eph through receptor clustering. Ephrins can be attached by a glycosylphosphatidylinositol linkage (Efn-A) or a transmembrane domain (Efn-B). Based on the similarity of their extracellular domain sequences and affinities, the EPH receptors are sorted in two subclasses: the EphA preferentially bind Efn-A, EphB preferentially bind the Efn-B. The Eph/Efn functions as a contact-mediated bidirectional signaling system between neighboring cells: forward signaling is propagated into the Eph-expressing cell, and reverse signals are propagated into the Efn-expressing cell. The system has been implicated in mediating developmental events, noteworthy body segmentation, central nervous system patterning (axon guidance), neural crest migration and angiogenesis.2,3

In human pathology, deletions of EPH/EFN genes have been implicated in several form of syndromic neurodevelopmental disability (NDD). A 1.4 Mb de novo 1q21.3 deletion encompassing *EFNA1*, *EFNA3* and *EFNA4* was reported in a 2.5 years old girl with microcephaly, dysmorphic features and intellectual disability (ID).⁴ Recently, we delineated the NDD phenotype associated with a 610 kb 13q33.3 deletion encompassing *EFNB2* in a family with developmental delay (DD), ID, seizures, hearing impairment, and congenital heart defect.⁵

A de novo 6q16.1 deletion encompassing *EPHA7* was also described in a 16-month-old patient presenting mild DD, microcephaly and dysmorphic features.⁶

The ephrin receptor A7 (*EPHA7*, mapped in 6q16.1) encodes a member of ephrin receptor subfamily of the receptor tyrosine kinase family. Among glycosylphosphatidylinositol-anchored ephrin-A ligands, EphA7 binds ephrin-A5 with high affinity and their interaction regulates brain development modulating cell-cell adhesion and repulsion.^{7,8} EphA7 regulates dendrite morphogenesis restricting dendritic elaboration in early corticogenesis and promotes dendritic spine formation later in neuronal development.^{8,9} EphA7 signaling also drives neuronal maturation and synaptic function suggesting the involvement of *EPHA7* in NDD.^{6,9}

In the present study, we report 12 patients from nine unrelated families with 6q16.1 deletions encompassing *EPHA7*, including four patients with a deletion involving only *EPHA7*, in order to further support the role of *EPHA7* haploinsufficiency as a risk factor for NDD.

2 | MATERIAL AND METHODS

An informed consent for genetic testing was obtained from all patients and their parents.

Data from Patients 1 to 9 and 11 were collected through the French network AChro-Puce https://acpa-achropuce.com/.

Patients 10 and 12 were enrolled through the Chromosome 6 Project,¹⁰ Patient 12 was published before¹⁰ and parents of both patients gave consent during the enrolment procedure.

ID panel of 450 genes (Data S1) was performed in Patients 1–4 and 9 and identified no pathogenic variant.

No additional pathogenic variant has been identified by trio exome sequencing in Patient 10.

2.1 | Molecular cytogenetic analysis

2.1.1 | Chromosomal microarray analysis

Microarray studies were done in all 12 patients. DNA was extracted using standard procedures from peripheral blood lymphocytes. Patients 1–5 (P1–P5) were investigated using Illumina OmniExpress (Illumina Inc., San Diego, CA) SNP microarray, which contains over 700 000 markers (mean resolution of 30 kb). Data were processed with the Infinium assay. The results were analyzed with Illumina GenomeStudio software, facilitated by the CNV partition algorithm. SNP profiles were analyzed by comparing the Log R ratio, In (sample copy number/reference copy number), and the B allele frequency.

Other patients were analyzed with the following oligonucleotide arrays: Agilent 180 K (Agilent Technologies, Santa Clara, CA) in Patients 6–9, and 12, Agilent 60 K in Patient 11 and Affymetrix Cyto-Scan 750 k (ThermoFisher, MA) in patient 10. Results were analyzed according to the Human Feb. 2009 (GRCh37/hg19) assembly (UCSC Genome Browser, http://genome.ucsc.edu).

General caracteristics	Traylor et al. (2009)	P1	P2	B3	P4	P5	P6	P7	P8	6d	P10	P11	P12	Summary
Sex	Σ	Σ	Ŀ	Σ	Σ	Σ	ш	Σ	Σ	ш	Ŀ	Ŀ	Ŀ	7 M / 6F
Array results	del 6q16.1	del 6q16.1	del 6q16.1	del 6q16.1	del 6q16.1 (+ del 7q11.23)	del 6q15q 16.1	del 6q16.1	del 6q16.1	del 6q16.1	del 6q15q16.1	del 6q15 q16.1	del 6q15q 16.1	del 6q14.3q 16.1	6q14.3- 6q16.1
Breakpoints	92 780 274-94 849 199	93 973 569-98 435 125	93 973 569-98 435 125	93 973 569 - 98 435 125	93 973 569- 98 435 125	91 385 628- 94 529 099	94 028 579- 94 181 308	94 024 705-94 483 810	93 101 362- 94 038 302	89 949 668-94 292 552	89 431 855-95 879 201	88 569 372-94 783 161	87 927 105- 94322474	37 927 105- 98 435 125
Deletion size	2.1 Mb	4.5 Mb	4.5 Mb	4.5 Mb	4.5 Mb	3.1 Mb	152 kb	486 kb	936 kb	4.3 Mb	6.4 Mb	6.2 Mb	6.4 Mb	152 kb-6.4 Mb
Inheritance	de novo	pat	pat	pat	pat (+ de novo)	QN	DN	mat	pat	mat	mat	mat	de novo	9 inherited / 2 de novo
Confirmation	FISH (RP11-270011)	FISH (RP11-47D17)	FISH (RP11- 47D17)	FISH (RP11- 47D17)	FISH (RP11- 47D17)	FISH (RP11- 47D17)	FISH (CTD- 2248A96)	qPCR	qPCR	qPCR	qPCR	FISH (RP11-608F5)	Q	3 FISH / 4 qPCR
Birth Measurements														
Gestational age in WG	38	39	39	QN	39	QN	37 + 5	37	QN	40	39	39	39 + 2	39 WG (38- 40)
Weight in g (percentile)	ND (3 pc)	3080 (27 pc)	2900 (23 pc)	QN	3120 (30 pc)	QN	2975 (49 pc)	3440 (86 pc)	3730 (ND)	3435 (52 pc)	2850 (20 pc)	3725 (83 pc)	2500 (4 pc)	38 pc (3- 100)
Length in cm (percentile)	ND (50 pc)	50 (46 pc)	48 (26 pc)	QN	48 (16 pc)	QN	47 (30 pc)	51 (87 pc)	49.5 (ND)	51 (60 pc)	47 (14 pc)	51 (73 pc)	47 (11 pc)	41 pc (11- 87)
Head Circumference in cm (percentile)	Q	33 (15 pc)	34 (45 pc)	Q	36 (85 pc)	Q	35.5 (93 pc)	37.2 (100 pc)	36.5 (ND)	34 (31 pc)	33 (20 pc)	34 (45 pc)	Q	54 pc (15– 100)
Latest growth parameters														
Age	1 year 3 months	8 years	7 years	ó years	3 years	2 years	7 years	10 years	4 years	1 year 5 months	22 months	5 years	7 years	5 years (15 monts-11 years)
Weight in Kg (SD)	8.1 (–3.1 SD)	26.7 (+ 1 SD)	23 (+0 SD)	30.8 (+3 SD)	10.8 (-2 SD)	9.75 (–2 SD)	38.1 (+3 SD)	ND (+0 SD)	16.5 (+0 SD)	5.4 (-4.2 SD)	11 (–0.9 SD)	16 (–1 SD)	31 (–1.7 SD)	-0,6 SD (-4.2 to +3)
Height in cm (SD)	74.1 (–1 SD)	128 (+0 SD)	119 (–0.5 SD)	125 (+2 SD)	89 (–1.5 SD)	81 (–1.5 SD)	126.5 (+1 SD)	ND (+0 SD)	103 (+0.5 SD)	Q	87 (0 SD)	103 (–1 SD)	147 (+0.3 SD)	-0.39 SD (-1.5 to +2)
Head Circumference in cm (SD)	43.3 (-2 SD)	51.5 (+0 SD)	49 (–2.3 SD)	53.5 (+2 SD)	50.5 (+1 SD)	44.5 (–3 SD)	56 (+3 SD)	57.3 (+2 SD)	49.5 (+0 SD)	43.2 (-2 SD)	46 cm (-0.6 SD)	46 (- 3 SD)	53 cm (0 SD)	-0.37 SD (-3 to +3)
Dysmorphic facial features	Yes	Ŷ	<u>۶</u>	Yes	Yes (Williams Beuren Syndrome)	°Z	Yes, mild	Yes	Q	Yes, mild	°Z	Ŷ	Yes	7/13 (54%)

TABLE 1 Clinical features of patients with 6q16.1 deletions

CLINICAL GENETICS-WILEY-3

(Continued)	Traylor et al. (2009
TABLE 1	General caracteristics

General caracteristics	Traylor et al. (2009)	P1	P2	P3	P4	P5	P6	P7	P8	64	P10	P11	P12	Summary
Description	Triangular-shaped face, cupped and posteriorly rotated ears and periauricular tags	Ŷ	°Z	Cupped ears, right preauricular pit	Bilateral bifid tragus, short helix	°Z	Hypertelorism	Low set ears, hypertelo -rism, bulbous nose	Q	Round face, long philtrum, thin upper lip, low-set ears, large ear lobes	Ŷ	9Z	Plagiocephaly	
Neurological features														
Hypotonia	QN	QN	QN	DN	Yes	DN	No	Yes	QN	Yes	Yes	Yes	No	5/7 (71%)
Developmental delay	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	13/13 (100%)
Age at walking	QN	15 months	13 months	20 months	Not walking at 36 months	Q	24 months	14 months	Q	30 months	36 months	17 months	18 months	13->36 months
Intellectual disability	Q	Mild	Mild	Mild	Severe	Yes	Mild	Mild	Yes	Mild	Yes	Mild	Moderate	10/10 (100%)
Speech delay	Q	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	12/12 (100%)
Age at talking	Q	24 months	30 months	30 months	Not talking at 3 years	Not talking at 2 years	First sentences at 36 months	Ð	Q	Five words at 30 months	Not talking at 3 years 6 months	Ð	28 months, stopped talking at 4 years, now absent speech	24->42 months
Behavior	Q	Lack of inhibition	Q	Hyperkinesia	Q	Very calm, I shows no fear	Impulsivity, attention- deficit	Attention-deficit	Aggressive behavior, communi- cation difficulties	Attention- deficit	Q	Hyperactivity	Easily upset, hyperac- tive, autism	Abnormal in 9/9 (100%)
Sleep disturbance	ŊD	No	No	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No	6/12 (50%)
Microcephaly	Yes	No	Yes	No	No	Yes I	No	No	No	Yes	No	Yes	No	5/13 (38%)
Brain MRI	Questionable brain atrophy/ hemorrhage	Normal	Normal	Q	Normal	Q	Normal	QN	Q	Olfactory bulb agenesis	Q	Normal	Normal	Abnormal in 2/8 (25%)
Others features														
Eye anomalies	mild ptosis on the left side	No	No	No	No	No	Ptosis	Strabismus	Q	No	No	Astigmatism	CVI, iris coloboma	5/12 (42%)
Cardiac anomalies	Q	°Z	°Z	BAP without stenosis or regurgita- tion	Supravalvular aortic stenosis	°Z	°Z	Q	ASD	VSD	°Z	°Z	٥N	4/12 (25%)

g
۳
<u> </u>
Ŧ
Ъ
ŭ
3
÷
ш
Ω
∢
<u> </u>

General Traylor caracteristics et al. (2009) P1 P2 P3 P4 P5 P6 P7 P8 P10 P11	P11 P	o12 Summary
Other Precocious 2 café-au-lait Right renal Hypomineralization Clinodactyly 5th Feeding puberty spots cyst and of tooth enamel finger, joint difficulties, bilateral bilateral hypermobi- chewing lity difficulties, constituent ureteral ureteral lity difficulties, excessive dilatation dilatation constituent, constituent, recurrent from the tooling, constituent, recurrent intections, from the tooling, constituent, constituent, from the tooling, constituent, recurrent intertion intertion, intertion,	ng ficulties, ewing ficulties, :essive ooling, ooling, urrent urrent actions, nune system nune system	eeding difficulties, epilepsy

VSD, ventricular septal defect; WG, pat, paternal; ' not described; pc, percentile; Abbreviations: ASD, atrial septal defect; BAV, bicuspid aortic valve; CIV, cortical visual impairment; del, deletion; F, Female; kb, kilobases; M, Male; Mb, megabases; mat, maternal; ND, Note: Clinical information is given for individuals 1–12 with 6q16.1 deletions plus one case from Traylor et al.⁶ Patient 12 was also published before.¹⁰

weeks of gestation

2.1.2 | Fluorescence in situ hybridization analysis

Fluorescence in situ hybridization on metaphase spreads using a specific probe located at 6q16.1: RP11-47D17 was used to confirm deletions for Patients 1–5, CTD-2248A96 for P6 and RP11-608F5 for P9 (RainbowFish, Amplitech).

2.1.3 | qPCR

qPCR was used to confirm the 6q16.1 deletion for Patients 7–10 and their parents.

We used the Universal Probe Library system (Roche, Indianapolis, IN). Probes and primers were chosen using Probe Finder v2.45 software (Roche, http://www.universalprobelibrary.com) for P7 and P9.

Qiagen Multiplex PCR kit (Qiagen, Courtaboeuf, France), ABI Prism 3130 XL sequencer (Applied Biosystems, Foster City, CA) and GeneMarker V2.7.0 (Soft Genetics) software were used for P8.

2.2 | Exome sequencing

Genomic DNA was extracted from peripheral blood lymphocytes of the Patients P1 and P2 (Family A), P10 (Family H), and P11 (Family G). IntegraGen SA (Evry, France) carried out the library preparation, exome capture, sequencing, and data analysis. Genomic DNA was captured using a Twist Human Core Exome Enrichment System (Twist Bioscience, San Francisco, CA) and IntegraGen Custom. Sequence capture, enrichment, and elution were performed in accordance with the manufacturer's instruction and protocols (Twist Bioscience) without modification, except for library preparation performed with NEB-Next[®] Ultra II kit (New England Biolabs, Beverly, MA). For library preparation, 150 ng of each genomic DNA was fragmented by sonication and purified to yield fragments of 150-200 bp. Paired-end adaptor oligonucleotides from the NEB kit were ligated on repaired, atailed fragments, and then purified and enriched by seven polymerase chain reaction (PCR) cycles. Next, 500 ng of these purified Libraries was hybridized to the Twist oligo probe capture library for 16 h in a single plex reaction. After hybridization, washing and elution, the eluted fraction was PCR-amplified for eight cycles, and then purified and quantified by a quantitative PCR to obtain sufficient DNA template for downstream applications. Each eluted-enriched DNA sample was then sequenced on an Illumina HiSeq4000 (Illumina, San Diego, CA) as single-end 75-bp reads. Image analysis and base calling were performed using Real-Time Analysis, version 3.4.4 (Illumina) with default parameters.

Base-calling was performed using the Real-Time Analysis software sequence pipeline (version 2.7.7) with default parameters. Sequence reads were mapped to the human genome build (hg38) using the Burrows-Wheeler Aligner tool (http://bio-bwa.sourceforge. net). The duplicated reads were removed (sambamba tools; https:// lomereiter.github.io/sambamba). Variant calling was performed via the Broad Institute's GATK Haplotype Caller GVCF tool (3.7) (https://

-WILEY⊥

gatk.broadinstitute.org). Annotation and variants filtering was performed using Sirius platform (https://sirius.integragen.com/). Only rare variants (allele frequency <1% and an absence of homozygotes in the GnomAD database), with a potential effect on proteins (non-synonym, and synonym or intronic variants within 5 bp of a splice site), or already described in the HGMD database (Qiagen, Valancia, CA), were kept for analysis.

3 | RESULTS

3.1 | Clinical features of patients with 6q deletions

Detailed clinical descriptions are available in Data S1 and are summarized in Table 1.

We describe seven male and five female patients from nine unrelated families with 6q16.1 deletions sharing a partial or full deletion of the *EPHA7* gene. Current ages ranges from 15 months to 11 years.

All patients were born at term with normal birth parameters and normal postnatal growth. Postnatal microcephaly (-2 to -3 SD) was

reported in 38% (5/13). All patients presented with a NDD associating DD/ID, various behavioral disorders and speech delay.

Other features included hypotonia (71%), non-specific facial dysmorphism (54%) sleep disturbance (50%), eye abnormalities (40%) such as ptosis, strabismus, astigmatism or iris coloboma, and cardiac defects (25%) including bicuspid aortic valve, atrial or ventricular septal defects.

3.2 | Chromosomal microarray analysis results

Microdeletions of our patients are compared to previous reports in Figure 1.

Deleted genes are listed in Table 2. Deletion sizes ranged from 152 to 6.4 Mb.

Four patients had tiny deletions involving only EPHA7 (P5-P8).

The deletions were inherited in nine out of 12 patients: paternally inherited for P1–P4 (Family A, Figure 2) and P8 and maternally inherited for P7 and P9–P11. Inheritance was not specified in two out of 12 patients (P5 and P6). P12 carried the largest 6q14.3q16.1 deletion, the only deletion that occurred de novo in our patients.

FIGURE 1 Mapping of the *EPHA7* deletion (highlighted in blue) in our patients and in the patient previously reported (red bar). This figure was generated from data in the UCSC database (UCSC Genome Bioinformatics, genome.ucsc.edu/), Genomic coordinates are based on GRCh37/ hg19 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Lists of genes included in the 6q15q16.1 deletions

Chr. band	Deleted genes	Patient	Description	MIM number	HI score	pLI	Phenotype	Inheritance
6q14.3	ZNF292	P12	Zinc finger protein 292	616 213	26.55	1	ZNF92-Related	AD
	GJB7		Gap junction protein, beta 7, 25 kDa	611 921	62.1	0	Developmental disorder	
6q15	SLC35A1		Solute carrier family 35	605 634	23.12	0.68	Congenital disorder of glycosylation, type lif	AR
	RARS2		Arginyl-tRNA synthetase 2, mitochondrial	611 524	21.71	0	Pontocerebellar hypoplasia type 6	AR
	ORC3		Origin recognition complex, subunit 3	604 972	16.76	0.92		
	ANKIRIN2		Akirin 2	615 165	17.80	0.92		
	SPACA1	P11,	Sperm acrosome associated 1	612 739	66.54	0.02		
	CNR1	P12	Cannabinoid receptor 1 (brain)	114 610	1.58	0.51		
	RNGTT	P10- P12	RNA guanylyltransferase and 5'- phosphatase	603 512	2.89	0.37		
	PNRC1		Proline-rich nuclear receptor coactivator 1	606 714	23.15	0.91		
	PM20D2		Peptidase M20 domain containing 2	615 913	45.56	0		
	GABRR1		Gamma-aminobutyric acid (GABA) A receptor, rho 1	137 161	31.63	0		
	GABRR2	P9-P12	Gamma-aminobutyric acid (GABA) A receptor, rho 2	137 162	29.38	0		
	UBE2J1		Ubiquitin-conjugating enzyme E2, J1	616 175	29.26	0.44		
	RRAGD		Ras-related GTP binding D	608 268	24.06	0.82		
	ANKRD6		Ankyrin repeat domain 6	610 583	42.81	0		
	MDN1		MDN1, midasin homolog (yeast)	618 200	38.89	0		
	CASP8AP2		Caspase 8 associated protein 2	606 880	NA	NA		
	GJA10		Gap junction protein, alpha 10, 62 kDa	611 924	64.09	0		
	BACH2		BTB and CNC homology 1, basic leucine zipper transcription factor 2	605 394	7.83	1	Immunodeficiency 60	AD
	MAP3K7		Mitogen-activated protein kinase kinase kinase 7	602 614	2.75	1	Cardiospondylocarpofacial syndrome	AD
							Frontometaphyseal dysplasia 2	AD
6q16.1	EPHA7	All	patients	EPH			receptor A7	602 190
	2.76	1						
	MANEA	P1-P4	Mannosidase, endo-alpha	612 327	26.82	0		
	FUT9		Fucosyltransferase 9 (alpha (1, 3) fucosyltransferase)	606 865	17.17	0.08		
	UFL1		UFM1-specific ligase 1	613 372	24.42	0		
	FHL5		Four and a half LIM domains 5	605 126	40.56	0		
	GPR63		G protein-coupled receptor 63	606 915	55.03	0.2		
	NDUFAF4		NADH dehydrogenase (ubiquinone) complex I, assembly factor 4	611 776	68.35	0.55	Mitochondrial complex I deficiency, nuclear type 15	AR

Abbreviations: AD, autosomal dominant; AR, autosomal recessive. Bolded terms indicate loss-of-function intolerant genes (pLI) and/or sensitive to haploinsufficiency (HI score).

GENETICS WILEY 7

Family A

8

arr[GRCh37] 6q16.1(93973569_98435125)x1

FIGURE 2 Pedigree of the Family A. A 4.5 Mb-deletion at 6q16.1 in P1–P4 was inherited from the father who presented mild to moderate intellectual deficiency. * P4 also had a de novo 1.4-Mb recurrent 7q11.23 microdeletion of the WBS critical region [Colour figure can be viewed at wileyonlinelibrary.com]

P4 further had Williams-Beuren syndrome (WBS) caused by the recurrent 1.4 Mb de novo heterozygous deletion at 7q11.23.

No additional pathogenic variants have been identified by trio exome sequencing in P1, P2, P10, and P11 (Data S1).

4 | DISCUSSION

To date, only one de novo 6q16.1 deletion including *EPHA7* has been reported in a child with mild DD, microcephaly and dysmorphic features. We report 12 new cases of patients with 6q deletion including *EPHA7*, most of them inherited from an unaffected parent (six out seven families). Incomplete penetrance, variable expressivity, and diversity of size and breakpoints makes genotype-phenotype correlation difficult in 6q15q16.1 deletion.¹⁰ In our study, the smallest region of overlap encompasses *EPHA7* only. *EPHA7* is located in 6q16.1, in a gene-poor region, which may explain why patients with larger deletions extending upstream and/or downstream of *EPHA7* show phenotypes similar to patients with narrow deletions involving only *EPHA7* (Figure 1).

The main core phenotype of patients with EPHA7 includes a NDD with DD/ID, speech delay and behavioral disorders. Most

deletions were inherited (9/12) from unaffected parent suggesting that haploinsufficiency of EPHA7 could act as a risk factor for NDD with variable expressivity and incomplete penetrance. In Family A, the deletion was inherited from the affected father with mild to moderate intellectual deficiency but with a history of cranial concussion (Family A, Figure 2). Two patients (P4, P12) had a more severe phenotype. P4 also had the 1.4 Mb recurrent 7q11.23 microdeletion of the WBS critical region. Most individuals with WBS present mild ID.¹¹ The additional 6q16.1 deletion could be responsible for his unusually severe NDD phenotype. The 6q16.1 deletion here could act as a second hit that modulates the WBS phenotype. P12 had a larger deletion including exons 4-8 of the ZNF292 gene that could explain the more severe phenotype with autism, absent speech, and epilepsy. Indeed, de novo and inherited loss-of-function ZNF292 variants were associated with a neurodevelopmental disorder with ID, speech delay, autism, epilepsy and ocular features. No patients with isolated ZNF292 deletions have been described thus far.¹²

The haploinsufficiency score of *EPHA7* (HI score: 2.76) indicates that this gene is dosage sensitive and could have a significant effect on the phenotype.¹³ According to GnomAD v2.1.1 (https://gnomad. broadinstitute.org), *EPHA7* has a probability of being loss of function (LOF)-intolerant (pLI score: 1). LOF variants in *EPHA7* and deletions

including *EPHA7* are extremely rare in the gnomAD SVs v2.1. No patient with *EPHA7* deletion is reported in ClinVar (https://www.ncbi. nlm.nih.gov/clinvar/) and DGV (http://dgv.tcag.ca/dgv/app/home) (Figure 1).

Eph/Efn signaling is involved in the control of brain size through the regulation of cortical proliferation.¹⁴ EphA7 inhibits dendritic growth early and promotes dendritic spine formation later in development, participating in intercellular signaling during synaptogenesis.¹⁵ Haploinsufficiency of *EPHA7* could affect central neural circuits and explain the NDD of our patients.

Exome sequencing in P1, P2, P10, and P11 showing no other known pathogenic variants also support the causative effect of the *EPHA7* deletion.

In conclusion, our study suggests *EPHA7* deletion should be considered as a risk factor for NDD combining ID, behavioral disorders, speech delay and microcephaly with variable expressivity and incomplete penetrance. Additional patients with *EPHA7* haploinsufficiency and functional studies are still necessary to refine the phenotypic description and precise the genotype-phenotype correlation.

ACKNOWLEDGEMENTS

The authors thank the patients and their families for participating in this study, and the Robert-Debré University Hospital for its full support. This work has been generated within the European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA) [EU Framework Partnership Agreement ID: 3HP-HP-FPA ERN-01-2016/739516].

CONFLICT OF INTEREST

The authors declare no conflict of interest.

PEER REVIEW

The peer review history for this article is available at https://publons. com/publon/10.1111/cge.14017.

DATA AVAILABILITY STATEMENT

Data supporting the findings from this study are available from the corresponding author on request.

ETHICS STATEMENT

Written informed consent was received from the patients. The authors adhere to the Declaration of Helsinki Principles.

ORCID

Jonathan Lévy D https://orcid.org/0000-0002-8822-816X Lyse Ruaud D https://orcid.org/0000-0003-4940-5896 Nathalie Couque D https://orcid.org/0000-0002-5109-0857 Alain Verloes D https://orcid.org/0000-0003-4819-0264 Anne-Claude Tabet D https://orcid.org/0000-0003-2910-7744

REFERENCES

- 1. Himanen JP. Ectodomain structures of Eph receptors. *Semin Cell Dev Biol.* 2012;23:35-42.
- Cramer KS, Miko IJ. Eph-ephrin signaling in nervous system development. F1000Research. 2016;5:1-8.
- Kania A, Klein R. Mechanisms of ephrin Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol. 2016;17:240-256.
- Reddy S, Dolzhanskaya N, Krogh J, Velinov M. A novel 1.4 Mb de novo microdeletion of chromosome 1q21.3 in a child with microcephaly, dysmorphic features and mental retardation. *Eur J Med Genet*. 2009;52:443-445.
- Lévy J, Haye D, Marziliano N, et al. EFNB2 haploinsufficiency causes a syndromic neurodevelopmental disorder. *Clin Genet*. 2018;93:1141-1147.
- Traylor RN, Fan Z, Hudson B, et al. Microdeletion of 6q16.1 encompassing EPHA7 in a child with mild neurological abnormalities and dysmorphic features: case report. *Mol Cytogenet*. 2009;2:1-6.
- Gale NW, Holland SJ, Valenzuela DM, et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis known family of RTKs with at least 13 distinct members family display dynamic and spatially restricted expres. *Neuron*. 1996;17:9-19.
- Beuter S, Ardi Z, Horovitz O, et al. Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. *Sci Rep.* 2016;6:1-15.
- Clifford MA, Athar W, Leonard CE, et al. EphA7 signaling guides cortical dendriticdevelopment and spine maturation. *Proc Natl Acad Sci U S* A. 2014;111:4994-4999.
- Engwerda A, Frentz B, den Ouden AL, et al. The phenotypic spectrum of proximal 6q deletions based on a large cohort derived from social media and literature reports. *Eur J Hum Genet*. 2018;26:1478-1489.
- Morris CA. Williams syndrome summary genetic counseling. In Adam MP, Ardinger HH, Pagon RA, (Eds.). *GeneReviews[®]*. Seattle, WA: University of Washington; 2017;1-29. https://www.ncbi.nlm. nih.gov/books/NBK1249/.
- Mirzaa GM, Chong JX, Piton A, et al. De novo and inherited variants in ZNF292 underlie a neurodevelopmental disorder with features of autism spectrum disorder. *Genet Med.* 2020;22:538-546. https://doi. org/10.1038/s41436-019-0693-9
- Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. *PLoS Genet*. 2010;6:1-11.
- Gerstmann K, Zimmer G. The role of the Eph / ephrin family during cortical development and cerebral malformations. *Med Res Arch*. 2018;6:1-26.
- Leonard CE, Baydyuk M, Stepler MA, Burton DA, Donoghue MJ. EphA7 isoforms differentially regulate cortical dendrite development. *PLoS One.* 2020;15:e0231561.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Lévy J, Schell B, Nasser H, et al. EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder. *Clinical Genetics*. 2021;1-9. https://doi.org/10.1111/cge.14017