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ABSTRACT
Point-spread function (PSF) reconstruction (PSF-R) is a well-established technique to
determine the PSF reliably and accurately from adaptive optics (AO) control-loop data. We
have successfully applied this technique to improve the precision of photometry and astrometry
for observations of NGC 6121 obtained with the Spectro Polarimetric High-contrast Exoplanet
REsearch (SPHERE)/Zurich IMaging POLarimeter (ZIMPOL), which will be presented in a
forthcoming Letter. First, we present the methodology we followed to reconstruct the PSF by
combining pupil-plane and focal-plane measurements using our PSF-R method PRIME (PSF
Reconstruction and Identification for Multiple-source characterization Enhancement), with
upgrades of both the model and best-fitting steps compared with previous articles. Secondly,
we highlight that PRIME allows us to maintain the PSF fitting residual below 0.2 per cent
over 2 hours of observation and using only 30 s of AO telemetry, which may have important
consequences for telemetry storage for PSF-R purposes on future 30–40 m class telescopes.
Finally, we deploy PRIME in a more realistic regime using faint stars, so as to identify the
precision needed on the initial-guess parameters to ensure convergence towards the optimal
solution.

Key words: atmospheric effects – instrumentation: adaptive optics – methods: analytical –
methods: data analysis.

1 IN T RO D U C T I O N

Point-spread function (PSF) analysis of seeing and diffraction-
limited images in crowded stellar fields has been a consolidated
technique since the late 1980s. There are several commonly used
astronomical packages that apply this technique successfully, such
as STARFINDER (Diolaiti et al. 2000), SEXTRACTOR (Bertin &
Arnouts 1996) or DAOPHOT (Stetson 1987). These are essentially
based on extraction and modelling of the PSF using isolated
stars across the scientific field of view (FoV). This task can
be particularly challenging in two opposite cases: in very dense
stellar fields, like the core of globular clusters, where solid PSF
modelling is compromised by confusion, and in sparsely dense
fields surrounding isolated galaxies, where no or few point-like
sources are available for PSF modelling. These two situations

� E-mail: olivier.beltramo-martin@lam.fr

become even more demanding when observing with adaptive optics
(AO) instruments, since the size of the imaged FoV ranges typically
from tens of arcsec to a few arcmin, thus preventing us very often
from having isolated stars at our disposal for a robust PSF analysis.
Furthermore, when dealing with AO systems, the complexity of the
PSF increases compared with seeing-limited images and, last but
not least, real-time turbulence correction makes the PSF change
across the FoV, the time and the spectrum. The combination of
source crowding and PSF inhomogeneity affects the estimate of
source parameters like magnitude and position strongly (Schödel
2010; Yelda et al. 2010; Massari et al. 2016a,b). Photometric and
astrometric accuracy can be enhanced using innovative approaches
that account for AO PSF spatial variation models (Ciurlo et al. 2018;
Witzel et al. 2016).

In the new era of giant segmented mirror telescopes (GSMTs),
fed mainly by AO modules, our ability to perform good PSF fitting
will be crucial. In fact, we aim to improve the photometric and
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astrometric accuracy and precision by at least a factor of three,
while the complexity of the PSF structure will increase. In this
context, an alternative PSF determination approach, so-called PSF
reconstruction (PSF-R), has been investigated for 20 years. This
method uses information from AO control-loop data in order to
build a theoretical PSF model, as summarized in Section 2. As
analysed in Ascenso et al. (2015), PSF-R is truly promising to tackle
the actual limitations of standard standalone image processing
pipelines. However, PSF-R has never reached the point of being
fully integrated into dedicated software for image analysis and
being operable for astronomers, who are calling for PSF-R to
be pushed to a more suitable mode for later implementation in a
pipeline.

Moreover, one of the major issues PSF-R developers experience
is the calibration of scalar system parameters, such as seeing and
wavefront sensor (WFS) optical gains, for instance. Although it
remains feasible to identify these parameters from the telemetry,
estimates are usually provided with 10 per cent accuracy (Jolissaint
et al. 2018), which limits the PSF-R accuracy to close to the same
percentage, as we illustrate in Section 2.3. Another way to state this
is that handling the sole AO telemetry alone is not sufficient to reach
1 per cent level accuracy in the PSF. However, very accurate PSF
estimates at 1 per cent level may be needed, especially for stellar
population analysis. In this context, we have introduced PRIME
(Beltramo-Martin et al. 2019) as a novel approach that combines
pupil-plane (AO telemetry) and focal-plane (imager frames) data
to overcome the problem of system parameter identification and
therefore optimize the PSF-R.

We have successfully deployed PRIME on NGC 6121 images
obtained in 2018 with the Zurich IMaging POLarimeter (ZIMPOL)
instrument (Schmid et al. 2018) mounted at the focal plane of the
Spectro Polarimetric High-contrast Exoplanet REsearch (SPHERE)
instrument (Beuzit et al. 2019) on the Very Large Telescope (VLT).
The results showed a factor of 10 improvement in photometric
precision and will be presented in an upcoming article (Massari
et al. 2020). First, we are willing in this article to present the exact
methodology we followed to reconstruct the PSF using an upgraded
version of PRIME presented in Section 3.1. Secondly, another major
drawback of PSF-R for future GSMTs lies in the large amount of
telemetry data we must handle and archive for every observation.
With PRIME, we show in Section 3.2 that we can mix 30 s of
telemetry data with images acquired 2 h later and still achieve an
accurate PSF determination below 0.2 per cent of the mean residual,
which offers the possibility not to store the full AO telemetry during
observation. Finally, in Section 4, we present a utilization of PRIME
in a more realistic scenario using faint stars (mV = 15–16 mag)
and compare the reconstructed PSF with the on-axis bright source
(mV = 10.6 mag) of the NGC 6121 field. In order to mitigate noise
propagation into the criterion-solving, we compare different meth-
ods to constrain the solution using either hard bounds or a Gaussian
statistics assumption on parameters and draw conclusions regarding
the best strategy. Discussions and conclusions are given in Section 5.

2 R ECONSTRUCTING THE PSF

PSF-R derives from the image formation theory proposed by
Roddier (1981) to connect the focal-plane image to the incoming
wavefront distortions within the pupil plane. In the case in which we
neglect scintillation effects and assume that the phase of the electric
field in the pupil plane is spatially stationary, the long-exposure (e.g.
the acquisition time is much larger than the turbulence coherence
time) optical transfer function (OTF), defined as the PSF Fourier

transform, is decomposed as the following multiplication:

h̃(ρ/λ) = h̃T(ρ/λ) · h̃ε(ρ/λ), (1)

where ρ/λ is the angular frequency with λ the observation wave-
length, h̃ the total OTF, h̃T the telescope + instrument OTF that is
derived from the pupil function autocorrelation and h̃ε the residual
atmospheric OTF. PSF-R aims at estimating h̃ε from

h̃ε(ρ/λ) = exp [Bε(ρ) − Bε(0)], (2)

where Bε is the residual phase covariance function, which can
theoretically be captured from the AO control-loop data, i.e. the
WFS measurements and commands applied to the deformable
mirror (DM). Bε is split into a sum of covariance error terms,
assumed to be independent of each other, as follows:

Bε(ρ) = B⊥(ρ) + B‖(ρ) + B�(ρ), (3)

where B⊥ refers to uncompensated spatial frequencies, while
B‖ includes the AO residual only and B� corresponds to the
anisoplanatism effect. The calculation of this latter can be found in
multiple references (Whiteley, Welsh & Roggemann 1998; Fusco
et al. 2000; Flicker, Rigaut & Ellerbroek 2003; Britton 2006;
Beltramo-Martin et al. 2018). In the case of SPHERE/ZIMPOL, we
only need to account for angular anisoplanatism that is produced
by the spatial decorrelation of the incoming wavefront. In the V
band, the typical isoplanatic angle at Paranal has been measured as
θ0 = 2 arcsec (Osborn et al. 2018; Masciadri, Lombardi & Lascaux
2014), which is the separation from the guide star beyond which
the PSF becomes significantly elongated by the anisoplanatism
effect.

2.1 Reconstruction of uncompensated modes

B⊥(ρ) is calculated from the perpendicular power spectrum density
(PSD) as follows:

B⊥(ρ) = F−1[W⊥(k/λ)], (4)

where F−1 is the Fourier operator and W⊥ is the Von Kármán
atmospheric PSD filtered by the corrected frequencies:

W⊥(k) =
{

0.0229r
−5/3
0

(
k2 + 1/L2

0

)−11/6
if k > kAO,

0 otherwise,
(5)

where r0 is Fried’s parameter (connected to the seeing), k = |k| and
kAO is the AO cut-off frequency approximated by kAO � nact/2D,
where nact is the number of actuators per row and D the pupil
diameter. This cut-off frequency is a function of the number of
controlled modes, but we can still define an equivalent value of
nact that produces the same fitting error, in the sense that this
approximation is not critical for the following. The fitting PSD
can be calculated once and scaled regarding the r0 value.

2.2 Reconstruction of corrected modes

B‖ is computed directly from the AO telemetry (Veran et al. 1997).
However, some care must be given to the aliasing, which affects
WFS measurements and PSF morphology. In the case of a large
bandwidth system (with a measurement rate of 1380 Hz, SPHERE
complies with this hypothesis), Veran et al. (1997) shows that the
phase produced by the DM is anticorrelated with the WFS aliasing
perturbation created by high-order modes. Therefore, calculations
show that, to account for aliasing in the PSF-R process, one must
add the aliasing closed-loop covariance to the covariance function

MNRAS 494, 775–788 (2020)
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derived from WFS slopes (that is, contaminated by the aliasing).
Moreover, tip–tilt modes are corrected using a linear quadratic
Gaussian (LQG) algorithm (Petit et al. 2014), while higher order
modes are controlled using a modal optimization-based integrator
(Petit et al. 2008). This does not matter in the present case, expect
for noise-variance modelling for faint guide stars; however, we will
have to handle tip–tilt modes differently from other corrected ones
in Section 3 and we introduce herein a split reconstruction for later
use. Eventually, we have

B‖(ρ) = BAO(ρ) + BTT(ρ) + BAL(ρ), (6)

where BAO is the tip–tilt excluded AO residual phase covariance,
BTT the residual jitter covariance and BAL the model of the aliasing
covariance that affects the PSF.

2.2.1 Reconstruction of tip–tilt excluded modes

The methodology for calculating BAO from WFS measurements
is highly spread in the literature (Veran et al. 1997; Gilles et al.
2012; Jolissaint, Ragland & Wizinowich 2015; Ragland et al. 2018;
Beltramo-Martin et al. 2019); in practice, we used the Vii algorithm
proposed by Gendron et al. (2006), where

BAO(ρ) =
nact∑
i

�(i, i)Vii(ρ), (7)

where Vii are the Vii functions obtained from the eigendecom-
position of the matrix of high-order deformable mirror (HODM)
influence functions (HODM influence matrix). The use of the
Vii functions allows us to speed up the covariance calculation
significantly. � is the diagonal matrix that contains the eigenvalues
of the covariance matrix CAO. This latter is estimated empirically
from the tip–tilt excluded WFS measurements as follows (Vigan
et al. 2019):

CAO =
(

2π

λ

)2

RAO(〈s.st 〉 − 〈η.ηt 〉)Rt
AO, (8)

where RAO is the matrix that reconstructs the pointwise wavefront
from the WFS measurements s that are contaminated by additive
noise η and where 〈x.xt 〉 refers to the empirical covariance matrix of
vector x. The noise covariance can be estimated using an analytical
formula (Rousset, Primot & Fontanella 1987), from the temporal
autocorrelation of the measurements (Gendron & Léna 1995) or
from their temporal PSD (Jolissaint et al. 2015), to mention only
a few approaches. In the specific case of SPHERE/ZIMPOL, the
reconstructor RAO is derived from successive multiplications of
calibrated matrices:

RAO =
(

632 × 10−9

2π

)
iF.PM2V.PS2M.PAO, (9)

where

(i) iF is the calibrated HODM influence matrix that converts
HODM voltages to a wavefront at 632 nm. It has a dimension of
2402 × nact, where 240 is the pupil resolution in pixels during the
calibration, which is interpolated to 2 × nact + 1 to speed up the
reconstruction;

(ii) PM2V is the mode-to-voltage matrix that transforms nmode

Karhunen–Loève (KL) modes to nact HODM voltages in stroke
units;

(iii) PS2M is the slope-to-mode matrix that projects 2 × nsubap

slope measurements in pixels to nmode KL modes;

(iv) PAO is a 2nsubap × 2nsubap matrix that filters the tip–tilt modes
out from the slope measurements.

2.2.2 Reconstruction of tip–tilt modes

The tip–tilt covariance function in equation (3) is derived as
follows:

BTT(ρ) = 1

D2

(
CTT(1, 1).ρ2

x + CTT(2, 2)ρ2
y

+ 2 × CTT(1, 2)ρxρy

)
, (10)

where ρx, ρy are the x/y projection of the separation vector ρ from
−D/2 to 	/2 and CTT is the tip–tilt covariance matrix,

CTT =
(

2π

λ

)2

RTT(〈s.st 〉 − 〈η.ηt 〉)Rt
TT, (11)

where RTT permits us to reconstruct the tip–tilt wavefront over the
pupil in metres using

RTT = 2.6 × π × D

180 × 3600
.(PTT.DV2S)†.PTT, (12)

with (x)† the generalized invert matrix and where

(i) PTT is a 2 × 2nsubap matrix that projects the slope measure-
ments on to tip–tilt modes and

(ii) DV2S is the 2ωsubap × 2 calibrated tip–tilt interaction matrix
that converts the two tip–tilt DM commands into WFS slopes.

2.2.3 Reconstruction of the aliasing

The aliasing covariance function is derived from a model of
the aliasing PSD WAL (Flicker 2008; Jolissaint 2010; Correia &
Teixeira 2014) that accounts for the spatial filtering of the Shack–
Hartmann WFS and the temporal propagation of the aliased mea-
surement through the AO loop. Eventually we have

BAL(ρ) = F−1[WAL(k)], (13)

with WAL calculated for any considered atmospheric layer by first
aliasing the Von Kármán atmospheric PSD around a multiple of
1/d, with d the sub-aperture size, and secondly propagating the
PSD through the Shack–Hartmann spatial filter (Rigaut, Véran &
Lai 1998) and the temporal rejection function of the loop, which is
spatialized by replacing temporal frequencies with f = k.vl , where
vl is the velocity vector (norm is the windspeed value, angle is the
wind direction) of the lth layer. We obtain the following expression
for the aliasing PSD in closed-loop operation:

WAL(k) = 0.0229r
−5/3
0

4sinc(kd)
×

ζ∑
p=−ζ
p �=0

ζ∑
q=−ζ
q �=0

nL∑
l=1

× fl

(k−1.kpq )2sinc(kpd)sinc(kqd)

(k2 + 1/L0(l)2)11/6
.Hcl(l), (14)

with

Hcl(l) = g2sinc(kpvlx ti)sinc(kqvly ti) exp(2iπ(kpvlx + kqvly)td )

1 − 2(ι − g) cos(2πkpvlx ti) cos(2πkqvly ti) + (ι − g)2
,

(15)

where the following holds.

(i) kpq = (kp, kq ), with kp = kx − p/d and kq = ky − q/d as the
x/y frequency vectors shifted by p/d and q/d, respectively.
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(ii) ζ is a unitless number defined by the highest frequency seen
by the WFS normalized by the DM cut-off frequency kAO. This
number accounts for the spatial filtering in the WFS optical path
that has been implemented to mitigate the aliasing effect as much
as possible (Poyneer et al. 2006).

(iii) vlx = vl cos(ωl) and vly = vl sin(ωl) are the components of
the velocity vector at height hl, projected respectively onto the x-
axis and y-axis of the frequency plan, with vl, ωl the corresponding
turbulence velocity and wind direction values at height hl.

(iv) L0(l) is the outer scale vertical profile. In practice, we have
chosen a flat profile and L0 = 25, but methods exist to retrieve
the integrated outer scale value from the telemetry (Andrade et al.
2019).

(v) ti and td are respectively the WFS temporal sampling fre-
quency and the loop delay, which is 2.3 frames (Cantalloube et al.,
in preparation).

(vi) g is the average of the modal gain vector (Petit et al. 2008).
To be more accurate, we should evaluate how the WFS aliasing
propagates through each controlled KL mode and though the AO
loop by taking the modal optimization into account. However, such
a description would increase the complexity of the aliasing PSD
computation drastically for a small eventual improvement .

(vii) ι is the integrator leak factor, set to 1 (no leak) in the rest of
this article.

2.3 Application to SPHERE/ZIMPOL

2.3.1 Data

We have acquired observations of NGC 6121 with the ZIMPOL
V filter (central wavelength 554 nm, width 80.6 nm) in the context
of technical calibrations1 granted after the 2017 ESO calibration
workshop.2

With a pixel scale of 7.2 mas pixel−1, the detector covered a
3.5 arcsec × 3.5 arcsec field of view, as illustrated in Fig. 1. We sum-
marize the acquisition time in Table 1 as well as the corresponding
airmass value. The AO system ran at 300 Hz, instead of the nominal
1380 Hz, owing to the faintness (V = 10.6 mag) of the AO guide star
and the grey dichroic used to share visible light between ZIMPOL
and WFS. The data were acquired in field stabilization with the
slow polarimetry readout mode, which provides readout noise seven
times smaller that the standard imaging mode, to enhance the signal-
to-noise ratio (S/N) of the fainter off-axis sources. The data were
reduced using the SPHERE Data and Reduction Handling pipeline
(DRH) to extract the intensity image, subtract a bias frame and
correct for flat-field. Dedicated PYTHON routines were later used to
recentre the individual frames, correct for bad pixels and average
the frames in a single reduced image, as shown in Fig. 1.

The imaged field belongs to the central region of the aforemen-
tioned globular cluster and includes five stars, the brightest of which
was used to guide the AO system. The four others are more than
1.7 arcsec away from the guide star. This field has been selected in
order to quantify achievable limits on photometry and astrometry
estimates of faint stars confused in the guide star halo; accurate HST
measurements exist for comparison purposes.

On top of that, we had synchronous atmospheric parameters
measurements delivered by, on the one hand, MASS-DIMM at
Paranal (Butterley et al. 2018; Tokovinin & Kornilov 2007) as well

1ESO program ID of observations: 60.A-9801(S)
2http://www.eso.org/sci/meetings/2017/calibration2017

Figure 1. Stack of 26 frames of NGC 6121 observations obtained with
SPHERE/ZIMPOL on 2018 June 26. Coordinates correspond to the distance
in arcsec from the bright AO guide star. The field was 3.5 arcsec × 3.5 arcsec
large and four off-axis stars, encircled in white and numbered, were imaged.

Table 1. Summary of NGC 6121 data acquired successively with ZIMPOL
on the night of 2018 June 26, with a total of 26 images of 200 s exposure
(NDIT=2, DIT = 100 s) each.

Acquisition date Airmass Acquisition date Airmass

First slot of observations
05:03:57 + AO data 1.169 05:26:06 1.238

05:07:17 1.18 05:29:26 1.243
05:11:27 1.191 05:33:23 1.265
05:14:47 1.201 05:36:43 1.282
05:18:49 1.213 05:42:11 1.300
05:22:09 1.225 05:45:31 1.315

Second slot of observations
06:43:43 + AO data 1.672 07:08:57 1.934

06:47:03 1.704 07:12:55 1.977
06:51:00 1.737 07:16:15 2.177
06:54:20 1.771 07:20:19 2.077
06:58:18 1.809 07:23:39 2.118
07:01:38 1.849 07:27:36 2.186
07:05:37 1.889 07:30:56 2.271

as the stereo SCIDAR (Osborn et al. 2018) and, on the other hand,
the AO real-time computer SPARTA (Fedrigo et al. 2006). We
present the temporal evolution during the observation in Fig. 2. As
already noticed by Milli et al. (2017), there are large discrepancies
between SPARTA and MASS-DIMM estimates, but both claim
that observing conditions were quite stable over the two observing
slots. According to SPARTA, seeing and turbulence coherence time
median values reached 0.6 arcsec and 11 ms respectively during the
first part of the night, evolving to 0.5 arcsec and 9 ms during the
second slot.

Finally, we have also two 30-s long data sets of AO control-loop
data (WFS slopes, DM commands, calibrated matrices) obtained
at 05h04m and 06h44m simultaneously with the beginning of
ZIMPOL observations, as reported in Table 1. From the image,
we have estimated a Strehl ratio (SR) in the V band from the

MNRAS 494, 775–788 (2020)
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Figure 2. Top: seeing estimation at zenith and 500 nm. Bottom: turbulence
coherence time estimation with respect to observing hour. Blue areas indicate
the time window during which we had acquired ZIMPOL data.

integration of the OTF over angular frequencies normalized to the
diffraction-limit OTF. We obtained 1.4 ± 0.63 per cent over the
whole observation, which corresponds to 182 nm ± 10, with a drop
of 40 per cent in performance between slot 2 and slot 1.

2.3.2 On-axis PSF-R results

We have followed the mathematical formalism presented in Sec-
tion 2 to reconstruct the PSF from the two AO data sets acquired
at the beginning of each observing time slot. The methodology
to treat the AO control-loop data was strictly the same, and we
present in Fig. 3 reconstruction results compared with the on-
axis image. To obtain a proper comparison, we have adjusted
the photometry and astrometry by using a weighted best-fitting
to scale the PSF over the on-axis image. Results are somehow
disappointing for several reasons. First of all, PSF wings are not
correctly retrieved systematically, as we see with the second case,
for which r0 is underestimated, i.e. the atmospheric disturbances
are expected to be stronger than they actually were. Moreover, the
reconstruction of the PSF core does not behave similarly, although
the data processing is kept identical. We may have overestimation
as well as underestimation of the PSF peak intensity.

This situation occurs systematically when trying PSF-R: current
algorithms usually fail in achieving a stable, efficient and repro-
ducible reconstruction across the multiple data sets they are tested
on. There is a necessary need to calibrate the algorithm a posteriori
over a subsample of data to approach the ultimate algorithm
that would provide the same level of relative accuracy whatever

Figure 3. Azimuthal average of sky and reconstructed PSFs obtained with
(top) 05:04 and (bottom) 06:43 data. The PSF was reconstructed using the
same formalism presented in Section 2.

the observing conditions. This calibration generally consists of
applying some fudge factors to the telemetry (Clénet et al. 2008;
Martin et al. 2016; Ragland et al. 2016) or/and to the noise variance.
The main conclusion of more than 20 years of effort carrying out
PSF-R is that PSF-R is not going to achieve proper PSF estimation
by using the standard PSF-R framework.

2.3.3 Off-axis PSF-R results using SCIDAR data

As illustrated in Fig. 1, the field also contains off-axis stars that
are sufficiently distanced from the guide star to potentially be
contaminated by the anisoplanatism effect. We have access to
stereo SCIDAR data at Paranal (Osborn et al. 2018) acquired
during the same time slot as the ZIMPOL images. We report
in Fig. 4 the C2

n(h) evolution across time and the corresponding
ZIMPOL observation time slots. This shows that the atmosphere
was particularly concentrated into the first km, which does not
produce significant anisoplanatism. This latter is mostly generated
by jet streams between 8 and 12 km, the strength of which has
decreased slightly across time.

We report in Table 2 the r0, average altitude and isoplanatic angle
values obtained from the SCIDAR measurements at zenith and λ =
500 nm. The r0 value is calculated as follows (Fried 1965):

r0(h > H ) =
(

0.423

(
2π

λ

)2 ∫ ∞

H

C2
n(h) dh

)−3/5

, (16)
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Figure 4. C2
n(h) estimated by SCIDAR at Paranal (Osborn et al. 2018)

across time. White bands correspond to ZIMPOL observing time.

Table 2. Atmospheric characteristics given by the stereo SCIDAR at zenith
and 500 nm.

First slot Second slot

r0 (cm) 11.6 ± 1.1 13.8 ± 1.1
r0(h>1 km) 15.3 ± 1.4 18.5 ± 1.9
h̄ (km) 6.4 ± 0.4 6.4 ± 0.8
θ0 (arcsec) 1.2 ± 0.1 1.4 ± 0.2
θ0 (line of sight) 1.1 ± 0.1 0.9 ± 0.1

Table 3. PSF FWHMs for the five stars in the field derived from recon-
structed PSF models.

FWHM (mas)

Diffraction @ 554 nm 14
On-axis PSF 33.1 ± 2.0
Off-axis PSF 1 37.4 ± 3.2
Off-axis PSF 2 36.2 ± 2.8
Off-axis PSF 3 38.9 ± 3.9
Off-axis PSF 4 38.6 ± 3.8

where H is the height above which r0 is measured. The mean-
weighted altitude h̄ gives the layer height that would produce the
same anisoplanatism regarding the C2

n distribution and is defined as
(Fried 1982)

h̄ =
(∫ ∞

0 h5/3C2
n(h) dh∫ ∞

0 C2
n(h) dh

)3/5

. (17)

Finally, the isoplanatic angle that defines the separation angle from
the guide star above which the PSF evolves anisoplanatically is
calculated from

θ0 = 0.057λ6/5

(∫ ∞

0
h5/3C2

n(h) dh

)−3/5

. (18)

Values in Table 2 show a mitigation of the anisoplanatism effect
during the second observing slot, but because of the large telescope
zenith angle (60◦), the S/N for off-axis star directions has diminished
drastically due to (i) atmospheric extinction, which lessens the
number of collected photons, and (ii) greater anisoplanatism effects
in the telescope line of sight, which decrease the ensquared energy.

Regarding θ0 and star distance from on-axis, off-axis images
should be affected slightly by the anisoplanatism effect. We have
measured the PSF full width at half-maximum (FWHM) of five
stars as reported in Table 3, which indicates that the AO system did

Figure 5. Mean-square error as calculated in equation (22) obtained by best-
fitting (stellar parameters only) off-axis sources using an off-axis model (on-
axis PRIME + SCIDAR) or the on-axis PRIME PSF. Results were obtained
for the first 12 ZIMPOL frames.

not reach diffraction at 554 nm, which was expected (Fusco et al.
2014). However, separation between the AO correction area and PSF
wings is not very clear , advocating that there is an atmospheric or
instrumental effect, which looks like a residual jitter according to
the elongated PSF pattern, which blurs the image. This is likely
introduced by the low frame rate of 300 Hz, which corresponds
to the typical coherence time, introducing a large servo-lag error.
Consequently, off-axis PSFs are not significantly larger than the
on-axis PSF, which suggests that anisoplanatism is there, but the
PSF morphology is dominated by servo-lag error.

Our goal is now to determine whether there is a need to account
for anisoplanatism to calibrate the PSF model from off-axis stars.
To do so, we have calculated best-fitted off-axis images to retrieve
photometry/astrometry using two different PSF models: (i) the on-
axis image and (ii) the off-axis PSFs calculated by convolving the
on-axis PSF with an anisoplanatism spatial filter calibrated from
SCIDAR measurements. If there is real anisoplanatism, the second
model should give better results. For S/N reasons, we have treated
only the 12 first ZIMPOL frames that were acquired at a lower
telescope zenith angle.

In Fig 5, we compare the residual error obtained with equa-
tion (22) computed with and without use of SCIDAR data. We see
that the off-axis PSF model barely improves the PSF model, but this
improvement remains marginal enough to claim that anisoplanatism
does not contribute to PSF inhomogeneity, despite star separation
being larger than θ0. We show this in more detail for off-axis star
#1 in Fig. 6 : clearly, the residuals do not improve by including
the effects of anisoplanatism. This is likely due to a large residual
jitter effect in the PSF, which creates an elongated pattern that
masks the anisoplanatism feature. In other words, accounting for
anisoplanatism produces only a very marginal improvement in
the PSF modelling; therefore we chose to consider the PSF as
homogeneous across the field, which means that we will derive
the PSF from the integrated r0 value only.

3 PR I M E : A C O M P L E M E N TA RY TO O L TO
IMPROV E THE CLASSICAL PSF-R SCHEME

3.1 Introduction to PRIME

New approaches must be envisioned to move to the next level
of PSF-R. We have introduced the so-called PRIME method
(Beltramo-Martin et al. 2019), which yields a built-in parametric
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PSF reconstruction for SPHERE/ZIMPOL 781

Figure 6. 2D comparison of PSFs using a hyperbolic arcsin scale. From left to right: off-axis star 1 image, on-axis PSF + SCIDAR, corresponding residual,
PRIME without SCIDAR, corresponding residual. Reconstructed PSFs were obtained using the 05:04 AO data set.

PSF model using AO measurements. As discussed, the reconstruc-
tion usually relies on fudge factors, which are learned by comparing
PSF-R with on-sky images and set up as constants afterwards. There
have been no attempts so far to figure out whether these fudge
factors vary accordingly with observing condition changes. This
is what PRIME is going to achieve: it retrieves these factors by
adjusting them to match available PSFs in the field. In other words,
we combine the pupil plane (PSF-R framework) and focal plane
(best-fitting technique) to calibrate the PSF model across fields and
spectra. PRIME permits us to avoid collecting specific calibration
data for PSF estimation purposes. For instance, there is no more
need to offset the telescope or request technical time to test PSF-R.
The major drawback is the need for stars in the field, which does
not comply with all science cases so far, but we will discuss in
Section 3.3 the strategies considered to deliver a PSF regardless of
the science field configuration. Assuming that we have stars in the
field, PRIME achieves PSF calibration as follows.

(i) Step 1: instantiate the PSF model by calculating the covari-
ance matrices introduced in Section 2.

(ii) Step 2: extract subfields of an image (user-defined) that
contains one or several PSFs.

(iii) Step 3: define PSF model parameters to be adjusted. In
the following, we will estimate only four parameters, using the
following parametrization:

Bε(ρ) = r
−5/3
0 × (B⊥(ρ, r0 = 1) + gal × BAL(ρ, r0 = 1))

+ gao × BAO(ρ) + gtt × BTT(ρ), (19)

where we assume we work in the isoplanatic regime, e.g. there is
no need to include the anisoplanatism covariance function. On top
of the r0 value that will be estimated for the focal-plane image, we
include three system parameters gao, gtt and gal, which allow us to
play with the residual variance level. For a given AO data set, we
calculateBAO,BTT and BAL, whileB⊥ is computed once. In contrast
to the model presented in Beltramo-Martin et al. (2019), we have
introduced the gain gal to calibrate the aliasing model. The use of
gal allows us to account for fluctuations in the wind-speed profile,
which enters the computation of the aliasing mode via equation (14)
but cannot be determined readily from telemetry data alone.

(iv) Step 4: Minimizing a criterion by using a non-linear least-
squares minimization algorithm (this is the current implementation,
but others may be explored). We have used MATLAB� non-
linear problem-fitting facilities based on a trust-region reflective
algorithm, as done by Fétick et al. (2019), in order to minimize the
following criterion:

J (μ, γ, α) =
npx∑
i,j

wij

[
γ × δα ∗ hij (μ) − dij + ν

]2
, (20)

where .∗. is the convolution product and

(a) hij and dij are the (i, j) pixel intensity values of the
numerical PSF model and sky observation, respectively; the
image is converted into e− units using a uniform detector gain
of 1.5 e−/ADU (slow pol. mode),

(b) μ = [r0, gao, gtt, gal] is the set of parameters to be adjusted,
(c) δα is the Dirac distribution shifted by the astrometric

position α and multiplied by the photometric factor γ ,
(d) ν is an additional degree of freedom to account for a

residual background,
(e) wij is the weighting coefficient for the (i, j)th pixel.

Identically to what was done by Fétick et al. (2019) and Mugnier,
Fusco & Conan (2004), the weighting factor is set to

wij = 1

max{dij , 0} + σ 2
RON

, (21)

where σ 2
RON = 3e− for the ZIMPOL detector (slow pol. readout

mode: Schmid et al. 2018). The detector noise is assumed to
be Gaussian and independent from the data. Also, equation (20)
stresses that the model adjustment process retrieves the PSF
model parameters (r0, gao, gtt, gal) and the stellar parameters
(γ,α) simultaneously. This step automatically outputs the astro-
metric/photometric measurements of calibration sources.

(v) Step 5: Extrapolate the PSF to any desired field and spectrum
position.

PRIME offers multiple applications, such as image-assisted error
breakdown and photometry and astrometry measurements, as dis-
cussed in Beltramo-Martin et al. (2019). In this article, we focus
on PSF estimation only. In order to quantify the quality of the PSF
fitting, we will evaluate the relative mean-square error, given by

εh =
√∑npx

i,j

[
γ̂ × δα̂ ∗ hij (μ̂) − dij + ν̂

]2∑npx
i,j dij

, (22)

where γ̂ , α̂, μ̂ and ν̂ are the estimated fitting parameters. The
weighting process is particularly helpful to recover all spatial
frequencies, without giving more importance to the AO corrected
area where pixels are brighter. In particular, this ensures we mitigate
biases in the r0 estimation, which depends significantly on the
extended, low-intensity PSF wings. Note that this mean-square error
does not include the weight matrix as well as any regularization term
we introduce in Section 4. This metric allows us to assess how far the
reconstructed PSF, regardless of the approach, is from the on-axis
sky image and allows us to analyse different techniques regarding
the residual error they lead to.

In the following, we will distinguish between forward PSF-R, the
reconstruction process that relies on a priori parameters (r0 from
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Figure 7. Azimuthal average of sky, PRIME and Moffat-fitted PSFs
obtained with (upper) 05:04 and (lower) 06:43 data.

telemetry, gao = gtt = gal = 1), and PRIME, the PSF obtained after
adjustment over the focal-plane image.

3.2 Maximizing the utmost PSF-R performance

We have tested PRIME by tuning PSF model parameters over a
very bright on-axis star, i.e. the star guiding the AO system. The
on-axis star is not necessarily present in the field, in particular
for laser-assisted systems, so in a way relying on this very bright
source is not a nominal situation to deploy PRIME. However, the
study of this on-axis star is optimal to test the utmost performance
of PRIME, which will seek all possible information on the PSF
that is missing in the telemetry data directly in the image itself.
On top of that, the very accurate best-fitting parameters found for
the on-axis star can then be used as a reference and compared with
those (less accurate) found for faint off-axis sources, to assess how
PRIME performs in less optimal situations, as we do in Section 4.
Finally, in order to provide evidence that PRIME is a good solution
for PSF-fitting problems post-AO, we have also herein compared
results with a Moffat fitting using the exact same model-fitting
process. The Moffat function was defined over seven parameters
(Fétick et al. 2019) to allow fitting of an asymmetric PSF shape.

We report in Fig. 7 the comparison between the on-axis PSF
profile with PRIME and Moffat fitting as we did with forward
PSF-R in Section 2.3.2. Moreover, we present a 2D comparison in
Fig. 8 that compares forward PSF-R, PRIME and Moffat fitting and
shows at least a factor of 2 improvement on the residual brought
by PRIME, especially in the PSF core. The best fit achieves an
excellent reproduction of the original image and in both cases,

Figure 8. 2D comparison of PSFs (05:03:57) using a hyperbolic arcsin
intensity scale. From left to right: forward PSF-R, Moffat-fitting, PRIME.
The bottom images are residuals obtained by subtracting the reconstruction
to the sky observation.

stressing that the calibration of additional factors on top of the AO
telemetry treatment is a must. We also illustrate that the Moffat
does not match the on-axis PSF as well as PRIME does, especially
due to the PSF structure, which contains an AO-corrected part and
seeing-limited wings. We see an improvement of the Moffat fitting
in the second case, for which the airmass was larger, however. In
this situation, the line-of-sight seeing is worse than previously and
the atmospheric residual is large enough to smooth the PSF and
attenuate the transition sharpness between the AO corrected and
non-corrected areas. However, the Strehl ratio was assessed at 1–
2 per cent for these observations and at an imaging wavelength of
554 nm. As a conclusion, even in a very poor correction regime, e.g.
when the PSF structure is limited by the atmospheric residual, it is
already worth using PRIME instead of an analytical model that is
designed to fit seeing-limited images.

3.3 Mitigating required data amount for PSF-R

So far, we have not treated all the ZIMPOL frames we have to
hand, only the one that has been acquired synchronously with
AO telemetry. A question that appears when talking about PSF-
R for the next generation of AO-assisted instruments is related
to the amount of data we need to perform PSF-R. In particular,
there are some concerns about what is required in terms of storage
capability to record all the AO telemetry and associated calibrated
matrices systematically. With PRIME, we can address the question:
do we necessarily need synchronous AO telemetry with a science
frame? To provide hints, we have utilized two AO data sets to
reconstruct two different PSF models using either forward PSF-
R or PRIME. We end up with four PSF models. With forward
PSF-R, the PSF was first reconstructed and then the best fit found
(photometry/astrometry) to match the observation. With PRIME,
both stellar and PSF parameters were estimated jointly through the
model fitting.

We present in Fig. 9 the mean residual error as a function of
the estimated r0 from PRIME and calculated from the residual
obtained using forward PSF-R, PRIME or a Moffat model. Several
conclusions can be drawn. First of all, PRIME works much better
than forward PSF and decreases the residual error by a factor of
3–10 over the 26 frames compared with forward PSF-R, and a
factor of 2–4 compared with the Moffat model. Then, forward
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PSF reconstruction for SPHERE/ZIMPOL 783

Figure 9. Mean-square error as calculated in equation (22) obtained with
both forward PSF-R and PRIME models instantiated with either the 05:04
AO data set (set 1) or the 06:44 set (set 2), as well as the Moffat-fitting
results. Dashed lines give quadratic trends with respect to the r0 estimates
obtained with PRIME.

Figure 10. Photometry measurements obtained on the 26 ZIMPOL frames
as a function of the telescope airmass. Dashed lines refer to trends in
airmass−3/5. Error bars are obtained from the fitting minimization function.

PSF-R efficiency degrades significantly when the AO telemetry
is not synchronous with the imager frame, especially due to
variations of seeing conditions. Finally, PRIME achieves a very
stable reconstruction, the residual of which remains pretty much
constant, even two hours after having recorded AO telemetry. In
other words, temporal variability of atmospheric disturbances can
be approximated as a scaling fluctuation of the covariance functions
introduced in Section 2. Their structure remains quite similar across
time for these specific observations, however.

On top of that, in Fig. 10 we report photometry measurements
using either forward PSF-R, PRIME or aperture photometry (sum of
pixels). We clearly reveal that PRIME achieves accurate photometry
measurements, while forward PSF-R is highly biased and imprecise.
This is also indicated by the flux decreasing, due to atmospheric
extinction and ensquared energy diminution, which does not decay
with a similar slope. Precise assessment of the photometry and
astrometry capability of PRIME, with comparison with the standard
post-processing pipeline, will be carried out at a later stage.

Furthermore, we have compared r0 estimates provided by both
SPARTA (AO telemetry) and PRIME as a function of SCIDAR
measurements, as presented in Fig. 11. As already observed in
Fig. 2, we have a large offset between SPARTA and SCIDAR

Figure 11. r0 estimates obtained from SPARTA and PRIME with respect
to SCIDAR r0.

Figure 12. Retrieved values of gao, gtt and gal as functions of the estimated
r0 value with PRIME. Dashed lines correspond to trends in r

−5/3
0 using the

r0 estimates from with PRIME.

measurements, which no longer appears when comparing with
PRIME results, i.e. PRIME and SCIDAR r0 estimates seem to
comply during this observing night. This also advocates that
SPARTA overestimates r0 by a significant amount, which can be
unbiased through calibration using PRIME for as many data as
possible.

Finally, in Fig. 12 we present the evolution of retrieved gains with
respect to r0. Identically to what we have done for r0 estimations,
gain values are averaged over results obtained with the two AO data
sets, and uncertainties show that they were similar and correlated.
Trends with respect to the r0 estimates from PRIME are obtained
using a polynomial fit. These trends allow us to visualize how much
the parameters vary with respect to the turbulence strength: they are
quite obvious for gao and gal; when r0 increases, the turbulence
strength and the WFS spot size diminish and consequently the
gain value gao is lessened as well. SPARTA involves a weighted
centre-of-gravity algorithm to convert WFS pixels (Petit et al.
2008) into WFS slopes, which may introduce optical gain variations
across time as well. Aliasing gain increases slightly with respect to
r0, e.g. for weaker turbulence, which also corresponds to shorter
turbulence time (so higher wind speed) according to SPARTA
measurements in Fig. 2. As we discussed previously, the aliasing
PSD model is effectively sensitive to turbulence velocity variations
though modifications of the aliasing transfer function Hcl given in
equation (14). This one is derived from the AO closed-loop temporal
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Table 4. Final accuracy in Strehl ratio and FWHM obtained with either
forward PSF-R (no model adjustment) or PRIME.

� SR (%) � FWHM (mas)

bias std bias std
Forward PSF-R slot 1 27 12 4.2 2.1
Forward PSF-R slot 2 12 21 3.5 4.0
PRIME slot 1 0.2 2.9 − 0.4 0.9
PRIME slot 2 −0.4 2.2 − 0.8 1.6

transfer function (Gendron & Léna 1994), which is converted into
a spatial transfer function by turning the temporal frequencies to
spatial frequencies using the wind-speed value. Higher wind-speed
values tend to introduce more spatial filtering and therefore decrease
the aliasing energy. Consequently, PRIME must boost gal in order
to match the PSF, as we observe in Fig. 12. Furthermore, gtt seems
to vary slightly with respect to r0 as well, although the trend
is not completely clear. We stress that in the V band the Strehl
ratio is about 2 per cent and the AO performance is dominated
by atmospheric residuals, particularly residual tip–tilt. This latter is
influenced by both the seeing and the turbulence velocity, especially
for those observations where the system was running at 300 Hz.
Fig. 8 illustrates that the PSF is elongated in the 45◦ direction,
certainly due to the combination of the turbulence velocity and AO
system servo-lag. In other words, gtt variations must be driven by
the temporal properties of atmospheric turbulence as well. More
generally, discrepancies around the r

−5/3
0 trends are trackers to

detect BTT structure changes across time. As we handle the AO
telemetry acquired unsynchronously with the imager frame, we
compensate for the atmospheric turbulence properties by scaling by
a multiplicative factor that applies to those covariance matrices, i.e.
we assume that their structures remain identical, only the amplitude
changes. PRIME will always retrieve the parameter set that provides
the best match with the observed PSF; in other words, these degrees
of freedom will absorb any variability of the covariance matrix
structure. If we want to use PRIME as a PSF-fitting facility for
PSF determination purposes, there is no absolute need to build the
PSF model from synchronous telemetry, as PRIME will manage to
restore the best PSF model for the observed data set. However, if one
cares about the physical meaning of retrieved parameters, we must
(i) refine the PSF model as accurately as possible by including
all physical effects (static aberrations, cophasing errors, WFS
optical gains, etc.) and (ii) confront a PSF model with synchronous
observations to mitigate temporal drifts of observing conditions that
could be absorbed into the parameter fitting as observed in Fig. 12.

To summarize PSF estimation performance, in Table 4 we report
SR and PSF FWHM estimation accuracy. We compare forward
PSF-R and PRIME: we highlight that (i) PRIME strongly unbiases
estimation of PSF metrics, although some improvement can be
pursued in the FWHM, by including the WFS noise model for
instance, and (ii) PRIME permits us to reduce the relative error in
the SR and FWHM on average by factors of 7 and 2, respectively.
Note that the standard deviation is also increased by the quite small
amount of data we have, the image noise that contaminates the
PSF calibration and the very poor seeing conditions. In this respect,
Table 4 provides the best results in a worst-case scenario.

In order to provide more confidence in the retrieval process, we
have built an a posteriori AO error breakdown to obtain SR values
to compare with the image measurements. We estimate the residual
error from

σ 2
ε = σ 2

ao + σ 2
tt + σ 2

⊥ + σ 2
noise, (23)

Figure 13. Residual wavefront error with respect to r0 calculated from ei-
ther the image SR or the AO telemetry and the PRIME-adjusted parameters.
Dashed lines give trends in r

−5/6
0 using the r0 estimates from PRIME.

where

(i) σao = √
gao × tr(CAO)/1377 is the tip–tilt excluded AO resid-

ual – this is assessed to 135 nm±10 nm over the full observation;
(ii) σtt = √

gtt × tr(CTT) – we have retrieved 190 nm ± 18 nm;
(iii) σ⊥ =

√
0.2(d/r0)5/3 is the DM fitting error, which reached

69 nm ± 5 nm;
(iv) σ noise is estimated on open loop slopes including tip–tilt and

was measured at the level of 46 nm ± 18 nm.

We present in Fig. 13 the residual wavefront error determined from
either the SR image or the error breakdown described above. Thanks
to PRIME, AO parameters estimates are constrained by the AO
telemetry and the PSF morphology as well. On top of the PSF
fitting, this gives more evidence that parameters found by PRIME
are connected to the system performance.

PRIME offers a new opportunity: instead of acquiring syn-
chronous AO control-loop data with science observations, one may
record AO telemetry from time to time, for a sufficient time to make
atmosphere characteristics converge, probably at least 30 s (Martin
et al. 2012). However, this requires we investigate a few questions,
which are as follows. (i) How frequently should we acquire AO data,
in other words how frequently does covariance function structure
change? (ii) Can we find proper descriptors (seeing, turbulence
velocity, telescope elevation) to track structure changes? (iii) Can
we enable accurate forward PSF-R by inferring what should be gao,
gtt, gal and r0 from contextual data (AO telemetry, external C2

n(h)
profilers, telescope data)? Providing insights into these questions
will be the next step of this work.

4 A PPLI CATI ON TO FAI NT STARS

So far, we have deployed PRIME on the on-axis bright star, with
very good conditions of S/N and an absence of crowding. However,
PRIME can provide accurate PSF in more challenging conditions,
where other alternatives are not feasible. In this section we aim to
test the PSF model calibration using off-axis stars, which are much
fainter (mV = 15–16 mag). One must consequently rely on a PSF-
fitting algorithm to recover the PSF morphology and this situation
is ideal to test PRIME capabilities in such a scheme. Besides this,
we have highlighted in Section 2.3.3 that the PSF is shift-invariant
across the field. In other words, the ground truth is given by the
on-axis PSF; the best performance PRIME can achieve in present
images is provided in Section 3.2. Nevertheless, in order to mitigate
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the noise propagation in our fitting procedure, we must regularize
the criterion presented in Eq. 20. We have followed the strategy
presented below.

(i) Step 1: PSF model parameters r0, gao, gtt, gal are calibrated
using off-axis stars #1 and #2 with different regularization strategies
presented in Section 4.1. We eventually obtain a calibrated 2D PSF
model.

(ii) Step 2: The resulting PSF model is used to retrieve the on-axis
star’s photometry and astrometry; the final accuracy depends on the
PSF fitting performance during step 1. Eventually, we assess a mean-
square error using equation (22). Thanks to the results presented in
Section 3.2, we analyse how the different regularization strategies
affect the PSF fitting residual and PSF parameter identification.

4.1 Regularization

We have tested two different regularization strategies.

(i) Bounds regularization. We minimize the criterion presented
in equation (20) by limiting the parameter space with strict bound-
aries, inside which the parameter probability distribution is uniform.
Bounds are defined relative to μ0, the solution we have retrieved in
Section 3.2:

JB (μ, γ,α) =
{

J (μ, γ,α) if ‖μ − μ0‖ ≤ σμ,

+∞ else,
(24)

where the constraint is component-wise, as μ includes several
parameters. Therefore, if bounds are set to 0 (no uncertainty), we
retrieve the PSF we obtain in our first scenario in Section 3.2, where
we use the central star to adjust those parameters. By enlarging
bounds around the optimal solution, we make the minimization
process more sensitive to the image noise and check how the solution
deviates from the optimal one.

(ii) Gaussian regularization. We assume that PSF parameters
follow a Gaussian distribution N (μ0, σμ), where μ0 is the prior on
parameters and σ 2

μ the distribution variance. In order to regularize
the problem, we update the criterion given in equation (20) by
adding a regularization term to the PSF parameters as follows:

JG(μ, γ,α) = J (μ, γ,α) + �

nμ∑
i=1

∥∥∥∥μ − μ0

σμ

∥∥∥∥2

, (25)

where nμ is the number of adjusted PSF parameters (we have nμ =
4 in the present analysis) and � a scalar factor that weights the
contribution of the regularization term. The present formulation
is convenient to separate the parameter precision σμ, which is
identified from calibration (optical gains) of an estimation process
(r0), from �, which is a user-defined factor that reflects how much
we are confident in μ0 a priori by balancing the weight between the
data-based and regularization terms. For instance, if one applies
PRIME over successive frames, σμ will be delivered for each
processed frame as a confidence interval on retrieved parameters that
depends on the sole frame only. Thus, we obtain a new μ0 vector for
the next frame and, depending how correlated those two frames are,
the user may decide to give more weight to the regularization (boost
�) or not. Potentially, we can have very precise model-fitting, but
the parameters found will not necessarily represent the PSF when
treating another frame acquired a few minutes later due to observing
condition variations. On the contrary, we could also have badly
imprecise estimates due to poor S/N conditions, but stationarity of
the observing conditions. Having both parameters σμ and � allows
us to discriminate between PSF parameter precision and accuracy.

However, one must understand that, regardless of the regularization,
we are going to bias the PSF fitting results by forcing the solution
space to stick around μ0. The bounds regularization means that the
parameter probability density function (pdf) is a gate function and
is relevant when we have physical constraints to limit the solution
space. Thus, we expect this strategy to propagate more noise, i.e.
the PSF fitting residual will degrade with respect to the pdf width.
On top of that, the pdf is uniform over the space of acceptable
solutions, which means that we do not specifically trust or give
more weight to the initial set that feeds PRIME for instantiating the
first iteration. Gaussian regularization differs on this point: we must
have some confidence in the prior meaningfulness to choose such a
regularization.
Our purpose is now to identify how PRIME behaves with respect to
(i) the regularization strategy, either a uniform pdf over a bounded
space or a Gaussian, and (ii) the degrees of freedom of each of
those, i.e. σμ (both of them) and � (Gaussian pdf only).

4.2 PSF fitting results

First, we have tried PRIME without any regularization, which led to
an inefficient reconstruction with a mean residual error (equation 22)
of 3 per cent, while we obtained about 0.1 per cent in Section 3.2.
The r0 and gal parameter estimates were particularly biased and
physically meaningless, which calls for regularization. In order
to provide concise and readable results, we have not set each
parameter’s precision independently of the others. Instead, we have
made σμ vary from 0–90 per cent, relative to μ0. Each parameter
pdf width will be absolutely different, but will have the same relative
width regarding the optimal solution. Eventually, this methodology
will permit us to define which overall parameter precision is required
to achieve a given accuracy in the PSF. Also, for the Gaussian
regularization, we have also tested different values of � (0.001 up
to 0.1). The prior μ0 in equation (25) has been set to the optimal
solution found from PRIME in the on-axis image in Section 3.2.
Therefore, if we choose too large a value for �, the criterion in
equation (25) will be dominated by the regularization term and
the solution will be very close to μ0, i.e. we must retrieve the
residual error we obtained in Section 3.2. In contrast, if � is too low,
the regularization term has no impact on the solution and we will
propagate too much noise in the solution and obtain meaningless
results. The point of this analysis is then to identify which range of
� must be envisioned to improve results compared with the bounds
regularization.

We present the residual error in Fig. 14. Residual errors are
calculated by comparing the reconstructed PSF (step 2) with the
on-axis image using equation (22). As expected, a wider pdf (σμ

larger) results in more noise propagation and worse PSF fitting
results. Using bounds regularization, the residual error grows quite
linearly with respect to σμ and we may be able to maintain the
residual error below 1 per cent by containing parameters within
40 per cent from the ground truth, while Gaussian regularization
allows us to control the slope of this degradation. According to
Fig. 12, PSF parameters may vary significantly across time, but
variations seem to remain within 50 per cent for this night. If AO
telemetry is systematically available with synchronous focal-plane
images, these variations should be controlled, as the telemetry
signal scales directly with the real r0 values. In other words, the
precision we must consider is given by the standard deviation of
parameter estimates from the r

−5/3
0 trends presented in Fig. 12,

which is 10–20 per cent, meaning that PRIME is able to maintain
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Figure 14. Mean-square error as calculated in equation (22) as a function of
σμ for several regularization strategies. Errors bars are given by averaging
values over the first 12 ZIMPOL frames.

Figure 15. On-axis PSF fitting residual obtained after calibration using
off-axis stars and displayed on a hyperbolic arcsin (model underestimation
in black) scale. From left to right: σμ = 1, 5 10, 20, 30 and 40 per cent.
From top to bottom: bounds regularization, Gaussian regularization with
� = 0.002, 0.005 and 0.01.

the mean residual error below 0.5 per cent if synchronous telemetry
is provided.

Fig. 15 illustrates how the PSF fitting degrades with respect to
σμ and �. We notice that the inner AO-corrected region is first
overestimated for low values of σμ. For larger values, the residual
is mostly dominated by the non-corrected spatial frequencies, with
an underestimation of the PSF wings (overestimation of r0) and an
overestimation of the background in equation (20). In other words,
adjusted parameters degrade in the opposite direction due to noise
confusion, in such a way that the total energy (or flux) is relatively
well conserved, while the PSF structure is not.

Figs 16 and 17 present the SR and FWHM estimation error as a
function of σμ and �. We retrieve similar behaviour compared
with what we have shown in Fig. 14. The FWHM estimate is
getting worse, but remains within 10 per cent as long as the
initial guess remains within 40 per cent of the truth. The SR error
evolves differently; first it increases and finally it drops down to
a negative value: there is a switch that occurs at a σμ value that
depends on �. Below this threshold, noise propagation through
the criterion-solving shifts the solution from the ground truth, but
without modifying the PSF morphology significantly (the FWHM is
reconstructed at a few per cent). Above this threshold value, PRIME

Figure 16. Strehl-ratio error with respect to σμ using different regulariza-
tion strategies.

Figure 17. FWHM error with respect to σμ using different regularization
strategies.

seems to fall into a different local minimum by injecting too much
energy into the background and not enough in the PSF wings.
However, the SR error stays below 10 per cent despite the PSF
structure being badly reconstructed, which advocates exploration
of alternative metrics for PSF-fitting quality assessment.

Previous conclusions are confirmed when looking at Fig. 18,
which shows the retrieved parameters as a function of σμ and re-
garding several regularization strategies. The bounds regularization
shows that gal and gtt degrade linearly with respect to σμ, while the
error on r0 varies quadratically. This observation reinforces the idea
that PRIME confuses the energy between the background and the
PSF wings, which speeds up r0 estimate degradation. In contrast, gao

remains well-estimated to within 10 per cent, as it refers to the AO-
corrected area, where the S/N is maximal. This is also reassuring,
to confirm that the gao estimation is decoupled from other PSF
parameters.

Regarding PSF fitting and parameter estimation results, we
distinguish three different regimes.

(i) � < 0.002: the problem is under-regularized and the fitting
residual error increases with respect to σμ rapidly up to the
worse-case scenario (no regularization). This configuration must
be avoided in favour of bounds regularization if μ0 is not trusted or
if we only know physical constraints to bound the solution space.

(ii) 0.002 ≤ � < 0.01: there is a good balance between data-
based and regularization terms and this configuration should be
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Figure 18. Estimation error in PSF model parameters obtained with PRIME
on off-axis stars with respect to σμ using different regularization strategies:
Top: bounds regularization. Bottom: Gaussian regularization with � = 0.005.

preferred to the bounds regularization, as long as we have some
confidence in the priors μ0, i.e. we have some evidence that the
solution must be close to μ0. Such confidence can be achieved
by processing successive frames or using models of spatial PSF
variations to perform the fitting on good S/N PSF first before treating
fainter star scenarios.

(iii) 0.01 ≤ �: the problem is over-regularized and the adjusted
parameters remain very close to μ0, i.e. the solution is highly biased.
This configuration should only serve to update a solution that has
been determined over an image highly correlated with the current
processed one.

Regarding these results, we may envision performing the PSF
fitting with PRIME in a sequential manner: (i) use bright PSFs
in the field to constrain the model with bounds regularization and
obtain a preliminary set of parameters with associated precision,
(ii) redo this process starting from the retrieved parameters as an
initial guess and a prior μ0 with a Gaussian regularization and � =
0.002 and (iii) repeat step (ii) with larger and larger � value until
reaching the best precision for the parameters. On top of that, we
can apply step (ii) to fainter stars to refine the model sequentially
using more information without propagating too much noise.

5 C O N C L U S I O N

In this article, we presented an innovative application of the PSF-R
method to SPHERE/ZIMPOL data. This is a crucial experiment,
since the diffraction limit achieved in the optical with a 10-m class
telescope is comparable with ExtremelyLarge Telescopes (ELTs)

in the near-infrared. Thus, this kind of study paves the road for
exploiting ELTs data reduction.

We have first described how we perform classical PSF-R us-
ing SPHERE control-loop data. Unfortunately, the current PSF-R
framework does not allow us to achieve proper and stable PSF
estimation. In order for improvement, we need to push our AO
system understanding deeply through several calibrations, thus
demanding a substantial amount of observing and/or technical
time.

To overcome this problem, we have introduced the PRIME
approach, which is a PSF-fitting technique that inherits from the
PSF-R framework to calibrate the PSF model. This is initially
instantiated from the AO control-loop data. We have shown that
PRIME allows us to achieve very accurate PSF modelling at better
than 0.1 per cent of the mean residual, with AO telemetry unsyn-
chronized from scientific images; acquiring 30 s of AO data every
hour was sufficient for obtaining excellent results with PRIME.

Finally, we have tested PRIME over faint stars to compare
the calibrated PSF with the ground truth given by the on-axis
image. This was possible since, as verified using stereo SCIDAR
data, anisoplanatism does not contribute significantly to the PSF
morphology. In order to enable meaningful PSF estimation in such
severe S/N conditions, we have presented two different strategies to
regularize the minimization criterion, using either a truncated but
uniform pdf or a Gaussian one. PRIME ensures we obtain 1 per cent
of mean residual error in the PSF by bounding the solution space
within 40 per cent of the optimal solution. Gaussian regularization
allows us to increase estimate accuracy up to the optimal achievable
performance, depending on how much we trust PSF parameter
priors. Gaussian regularization allows the user to adapt the data-
based/regularization terms balance in the minimization criterion,
depending on how much priors on parameters are trusted. Fur-
thermore, thanks to the PSF-R framework, spatial PSF variations
can be modelled accurately, which offers alternative possibilities
for PSF-fitting problems: (1) use all external information we have
to define PSF parameter priors (stereo SCIDAR for instance); (2)
instantiate the PSF model calibration on available PSFs with good
S/N and poor crowding using a bounds regularization; (3) use the
retrieved information plus variation models to fit the PSF for fainter
stars using Gaussian regularization; (4) repeat steps (2) and (3) with
updated information on the PSF using Gaussian regularization until
reaching the minimal residual.

We plan to push this work further by collecting more sci-
ence observations, including in a crowded stellar field. When
a large sample of data sets is at our disposal, we will apply
statistical inference tools in order to capture how PSF model
parameters vary with respect to contextual data. This will en-
able forward PSF estimation in the case of a lack of point
sources in the field and enhance PRIME efficiency for stellar field
applications.

The next step will be to plug PRIME within a standard image
analysis pipeline, in order to combine the strengths of both PSF-
R techniques and multi-source image processing tools. This is a
necessary step in order to allow high diffusion of the use of PSF-R,
which is nowadays confined only to a very few experts.
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