

 University of Groningen

Learning Multidimensional Projections with Neural Networks
Espadoto, Mateus

DOI:
10.33612/diss.166005659

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Espadoto, M. (2021). Learning Multidimensional Projections with Neural Networks. University of Groningen.
https://doi.org/10.33612/diss.166005659

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://doi.org/10.33612/diss.166005659
https://research.rug.nl/en/publications/4729af6e-cb67-4be5-a502-9c5e46006c75
https://doi.org/10.33612/diss.166005659

L E A R N I N G M U L T I D I M E N S I O N A L P R O J E C T I O N S W I T H N E U R A L N E T W O R K S

mateus espadoto

Cover: MNIST dataset projected using the Self-Supervised Network Projection technique
and ground truth labels.

Learning Multidimensional Projections with Neural Networks

Mateus Espadoto
PhD Thesis

This thesis is the result of a joint PhD between the University of São Paulo and the
University of Groningen.

Universidade de São Paulo

Learning Multidimensional Projections with
Neural Networks

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magni�cus Prof. C. Wijmenga
and in accordance with

the decision by the College of Deans,
and

to obtain the degree of PhD at the
University of São Paulo
on the authority of the

Rector Magni�cus Prof. V. Agopyan.

Double PhD Degree

This thesis will be defended in public on

Friday 16 April 2021 at 14.30 hours

by

Mateus Espadoto

born on July 17th, 1980
in São Paulo, Brazil

Supervisors
Prof. Alexandru Cristian Telea
Prof. Nina Sumiko Tomita Hirata

Assessment committee
Prof. Nicolai Petkov
Prof. Michael Biehl
Prof. Joao Luiz Dihl Comba
Prof. Roberto Marcondes Cesar Jr.

“We are here to laugh at the odds and live our lives so well that
Death will tremble to take us.”

— Charles Bukowski

v

A B S T R A C T

Understanding data is essential in our modern world. There are many tools to help one
understand data, and visualization tools occupy a prominent role in this spectrum. How-
ever, as we are �ooded with ever more complicated data, the challenges and demands
posed on visualization tools keep increasing.

This thesis looks at the particular case of multidimensional data, which consists of
(large) collections of observations, each described by tens up to thousands of indepen-
dent measurements, or dimensions. Multidimensional projection techniques, also known
as dimensionality reduction techniques, are a key visualization tool for understanding
such data. They aim to present the high-dimensional data by means of 2D or 3D scatter-
plots, and help data analysts uncover patterns in the data which would not be possible
otherwise. In particular, projections provide the ability of visualizing how data observa-
tions relate to each other in a dataset. This can have many uses, such as identifying if
and how observations are grouped, how close those data groups are in data space, and
if those groups are tight or spread out, to name just a few. Over a span of more than
a hundred years many projection techniques were developed, with new techniques cur-
rently under development. However, the problem of dimensionality reduction is far from
solved – there is no ‘perfect’ projection method out there. Also, the related problem of
evaluating projections is unsolved, since there are no single, clear-cut criteria, that state
unequivocally what is a good projection.

In this thesis, we extend the current state-of-the-art on dimensionality reduction along
three main directions, as follows.

First, we provide a quantitative benchmark to assess the quality of projection meth-
ods. Our benchmark surpasses all similar attempts we are aware of to date in terms of
the number of evaluated techniques, tested datasets, quality metrics used, and parame-
ter combinations studied. This provides us with a clear landscape of the area, and brings
important insights over how good are the existing techniques and evaluation metrics.
Our benchmark also o�ers a detailed, concrete, and quantitative methodology for prac-
titioners to choose optimal projections based on the concerns they want to satisfy in
practice.

Secondly, we revisit a research area that has not developed much since Self-Organizing
Maps emerged in the 1980’s: The use of neural networks for multidimensional projec-
tions. We show how neural networks can be used to create projections that surpass
existing techniques in terms of scalability, out-of-sample capability, cluster separation,
inverse mapping, and ease of use.

Last but not least, we propose several novel applications of multidimensional projec-
tions that highlight their importance as tools for high-dimensional data analysis, with a
focus on understanding and improving the behavior of classi�er models and optimiza-
tion problem solvers.

vii

S A M E N VAT T I N G

Het begrijpen van gegevens is essentieel in onze moderne wereld. Visualisatiegereed-
schap neemt een prominente plaats in het spectrum van instrumenten die dit doel die-
nen. Als het vloed van gegevens van toenemende complexiteit groeit, wordt visualisatie-
gereedschap geconfronteerd met steeds toenemende eisen.

Dit proefschrift onderzoekt het geval van multidimensionale gegevens die bestaan uit
(grote) verzamelingen observaties, elk beschreven door tientallen tot duizenden onafhan-
kelijke metingen of dimensies. Multidimensionale projectietechnieken, ook bekend als
dimensionaliteitsreductietechnieken, zijn een vooraanstaand visualisatietype bedoeld
voor deze gegevens. Zij presenteren hoog-dimensionale gegevens als 2D of 3D scatter-
plots en helpen data-analysten in het detecteren van verborgen patronen in de data. Pro-
jecties helpen in het visualiseren van relaties tussen de observaties in de gegevens. Dit
ondersteunt taken zoals vinden van groepen van gerelateerde observaties, schatten van
afstanden tussen de groepen, en schatten van de spreiding binnen een groep. Vele projec-
tietechnieken zijn ontwikkeld over de laatste eeuw; nieuwe technieken worden steeds
aangeboden. Toch is het probleem van dimensionaliteitsreductie verre van opgelost – er
is geen ‘perfecte’ dergelijke techniek. Bovendien het gerelateerd probleem van evaluatie
van projecties is nog niet opgelost gezien het feit dat criteria voor een goede projectie
zijn nog niet uitgekristalliseerd.

Dit proefschrift breidt uit de bestaande kennis over dimensionaliteitsreductie in drie
richtingen, als volgt.

Ten eerste presenteren wij een benchmark voor het meten van de kwaliteit van projec-
tiemethodes. Deze benchmark overtreft alle dergelijke initiatieven die ons bekend zijn in
het aantal geëvalueerde technieken, geteste dataverzamelingen, en parametercombina-
ties under studie. De resultaten ervan geven een duidelijk beeld van het landschap van
projecties evenals hun kwaliteit en die van de bestaande metrieken. De benchmark geeft
ook een gedetailleerde, concrete, en kwantitatieve methodologie die gebruikers in staat
stelt om optimale projecties te kiezen in lijn met hun praktische eisen.

Ten tweede analyseren wij opnieuw het gebruik van neurale netwerken voor projec-
tiedoeleinden, een onderzoeksrichting dat niet veel verder ontwikkeld is sinds de komst
van Self-Organizing Maps in de jaren ’80 van de vorige eeuw. We laten zien hoe neu-
rale netwerken projecties kunnen creëren beter dan bestaande technieken betre�end
schaalbaarheid, out-of-sample eigenschappen, clusterscheiding, inverse mapping, en ge-
bruikersgemak.

Ten slotte presenteren wij een aantal toepassingen van multidimensionale projecties
die hun belang als instrumenten voor hoog-dimensionale data-analyse onderbouwt, met
nadruk op het begrijpen en verbeteren van het gedrag van classi�catiemodellen en op-
lossingsmethodes voor optimalisatieproblemen.

viii

R E S U M O

No mundo de hoje, compreender dados é essencial. Existem muitas ferramentas que nos
auxiliam na compreensão dos dados, e as ferramentas de visualização ocupam um lugar
proeminente neste espectro. No entanto, ao lidarmos com uma quantidade enorme de
dados cada vez mais complicados, os desa�os para as ferramentas de visualização são
cada vez maiores.

Esta tese analisa o caso particular de dados multivariados, que consistem de grandes
coleções de observações, cada uma descrita por dezenas ou até milhares de variáveis
independentes ou dimensões. As técnicas de Projeções Multidimensionais, também co-
nhecidas como técnicas de Redução de Dimensionalidade, são ferramentas chave para
a visualização e compreensão de dados deste tipo. Estas técnicas buscam mostrar dados
multivariados em grá�cos 2D ou 3D, o que pode ajudar analistas de dados a descobrir
padrões nos dados que não seriam descobertos de outra forma. Em particular, projeções
possibilitam que visualizemos como cada observação se relaciona às demais em um con-
junto de dados, o que pode ser útil para identi�car se e como diferentes observações se
agrupam, quão próximos os grupos estão uns dos outros, se estes grupos são mais ou
menos dispersos, e assim por diante. Durante mais de cem anos muitas técnicas foram
desenvolvidas, e ainda há técnicas sendo desenvolvidas atualmente. No entanto, o pro-
blema de redução de dimensionalidade está longe de ser resolvido – não há uma técnica
que possa ser considerada ‘perfeita’ em todas as situações. Além disso, o problema de
como avaliar se uma projeção é boa ou não também está em aberto, já que não existe
uma única métrica que seja capaz de apontar claramente o que é uma boa projeção.

Nesta tese, nós estendemos o estado da arte na área de redução de dimensionalidade
em três direções principais, a saber.

Em primeiro lugar, nós fornecemos um benchmark quantitativo para veri�car a qua-
lidade das técnicas de projeção. Nosso benchmark avalia uma quantidade maior de téc-
nicas, bases de dados, conjuntos de parâmetros e métricas do que qualquer outro ben-
chmark conhecido por nós neste momento. Isto nos dá uma visão clara da área, e traz
insights importantes sobre o quão boas são as técnicas e métricas existentes. Nosso ben-
chmark também oferece uma metodologia concreta e detalhada, que pode ser utilizada
por usuários que desejam escolher técnicas ótimas para os seus próprios problemas, de
modo a satisfazer seus requisitos práticos.

Em segundo lugar, nós revisitamos uma área de pesquisa que não se desenvolveu
muito desde o surgimento dos Mapas Auto-Organizáveis (Self-Organizing Maps) nos
anos 1980: o uso de redes neurais aplicadas a projeções multidimensionais. Nós mos-
tramos como redes neurais podem ser utilizadas para criarmos projeções que são me-
lhores do que as existentes em termos de escalabilidade, capacidade de inferência e de
mapeamento inverso, separação de grupos, e ainda, que sejam simples de serem usadas.

Por último, nós apresentamos várias aplicações de projeções multidimensionais que
mostram sua importância como ferramentas para análise de dados multivariados, com
foco na compreensão e melhoria do comportamento de classi�cadores de Machine Lear-
ning e de solvers para problemas de otimização.

ix

P U B L I C AT I O N S

This thesis is the result of the following publications:

• M. Espadoto, R. Martins, A. Kerren, N. S. T. Hirata, A. C. Telea. Towards a quanti-
tative survey of dimension reduction techniques [56]

• M. Espadoto, E. Vernier, A. C. Telea. Selecting and Sharing Multidimensional Pro-
jection Algorithms: A Practical View [60]

• M. Espadoto, N. S. T. Hirata, A. C. Telea. Deep Learning Multidimensional Projec-
tions [52]

• M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, R. Hirata Jr, A. C. Telea. Deep
Learning Inverse Multidimensional Projections [59]

• M. Espadoto, F. C. M. Rodrigues, A. C. Telea. Visual Analytics of Multidimensional
Projections for Constructing Classi�er Decision Boundary Maps1 [58]

• F. C. M. Rodrigues, M. Espadoto, R. Hirata Jr, A. C. Telea. Constructing and Visual-
izing High-Quality Classi�er Decision Boundary Maps [170]

• M. Espadoto, A. Falcão, N. S. T. Hirata, A. C. Telea. Improving Neural Network-based
Multidimensional Projections [51]

• M. Espadoto, N. S. T. Hirata, A. C. Telea. Self-Supervised Dimensionality Reduction
with Neural Networks and Pseudo-labeling [53]

• M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, A. C. Telea. OptMap: Using Dense
Maps for Visualizing Multidimensional Optimization Problems2 [54]

Other articles developed but still under revision at the moment of the writing include:

• T. S. Modrakowski, M. Espadoto, A. Falcão, N. S. T. Hirata, A. C. Telea. Improving
Deep Learning Projections by Neighborhood Analysis

• Z. Tian, X. Zhai, D. van Driel, M. Espadoto, A. C. Telea. Using Multiple Attribute-
Based Explanations of Multidimensional Projections to Explore High-Dimensional
Data

1 Best Paper Award at IVAPP 2019
2 Best Student Paper Award at IVAPP 2021

xi

C O N T E N T S

1 introduction 1
1.1 Multidimensional Projections 1
1.2 Objectives 3
1.3 Contributions 4
1.4 Organization 4

2 preliminaries 7
2.1 Notation 7
2.2 Quality metrics 7

2.2.1 Scalar metrics 8
2.2.2 Point-pair metrics 9
2.2.3 Local Metrics 10

2.3 Datasets 11

3 survey of existing techniqes 13
3.1 Related Work 14

3.1.1 Surveys from Machine Learning 15
3.1.2 Surveys from InfoVis 16
3.1.3 Summary of Current Surveys 18

3.2 Datasets 19
3.2.1 Dataset Traits 19
3.2.2 Chosing Datasets 21

3.3 Projection techniques 21
3.3.1 Projection Traits 22
3.3.2 Selected Projections 22

3.4 Quality metrics 24
3.5 Measurement method 26
3.6 Results 27
3.7 Discussion 36
3.8 Conclusion 37

4 survey methodology 39
4.1 Introduction 39
4.2 Background 40
4.3 Operational Work�ows 41

4.3.1 Practitioner work�ow 41
4.3.2 Researcher work�ow 44

4.4 Architecting an Evaluation Benchmark 45
4.5 Discussion 48
4.6 Conclusions 49

5 deep learning projections 51
5.1 Introduction 51
5.2 Related Work 52
5.3 Method 53
5.4 Results 55

xiii

contents

5.4.1 Training e�ort 56
5.4.2 Capturing the structure of datasets 57
5.4.3 Stability and out-of-sample data 61
5.4.4 Computational scalability 66
5.4.5 Projecting unrelated data 67

5.5 Discussion 68
5.6 Conclusion 72

6 improving deep learned projections 73
6.1 Introduction 73
6.2 Related Work 74
6.3 NNP Evaluation 76

6.3.1 Parameter space exploration 76
6.4 NNP Evaluation Results 78

6.4.1 Regularization 79
6.4.2 Optimizer 80
6.4.3 Noise-based data augmentation 80
6.4.4 Loss function 82
6.4.5 Network Architecture 82

6.5 Insights from Evaluation 82
6.6 Improving NNP by Neighborhood Analysis 85
6.7 KNNP Evaluation 88

6.7.1 Quality on training data 89
6.7.2 Quality on testing data 90
6.7.3 Quality as function of training set size 90
6.7.4 Computational scalability 90
6.7.5 Projection scatterplots 91

6.8 Discussion and conclusions 92

7 deep learning inverse projections 95
7.1 Introduction 95
7.2 Method 95
7.3 Results 96

7.3.1 Scalability in training and inference 97
7.3.2 Quantitative Assessment of Quality 97
7.3.3 Qualitative Assessment of Quality 98

7.4 Discussion and Conclusion 101

8 classifier decision boundary maps 103
8.1 Introduction 103
8.2 Background 104

8.2.1 Preliminaries 104
8.2.2 Decision Boundary Maps 104

8.3 Experiment Setup 106
8.4 Analysis of Evaluation Results 108

8.4.1 Phase 1: Picking the Best Projections 109
8.4.2 Phase 2: Re�ned Insights on Data 110

8.5 Dense Map Filtering 113
8.6 Distance-Enriched Dense Maps 115

8.6.1 Image-Based Distance Estimation 116
8.6.2 Nearest-Neighbor-Based Distance Estimation 117

xiv

contents

8.6.3 Adversarial Based Distance Estimation 117
8.6.4 Visualizing Boundary Proximities 119

8.7 Discussion 122
8.8 Conclusions 124

9 visualizing optimization problems 127
9.1 Introduction 127
9.2 Background 128

9.2.1 Optimization 128
9.2.2 Visualization 129

9.3 Method 130
9.4 Results 131

9.4.1 Ground-Truth Functions 131
9.4.2 Unconstrained Problems 132
9.4.3 Constrained Problems 133
9.4.4 Performance 134

9.5 Discussion 134
9.6 Conclusion 136

10 self-supervised network projection 139
10.1 Introduction 139
10.2 Background 140
10.3 Method 140
10.4 Results 141

10.4.1 Quality: Synthetic Datasets 143
10.4.2 Quality: Real-World Datasets 143
10.4.3 Computational Scalability 145
10.4.4 Inverse Projection 145
10.4.5 Data clustering 145
10.4.6 Implementation details 146

10.5 Discussion 146
10.6 Conclusion 147

11 conclusions 149

a appendix: implementation details 153
a.1 Survey 153
a.2 NNP 153
a.3 SSNP 153
a.4 Classi�er Decision Boundary Maps 154
a.5 OptMap 154

b appendix: hyperparameter search space 155
b.1 Survey 155
b.2 NNP 156

c appendix: measurements from experiments 159
c.1 NNP 159

bibliography 163

acknowledgments 177

xv

1I N T R O D U C T I O N

Data Visualization is the �eld of Computer Science concerned with the visual presenta-
tion of data with the use of computational techniques. As a �eld, it can be divided into
the two main sub�elds of Scienti�c Visualization (SciVis) and Information Visualization
(InfoVis). Scienti�c Visualization can be de�ned as “the use of computers or techniques for
comprehending data or to extract knowledge from the results of simulations, computations
or measurements”, according to [137]. It can be seen also as a set of techniques used to
present data commonly related to physical phenomena or simulations thereof in areas
such as Engineering, Physics, Geosciences, Medicine, among others. This type of data
typically has a spatial location, i.e., represents measurements associated with some po-
sitions in space. As such, this data is most naturally visualized in its de�nition space,
which is typically 2D or 3D. Information Visualization is the �eld concerned with the
visual presentation of abstract data in a way that allows for it to be better understood.
There are di�erent but complementary de�nitions by authors in the literature, such as
“the depiction of information using spatial of graphical representations, to facilitate com-
parison, pattern recognition, change detection, and other cognitive skills by making use of
the visual system”, by [84], or “the representation and presentation of data that makes use
of our visual perception abilities in order to amplify cognition”, by [103]. By abstract data,
we mean here all data that does not have a direct spatial association, in contrast with
the data typically used in Scienti�c Visualization. InfoVis data thus ranges broader than
SciVis data, including spreadsheets, tables, relational databases, and graphs.

Among the many existing challenges in InfoVis, an important one is the visualization
of multidimensional or high-dimensional data. Simply put, these are datasets where ev-
ery observation consists of many measurements, the latter being also called variables, at-
tributes, or dimensions. The quali�cative ‘many’ is here important: When such a dataset
has two to four such dimensions, one can readily use SciVis methods to visualize it; the
fourth dimension, if present, can be mapped to time by e.g. animation techniques. When
the dimension count is slightly larger, e.g. under roughly 10, one can still use SciVis meth-
ods, by generating a set of so-called ‘small multiples’, i.e., several identically-designed
visualizations which show, in turn, subsets of the available dimensions. However, when
the dimension count exceeds 10, such approaches do not scale. This causes serious chal-
lenges for datasets that have hundreds up to thousands of dimensions, such as frequent
nowadays in data science and machine learning applications. The InfoVis community
has proposed several techniques to address the challenge of high-dimensional data visu-
alization, such as glyphs [226], parallel coordinate plots [94], table lenses [164, 202], scat-
terplot matrices [16], dimensionality reduction techniques [56, 148], and multiple views
linking the above visualization types [28].

1.1 multidimensional projections

In this thesis, we focus on dimensionality reduction (DR) techniques, also called multi-
dimensional projections. We prefer, and shall use, the terms multidimensional projection
or simply projection because to us they convey a more generic meaning of taking data
from one space to another, regardless of the number of dimensions in each space, which
cannot be said of the term dimensionality reduction, which implies a direction, from

1

introduction

larger to smaller dimensionality. Compared to the other high-dimensional visualization
techniques, projections have several important advantages:

• They scale far better than all other comparable visualization techniques in terms
of the visual space needed to depict both dimensions and observations. Indeed, pro-
jections do not require additional visual space for additional dimensions, which
makes them directly usable for datasets with thousands, and in theory, an unlim-
ited number of, dimensions. Separately, every observation is encoded by a single
point in a projection. This is the minimal amount of screen space one can use to
encode an observation. Both these properties of projections make them very suit-
able for visualizing ‘big data’ collections of millions of observations and hundreds
of dimensions or more on a single computer screen;

• They are simple to use: Whereas other high-dimensional visualization techniques
require the user to perform various interactions to e.g. sort or group dimensions
or (re)arrange separate views in a small multiple set-up, projections fundamen-
tally only need an input dataset to create their visual output. Interaction can still
bring added value, but is not a prerequisite of the method. This simpli�es their
use, thereby making them attractive for wide audiences;

• They require only basic graphics infrastructure: In the limit, displaying a projec-
tion requires only the means to show a 2D (color-coded) scatterplot. This works
well on virtually and graphical output display in existence, in contrast to more
sophisticated techniques which require rich 3D rendering, navigation, and inter-
action;

Projections are known since many decades, starting with the introduction and use
in computer science and data visualization of Principal Component Analysis (PCA) [97].
Since then, tens if not hundreds of di�erent projection techniques have been proposed.
These vary enormously, in many aspects, in their quest to render the high-dimensional
data in the ‘best’ way in a lower number of dimensions.

However, what means to render such data in the ‘best’ way? What is a ‘good’ projec-
tion? The answer to this question is elusive. A good projection can be de�ned in terms of
being able to preserve a certain aspect of the high-dimensional data it projects (examples
hereof are given in Chapter 2); or in terms of being robust to small-scale perturbations
in the input data – or, by extension hereof, being able to project very di�erent data in the
same way the original data was projected, thereby presenting the user a stable, trusted,
easy to interpret, way to understand the high-dimensional space [20, 124]; or, being com-
putationally scalable to (very) large datasets of many observations and/or dimensions;
or, being very simple to use in practice, having a few (ideally, no) free parameters to
tune; or, being readily available in open-source implementations in multiple program-
ming languages. All above requirements are important. However, no single projection
method satis�es them all, to our knowledge.

The proliferation of projection methods is, in our view, a signal to the fact that the
‘stakeholders’ involved therein could not, or did not, converge to a clear set of require-
ments of what a good projection method should entail. Part of this is inherent: Reducing
a (very) high-dimensional space to a low (typically, 2D or 3D, for the sake of direct vi-
sualization) space is not trivial and, as many examples showed [10, 11, 22, 200], will
create problems and interpretation errors for the user who views the low-dimensional
scatterplot aiming to gain insights in the high-dimensional data. Whereas such errors
have been studied [133], it is far from clear which errors are most critical for a certain
task regarding the data analysis. Part of the problem is a matter of history: Projections

2

1.2 objectives

have been developed at the crossroads of machine learning, data science, and informa-
tion visualization. These �elds have not always identical aims, so the promoted methods
could not satisfy the needs of users across all these �elds. Finally, part of the problem is
due to the size of the problem: Designing an ‘universal’ projection algorithm (or family
thereof) would require, or have required, investments and e�orts which are far beyond
what typical researcher groups in the involved areas could a�ord.

Still, the projection landscape has evolved impressively in the last decade. Two salient
highlights thereof are listed next (for an exhaustive list, we refer to Chapter 3).

The creation of t-SNE by [127] changed the landscape of DR techniques for visual-
ization, by providing unmatched visual cluster segregation – a requirement that most, if
not all, users, were asking for. Despite its wide adoption, t-SNE has several drawbacks: It
is slow for larger datasets; its hyperparameters are notoriously di�cult to properly tune
to achieve good visualizations; and it does not have out-of-sample capability – meaning,
it cannot project new data ‘along’ old, existing, data. Over the years many improve-
ments were proposed, such as the addition of out-of-sample support [124], which un-
fortunately does not have currently a practical implementation; acceleration by using
the Barnes-Hut algorithm [126], which was very successful and is used by most current
implementations; and the appearance of t-SNE variants, such as Dynamic t-SNE [166],
designed for time-dependent data; and Hierarchical SNE [158] and Approximated and
User and Steerable SNE (At-SNE) [159], which are variants that allow users to pick how
much detail they want, and therefore, establish a trade-o� between accuracy and speed.
Still, all these variants of t-SNE do not fully comply with the user requirements we listed
earlier above.

Even more recently, the Uniform Manifold Approximation and Projection tech-
nique [138] used a very di�erent theoretical approach than t-SNE, which in practice
produces results comparable in quality of cluster segregation to those of t-SNE, with
the added bene�ts of being much faster and having out-of-sample capability. However,
UMAP su�ers from the di�cult of tuning hyperparameters.

1.2 objectives

In the above, we outlined that projections are an established tool, of high value, for
visualizing high-dimensional data. However, they have several limitations concerning
aspects such as quality (evaluation), scalability, robustness/stability, ease of use, and ease
of usage.

The main objective of this thesis is to address as many of the above-mentioned limi-
tations as we can within our e�ort scope. We start with the simplest, and interestingly
enough not yet addressed question: What is the state of the art of projections today?
Putting it even more sharply: Which projection methods should a practitioner consider
to use in his or her �eld, given the speci�c constraints of that �eld? With this in mind,
we outline our �rst research question:

RQ1: How do current projection methods fare concerning quality, stability, and ease of
use? What can we teach the practitioner concerning the plethora of such methods available
nowadays?

As the reader possibly guesses, the answer to the above question will not single out
any projection method that outdoes its counterparts in all measured aspects. As such, the
question remains open: Can we do better, concerning projections, than existing state-of-

3

introduction

the-art, and if so, how? More precisely, we single out (again) the following aspects in
which we want to improve projections:

• Scalability: Few, or no, methods are capable of projecting large data (e.g., ≥ 1"
observations, ≥ 100 dimensions) time (e.g., seconds, something needed for inter-
active data exploration;

• Out-of-sample capability: Most existing projection methods are not parametric, i.e.,
they cannot project unseen data without re-running the algorithm from scratch;
simply put, when new data comes in, these methods create an entirely di�erent
projection as compared to the one of the original data. As such, users cannot ‘place
in’ new samples in the new projection around old samples. Their mental map is
lost, meaning, the added-value of the projection method is low;

• Inverse projection capability: Most projection methods cannot take points in 2-
dimensional space and project them into the original high-dimensional space. This
severely limits the use of projections to ‘only’ show an existing dataset. Reason-
ing outside this dataset is not possible. One cannot know what is ‘between’ the 2D
scatterplot points shown by a projection.

Summarizing the above, we outline our second research question:

RQ2: How can we create projection algorithms which can handle millions of observations
with hundreds of dimensions at interactive rates; project new, unseen data, in the same
way old data was projected; and tell users what data points belong to the empty spaces
between a projection’s scatterplot points?

As, again, the reader guesses, no existing projection method can do the above. Hence,
the challenge of creating such a method is a valid, and viable, one.

1.3 contributions

In this thesis, we approach the research questions RQ1 and RQ2 outlined above, with the
following contributions:

• A comprehensive, quantitative evaluation and survey of existing multidimen-
sional projection methods (answering RQ1);

• A method that enables the user to mimic existing projection methods with de-
sirable visual characteristics by using supervised learning, adding out-of-sample
and inverse projection capabilities and making it scalable to large datasets (�rst
answer to RQ2);

• A method that has the aforementioned capabilities, which can be trained by using
unsupervised learning (re�ned answer to RQ2);

• Several applications where multidimensional projections can help the process of
data analysis and pattern recognition (practical answer to RQ1 and RQ2).

1.4 organization

This thesis is organized into several chapters, which address the above research ques-
tions as follows:

4

1.4 organization

Chapter 2 presents preliminary information that will be used across the entire thesis,
such as notation and quality metrics for projections, among others.

Chapter 3 presents a quantitative evaluation and survey of the state-of-the-art in terms
of dimensionality reduction techniques, thereby targeting RQ1. Chapter 4 presents the
framework designed in order to obtain the results shown in Chapter 3, thereby providing
hands-on information on how we managed to complete the daunting evaluation of tens
of projection methods, datasets, and quality metrics, from a practical perspective. It also
serves to help interested readers that want to extend our evaluation work and/or design
alternative large-scale evaluations of projections.

Chapter 5 presents Neural Network Projection (NNP), a technique that uses neural
networks to learn how to mimic di�erent DR techniques, which provides, among other
things, the ability of doing fast inference for non-parametric techniques. This is our �rst
answer to RQ2. Chapter 6 presents k-Nearest Neighbor Network Projection (kNNP), a
neighborhood-based version of the NNP. This re�nes the proposal in Chapter 5 showing
increased quality metric values for the projection.

Chapter 7 presents an inverse projection technique based on neural networks called
NNInv. This completes our answer to RQ2 by making the mapping from the projection
space to the data space practical and computationally e�cient.

Chapters 8 and 9 present applications that use our proposed direct and inverse projec-
tion techniques for a variety of use cases. First, we show how we can use our proposals to
visualize decision maps of machine learning classi�ers (Ch. 8). Next, we show how those
techniques can be used to visually explore multivariate optimization problems (Ch. 9).

Chapter 10 puts together ideas from previous chapters and re�nes the strive to creat-
ing good-quality projections by presenting Self-Supervised Network Projection (SSNP),
an approach based on autoencoders and clustering algorithms that improves the results
generated by standard autoencoders, while being able to produce direct and inverse pro-
jections and to mimic the base clustering algorithm as well, all done by training the
algorithm only once.

Finally, Chapter 11 concludes the thesis, by outlining our conclusions and directions
for future work.

5

2P R E L I M I N A R I E S

In this chapter we present a detailed reference of notations, quality metrics and datasets
mentioned in this thesis.

2.1 notation

Let x = (G1, . . . , G=), G8 ∈ R, 1 ≤ 8 ≤ = be a =-dimensional (=D) real-valued observation
or sample, and let � = {x8 }, 1 ≤ 8 ≤ # be a =D dataset of # observations. Let x9 =

(G 91 , . . . , G
9

#
), 1 ≤ 9 ≤ = be the 9Cℎ feature vector of� . Thus,� can be seen as a table with

rows (observations) and = columns (features or dimensions). A projection technique,
or algorithm, is then a function

% : R= → R@, (2.1)

where @ � =, and typically @ = 2. % can also have ? so-called free parameters, or hy-
perparameters, c8 , 1 ≤ 8 ≤ ? , which can be tuned by the end user to obtain di�erent
trade-o�s of % . The projection % (x) of a sample x ∈ � is a @D point. Projecting an entire
dataset� yields a @D scatterplot, denoted next for brevity as % (�). We denote by cursive
letters the power set (set of all sets) of a given type, e.g., D is the set of all =D datasets � ,
and P is the set of all projection techniques % . The inverse of % , denoted %−1 (p), maps a
@D point p to the high-dimensional space R= . Note that we do not make – unless explic-
itly said – any assumption about what p is; it can be a point resulting from projecting
some sample in a dataset � , or any other point in R@ .

2.2 qality metrics

To capture the quality of a projection technique % , let

" : {(� ∈ D, % (�))} → R: (2.2)

be a metric that assigns to the pair formed by dataset � and its projection % (�) a scalar
(: = 1) or vector (: > 1) value. Let M be the set of all such metrics. Di�erent metrics
" capture di�erent desirable aspects of a projection % . The key one, that all techniques
consider, is preserving similarity of points when projecting from =D to @D. This is usu-
ally de�ned as Euclidean, geodesic, Procrustes, or cosine distance, or the probabilities
of a point to have the same neighbors in R= and R@ [29, 127]. Besides similarity, other
quality aspects include computational scalability, ease of use (vs parameter setting), and
robustness vs small input-data changes or hyperparameter changes. See Section 3.4 for
a further discussion about quality metrics.

Formally, to compare several projection techniques, we need to understand the dis-
tribution of all values of M over all values of D and P , i.e., how all quality metrics "
vary over all combinations of datasets and projection techniques. Fully computing this
distribution is practically impossible, since the spaces P and M have a very high cardi-
nality, while D is in�nite. All projection evaluation papers handle this by sampling D,
and P , and M to select a small subset of datasets � ⊂ D, techniques % ⊂ P , and metrics

7

preliminaries

" ⊂M to evaluate over. We call such a subset � = �×%×" a benchmark. An evaluation
of a benchmark is thus the multidimensional set of values

� = {" (�, % (�)) | (�, %,") ∈ �}. (2.3)

To evaluate the quality of the obtained projections, we used the metrics in Table 1,
which are well-known in the DR literature. As per Equation (2.2), we classify metrics
based on their output dimensionality (: value):

Table 1: Quality metrics. In the Range column, optimal value is marked in bold; for unbounded
metrics smaller values are better.

Metric De�nition Range Type

Trustworthiness ("C) 1 − 2
(2=−3 −1)

∑#
8=1

∑
9∈* ()

8

(A (8, 9) −) [0, 1] scalar

Continuity ("2) 1 − 2
(2=−3 −1)

∑#
8=1

∑
9∈+ ()

8

(Â (8, 9) −) [0, 1] scalar

Neighborhood hit ("=ℎ) 1
#

∑
y∈% (�)

y;
:
y:

[0, 1] scalar

Shepard diagram (() Scatterplot (‖x8 − x9 ‖, ‖% (x8) − % (x9) ‖), 1 ≤ 8 ≤ #, 8 ≠ 9 - point-pair

Shepard diagram correlation ("B) Spearman rank correlation of Shepard diagram [0, 1] scalar

Normalized Stress ("f)

∑
8 9 (D8 9 −d8 9)∑
8 9 D28 9

[0, 1] scalar

Average local error ("0 (8)) 1
#−1

∑
9≠8

����� Δ= (x8 ,x9)
max8,9 Δ= (x8 ,x9)

−
Δ@ (% (x8),% (x9))

max8,9 Δ@ (% (x8),% (x9))

����� [0, 1] local (per-point)

Mean squared error 1
#

∑#
8=1 ‖y8 − ŷ8 ‖

2 Unbounded scalar

Kullback-Leibler Divergence
∑

P (�);>6
(

P (�)
Q(% (�))

)
, Unbounded scalar

where P and Q denote probability distributions

Cross-entropy
∑

P (�);>6Q(% (�)) , Unbounded scalar
where P and Q denote probability distributions

LLE Reconstruction Error
∑
8 ‖% (�)8 −

∑
9 ,8 9 % (�) 9 ‖2 Unbounded scalar

Isomap Cost Function

‖ (D)− (d) ‖
= ,

Unbounded scalarwhere (�) = −0.5(� − 1
=)�

2 (� − 1
=)

and= is the number of observations

2.2.1 Scalar metrics

The simplest and most used quality metrics yield a scalar value (: = 1, Equation (2.2))
for a projection % (�). We choose the following scalar metrics, given that they are well
known, easily interpretable, and used in most DR papers. Table 1 lists their de�nitions.

Trustworthiness ("C) [208]: Measures the fraction of points in � that are also close in
% (�). "C tells how much one can trust that local patterns in a projection, e.g. clusters,
represent actual patterns in the data. In the de�nition (Table 1),* ()

8
is the set of points

that are among the nearest neighbors of point 8 in the 2D space but not among the
 nearest neighbors of point 8 in R= ; and A (8, 9) is the rank of the 2D point 9 in the
ordered-set of nearest neighbors of 8 in 2D. We choose = 7, in line with [128, 134];

Continuity ("2) [208]: Measures the fraction of close points in % (�) that are also close
in � . In the de�nition (Table 1), + ()

8
is the set of points that are among the nearest

neighbors of point 8 in R= but not among the nearest neighbors in 2D; and Â (8, 9) is
the rank of the R= point 9 in the ordered set of nearest neighbors of 8 in R= . As with

8

2.2 qality metrics

"C , we choose = 7;

Neighborhood Hit ("=ℎ) [154]: Measures how well-separable labeled data is in a
projection % (�), in a rotation-invariant fashion, from perfect separation ("=ℎ = 1) to
no separation ("=ℎ = 0). "=ℎ is de�ned as the number y;

:
of the : nearest neighbors of

a point y ∈ % (�), denoted by y: , that have the same label as y, averaged over % (�). In
this thesis we used : = 7, unless otherwise noted;

Shepard diagram correlation ("B) [95]: The Shepard diagram is a scatterplot of
the pairwise (Euclidean) distances between all points in % (�) vs the corresponding
distances in � . The closer the plot is to the main diagonal, the better overall distance
preservation is. Plot areas below, respectively above, the diagonal indicate distance
ranges for which false neighbors, respectively missing neighbors, occur. We quantita-
tively assess a Shepard diagram by computing its Spearman rank correlation "B . A
value of "B = 1 indicates a perfect (positive) correlation of distances;

Normalized stress ("f) [95]: Measures the di�erence between the distance matrices
of points in � and in % (�) respectively;

Mean squared error: Measures the mean squared error between � and the inverse of
the transformation computed by an inverse projection technique, i.e. %−1 (% (�));

Kullback-Leibler divergence [127]: Measures the di�erence between two probability
distributions created from � and % (�), which can be viewed as the relative entropy
between two distributions;

Cross entropy [138]: Similar to the Kullback-Leibler divergence, cross entropy also
measures the di�erence between two probability distributions created from � and % (�),
but as the total entropy between two distributions;

LLE Reconstruction Error [175]: Measures the reconstruction error of % (�) based on
LLE (Locally Linear Embedding) computed weights and cost function;

Isomap cost function [203]: Measures the Isomap cost function based on the distance
matrices D and d of points in � and in % (�) respectively.

The last �ve metrics (mean squared error, Kullback-Leibler divergence, cross entropy,
LLE reconstruction error and Isopam cost function) are used in this thesis only in speci�c
cases, and are referred to by (C where applicable.

2.2.2 Point-pair metrics

While simple to compute and interpret, scalar metrics average a projection’s quality
over all its points. Comparing DR techniques using only averages is either misleading
or not insightful enough. This was recognized by Joia et al. [95] when comparing
the distortions of (Euclidean) distances caused by several projection techniques, and
further elaborated by Nonato et al. [148]. For example, two projections may have similar
average distortions, but one may preserve small distances better than the other, which
makes it more suitable for, e.g., cluster analysis. To capture such aspects, point-pair
metrics measure properties of every point pair in the data (and projection result), as

9

preliminaries

follows.

Shepard diagram (() [95]: The Shepard diagram is a scatterplot of the pairwise (Eu-
clidean) distances between all points in % (�) vs the corresponding distances in � . The
closer the plot is to the main diagonal, the better overall distance preservation is. Plot
areas below, respectively above, the diagonal indicate distance ranges for which false
neighbors, respectively missing neighbors, occur. We quantitatively assess the quality of
a Shepard diagram by computing its Spearman rank correlation "B . A value of "B = 1
indicates a perfect (positive) correlation of distances.

Other point-pair metrics include the co-ranking matrix [114] of the pairwise (Eu-
clidean) distances between all points in % (�) vs corresponding distances in� . It is related
to the Shepard diagram as both their main diagonals can be interpreted similarly. The
co-ranking matrix allows analyzing false and missing neighbors. Yet, summarizing this
matrix to a value that is simple to interpret, as we did for the Shepard diagram using the
Spearman rank, is harder. Hence, we did not include this metric in our study.

2.2.3 Local Metrics

Both scalar and point-pair metrics are sample-agnostic, i.e., they do not tell how
projection errors correlate with speci�c samples or sample groups. Knowing this is
important to assess which patterns in a projection % (�) one can trust and which not.
Several so-called spatial distribution, visual, distortion, or local, metrics have been
proposed for this. These take di�erent values for each point in % (�), i.e. have : = # in
Equation (2.2), as follows.

Projection precision score [179]: This is the normalized distance between the two
:-dimensional vectors having as components Euclidean distances between a point
y ∈ % (�) and its nearest neighbors in� , respectively % (�), visualized by color-coding
% (�). Yet, this metric cannot di�erentiate false from missing neighbors;

Stretching and compression [9, 115]: These measure the increase (stretching),
respectively decrease (compression) of distances of a point y ∈ % (�) vs all other points
in % (�) vs the corresponding distances in � . These metrics are visualized using a
Voronoi-based partitioning of the 2D projection space which, as the authors note, may
lead to bias due to how Voronoi cells depend on small perturbations of their underlying
sites;

Average local error ("0) [133]: This metric assigns, for each point 8 , the averaged sum
"0 (8) of di�erences between its normalized distances in R= and R@ to all other points
9 in the dataset (Table 1). "0 (8) ranges in [0, 1]. Small values indicate good placement
of point 8 vs all other points. This metric has been adapted to also show neighborhood
preservation [134]. It is typically displayed using heat maps.

Local metrics show subtle di�erences between DR techniques. Yet, they need more
presentation space in contrast to scalar and point-pair metrics, and also need to be visu-
ally (manually) assessed.

10

2.3 datasets

2.3 datasets

For every dataset used in this thesis, we present here a short description:

Bank Marketing [143]: 45211 observations described with 17 attributes, extracted
from a direct marketing campaign of a Portuguese bank used to predict whether a client
will subscribe to a banking product or not;

CIFAR-10 and CIFAR-100 [105]: 60000 observations of animals and vehicles rendered
as 32x32-pixel color images and divided into 10 and 100 classes, respectively. We used
the DenseNet [91] CNN pre-trained on the ImageNet dataset to extract features of those
images, yielding 1920-element vectors for each image;

CNAE-9 [36]: 1080 observations of free text descriptions of Brazilian companies in the
National Classi�cation of Economic Activities, split in 9 classes based on economic
activity and described with 857 attributes;

COIL20 [146]: Columbia University Image Library, consisting of 1440 images of 20
types of common objects, described with 400 attributes;

Dogs vs Cats [49]: 25000 images of varying sizes divided into two classes (cats, dogs).
We used the Inception V3 [196] Convolutional Neural Network (CNN) pre-trained on
the ImageNet data set [45] to extract features of those images, yielding 2048-element
vectors for each image;

Epileptic Seizure Recognition [7]: 11500 observations from brain activity used to
detect epileptic seizures, described with 178 attributes;

Fashion MNIST [223]: 70000 images of 10 types of pieces of clothing, rendered as
28x28-pixel gray scale images, �attened to 784-element vectors;

Flickr Material Database [186]: 1000 images of common materials used for training
material recognition systems. We used the Inception Resnet V2 [35] Convolutional
Neural Network (CNN) pre-trained on the ImageNet data set [45] to extract features of
those images, yielding 1536-element vectors for each image;

HIVA [78] : 21339 observations divided into three classes, used to predict which
chemical compounds are active against HIV infection, described with 1617 attributes;

Hate Speech [44]: 24802 tweets labeled according to the type of o�ensive language
they contain, used for training hate speech detectors, described with 100 attributes;

Human Activity Recognition [8]: 10299 observations from 30 subjects performing
activities of daily living used for human activity recognition, described with 561
dimensions;

IMDB Movie Review [122]: 25000 movie reviews from which 700 attributes were
extracted using TF-IDF [176], a standard method in text processing;

11

preliminaries

MNIST [112]: 70000 images of handwritten digits from 0 to 9, rendered as 28x28-pixel
gray scale images, �attened to 784-element vectors;

ORL [177]: 400 gray scale face images from 40 di�erent subjects, described with 396
attributes;

Reuters Newswire Dataset [204]: 8432 observations of news report documents, from
which 5000 attributes were extracted using TF-IDF [176], a standard method in text
processing. This is a subset of the full dataset which contains data for the six most
frequent classes only;

SECOM [136]: 1567 observation from a semiconductor manufacturing process described
with 590 attributes, used for training failure detectors;

SMS Spam Collection [4]: 5574 observations from SMS labeled messages collected for
mobile phone spam research, used for training SMS spam detectors, described with 500
attributes;

Seismic Bumps [187]: 2584 observations, used to forecast seismic bumps in a coal
mine, described with 24 attributes;

Sentiment Labeled Sentences [104]: 3000 sentences, used for sentiment analysis,
described with 200 attributes;

Spambase [90]: 4601 observations of email classi�ed as spam or not spam, described
with 57 attributes;

Street View House Numbers [147]: 73257 images of digits 0 to 9 extracted from
Google Street View, rendered as 32x32 pixel color images, �attened to 3072-element
vectors;

Wisconsin Breast Cancer - Diagnostic [149]: 569 observations of a �ne needle
aspirate (FNA) of a breast mass, described with 32 attributes;

Apart from the above, in some experiments we use synthetic datasets, which are de-
tailed in the context where they appear.

12

3S U R V E Y O F E X I S T I N G T E C H N I Q U E S

Exploring high-dimensional data is central to many application domains such as
statistics, data science, machine learning (ML), and information visualization (InfoVis).
The main di�culty encountered in this task is the large size of such datasets, both
in the number of observations (also called samples) and measurements recorded per
observation (also called dimensions, features, variables, or attributes). As such, high-
dimensional visualization has become an important sub-�eld of Information Visualiza-
tion [89, 100, 119, 198].

Several techniques exist for high-dimensional data visualization, including
glyphs [226], parallel coordinate plots [94], table lenses [164, 202], scatterplot ma-
trices [16], dimensionality reduction methods [148], and multiple views linking the
above visualization types [28]. In this family, dimensionality reduction (DR) methods,
also called projections, have a particular place: compared to other techniques, they scale
much better in terms of both the number of samples and the number of dimensions they
can show on a given screen space area. As such, projections have become the tool of
choice for exploring data which has a high number of dimensions (tens up to hundreds)
and/or in applications where the individual identity of dimensions is less important, as
in e.g. machine learning applications. In the last decade, many projection techniques
have been proposed [128, 148, 192], of which t-SNE [127] is arguably one of the best
known and most adopted by applications.

This explosion of the number and variety of projection techniques and their
widespread use in many applications makes it hard for end users to understand how to
choose a good technique for a given use context. Several functional and non-functional
requirements must be considered, such as the ability of the projection to preserve cer-
tain patterns (e.g., neighbors, distances, or clusters); doing this for a given number of
dimensions (which can be low or very high); computational scalability in both obser-
vation and dimension counts; robustness to small changes in both data and algorithm
parameters, i.e., yielding similar results for small changes of these inputs; ease of use in
terms of number and complexity of settings asked from the end user; and available im-
plementations. Current literature addresses such questions by comparative studies (e.g.,
in papers that propose new projection techniques), best-practice studies, or survey pa-
pers. Yet, such approaches have limitations: Technique papers typically cover only a few
techniques; survey papers consider tens of techniques, but typically focus on high-level
and/or more theoretical aspects, and less on benchmarking many projection techniques
on combinations of datasets, technique parameter settings, and evaluating quality met-
rics. Best-practice studies fall somewhere in the middle.

This chapter presents a survey which aims to address the above-mentioned limita-
tions, as follows (see also Fig. 3.1). First, we overview related surveys in evaluation and
comparison of DR methods (Section 3.1). Based on these, we propose taxonomies cover-
ing the types of multidimensional datasets, projection techniques, and quality metrics
used to assess these. This way, we explicitly show which parts of the data, projection, and
quality spaces we next cover, and how. We model these taxonomies based on a number of
so-called traits of datasets, techniques, and metrics respectively (we use the term traits
to avoid confusion with dimensions). Next, we sample these spaces by 18 datasets, 44

This chapter is based on publication [56].

13

survey of existing techniqes

techniques, and 7 quality metrics respectively, to create a projection assessment bench-
mark. The respective taxonomies, their traits, and how these are sampled to yield our
benchmark are discussed in Sections 3.2, 3.3, and 3.4 respectively. We run this bench-
mark, using an optimization strategy to �nd the best projection-technique parameter
values for the considered quality metrics (Section 3.5). Finally, we present and discuss
the obtained measurements (Section 3.6). We outline several observations on the correla-
tions between dataset types, projection techniques, and quality aspects. Next, we select
a few special cases (points of interest in our data, projections, and quality space) and
examine these in more detail (Section 3.6). Section 3.7 discusses the main �ndings and
limitations of our survey. We conclude the chapter by outlining directions of future work
(Section 3.8).

We next discuss how existing surveys design evaluations �, i.e., which decisions they
take to sample the continuous spaces D, P , and M to evaluate �. We next propose ways
to extend this state of the art in Sections 3.2-3.4.

Benchmark

datasets

techniques

metrics

a) Datasets

b) Projection techniques

c) Quality metrics

relevant traits
all nD

datasets

selected

datasets D

• type

• dimensionality

• intrinsic dim. ratio

• sparsity ratio

sample

relevant traits

• linearity

• input type

• neighborhoods

• complexity

• out-of-sample

• ease of use

all

techniques

selected

techniques P

relevant traits

• neighborhood hit

• trustworthiness

• continuity

• stress

• Shepard diagram

• false neighbors

• missing neighbors

sc
al

ar
di

st
rib

ut
io

n

all

metrics

selected

metrics M

sample

sample

d) Measurement

parameter πi

optimization

parameter values
metric values,tric al

e) Analysis

general observations,

particular cases

_

_

_

D

P

M

Figure 3.1: Work�ow of survey outlining its main stages: Construction of benchmark of datasets (a),
projection techniques (b), and quality metrics (c) based on taxonomies of these spaces;
measurement of metric values using parameter optimization (d); and analysis of results
(e).

3.1 related work

In this section, we discuss related work on comparisons and evaluations of DR tech-
niques. We do not detail here all projection techniques and quality metrics (and related
papers) — this is done in context in Sections 3.3 and 3.4, respectively. Several surveys
that compare DR techniques for visualization (and sometimes beyond) have been pub-

14

3.1 related work

lished. We discuss these in chronological order. Since DR is at the crossroads of infovis
and ML, we group surveys accordingly (See Table 2).

3.1.1 Surveys from Machine Learning

Projection techniques are known and used since decades in ML [97, 206]. Fodor [65]
presents the earliest survey on projection techniques that we are aware of, which in-
cludes what are now considered modern methods, i.e., nonlinear methods, vector quan-
tization, and neural networks. This survey discusses 12 projection methods, including
linear (PCA, ICA, FA) and some nonlinear (SOM, VQ, and NN) methods. While the sur-
vey (brie�y) outlines the techniques underlying these methods, no actual side-by-side
evaluation or quality metrics are discussed.

Yin [227] proposes a survey for nonlinear DR, focusing on visualization, covering
seven projection methods. It also discusses variants of the stress metric for measuring
projection quality. Yet, only two simple datasets are evaluated, using only four of the
seven DR methods.

Maaten et al. [128] present, to our knowledge, the �rst systematic theoretical and prac-
tical comparison of PCA (linear) and other 13 (nonlinear) DR techniques. The theoretical
side discusses the number of parameters, computational and memory complexities, and
out-of-sample ability (whether a projection can handle new samples based on existing
projected ones). Practical comparison includes measuring three scalar metrics (trustwor-
thiness, continuity, and preservation of closest neighbors [208]) on 5 arti�cial and 5 real-
world datasets. Optimal parameters were found using grid search. However, how the
three quality metrics listed above were merged into a single quality (cost) function to
optimize by grid search is not detailed. Also, the survey does not cover many well-known
projection techniques (Table 2).

Bunte et al. [29] propose a theoretical framework to unify nine existing projection
techniques. These are compared in terms of how similarity between points in =D and
2D is de�ned; which error metric the projection % minimizes; and which additional con-
straints the methods have. The techniques are evaluated on three datasets ranging be-
tween a few thousand and 20K points having between 16 and 36 dimensions. However,
many existing projection techniques are not covered by this survey.

Sorzano et al. [192] present one of the most complete surveys from the viewpoint
of number of discussed DR techniques – around 30, including variants of some main
techniques. Yet, this survey has mainly a theoretical focus. Heuristics and cost functions
underlying the DR techniques are discussed, but practical evaluation involves only a
single image showing how LLE, HLLE, and ISO perform on a small synthetic dataset of
1K points in 3 dimensions. Measurements of quality metrics are not given.

Gisbrecht et al. [71] evaluate the suitability for data visualization of 10 DR techniques
on 3 synthetic datasets of 1K three-dimensional points each. Projection quality is de-
�ned as a single scalar value using the rank-based criteria in [114]. Compared to earlier
surveys, this one includes assessing computational scalability; and focuses on “popular”
projection techniques, as these are more likely to be used in practice, so understanding
how they perform is of increased added value. Yet, the evaluation con�dence is limited
by the very small number of tested datasets.

Cunningham et al. [40] present an excellent survey of linear DR techniques. This work
is very similar in goals and structure to Sorzano et al. [192], i.e., it aims to compare 15 DR
techniques and a few sub-variants thereof from theoretical and mathematical viewpoints.
No practical evaluations of quality metrics of existing techniques on datasets are given.
Also, nonlinear projections are not considered.

15

survey of existing techniqes

Finally, Xie et al. [224] survey DR techniques based on the Random Projection (RP)
method [43]. Such methods are arguably better at keeping data structure and/or reducing
computational e�ort when dealing with a high dimension count. About 25 RP variants
and a few sub-variants are discussed from a general perspective. This survey aims to
provide a “reading map” for the RP literature. Yet, no side-by-side evaluation of existing
methods on a benchmark, using speci�c quality metrics, is given.

3.1.2 Surveys from InfoVis

The infovis literature is rich in papers that evaluate projections. We next focus on key
papers that share the aim of our work (comparing projections from a quantitative per-
spective). Additional papers related to assessing projection quality are discussed later in
context.

Buja et al. [28] present one of the earliest surveys on projection usage to visualize mul-
tidimensional data. They propose a task-based taxonomy of interaction techniques for
analyzing high-dimensional data. Projections, implemented in the XGobi tool [195], are
just one of the considered techniques, in a linked-view set-up, to validate the proposed
interaction taxonomy. In a related work, Ho�man et al. [89] compare 15 visualization
techniques on two small datasets (hundreds of observations, 4 to 6 dimensions). Among
these, three are projection techniques (Sammon’s mapping (SAM), MDS, and Kohonen’s
self-organizing maps (SOM)). This survey does not contain any quantitative comparison
of the discussed techniques.

Engel et al. [50] propose “an introduction to dimension reduction from a visualization
point of view”. They propose a taxonomy that compares nine DR methods from the view-
point of their online behavior (out-of-sample ability) and computational complexity. Yet,
no actual evaluation of quality metrics on datasets is given. The survey strongly makes
the point that optimal parameter setting is an important but not well explored aspect
that in�uences the quality, and �nally usability, of projection techniques. We address
this aspect in our work (Section 3.5).

Kehrer et al. [100] present a survey of methods for visualization of so-called “multi-
faceted” scienti�c data. The survey overviews the context in which projection tech-
niques are used in the (much) broader scope of visual analysis of multidimensional,
multi-source, and multi-type datasets. Given this broad scope, details concerning the
evaluation of projection techniques are not given. Liu et al. [119] present a related sur-
vey focused more speci�cally on visualizing high-dimensional data. They propose a 14-
element taxonomy of techniques for high-dimensional visualization, of which dimen-
sionality reduction is one. They also brie�y introduce several projection quality metrics,
such as global stress, local stress [185], ranking discrepancy [114, 121], and the projection
precision score [179]. While seven concrete projection techniques are named, evaluating
these and/or the aforementioned metrics is not covered.

Close to our goals, Nonato and Aupetit [148] survey the use of projections in visual
analytics (VA) tasks. Their work, which is arguably together with [128] one of the most
extensive and detailed surveys in DR literature, propose a taxonomy where 28 projection
techniques are classi�ed along their input data types, linearity, �exibility for supervision
(label data), handling multilevel structures, locality, steerability, stability, and ability to
handle out-of-code (large) data. They also discuss 14 projection quality metrics. Yet, ac-
tual measurements of how techniques perform, with respect to metrics, on a representa-
tive benchmark of datasets, is not in the scope of this survey. Our work aims to �ll in this
gap. On the other side, [148] covers several other directions, most notably the relation
between DR techniques, caused distortions, VA tasks a�ected by distortions, and visual

16

3.1 related work

enrichments that can alleviate such problems. All these aspects are not in the scope of
our work.

Table 2: Projection techniques discussed in surveys on dimensionality reduction from machine
learning and Infovis. The last column corresponds to this chapter, and the last row shows
total number of techniques discussed in each survey. See Section 3.1.

Acronym Projection Full Name Fo
do

r[
65

]

H
o�

m
an

[8
9]

Yi
n[

22
7]

M
aa

te
n[

12
8]

Bu
nt

e[
29

]

En
ge

l[5
0]

So
rz

an
o[

19
2]

Cu
nn

in
gh

am
[4

0]

G
is

br
ec

ht
[7

1]

Li
u[

11
9]

X
ie

[2
24

]

N
on

at
o[

14
8]

O
ur

s

AE Autoencoder • •
CCA CCA (Canonical Correlations Analysis) •
CHL Chalmers •
CLM ClassiMap •

CuCA CCA (Curvilinear Component Analysis) •
DM Di�usion Maps • •

DML Distance Metric Learning •
EM Elastic Maps •
FA Factor Analysis • • • •
FD Force-Directed •

FMAP FastMap • •
FS Feature Selection •

GDA Generalized Discriminant Analysis •
GPLVM Gaussian Process Latent Variable Model •

GTM Generative Topographic Mapping • •
ICA Independent Component Analysis • • •

F-ICA FastICA •
NL-ICA Nonlinear ICA •
IDMAP IDMAP •

ISO Isomap • • • • • • • •
L-ISO Landmark Isomap •
KECA Kernel Entropy Component Analysis •
KLP Kelp •

LAMP LAMP • •
LDA Linear Discriminant Analysis • • • •
LE Laplacian Eigenmaps • • • • • •

LLC Locally Linear Coordination • •
LLE Locally Linear Embedding • • • • • • • • •

H-LLE Hessian LLE • •
M-LLE Modi�ed LLE •
LMNN Large-Margin Nearest Neighbor Metric •
LoCH Local Convex Hull •
LPP Locality Preserving Projection • •
LR Linear Regression •
LSP Least Square Projection • •

LTSA Local Tangent Space Alignment • • •
L-LTSA Linear Local Tangent Space Alignment •

MAF Maximum Autocorrelation Factors •
MC Manifold Charting • • •

MCA Multiple Correspondence Analysis •
MCML Maximally Collapsing Metric Learning •
MDS Metric Multidimensional Scaling • • • • • • • • • • •

L-MDS Landmark MDS •
MG-MDS Multi-Grid MDS •
N-MDS Nonmetric MDS (Kruskal) • • • •

ML Manifold Learning •
MVU Maximum Variance Unfolding • • • •

17

survey of existing techniqes

Table 2 continued

Acronym Projection Full Name Fo
do

r[
65

]

H
o�

m
an

[8
9]

Yi
n[

22
7]

M
aa

te
n[

12
8]

Bu
nt

e[
29

]

En
ge

l[5
0]

So
rz

an
o[

19
2]

Cu
nn

in
gh

am
[4

0]

G
is

br
ec

ht
[7

1]

Li
u[

11
9]

X
ie

[2
24

]

N
on

at
o[

14
8]

O
ur

s

FMVU Fast MVU

L-MVU Landmark MVU •
NeRV Neighborhood Retrieval Visualizer •

t-NeRV t-NeRV •
NMF Nonnegative Matrix Factorization • • •
NLM Nonlinear Mapping •
NN Neural Networks •
PBC Projection By Clustering •
PC Principal Curves • •

PCA Principal Component Analysis • • • • • • • • • • •
I-PCA Incremental PCA • •

K-PCA-P Kernel PCA (Polynomial) •
K-PCA-R Kernel PCA (RBF) • • • • • •
K-PCA-S Kernel PCA (Sigmoid) •
L-PCA Localized PCA •

NL-PCA Nonlinear PCA • • •
P-PCA Probabilistic PCA • •
R-PCA Robust PCA •
S-PCA Sparse PCA • •
PLMP Part-Linear Multidimensional Projection •
PLP Piecewise Laplacian-based Projection • •
PLSP Piecewise Least Square Projection •
PM Principal Manifolds •
PP Projection Pursuit •

RBF-MP RBF Multidimensional Projection •
RP Random Projections • •

G-RP Gaussian Random Projection •
S-RP Sparse Random Projection •
SAM Sammon Mapping •

R-SAM Rapid Sammon (Pekalska) • •
SDR Su�cient Dimensionality Reduction •
SFA Slow Feature Analysis •
SMA Smacof •
SNE Stochastic Neighborhood Embedding • •

T-SNE t-Dist. Stochastic Neighborhood Embedding • • • •
SOM Self-Organizing Maps • • • •

ViSOM ViSOM (Visualization-induced SOM) •
SPE Stochastic Proximity Embedding •

G-SVD Generalized SVD •
T-SVD Truncated SVD •

TF Tensor Factorization •
UMAP Uniform Manifold Approximation and Proj. •

VQ Vector Quantization • •

Total 12 6 7 14 9 9 19 14 8 6 4 28 44

3.1.3 Summary of Current Surveys

Given related work in ML and infovis, we can state that current surveys do not cover
several aspects of our goal. Table 3 overviews the number of evaluated DR techniques,
number of datasets used for evaluation, and number of evaluated metrics. We see that

18

3.2 datasets

Table 3: Summary of surveys on dimensionality reduction from both machine learning (ML) and
InfoVis (IV) listed in Table 2, with the respective number of DR techniques (discussed),
datasets (used in evaluation), and metrics (computed on the datasets). The last column
corresponds to this chapter. See Section 3.1.3.

Fo
do

r[
65

]

H
o�

m
an

[8
9]

Yi
n[

22
7]

M
aa

te
n[

12
8]

Bu
nt

e[
29

]

En
ge

l[5
0]

So
rz

an
o[

19
2]

Cu
nn

in
gh

am
[4

0]

G
is

br
ec

ht
[7

1]

Li
u[

11
9]

X
ie

[2
24

]

N
on

at
o[

14
8]

O
ur

s

Number of techniques 12 6 7 14 9 9 19 14 8 6 4 28 44

Number of datasets - 2 2 10 3 - 3 - 3 - 3 - 18

Number of metrics - - - 3 3 - - - 1 - 1 - 7

Field of survey ML IV ML ML ML IV ML ML ML, IV IV ML IV IV

some surveys include many techniques, but discuss these from a technical/mathematical
viewpoint rather than a practical one [40], or have a more educational, rather than evalu-
ational, purpose [192]. Visualization surveys cover much more than projections and thus
cannot include in-depth evaluations [50, 119]. Van der Maaten et al. [128] is the closest
survey to our aims. Following Fig. 3.1, we next extend this survey’s work�ow, by consid-
ering more DR techniques (44 in total), more datasets (18 in total), an explicit choice of
datasets to cover better the variability present in high-dimensional data spaces D, more
quality metrics (5 scalar metrics and 2 visual ones), and a study of how quality depends
on the projection algorithms’ parameters.

Table 2 lists the projection techniques considered in this survey as well as the abbre-
viations we use for them.

3.2 datasets

Our �rst step (Fig. 3.1a) is to sample the space D of existing multidimensional datasets to
get a representative collection � on which we evaluate projection techniques. For this,
we propose a set of traits to characterize datasets (Section 3.2.1). Binning these traits
enables us to construct � (Section 3.2.2).

3.2.1 Dataset Traits

The dataset traits we propose to describe D aim to capture aspects outlined as important
for the behavior of projection algorithms in earlier surveys [40, 128, 192]. We also choose
traits that are easy to understand and measure by non-specialist end-users (the audience
of our work), so they can easily use them when evaluating existing techniques vs their
own datasets. We propose the following �ve traits, along with sampling strategies that
create classes of elements in D along each trait:

Type g� : This trait has three categorical values, tabular, image, and text, in line with
the most frequent dataset types for which projections are used [148]. We de�ne three
classes: tables, images, and text, one per value of g� .

Size # : Number of samples in a dataset. We de�ne three classes: small (# ≤ 1000);
medium (1000 < # ≤ 3000); and large (# > 3000). These values are in line with typical
dataset sizes used in projection evaluation papers.

19

survey of existing techniqes

Dimensionality =: Number of dimensions of a dataset. We de�ne three classes: low
(= < 100); medium (100 ≤ = < 500); high (= ≥ 500). Typically, the lower the dimension-
ality = is, the easier is the job of a projection technique. While it can be argued that this
di�culty is chie�y a function of the intrinsic dimensionality (discussed next), typical
end users �rst get exposed to, and can easily evaluate, =; in contrast, evaluating the
intrinsic dimensionality is more involved, as one can de�ne it in di�erent ways, and
also this metric can take di�erent values in di�erent neighborhoods of the data. Hence,
we include = as a separate trait.

Intrinsic dimensionality ratio d= : The percentage of principal components (of the
total =), computed by PCA, needed to explain 95% of the data variance. Higher d= values
(in [0, 1]) typically tell that a projection % has di�culties in mapping the data to R@ . We
de�ne three classes: low (d= ≤ 0.1); medium (0.1 < d= ≤ 0.5); high (0.5 < d= ≤ 1).

Sparsity ratio W= : We de�ne W= = 1 − D
=#

, W= ∈ [0, 1], where D is the number of
non-zero data values, and =# is the total number of data values in a dataset (including
zero). Datasets have widely di�erent W= values: Text word vectors are very sparse;
tabular data with a few variables are very dense. Typically, the sparser the data, the
closer are the datapoints in high-dimensional space [18, 23], so a projection % has
di�culties in separating clusters in R@ . We de�ne three classes: dense (W= ≤ 0.2);
medium (0.2 < W= ≤ 0.8); and sparse (0.8 < W= ≤ 1).

Other traits are envisageable, such as considering data with (or without) missing val-
ues. We do not consider this speci�c trait, as it is hard to decide how to sample the ‘lack
of values’ of D in a good, exhaustive, manner. Similarly, other trait classes are possible,
e.g., transaction data, time-series data, or network data for the ‘type’ trait. We subsume
these to the ‘table’ class, as using too many classes would increase the (already large)
evaluation e�ort by several factors.

De�ning the above traits and their classes (bin values) is, of course, not a theoretically
ideal way to re�ect the distribution of all datasets in the space D. Ideally, we would know
which are the independent generative axes (traits) of this space, and how all datasets in
the real world distribute along these, and derive the trait-bins by following characteris-
tics of these distributions. However, since this information is not known, nor, we argue,
can be inferred (even with signi�cant e�ort), we take a di�erent path: We choose traits
based on data characteristics which are known, from previous surveys and DR papers,
to be relevant for the behavior of DR methods; and choose trait classes (bins) based on
the characteristics of datasets that end users will arguably meet when applying DR in
practice.

Sampling � from D along these �ve traits allows us to evaluate projection techniques
% on di�erent types of datasets, aiming to answer questions such as:

• How does % work for datasets of di�erent types? Is the type of a dataset important
when choosing %?

• How does % scale with the number of samples and/or dimensions of a dataset?

• How does % handle data with low/medium/high intrinsic dimensionality?

• How does % behave for sparse vs non-sparse data?

20

3.3 projection techniqes

3.2.2 Chosing Datasets

Sampling � from D along the trait bins introduced in Section 3.2.1 is challenging.
Taking one sample per combination of intervals would yield 35 = 243 di�erent datasets,
which would make the evaluation impractical, given that we next want to evaluate
several tens of techniques per sample. Also, �nding real world datasets for all these trait
values is hard. Separately, we need datasets having labeled data, given that some quality
metrics depend on this (Section 2.2). Hence, we chose to manually collect a smaller set
of 18 datasets which cover well (though not fully) the aforementioned space of trait
values, and we subsampled some of the larger datasets, to avoid having too long runs
or too many fails in the evaluation, since not all techniques are well suited to large data.
The selected datasets for this evaluation are introduced below, and are described in
detail in Section 2.3. Table 4 lists their trait values.

Table 4: Selected datasets � and their trait values. See Sections 2.3 and 3.2.2.
Dataset Type Size Size Dimensionality Dimensionality Intrinsic Intrinsic Sparsity Sparsity

(g�) (#) class (=) class dim. (d=) dim. class (W=) class

bank tables 2059 medium 63 low 0.0317 low 0.6963 medium

cifar10 images 3250 large 1024 high 0.0706 low 0.0024 dense

cnae9 text 1080 medium 856 high 0.3201 medium 0.9922 sparse

coil20 images 1440 medium 400 medium 0.0105 low 0.3858 medium

epileptic tables 5750 large 178 medium 0.2191 medium 0.0067 dense

fashion_mnist images 3000 medium 784 high 0.2385 medium 0.5021 medium

fmd images 997 small 1536 high 0.3073 medium 0.0095 dense

har tables 735 small 561 high 0.1194 medium 0.0001 dense

hatespeech text 3222 large 100 medium 0.6130 high 0.9993 sparse

hiva tables 3076 large 1617 high 0.2498 medium 0.9091 sparse

imdb text 3250 large 700 high 0.5790 high 0.9945 sparse

orl images 400 small 396 medium 0.0006 low 0.9000 sparse

secom tables 1567 medium 590 high 0.0102 low 0.2617 medium

seismic tables 646 small 24 low 0.0417 low 0.5883 medium

sentiment text 2748 medium 200 medium 0.8080 high 0.9936 sparse

sms text 836 small 500 medium 0.7240 high 0.9947 sparse

spambase text 4601 large 57 low 0.0351 low 0.7741 medium

svhn images 733 small 1024 high 0.8734 high 0.0001 dense

3.3 projection techniqes

Just as we sampled the space of multidimensional datasets D (Section 2.3), we must
now sample the space of projection techniques P (Fig. 3.1b). For this, we could use
one of the projection taxonomies in the literature. Yet, this poses problems: There is
so far no agreed ‘universal’ taxonomy. Di�erent taxonomies serve di�erent goals. For
instance, Van der Maaten et al. [128] organize techniques on the type of optimization
method they use; Cunningham et al. [40] follow a similar approach, but cover only linear
techniques; Sorzano et al. [192] classify methods on implementation aspects (statistics-
based, dictionary-based, and projection-based); Engel et al. [50] also classify methods on
implementation aspects (projection-based, graph-based, and manifold learning). Finally,
Nonato et al. [148] classify methods along eight traits (Section 3.1.2). We follow a similar
approach, but use di�erent traits, as explained next.

21

survey of existing techniqes

3.3.1 Projection Traits

We base our sampling % of the space of projection techniques P on eight traits that
re�ect what non-specialist users consider when choosing a technique, as follows.

Linearity: A projection is linear or nonlinear. Both types are well-covered in the
literature and equally important in practice. Linear projections are easy to understand
and use, but cannot capture well sample distributions spread on complex manifolds
in =D. Nonlinear projections are better for such datasets, but are harder to control
parameter-wise;

Input type: A projection % reads either a distance matrix � = (3 (x8 , x9)), 1 ≤ 8 ≤ # ,
1 ≤ 9 ≤ # , where 3 is a dissimilarity function over D, or the set � = {x8 } of
high-dimensional samples themselves. When samples are available, one can always
derive a distance matrix from them, but not conversely;

Neighborhood: A projection % claims to preserve local or global neighborhoods.
Local-neighborhood methods try to preserve distances between a point and its (close)
neighbors in � , which may yield better cluster separation, but lose the meaning
of distances between clusters in the projected space [127]. Global methods try to
preserve all-point-pair distances, which may result in more faithful projections of the
high-dimensional space, but show cluster separation less well [97];

Ease of use: Number of free parameters (hyperparameters) that % exposes to the end
user. More parameters give more �exibility, but �nding optimal settings is harder;

Computational complexity: Algorithmic complexity of % , in big-O notation, as a
function of # and =. Low-complexity methods are best for interactive visual exploration,
but may have trouble in creating accurate results;

Out-of-sample: Ability to project new data based on earlier training. Useful when one
wants to study dynamic datasets which add new samples over time [138, 148, 166];

Inverse transform: Ability to map low-dimensional R@ data to the original R= space.
Useful for explaining patterns in the projection [5, 58, 148, 188];

Determinism: Ability to reproduce its results regardless of random seed initialization.
Useful when reproducible results are expected.

3.3.2 Selected Projections

Following the above, we select a set % of 44 DR techniques which cover a wide set of
the end-user-relevant trait values (Section 3.3.1). As when selecting datasets to create
� (Section 3.2.2), our sample % cannot cover all possible DR techniques. To make %
as relevant as possible, we selected DR techniques that are well known, often met in
literature or practice, have a readily available implementation, and can be applied to
generic multidimensional datasets (as opposed to handling very speci�c kinds of data).
This way, we maximize the likelihood that % includes most techniques of interest that a
typical user will consider and want to ask questions about.

22

3.3 projection techniqes

We next describe the selected techniques. Citations indicate the speci�c variant of a
technique we used. Table 5 summarizes their trait values, including the publicly avail-
able implementations we used in our evaluation. Except the number of free parameters
of each algorithm, and the implementation we used, which are self-explaining, all other
traits are described in [148]. We do not detail the theoretical or algorithmic aspects of
these techniques, as these are covered in earlier surveys or original papers cited below,
and since we aim to evaluate these techniques from an end user perspective rather
than from a designer’s or mathematician’s one. We group these techniques along two
attributes, linearity and type of neighborhood, each having two values, yielding four
groups. This simple taxonomy helps non-specialist users to �rst select an appropriate
group of techniques for their problem, after which they can re�ne selection based e.g.
on quality metrics (Section 3.4).

Linear and Global: Techniques that use only linear transformations and consider all
samples at a time. This group includes PCA[97] and its variations, Incremental PCA
(I-PCA)[174], Probabilistic PCA (P-PCA)[205], and Sparse PCA (S-PCA)[231], all of
which use orthogonal transformations to derive a set of uncorrelated variables. Factor
Analysis (FA)[97] and Fast ICA (F-ICA)[93] are related to PCA, but aim at uncovering
latent variables not captured by existing data dimensions. Nonnegative Matrix Factor-
ization (NMF)[113] and Truncated SVD (T-SVD)[80] use matrix factorization to �nd
representations in lower dimensions. Locality Preserving Projection (LPP)[83] is an
algorithm based on linear projective maps.

Nonlinear and Local: Techniques that use nonlinear functions and seek to preserve the
local neighborhood for each sample. This group contains manifold learning techniques
such as Isomap (ISO)[203] and its faster variant Landmark Isomap (L-ISO)[33], both
of which use geodesic distances to estimate neighborhoods; Locally Linear Embedding
(LLE)[175] and its variants Hessian LLE (H-LLE)[46], Modi�ed LLE (M-LLE)[229]
and Local Tangent Space Alignment (LTSA)[230], Laplacian Eigenmaps (LE)[17],
Di�usion Maps (DM)[37], Manifold Charting (MC)[25], and Local Linear Coordination
(LLC)[201]. Other techniques in this group are Local A�ne Multidimensional Pro-
jections (LAMP)[95], which uses orthogonal mapping theory to build accurate local
transformations; Projection by Clustering (PBC)[153], a fast method that represents
sample similarity by proximity; Interactive Document Maps (IDMAP)[142], which
maps data by a fast projection, then re�ne the result using a force scheme; and Maxi-
mally Collapsing Metric Learning (MCML)[72], that use convex optimization to learn
a quadratic Gaussian metric. Last but not least, we have t-Stochastic Neighborhood
Embedding (T-SNE)[127], a method that aims to maximize the probability that similar
samples are placed close to each other, and which is considered a gold-standard for 2D
projection; and Uniform Manifold Approximation and Projection (UMAP)[138], which
aims to �nd a R@ fuzzy topological structure closest possible to the R= topological data
structure. Compared to t-SNE, UMAP produces in general more clustered results, and
is signi�cantly faster.

Nonlinear and Global: Techniques that use nonlinear functions and consider all
samples at a time. Techniques in this group are Metric Multidimensional Scaling
(MDS)[206], Nonmetric Multidimensional Scaling (N-MDS)[109] and Landmark MDS
(L-MDS)[189]. Kernel PCA (K-PCA)[181] and Gaussian Process Latent Variable Model
(GPLVM)[111] are nonlinear extensions of PCA that use kernel methods and probabilis-
tic models, respectively. Gaussian (G-RP) and Sparse Random Projections (S-RP)[43]

23

survey of existing techniqes

project the original input space on randomly generated matrices. Maximum Variance
Unfolding (MVU)[216] and its variations Fast MVU (F-MVU)[123] and Landmark MVU
(L-MVU)[217] aim to unfold the data manifold by maximizing Euclidean distances
between points while preserving pairwise distances in a neighborhood graph. Gener-
alized Discriminant Analysis (GDA)[12], also known as Kernel LDA, is a nonlinear
generalization of LDA, a supervised linear DR technique [24]. Least Square Projection
(LSP)[154] and its faster version Piecewise Least Square Projection (PLSP)[155]
use least squares approximations. Other methods in this class are Rapid Sammon
(R-SAM)[156] and Fastmap (FMAP)[63]. Autoencoders (AE)[88] use neural networks
to generate low-dimensional data representations that can be used as projections.
Stochastic Proximity Embedding (SPE)[2] aim to preserve similarities between a set of
related points.

Linear and Local: Techniques that use only linear transformations to reduce di-
mensionality on separate small neighborhoods. This includes Large-Margin Nearest
Neighbor Metric Learning (LMNN)[215], which learns a Mahalanobis distance metric
by using semide�nite programming; and Linear LTSA (L-LTSA)[228], a variation of
LTSA [230] that uses linear mappings.

Other techniques: Besides the above projection techniques, and technique traits, sev-
eral others exist. A particular one is the use of labeled data when computing the pro-
jection [116, 213]. Using such information helps better separating classes present in the
data, which, in turn, yields better values for several of the projection quality techniques
discussed next in Section 3.4. We did not include these techniques in the survey as they
would be hard to compare against techniques that do not use label information (which
are in the majority).

3.4 qality metrics

The third and last component of our benchmark (Fig. 3.1c) covers the projection quality
metrics used to assess the selected methods % on the selected datasets � . Using metrics
to gauge the quality of DR methods is an established �eld for which separate surveys
exist [114, 121, 148, 161]. Since DR is essentially ill-posed, several such metrics must be
jointly used to assess the quality of a DR technique [71]. In Section 2.2 we describe all
metrics used in detail.

We also considered other metrics for our benchmark, e.g., Kullback-Leibler diver-
gence [87], Local Continuity meta-criterion [32], Topographic Product [13], and Pro-
crustes Measure [73]. Interpreting such metrics is harder [148] and thus provides ar-
guably less (clear) feedback for our typical target users, so we refrained from using them.

A special class of scalar quality metrics aims to capture perceived visual separation
of clusters in scatterplots [3, 144, 184]. Closer to our context, Tatu et al. [199, 200] study
four such metrics on 2D scatterplots containing labeled samples. Sedlmair and Aupetit
survey 14 additional metrics for the same goal [183]. Both above papers conclude that
Distance Consistency (DSC) [190] (called Class Consistency Measure (CCM) in [200]),
de�ned as the percentage of points x whose nearest class-center-of-mass belongs to the
same class as x, best approximates the way humans rank visual separation. More recently,
ML techniques were proposed to search a large space of 2002 synthesized metrics to
capture even more accurately human perception [11]. While such measures can very
e�ectively model human perception of class separation, they cannot be directly used in

24

3.4 qality metrics

Table 5: Selected projection techniques for evaluation and their trait values (Section 3.3.1). In the
Complexity column, = is the number of dimensions; # is the number of samples; 8 is the
number of iterations (for neural network training), and F is the number of weights (for a
neural network).

Projection Linearity Input Neighborhood Free parameters Complexity Out-of-sample Inverse transform Deterministic Implementation

AE nonlinear samples global network size $ (8#F) yes no no Keras

DM nonlinear samples local 2 $ (# 3) no no yes Tapkee

FA linear samples global 1 $ (=3) yes no yes scikit-learn

FMAP nonlinear distances global 0 $ (#) no no yes Vispipeline

GDA nonlinear distances global 1 $ (=3) no no yes DR Toolbox

GPLVM nonlinear distances global 1 $ (=3) no no no DR Toolbox

F-ICA linear samples global 2 $ (=3) yes yes yes scikit-learn

IDMAP nonlinear samples local 3 $ (# 2) no no yes Vispipeline

ISO nonlinear samples local 1 $ (# 3) yes no yes scikit-learn

L-ISO nonlinear samples local 1 $ (# 3) no no no Vispipeline

LAMP nonlinear samples local 3 $ (#=) yes yes no Vispipeline

LE nonlinear distances local 0 $ (# 3) no no no scikit-learn

LLC nonlinear samples local 3 $ (8=3) no no yes DR Toolbox

LLE nonlinear samples local 3 $ (# 3) yes no no scikit-learn

H-LLE nonlinear samples local 3 $ (# 3) yes no no scikit-learn

M-LLE nonlinear samples local 3 $ (# 3) yes no no scikit-learn

LMNN linear samples local 3 $ (=2) no no yes DR Toolbox

LPP linear samples global 1 $ (# 3) yes no yes Tapkee

LSP nonlinear samples local 4 $ (# 3) no no yes Vispipeline

LTSA nonlinear samples local 3 $ (# 3) yes no no scikit-learn

L-LTSA linear samples local 1 $ (# 3) no no no Tapkee

MC nonlinear samples local 2 $ (8=3) no no yes DR Toolbox

MCML nonlinear samples local 0 $ (=2) no no no DR Toolbox

MDS nonlinear distances global 2 $ (# 3) no no no scikit-learn

L-MDS nonlinear distances global 1 $ (# 3) no no no Tapkee

N-MDS nonlinear samples global 2 $ (8# 2) no no no scikit-learn

L-MVU nonlinear samples global 2 $ (# 3) no no no DR Toolbox

NMF linear samples global 4 $ (=2) yes yes no scikit-learn

PBC nonlinear samples local 4 $ (#
√
) no no yes Vispipeline

PCA linear samples global 0 $ (=3) yes yes yes scikit-learn

I-PCA linear samples global 0 $ (=3) yes yes no scikit-learn

K-PCA-P nonlinear samples global 1 $ (# 3) yes yes no scikit-learn

K-PCA-R nonlinear samples global 1 $ (# 3) yes yes no scikit-learn

K-PCA-S nonlinear samples global 1 $ (# 3) yes yes no scikit-learn

P-PCA linear samples global 1 $ (# 3) yes no yes DR Toolbox

S-PCA linear samples global 3 $ (# 3) yes no yes scikit-learn

PLSP nonlinear samples global 0 $ (# 3) no no yes Vispipeline

G-RP nonlinear samples global 0 $ (#=3) yes no no scikit-learn

S-RP nonlinear samples global 0 $ (#=3) yes no no scikit-learn

R-SAM nonlinear samples global 0 $ (8# 2) yes no no Vispipeline

T-SNE nonlinear distances local 3 $ (8# 2) no no no Multicore TSNE

SPE nonlinear samples global 2 $ (# 2) no no no Tapkee

T-SVD linear samples global 1 $ (# 2) yes yes no scikit-learn

UMAP nonlinear distances local 3 $ (8# 2) yes yes no umap-learn

25

survey of existing techniqes

our context: Our aim is to model how well a DR scatterplot captures aspects of the =D
data, and not how the plot is actually perceived by users for a given task.

By analogy, while the ground-truth in the comparison in [11, 183] and related work
is human perception, such ground truth is the =D data in our case. In terms of [148], we
are interested in the DR errors at the so-called ‘model stage’, not at the visualization
stage. Hence, we cannot directly use such metrics in our case. The only exception here
is the DSC metric, which relates the 2D scatterplot to the underlying =D data structure.
However, DSC’s formulation assumes that clusters are well separated in =D (for details
see [190, 200]). Our benchmark, as well as the space D, contain more general datasets
which do not necessarily comply with this constraint.

Other scalar metrics exist and, as with any work, we had to make choices of which
aspects we leave out of our study. For instance, stability [148] is a relevant metric
which quanti�es how much a projection changes upon changes of either its parameters
or changes in the input data. Ideally, projections should be smooth functions of such
changes, so small data and/or parameter changes imply only small changes in the visual
result. However, formally de�ning stability in both these senses is hard, and quantifying
it over the entire spectrum of data- and parameter-changes is even harder. Hence, our
choice to leave stability out of the evaluation.

3.5 measurement method

Following Equation (2.3), we need to evaluate our metrics" on all projection techniques
in % applied to all considered datasets in � (Fig. 3.1d). In this process, we must also con-
sider the free parameters that di�erent projection techniques expose (Table 5). Obviously,
the quality metric values will depend on these parameter choices. We next discuss the
parameter search process used to handle this.

First, we need to de�ne what is an optimal projection with respect to our quality
metrics. For this, we aggregate the considered metrics to yield

` =
1
5
("=ℎ +"C +"2 + (1 −"f) +"B) (3.1)

where "=ℎ , "C , "2 , "f , and "B are the scalar neighborhood hit, trustworthiness, con-
tinuity, stress, and Shepard goodness metrics in Section 3.4. As all these metrics range
over [0, 1], and we consider them equally important, they have identical weights in Equa-
tion (3.1). Equation (3.1) does not consider local metrics (Section 2.2.3) since these yield
images meant to be qualitatively assessed, and also can not be always ranked (ordered)
in terms of one image being globally better or worse than another one.

Let now c8 ∈ Π8 denote the free parameters of a projection technique % ∈ % , where
Π8 indicate their allowable ranges. Let ` (% (�, c8)) be the aggregated quality of % run
over dataset � with parameter values c8 . How can we then de�ne what the “optimal”
quality for a technique % is (which we need next to compare techniques)? We propose
for this two solutions, as follows.

Dataset-wise view: For each � ∈ � , we compute the optimal projection %>?C (�) by
doing a grid search that maximizes ` (Equation (3.1)) over the ranges Π8 of all parameters
c8 of % , i.e.,

%>?C (�) = argmax
c8 ∈Π8

` (% (�, c8)) (3.2)

The exact details of the optimization process, including the parameters c8 and their
ranges Π8 for each technique % , are given in Appendix B.1. During this process, we were

26

3.6 results

careful to reset the random seeds used by non-deterministic optimization algorithms,
e.g., t-SNE, at the beginning of each subsequent execution of the same algorithm. This
way, the results we report in here can be replicated.

We next denote the quality of %>?C (�) by `>?C (%, �), and the parameter set realizing
this quality by c>?C (%, �) respectively. The values `>?C (%, �) allow us to study how
well a technique % performs over the di�erent types of datasets in � , and also how well
di�erent techniques perform for the same dataset. Key to this is that the techniques are
optimized independently per dataset. This allows seeing the “best” that a given technique
can yield for each dataset. Also, by studying the distribution of optimal parameters
c>?C (%, �) over � , we can assess how much parameter tuning a technique % actually
needs in practice. The results of using the dataset-wise view on our benchmark are
discussed in Section 3.6).

Projection-wise view: The dataset-wise view chooses a separate optimal parameter
set c>?C (%, �) for each dataset � . Clearly, this expensive grid-search cannot be done in
routine practice. Rather, users like to have so-called parameter presets when applying a
technique % on any dataset. The projection-wise view measures quality in this way: For
each technique % ∈ % , we choose as preset the parameter-set c?A4B4C (%) ∈ c>?C (%, �)
that yields the best quality ` most times (statistical mode) over all datasets in � . The
projection-wise view allows comparing projection techniques more globally, i.e., seeing
how they perform with respect to each other when no per-dataset parameter tuning
takes place. The results of using the projection-wise view on our benchmark are dis-
cussed in Section 3.6).

3.6 results

After evaluating our benchmark, we obtain a multidimensional dataset consisting of
�ve quality metrics (plus the aggregated one, see Equation (3.1)), measured for 44
projections, each run over 18 datasets, and additional values for optimal parameters
– in total, over 5000 measured values. We next present and discuss ways to (visually)
explore this measurements dataset to gain insights on the tested projections, and answer
di�erent questions on various levels of detail.

How good are projections, and for which data? To answer this, we use the dataset-
wise view (Section 3.5). The table in Fig. 3.2 has rows for DR techniques % and columns
for datasets � . Each cell shows the optimal quality value `>?C (%, �), color coded by a se-
quential colormap. Grey cells show techniques which could not complete the projection
of the respective datasets (crashing or hanging).

Scanning Fig. 3.2 along rows shows how much the optimal quality of a given projection
varies over the studied datasets. For instance, we see that the projection-set starting
with GLPVM and ending with LLE has quite similar (and high) optimal qualities over all
datasets — that is, Fig. 3.2 shows a relatively dark-green compact block of cells starting
with the GLPVM row and ending with the LLE row. In contrast, if we focus in Fig. 3.2
on the block spanned by the PCA-class projection rows (starting with PCA and ending
with S-PCA), over all columns, we see little variation of colors along columns and more
variation along rows, respectively. Hence, the PCA-class projections have quite similar
optimal qualities for the given dataset, but the optimal qualities vary as a function of
the dataset itself. Another salient pattern is given by N-MDS. While N-MDS only failed
for a single dataset (spambase, grey cell on N-MDS row in Fig. 3.2), the respective row

27

survey of existing techniqes

shows a higher error for N-MDS for basically all datasets and compared to most other
projection techniques.

Scanning the �gure along columns shows which are the best projections for a given
dataset. For instance, we see that the earlier-mentioned set of projections starting with
GPLVM and ending with LLE, and also all PCA variants, yield very good quality for the
orl, secom, and seismic datasets. This can be explained by the fact that these datasets have
a low intrinsic dimensionality (see Table 4) and these projection techniques handle very
well such data. In contrast, sentiment has the second-highest intrinsic dimensionality of
all datasets, and we see that it also yields relatively lower optimal qualities for all projec-
tions. Overall, t-SNE, UMAP, IDMAP and PBC perform well on average for most datasets.
PLSP, LLTSA, LPP and GDA perform poorly. The PCA variants perform reasonably well
for most datasets.

To better understand quality, we next explore how easy is to obtain optimal values
for it, and how quality depends on parameter values and dataset types:

How easy is to obtain optimal quality? The rightmost four columns of Fig. 3.2
show the standard deviations of the optimal parameters c>?C (%, �), computed over
all datasets � treated by every projection % , normalized to the interval [0, 1], depicted
by a heat colormap (darker = higher standard deviation). Empty cells correspond to
techniques that have less than four parameters (see Appendix B.1). Good projections
are those which yield high optimal quality values (green cells along their rows) and
achieve this with little parameter tuning (light cells in the parameter columns, if they
have any parameters). For instance, ISO is better than L-ISO as it achieves overall the
same maximal quality, but requires less parameter tuning (0.27 vs 0.47 variance). PBC
is better than NMF as it achieves slightly higher maximal quality and requires less
parameter tuning for that. We also see that the four overall best performing techniques
(t-SNE, UMAP, IDMAP and PBC) require some tuning e�ort over most parameters to
yield optimal results. Of the techniques that do not require parameter tuning, PCA is
the best performing, albeit with lower quality than that of the best projections.

How does quality depend on parameter se�ings? To give more insight into this,
inside each cell, a four-bin histogram shows how many runs, with di�erent parameter
values, done during the grid-search process over the parameters c8 , achieved a quality
` in the ranges [0.0, 0.62), [0.62, 0.75), [0.75, 0.87), and [0.87, 1.0] respectively. These
seemingly arbitrary ranges were selected because most of the data is located above the
0.5 threshold, so creating uniformly divided bins would not produce the desired outcome.
Note that above 0.5, the bins are divided uniformly. Histograms with long leftmost bars
indicate that, for the respective projection technique and dataset combination, most
runs (parameter values) yield bad quality (undesirable situation). Histograms with long
rightmost bars indicate that the respective technique-dataset combination achieves good
quality for most parameter combinations (desirable situation). For instance, K-PCA-P
has overall one long leftmost bar for all datasets, so it yields poor quality for most of the
tested parameter combinations. There is no technique that shows long rightmost bars
for all datasets. Hence, it is very hard to consistently obtain high quality for all datasets
by parameter tuning. Histograms having several non-zero bars indicate methods where
parameter tuning is crucial to obtain good performance, e.g., LLE. Histogram shapes
also depend on the dataset: For the svhn dataset column, most histograms are ‘spread
out’, indicating that this dataset is hard – it requires more parameter tuning than other
datasets to get good quality. For imdb, most histograms have one long leftmost bar,

28

3.6 results

Table 6: Correlation between dataset traits and optimal quality values.
Intrinsic dim. Sparsity ratio Dimensionality

-0.630390 -0.289365 -0.090593

telling that this dataset is very hard to project regardless of parameter tuning.

How does quality depend on dataset type? To answer this, Table 6 presents the cor-
relation between dataset traits (Section 3.2.1) and the optimal quality values in Fig. 3.2.
Several �ndings follow:

• Intrinsic dimensionality d= is the trait that most in�uences quality `, with average
correlation−0.63. Hence, data with high intrinsic dimensionality is hard to project
by all studied techniques;

• Sparsity ratio W= follows, with a correlation of −0.29 to quality, indicating that
sparser datasets are harder to project well;

• Dimensionality = has a very low correlation of −0.09, barely a�ecting quality. The
same holds for dataset type g� and size# . Hence, one should not worry in practice
about these traits when choosing a projection technique that should yield high
quality. Of course, such traits in�uence other aspects, such as computational speed
(discussed later in Section 3.6).

How good are parameter-preset projections? Using parameter presets is desirable
for typical end users. We examine how well projections perform using presets with the
projection-wise view (Section 3.5). Figure 3.3 shows a table with the same layout as the
dataset-wise view (Fig. 3.2). However, we now compute the quality `?A4B4C using the
same preset parameters c?A4B4C (%). The four rightmost colums show the preset values.
Comparing this image with Fig 3.2, we see how quality drops overall. For more insight,
we show the quality loss `>?C − `?A4B4C separately in Fig. 3.4. Figure 3.3 answers several
practical questions:

• The four right columns shows which parameter presets one can use for each pro-
jection technique to get overall good quality, regardless of the dataset;

• Comparing rows allows seeing how two projections fare, quality-wise, when us-
ing presets. Overall, t-SNE, UMAP, IDMAP and PBC are the best-performing tech-
niques in this sense;

• Comparing columns shows datasets which are ‘easy’ (e.g., orl, secom, and seismic)
or ‘hard’ (e.g., cnae9, imdb, and sentiment) to project well when using presets.
When one has a concrete dataset, one can �nd the benchmark dataset sharing
similar traits (see table at the bottom of Fig. 3.3) and infer how a given projection
would perform on it, or which is a good projection for this kind of dataset, using
presets. This allows a �rst rough selection of good projection candidates.

Which projections perform similarly well? The dataset-wise and projection-wise
views convey many details on the speci�c behavior of a projection as function of the
datasets and parameter tuning. However, this amount of detail can be overwhelming
for the end user interested in comparing projections on a high level. Moreover, we do
not have insights into the behavior of projections vs their raw, non-aggregated, quality
metrics. For this, we consider each projection technique % attributed by the values of its

29

survey of existing techniqes

ba
nk

cif
ar

10

cn
ae

9

co
il2

0

ep
ile

pt
ic

fa
sh

ion
_m

nis
t

fm
d

ha
r

ha
te

sp
ee

ch

hiv
a

im
db

or
l

se
co

m

se
ism

ic

se
nt

im
en

t

sm
s

sp
am

ba
se

sv
hn

π1 π2 π3 π4

AE

DM

FA

FMAP

GDA

GPLVM

F-ICA

IDMAP

ISO

L-ISO

LAMP

LE

LLC

LLE

H-LLE

M-LLE

LMNN

LPP

LSP

LTSA

L-LTSA

MC

MCML

MDS

L-MDS

N-MDS

L-MVU

NMF

PBC

PCA

I-PCA

K-PCA-P

K-PCA-R

K-PCA-S

P-PCA

S-PCA

PLSP

G-RP

S-RP

R-SAM

T-SNE

SPE

T-SVD

UMAP

parameter variance giving
optimal quality on each dataset

{

optimal

quality

μopt

0 (poor)

1 (ideal)

optimal

parameter

variance

1 (poor)

0 (ideal)

dataset averages

m
et

ho
d

av
er

ag
es

failure

tab img txt img tab img img tab txt tab txt img tab tab txt txt txt imgtype

size

dimensionality

intrinsic dim.

sparsity

small medium large

low medium high

low medium high

dense medium sparse

Figure 3.2: Dataset-wise view showing optimal quality per dataset (columns), all projections (rows).
Histograms in each cell indicate number of runs divided into four quality bins, the bot-
tom table shows dataset trait values. See Section 3.6. Parameters c8 are discussed in
Appendix B.1.

30

3.6 results

ba
nk

cif
ar

10

cn
ae

9

co
il2

0

ep
ile

pt
ic

fa
sh

ion
_m

nis
t

fm
d

ha
r

ha
te

sp
ee

ch

hiv
a

im
db

or
l

se
co

m

se
ism

ic

se
nt

im
en

t

sm
s

sp
am

ba
se

sv
hn

AE

DM

FA

FMAP

GDA

GPLVM

F-ICA

IDMAP

ISO

L-ISO

LAMP

LE

LLC

LLE

H-LLE

M-LLE

LMNN

LPP

LSP

LTSA

L-LTSA

MC

MCML

MDS

L-MDS

N-MDS

L-MVU

NMF

PBC

PCA

I-PCA

K-PCA-P

K-PCA-R

K-PCA-S

P-PCA

S-PCA

PLSP

G-RP

S-RP

R-SAM

T-SNE

SPE

T-SVD

UMAP

preset

quality

μpreset

0 (poor)

1 (ideal)

failure

m
et

ho
d

av
er

ag
es

π1 π2 π3 π4{
preset parameter values

dataset averages

tab img txt img tab img img tab txt tab txt img tab tab txt txt txt imgtype

size

dimensionality

intrinsic dim.

sparsity

small medium large

low medium high

low medium high

dense medium sparse

Figure 3.3: Projection-wise view (Section 3.6) of quality per dataset (columns), all projections (rows)
for preset parameters. Appendix B.1 discusses parameters c8 .

31

survey of existing techniqes

quality

loss

μopt−μpreset

no loss

high loss
ba

nk
cif

ar
10

cn
ae

9

co
il2

0

ep
ile

pt
ic

fa
sh

ion
_m

nis
t

fm
d

ha
r

ha
te

sp
ee

ch

hiv
a

im
db

or
l

se
co

m

se
ism

ic

se
nt

im
en

t

sm
s

sp
am

ba
se

sv
hn

AE

DM

FA

FMAP

GDA

GPLVM

F-ICA

IDMAP

ISO

L-ISO

LAMP

LE

LLC

LLE

H-LLE

M-LLE

LMNN

LPP

LSP

LTSA

L-LTSA

MC

MCML

MDS

L-MDS

N-MDS

L-MVU

NMF

PBC

PCA

I-PCA

K-PCA-P

K-PCA-R

K-PCA-S

P-PCA

S-PCA

PLSP

G-RP

S-RP

R-SAM

T-SNE

SPE

T-SVD

UMAP

Figure 3.4: Quality loss `>?C − `?A4B4C . See Section 3.6.

32

3.6 results

�ve quality metrics (Equation (3.1)), averaged over all datasets � . We next project this
set using MDS and color the resulting scatterplot by the average quality ` (Fig. 3.5a).
Similar, but more elaborated designs, have been used to compare projections, [41, 157].
This ‘projection of projections’ map shows how similar all techniques are from the
perspective of all raw quality metrics over all datasets. We see a clear gradient of the
average quality ` ranging from N-MDS and GDA (poorest) to UMAP, t-SNE, PBC and
IDMAP (best). We also see that methods in the same family perform relatively similar,
e.g., the PCA variants. To explain the direction orthogonal to the color gradient, we
color points (projection techniques) in turn by each metric and look for patterns. We
�nd that this direction maps well the stress "f . These insights depend, of course, on
the quality of the MDS projection used. To choose a good projection for this dataset,
we could �nd DR methods that score well on datasets having similar trait values (= = 5,
= 44, W= = 1, g� = C01D;0A) following our analysis in Section 3.6. We do not take this
path here since this dataset is very small and simple, and thus arguably projectable well
by established methods such as MDS. To gain more con�dence, we redo the plot using
t-SNE (Fig. 3.5b). The orientation of the average quality (color gradient) and stress axes
di�ers, but the overall pattern is very similar. Using these plots, users can compare
projection techniques from the perspective of overall quality (to choose optimal ones),
but also can choose techniques which behave similarly to a given technique of interest.

a) MDS layout b) t-SNE layout

0.55

0.85

av
er

ag
e

qu
al

ity
 μ

low
 q

ua
lity

hi
gh

 q
ua

lity

low quality

high quality

lo
w

 s
tr

es
s
M

σ

hi
gh

 s
tr

es
s
M

σ

low
 stress

high stress

Figure 3.5: Projection of projections based on �ve quality metrics. Color shows average quality `.
See Section 3.6.

Detailed study of selected good projections Several of our analyses so far point
out that the top-four quality projections are UMAP, t-SNE, PBC and IDMAP. We now
analyze these in more detail, from the perspective of speed (Section 3.6) and the way
they distribute their errors over the 2D space (Section 3.6). These extra insights can
help users selecting a best technique from this top-four set.

How fast are the best projections? We measure the speed of the four selected
projections on synthetic Gaussian datasets for varying number of dimensions = and
observations # . We sample = ranging from 50 to 1,000, and # ranging from 500 to

33

survey of existing techniqes

50,000, with 30 samples each, yielding 900 datasets that we next project and time.
Figure 3.6 shows the results. Note that the four color scales correspond to di�erent
time ranges, as the four techniques have very di�erent speeds. Normalizing all colors
within the same range would suppress seeing interesting variations of the speed vs the
parameters = and # . Hence, we chose to normalize colors per projection, and rely to
annotations to convey the di�erent time scales. We see that UMAP and PBC are almost
two orders of magnitude faster than t-SNE and IDMAP. Color gradients tell us that the
dimensionality = a�ects speed more for PBC and t-SNE than for UMAP and IDMAP.
For the latter two, the sample count # a�ects speed more. Also, we see that t-SNE’s
color gradient is less smooth, being ‘punctured’ at a few places by outliers such as
the bright yellow one (Fig. 3.6, red surrounding marker). These indicate combinations
of = and # for which t-SNE took signi�cantly longer than for similar input values,
and are due to the stochastic nature of the algorithm itself. In contrast, the patterns
exhibited by UMAP, PBC, and IDMAP show a smoother variation of speed with = and # .

UMAP PBC

t-SNE IDMAP

0 50K10K 20K 30K 40K
0

200

400

600

800

1000
n

N

t (sec.)

100

80

60

40

20

t (sec.)

6000

5000

4000

3000

2000

1000

120

t (sec.)

100

80

60

40

20

120

7000

8000

9000
t (sec.)

6000

5000

4000

3000

2000

1000

7000

8000

9000

Figure 3.6: Running times for UMAP, PBC, t-SNE and IDMAP for synthetic Gaussian datasets with
= dimensions, # samples. See Section 3.6.

How do projections spread their errors? We now analyze in detail how the four best
techniques spread their errors over the projection % (�) using Shepard diagrams and
local metrics (Section 3.4). For brevity, we select a subset of four datasets, and run the
four selected techniques on them using their parameter presets (Fig. 3.3). The selected

34

3.6 results

datasets represent each type of data considered in this study, namely text (cnae9), tables
(har), and images (coil20, fashion_mnist).

fashion_mnist har cnae9 coil20

0.09 0.34 0.05 0.28 0.11 0.43 0.15 0.50

0.12 0.33 0.08 0.41 0.12 0.33 0.17 0.38

0.10 0.25 0.04 0.13 0.08 0.24 0.12 0.32

0.09 0.34 0.05 0.32 0.10 0.56 0.11 0.51

t-
S

N
E

U
M

A
P

ID
M

A
P

P
B

C

fashion_mnist har cnae9 coil20

Figure 3.7: Left: Shepard diagrams for the analyzed four projections and four datasets. The G and ~
axes map inter-point distances in R= , respectively R2. Right: Average local errors "0
for the same datasets and projections. See Section 3.6.

First, we use Shepard diagrams (Section 2.2.2) to see how well the four techniques
preserve high-dimensional distances (Fig. 3.7 left). Overall, we see that IDMAP preserves
distances better than the other three techniques. At the other end, UMAP creates the
most complex pattern, including both compressing and stretching distances from R= to
2D. PBC and t-SNE create quite similar patterns. This is quite interesting, as it tells that
we can use PBC to get very similar results to t-SNE, and PBC is about two orders of
magnitude faster (Fig. 3.6).

Next, we show the actual projection scatterplots (Fig. 3.7 right), colored by the
average local error "0 (Section 2.2.3). For each scatterplot, we color code "0 using a
low (yellow) to high (purple) colormap. Per-scatterplot minimal and maximal"0 values
are shown under the plots. We obtain several insights:

Emerging patterns: We see that the visual patterns formed by t-SNE and PBC are quite
similar, in line with the earlier-detected similarity of their distance patterns in Shepard
diagrams (Fig. 3.7 left). In contrast, IDMAP creates less well-separated visual clusters
than all other three techniques, while UMAP creates more separated visual clusters.
However, we should note that, without additional information on the ground-truth (=D
data), the presence or absence or well-separated clusters in the projection is not an
indication of the projection’s accuracy.

Errors correlate with datasets: Looking at the"0 extrema, we see that all techniques �nd
fashion_mnist to be the hardest to project, followed by coil20, cnae9, and har.

Error correlation with techniques: Overall, IDMAP produces the lowest errors. The other
three techniques however cannot be decisively ranked, as they sometimes produce
higher, and sometimes lower, errors than each other depending on the dataset. Moreover,
achieving a higher pattern segregation typically implies higher "0 errors, compare,e.g.,
t-SNE vs IDMAP (har or fashion_mnist datasets). Hence, "0 should not be used as a

35

survey of existing techniqes

discriminative tool for comparing projections: when studying a projection computed
by a given technique, "0 is most useful for �nding which scatterplot points are best
(worst) projected. For a similar use-case of projection-error color-coding, see [85]. This
task is discussed further below.

Error distribution: All techniques generate quite similar distributions of error values
(over the error range) for all datasets, with typically few high-error points. Lowest-error
points (yellow) occur most often close to the scatterplot boundaries, which has also
been observed for di�erent datasets and projections earlier [133]. In contrast, high
error points (purple) appear at very di�erent locations as a function of the technique
and dataset. Hence, to actually trust a given projection, one should always (be able to)
inspect such errors.

Summarizing the above, we see that t-SNE and PBC o�er the best overall quality in
terms of producing low errors on average, good segregation of similar point-groups (clus-
ters), and few high-error points.

3.7 discussion

Typical surveys of projection methods propose taxonomies that cover such methods and
help readers understand their underlying algorithmics and �nding technically-related
methods. Typical papers introducing new projection techniques present these, and o�er
(usually quite limited) qualitative and, sometimes, quantitative comparison with a few
other techniques. Our survey covers quite di�erent material addressing di�erent, more
practical, goals. We next discuss several observations we made during this work.

Benchmark: We present, to our knowledge, the �rst work�ow for quantitatively
evaluating projection techniques ‘in the large’. For this, we describe high-dimensional
data along �ve traits, and propose a representative sampling thereof using 18 real-world
datasets of widely di�erent dimensionality, size, type, intrinsic dimensionality, and
sparsity. We next select 44 projection techniques which include, arguably, all well-
known algorithms in the literature. We evaluate these techniques on these datasets
along �ve quality metrics. In contrast to all similar evaluations so far, we study quality
variation as a function of (a) the dataset traits, and (b) algorithm parameters. The entire
benchmark (datasets, measurements, source code for techniques and measurement
tools) is public [57], being the �rst such benchmark in the dimensionality reduction �eld.
The entire work�ow is implemented in Python. Speci�c projection implementation
details are given in Appendix A.1, Table 29.

Best-quality projections: Our studies showed that t-SNE, UMAP, PBC, and IDMAP
yield the best quality vs the considered metrics and over the considered datasets, when
using preset parameters. Our parameter analysis also shows that these techniques
yield high quality quite consistently when their parameters are tuned. We also provide
parameter presets and show that using these decrease the optimal quality of the studied
projections only slightly. All in all, this tells end users that choosing one of these four
techniques, with its respective parameter presets, can consistently deliver good quality.

Similar-quality projections: We compare all 44 studied projections from the per-
spective of all 5 quality parameters. Our results show that the “space” of projection
techniques can be easily ordered, from low to high quality ones, and that the notion of

36

3.8 conclusion

average quality (using the 5 proposed quality metrics) does make sense—see smooth
color-coded average quality gradient in Fig. 3.5. This helps end users to see which
projections behave similarly quality-wise, supporting trade-o� scenarios, when one
wants to swap a technique for a similar-quality one that has, e.g., a more robust, or
faster, implementation.

Re�ning decisions: We analyze the top-four best quality techniques from the ad-
ditional viewpoints of speed, distance preservation, and error spread over the 2D
space. Our results show that the four techniques are quite di�erent, even if their scalar
(aggregated) quality metrics are quite similar. We discover that UMAP and PBC are
about two orders of magnitude faster than t-SNE and IDMAP. However, UMAP has the
worst distance-preservation pattern of the four. This o�ers directly actionable ways for
end users to select a suitable projection from this set of four depending on their desires
regarding speed and/or distance preservation.

Limitations: Densely covering the huge space of dataset types, projection techniques,
algorithm parameters, and quality metrics is de�nitely very hard. Our work so far repre-
sents only a limited sample � of this space (Section 3.1). For instance, one could consider
more datasets, traits, trait classes, quality metrics, or consider more runs of the con-
sidered projections, to account for those which have a non-deterministic behavior. An
interesting avenue is to generate synthetic datasets that sample the desired dataset traits
in a user-controlled manner. Doing this would allow a richer, and more automated, eval-
uation. However, how to suitably construct such a controlled dataset generator, able also
to generate labels for well-separated point groups (needed for the visual assessment of
projection results and computing the neighborhood hit), is not a trivial question, hence
one that we consider for a signi�cant future-work iteration.

However, our sample is considerably denser than other similar samples (evaluations)
present in the literature, in all the considered aspects (datasets, parameter values, quality
metrics, and number of studied projection techniques). Hence, we argue that our work is
a necessary (but de�nitely not �nal) next step from current state-of-the-art in the quest
of quantitatively evaluating the projection landscape.

We make all our results (methodology, data, code, measurements) open and public [57],
so � is a ‘live benchmark’ that will grow as us, or others, will add datasets, techniques,
and metrics to it. This way, coverage can increase over time with incremental e�orts,
sparing professionals from the very large e�ort required to set up such work from scratch.
Concrete directions in which we plan to extend this work include (a) considering more
dataset traits (Table 4), such as amount and type of noise; and (b) adding visual quality
metrics to quantify the perceived quality of projections for given tasks, e.g., class separa-
tion [3, 183, 199], and metrics for the robustness of projection to noise.

3.8 conclusion

This chapter presents a survey of multidimensional projection techniques from the per-
spective of end users interested in understanding how speci�c algorithms, and their
parameter settings, perform on speci�c types of high-dimensional datasets. For this, we
proposed a methodology for constructing a benchmark that includes 44 techniques (in-
cluding various combinations of their parameter values), 18 datasets, and 7 quality met-
rics. We propose an automatic way to evaluate this benchmark, and also several visualiza-
tions to analyze the gathered data. Our main contribution is making the methodology,
benchmark, and related artifacts (datasets, techniques, metrics, visualizations, related

37

survey of existing techniqes

code) publicly open, so interested researchers can study these results but also contribute
to enrich the benchmark. Additionally, our current evaluation of the benchmark can
be used to choose projection that score best on any of the evaluated criteria, similar to
each other, or on global average quality, with t-SNE, UMAP, PBC, and IDMAP being the
top-ranked ones in the latter respect.

Many extensions are possible based on the current foundation. First, given its open
source nature, our benchmark can be easily enhanced by adding more techniques, met-
rics, and datasets. In particular, adding the many metrics proposed by recent approaches
using machine learning [11] is a low-hanging fruit. In this process, the size and dimen-
sionality of the collected evaluation datasets will also grow. Hence, we will consider new
visualization methods to explore the gathered data to better answer concrete end-user
questions, such as why do certain techniques behave similarly; which parameters of a
given technique most strongly a�ect a given quality metric; and which techniques are
best suited to project datasets having certain traits. Last but not least, coupling prrojec-
tion metrics measured on real-world datasets to gauge which technique is actually better
for which VA task, following up on [148] is an important potential extension. With these
extensions, we hope that ours, and others’ contributions, will make the benchmark grow
to be a useful ‘live’ resource for the infovis and Machine Learning communities at large.

In the next chapter, we present in detail the methodology used to create this survey
and explain the choices made.

38

4S U R V E Y M E T H O D O L O G Y

4.1 introduction

As explained in Chapter 1, multidimensional projections support many tasks dealing
with high-dimensional data, such as analysis (�nding interesting patterns in the data,
e.g., clusters, subspaces, or outliers); simpli�cation (reducing the number of dimensions
needed to capture the data structure); prediction (classi�cation or regression tasks ex-
ecuted on the data samples); and visualization (presenting the data for exploration or
communication via 2D or 3D scatterplots) [89, 100, 119, 198].

As also introduced in Chapter 1, but not elaborated further, di�erent audiences have
di�erent requirements for DR algorithms. Practitioners want to apply DR to solve their
speci�c analysis, simpli�cation, prediction, or visualization tasks on their data. Their
main question relates to how to �nd the DR technique implementation that optimally
covers their requirements, including adding such algorithms to their data-processing
pipeline. Researchers that develop novel DR techniques need to compare their (new) tech-
nique with existing ones to demonstrate its added value, and next want to share it with
an as wide as possible public.

Having worked in both practitioner and researcher roles in various teams for over 10
years, we have observed several challenges, which we summarize by two key questions,
as follows:

• &% (Practitioners): How to choose the best DR algorithm implementation for my
context from the wide set of options available in the public arena?

• &' (Researchers): How to compare my new DR algorithm against the existing
ones, and next share it with as many other practitioners and/or researchers as
possible?

Both questions can be answered in many ways, and using many instruments, e.g., sur-
veys, benchmarks, and open-source repositories. One such example is the quantitative
survey of projections presented in Chapter 3,

At a meta level, we ask ourselves: How to answer these questions e�ciently and e�ec-
tively? For practitioners, the search space (of existing DR algorithm implementations) is
huge. How to approach the search process, starting from one’s context-speci�c require-
ments, to �nd as quickly as possible the best DR techniques that �t these requirements?
For researchers, the e�ort of developing new DR techniques is already large. How to
ensure, with minimal e�ort, that the developed techniques are indeed better (and if so,
how to measure this) than existing ones?

In this chapter, we examine both above questions in a systematic way. We identify the
work�ows that typical practitioners and researchers follow when answering these ques-
tions. Next, we identify available instruments to complete each step of these work�ows,
and discuss the challenges and limitations we observed when applying these instruments.

This chapter is based on publication [60].

39

survey methodology

In particular, we describe the architecture proposed and used in the DR evaluation bench-
mark presented in Chapter 3, that is generic and extensible in terms of datasets, DR al-
gorithms, quality metrics, and visualizations. This both informs the interested reader on
how we actually set up the quantitative evaluation described in Chapter 3, but also helps
the practitioner in extending the respective evaluation or designing similar evaluations.
Finally, we discuss ways forward for the community of practitioners and researchers
interested in applying, respectively developing, DR algorithms.

4.2 background

An implementation of a projection technique % is a reusable software component, e.g.
executable or library, that computes the function % .

Two types of requirements come into play when answering&% and&' , as usual when
engineering software systems:

• functional requirements describe properties of the DR technique itself. These in-
clude the type of data the projection accepts (=D samples or a distance matrix),
whether % is deterministic or stochastic, linear or non-linear, global or local, qual-
ity (measured by quality metrics), computational and memory scalability, and out-
of-sample ability. Such aspects can be usually inferred from the technique’s de-
scription;

• non-functional requirements describe properties of implementations of DR tech-
niques, e.g. ease of use, documentation, portability, third-party software compo-
nents and programming language needed, and interoperability with other toolkits.
Finding these typically requires one to study speci�c implementations of % .

The questions &% and &' listed in Section 4.1 have preoccupied both practitioners
and researchers, increasingly more in the last decade, when many DR techniques have
emerged in the literature. Several sources of information are typically used to answer
them. We rank these sources based on how strongly they support answering &' and
&% , on an ordinal scale ranging from ‘- -’ (least) to ’++’ (most), as follows.

Papers (&' : ++;&% : −−): Technical papers describing DR techniques are the prime
information source for researchers aiming to understand and/or extend such techniques.
Papers discuss functional aspects of the presented techniques well, but comparisons
with other techniques are in general limited to a few. Non-functional aspects and
implementation details are less thoroughly touched upon in papers, which leaves &%
largely unanswered.

Surveys (&' : +;&% : +): Surveys compare (tens of) projections and consider more
functional aspects (e.g., metrics) than technical papers (see e.g. [50, 56, 128, 148, 192].
Surveys o�er a very good way to choose techniques based on their functional properties.
Yet, surveys rarely discuss how to choose speci�c implementations of these techniques,
and also discuss less non-functional aspects.

Benchmarks (&' : −;&% : ++): Benchmarks gather concrete datasets and projec-
tion/metric implementations to help both practitioners and researchers to compare
practically DR techniques against each other. They also help replicability and are very
common in other �elds of computer science, e.g. machine learning [135] or medical
imaging [140, 172]. However, benchmarks are rare in the DR community. Three notable

40

4.3 operational workflows

recent benchmarks are Espadoto et al. [56] (18 datasets, 44 projection techniques, and
7 metrics. See Chapter 3); Vernier et al. [209] (focus in dynamic DR – 10 datasets, 11
techniques, 12 metrics); and SmallVis [139] (focus on t-SNE, UMAP, and LargeVis [198]).

Frameworks (&' : −−;&% : ++): Frameworks are collections of DR technique
implementations designed, documented, and coded for reusability. They come as
libraries, e.g. scikit-learn [1], Tapkee [117]; and turnkey systems, e.g. MATLAB (which
provides out-of-the-box implementations of PCA, Factor Analysis [97], NMF [113],
MDS [109, 206] and t-SNE [127]), ProjectionExplorer [95], and VisPipeline [96], which
provide end-to-end tools for interactive exploration of projections. An extreme model
of frameworks are code bases that implement a single technique, e.g. Van der Maaten’s
t-SNE [127], dt-SNE [166], and Espadoto’s deep-learning DR technique [52]. While
frameworks best support &% , �nding which implementations (in which frameworks)
best match a practitioner’s set of requirements still requires signi�cant manual trial-
and-error testing of the DR implementations they provide.

From the above, we see that the search space for &% and &' is large and hetero-
geneously structured. This a�ects both practitioners – it is not evident where to start
searching, and how to systematically search; and researchers – there’s no unanimously
accepted answer to what to compare against, what to compare on, how to compare, and
how to report the results; also, researchers face the question on how to best share their
results with others, e.g., simply release their code or take the time to integrate it with
some framework. Hence, we �nd a salient gap between DR research and practice. Our
aim next is to provide insights on how to �ll this gap with a low e�ort, and where the
largest unanswered challenges reside.

4.3 operational workflows

We identify two related, but not identical, work�ows that practitioners, respectively re-
searchers, follow to answer their respective questions &% and &' stated in Section 4.1.
We inferred these work�ows both from studies of existing papers and surveys in the
DR literature, and from our own experience with answering both &% and &' in prac-
tice. Concerning our experience, we have studied 46 actual DR implementations. These
implementations, and their main functional and non-functional aspects, are listed in Ta-
ble 7. Additional functional aspects of these techniques, such as complexity and quality
are provided in recent surveys [56, 209].

Figure 4.1 depicts the steps of both these work�ows, which we detail next. Colored
dots in the middle table show which information sources (surveys, papers, benchmarks,
or our own analysis in Table 7) are mainly used to support every work�ow step. For each
step, we next discuss the main questions asked by practitioners and researchers, outline
how these can be answered, and which are the challenges we observed in doing this.

4.3.1 Practitioner work�ow

A. Search techniques.Where do I start searching? Starting points for this search are, ob-
viously, technical papers on DR techniques and, more broadly, surveys thereof [56, 148].
Additional search sources are conference presentations, blogs, and peer input. This
search typically delivers a (large) subset of potentially suitable DR technique candidates
(but usually no speci�c implementations).

41

survey methodology

Table 7: Studied DR technique implementations with their functional and non-functional aspects
listed.

Projection Linearity Input Neighborhood Parameters Out-of-sample Deterministic Implementation

Autoencoder [88] NL S G network size yes no Keras

Di�usion Maps [110] NL S L 2 no yes Tapkee

Factor Analysis [97] LIN S G 1 yes yes scikit-learn

Fastmap [63] NL D G 0 no yes Vispipeline

GDA [12] NL D G 1 no yes DR Toolbox

GPLVM [111] NL D G 1 no no DR Toolbox

Fast ICA [93] LIN S G 2 yes yes scikit-learn

IDMAP [142] NL S L 3 no yes Vispipeline

Isomap [203] NL S L 1 yes yes scikit-learn

Landmark Isomap [33] NL S L 1 no no Vispipeline

LAMP [95] NL S L 3 yes no Vispipeline

Laplacian Eigenmaps [17] NL D L 0 no no scikit-learn

LLC [201] NL S L 3 no yes DR Toolbox

LLE [175] NL S L 3 yes no scikit-learn

Hessian LLE [46] NL S L 3 yes no scikit-learn

Modi�ed LLE [229] NL S L 3 yes no scikit-learn

LMNN [215] LIN S L 3 no yes DR Toolbox

LPP [83] LIN S G 1 yes yes Tapkee

LSP [154] NL S L 4 no yes Vispipeline

LTSA [230] NL S L 3 yes no scikit-learn

Linear LTSA [228] LIN S L 1 no no Tapkee

Manifold Charting [25] NL S L 2 no yes DR Toolbox

MCML [72] NL S L 0 no no DR Toolbox

MDS [206] NL D G 2 no no scikit-learn

Landmark MDS [189] NL D G 1 no no Tapkee

Nonmetric MDS [109] NL S G 2 no no scikit-learn

Landmark MVU [217] NL S G 2 no no DR Toolbox

NMF [113] LIN S G 4 yes no scikit-learn

PBC [153] NL S L 4 no yes Vispipeline

PCA [97] LIN S G 0 yes yes scikit-learn

Incremental PCA [174] LIN S G 0 yes no scikit-learn

Kernel PCA (polynomial) [182] NL S G 1 yes no scikit-learn

Kernel PCA (RBF) [182] NL S G 1 yes no scikit-learn

Kernel PCA (Sigmoid) [182] NL S G 1 yes no scikit-learn

Probabilistic PCA [205] LIN S G 1 yes yes DR Toolbox

Sparse PCA [231] LIN S G 3 yes yes scikit-learn

PLSP [155] NL S G 0 no yes Vispipeline

Random Projection (Gaussian) [43] NL S G 0 yes no scikit-learn

Random Projection (Sparse) [43] NL S G 0 yes no scikit-learn

Rapid Sammon [156] NL S G 0 yes no Vispipeline

t-SNE [127] NL D L 3 no no Multicore TSNE

SPE [2] NL S G 2 no no Tapkee

Truncated SVD [80] LIN S G 1 yes no scikit-learn

UMAP [138] NL D L 3 yes no umap-learn

dt-SNE [166] NL D L 4 no no dt-SNE repository

NNproj [52] NL S L network size yes yes NNProj code

42

4.3 operational workflows

A. Search

techniques

surveys
papers

B. Implement

own technique

table 1

C. Test

implementation

D. Share

implementation

benchmark

frameworks

benchmarks

Search

start
Final

result

A. Search

techniques

B. Search

implementations

C. Select

implementations

functional

requirements

non-functional

requirements

D. Test

implementations

benchmark

frameworks

Search

start
Final

result

popular

frameworks

P
ra

ct
it

io
n

er
 w

o
rk

fl
o

w
R

es
ea

rc
h

er
 w

o
rk

fl
o

w
In

p
u

t
d

at
a

O
p

ti
m

al
 e

xi
st

in
g

im
p

le
m

en
ta

ti
o

n

Im
p

le
m

en
ta

ti
o

n

o
f

n
ew

 t
ec

h
n

iq
u

e

Figure 4.1: Work�ows for selecting DR implementations for practitioners (top, see Section 4.3.1) and
researchers (bottom, see Section 4.3.2). Colored dots indicate which input data (surveys,
papers, benchmarks, Table 7) are used by the two roles in each step.

B. Search implementations. Where do I �nd implementations? Table 7 provides our
survey of available implementations, with frameworks providing these in Table 8.
Related to the search process, we observed several points. Since many data science
projects use Python, practitioners would likely favor Python-based DR implementa-
tions. We found out that scikit-learn [1] provides high-quality implementations of many
well-known DR techniques. However, other techniques come in di�erent languages
(Tapkee [117]: C++; Van Der Maaten’s DR Toolbox [129]: MATLAB; and Vispipeline [96]:
Java). These require manual Python wrapping, which is not easy for the average user,
and may hamper adoption of less known DR techniques, which are not available
anywhere else.

Table 8: DR frameworks used in the study.
Framework name Available at Programming Language(s) Documentation Quality

DR Toolbox lvdmaaten.github.io/drtoolbox MATLAB −−
Multicore TSNE github.com/DmitryUlyanov/Multicore-TSNE Python and C++ −−
scikit-learn scikit-learn.org Python ++
Tapkee tapkee.lisitsyn.me C++ −−
umap-learn github.com/lmcinnes/umap Python ++
Vispipeline vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex Java −−
Keras keras.io Python ++
NNP repository github.com/mespadoto/dlmp Python +

C. Select implementations. How to do this selection? This involves considering both
functional and non-functional requirements. For the former, one can easily screen DR
techniques based on their properties listed in recent surveys [56, 148]. For the latter, we
point to our own survey in Tabs. 7 and 8. Based on both requirement types, a ranking
is made and a subset of candidates are selected. We observe several points concerning
non-functional requirements. Regarding documentation, outside of scikit-learn and
UMAP, which are well documented, most libraries we found had little to no documen-
tation at all (Table 8), making adoption hard. In some cases, reading the source code
is the only option, like in the case of many techniques found in Van Der Maaten’s DR
Toolbox. Even in the cases where the library is well documented, we often found not

43

lvdmaaten.github.io/drtoolbox
github.com/DmitryUlyanov/Multicore-TSNE
scikit-learn.org
tapkee.lisitsyn.me
github.com/lmcinnes/umap
vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex
keras.io
github.com/mespadoto/dlmp

survey methodology

enough details on the role of each parameter in the �nal quality of the projection, and
even less on the interaction between parameters. Separately, the API design promoted
by DR libraries can vary enormously. Each library has its own conventions on data
format and parameters, which makes the problem of interfacing hard. Take, for example,
the examples below, which run t-SNE [127] on some dataset - using scikit-learn and
Tapkee (Listings 1 and 2). We believe the two-step API of scikit-learn (create object with
parameters, call �t_transform()) to be much simpler to understand for the average user
than Tapkee’s method of chaining with globally-namespaced, non-speci�c keywords.

Listing 1: t-SNE example with scikit-learn

from s k l e a r n . m a n i f o l d impor t TSNE
t s n e = TSNE (p e r p l e x i t y =30)
o u t p u t = t s n e . f i t _ t r a n s f o r m (X) �

Listing 2: t-SNE example with Tapkee

u s i n g t a p k e e ;
TapkeeOutput t s n e = i n i t i a l i z e ()

. w i t h P a r a m e t e r s ((
method= t D i s t r i b u t e d S t o c h a s t i c N e i g h b o r E m b e d d i n g ,
t a r g e t _ d i m e n s i o n =2 ,
s n e _ p e r p l e x i t y =30))

. embedUsing (X) ;
au to o u t p u t = t s n e . embedding . t r a n s p o s e () ; �
D. Test implementations. How to test the selected implementations? Surveys and code
inspection cannot tell everything about a speci�c DR implementation. One needs to
actually test an implementation on given datasets and against a set of metrics. For this,
benchmarks are needed. To our knowledge, only three such benchmarks exist in DR
landscape [56, 139, 209]. Yet, such benchmarks are never complete, so they need to be
extended with additional DR implementations, datasets, and metrics. We discuss how
such benchmarks can be designed for extensibility next in Section 4.4.

4.3.2 Researcher work�ow

A. Search techniques. This step is largely similar to step A for practitioners (Sec-
tion 4.3.1). The focus is though di�erent for researchers, who are mainly interested
in �nding functional limitations of existing DR techniques that they want to improve
upon, rather than the non-functional ones that are more relevant to practitioners.

B. Implement own technique. This step can proceed, for the most part, independently
from existing DR implementations. However, some researchers may choose to follow
coding standards and API conventions of existing (successful) DR implementations to
already maximize exposure at this stage.

C. Test implementation. This step typically uses the same benchmarks as in step D
for practitioners. An important part of this step is presenting the test results. While less
important for practitioners, researchers need compelling ways to show that their (novel)
techniques perform well vs many other techniques on many metrics to convince their

44

4.4 architecting an evaluation benchmark

peer researchers. For this, metric visualizations are used, the most prominent being bar
and boxplot charts [128], tables [148], and space-�lling charts [56]. A challenging aspect
here is that the space to visualize is at least four-dimensional (datasets, metrics, DR
techniques, parameter settings). Ideally, creating such visualizations, and adding new
visualizations, should be supported by the benchmarks.

D. Share implementation. Once a DR implementation has been successfully tested, its
further impact critically depends on how easily it is shared with practitioners. Doing this
follows two approaches. Standalone code is the easiest way – the researcher just makes
her DR implementation available via a website or software repository. Examples hereof
are dt-SNE, NNproj, and DR Toolbox. One issue with this approach is that integrating
DR code having non-standard APIs with other components of a data science pipeline can
be hard. Also, standalone code is less visible to practitioners than code shared via well-
known frameworks (discussed next). Finally, adaptive maintenance is less often done on
standalone code, which can easily break it upon the evolution of third-party components
it uses. An example hereof is dt-SNE, which depends on the unmaintained Theano [21]
library. However, good examples of standalone code sharing exist, such as t-SNE archive
and UMAP (Table 8), discussed below. Framework integration, the second approach, adds
the DR implementation to a mainstream data science or similar framework. Examples
hereof are scikit-learn, Tapkee, MATLAB, and Vispipeline. This takes considerably more
e�ort than sharing standalone code, as the code to integrate must comply with frame-
work APIs and documentation constraints, but favors (far) larger exposure. Framework
integration can be hard for DR techniques which need more than data input-output com-
munication with the framework. Examples hereof are projections which advertise land-
marks interactively placed by the user, such as LAMP [95] or for techniques which use
GPU acceleration, e.g. TFJS-t-SNE [160]. To integrate these, a framework should provide
APIs for interaction, respectively for GPU computing.

Standalone code sharing has limitations, but can still be very successful. Two good
examples are UMAP [138] and t-SNE [127]. UMAP’s author did an excellent job of
providing a Python library which is API-compatible with scikit-learn, easy to install
and use, and well documented. We believe the availability of the UMAP library via the
standard Python package manager and its scikit-learn compatibility are key factors
(apart from UMAP’s quality) of its growing popularity. In contrast, the t-SNE archive
(maintained by Van der Maaten) chose to provide a ‘portal’ for implementations
in several languages (C++, Python, JavaScript, CUDA, R, Java, MATLAB), thereby
simplifying integration with third-party code in all these languages.

4.4 architecting an evaluation benchmark

Having a benchmark to quantitatively evaluate DR algorithms is essential for both the
practitioner and researcher work�ows (see Section 4.3). As mentioned there, not many
such benchmarks exist. Importantly, by a benchmark, we do not understand here just a
‘passive’ collection of high-dimensional datasets to battle-test DR techniques, but rather
a runnable software system that lets one select datasets, DR technique implementations
(and their parameter values), metrics, execute them, and visually inspect the results in
an easy and highly automated way. The only two benchmarks that approach this de�ni-
tion are [56] (for static DR techniques) and [209] (for dynamic DR techniques). However,
these benchmarks have their own limitations. Extending them involves, at points, man-

45

survey methodology

Datasets D

dname ddata

mnist URL1
cifar URL2... ...

Dataset instance

x1

...

xn

...

x
1

x
N

...

...

dimensions

sa
m

pl
es

...

Projection techniques P

pname pcode

PCA file1.py
t-SNE URL2... ...

pgrid

URL1

...
file2.py

Projection implementation

function tSNE(dataset,params)

begin

...

end

Parameter grid

20

...

parameter names

pa
ra

m
et

er
va

lu
es

...

perplexity iterations

Metrics M

mname

stress
continuity

...

mcode

file1.py
file2.py

...

Metric implementation

function stress(d,d_2D)

begin

...

end

Benchmark Evaluation

function evaluate()

begin

 for (d_name,d_data) in D

 begin

 ProcessDataset(d_name,d_data)

 end

end

function ProcessDataset(d_name,d_data)

begin

 for (p_name,p_code,p_grid) in P

 begin

 for params in p_grid

 d_2D = p_code(d_data,params)

 m = ComputeMetrics(d_data,d_2d)

 add (d_name,p_name,params,d_2d,m) to R

 end

 end

end

function ComputeMetrics(d_data,d_2D)

begin

 for (m_name,m_code) in M

 begin

 val = m_code(d_data,d_2D)

 result.add(m_name,val)

 end

 return result

end

Result database R

dname pname

mnist t-SNE
cifar PCA

... ...

params md2D

20,100

100

...
40 100

x1

...

x2

x
1

x
N

...

2D coordinates

sa
m

pl
es ...

Scatterplot

file1.xy ...

...

VisualizationsV

function Vis(d_name,d_pname,params,d_2D,m)

begin

...

end

......

Analyst query

Results

Figure 4.2: Proposed benchmark architecture and its data�ow execution work�ow (Section 4.4).

ually reading and reverse-engineering their code, which is hard. Creating an even better
(broader, easier to use) benchmark is a high-e�ort task involving many decisions.

We aim to support the interested users in either the extension task or the design-
from-scratch task by proposing a generic architectural template for such a benchmark
(see Fig. 4.2. We created this architecture by studying the two benchmarks [56, 209],
including the implementation [55] of the former, and next unifying their design and
implementation, aiming to generalize and simplify. We believe that our proposal meets
well the genericity and extensibility requirements, as detailed next.

Overall design: The benchmark follows a data�ow execution model (see execute
function in Fig. 4.2). Datasets 3 from a database D are projected in turn by several
DR technique implementations ? from a DR technique collection P , using several
parameter values ?0A0<B , yielding corresponding 2D scatterplots 32� = ? (3, ?0A0<B).
For each such scatterplot, a set of projection quality metrics <(3, 32�) is computed.
The results 32� and< are stored in a result database R, implemented using the Python
“pickle” binary format �les for e�ciency. These results can be next visually explored
by visualizations selected by the analyst from a given set V . We next detail each of the
main components outlined above.

Dataset collection D: This is the set of datasets to be considered in the evaluation,
stored as a name-value dictionary (3=0<4 , 330C0). The values 330C0 are URLs pointing to
actual �les that store the data samples x1, . . . , x# , each having = dimensions x1, . . . , x= ,
in a table format, using either CSV following the ‘tidy data’ [218] standard or binary

46

4.4 architecting an evaluation benchmark

NumPy [212].

Projection techniques P : This is the set of DR technique implementations to be
evaluated, as well as their parameters to be used during evaluation, stored as a set of
tuples (?=0<4 , ?2>34 , ??0A0<B . Here, ?2>34 points to the Python implementation of a DR
technique, which is a function that expects a dataset 30C0B4C and parameter-set ?0A0<B
, and returns the computed 2D scatterplot 32� . ??0A0<B stores a so-called parameter
grid, i.e. a table having as many columns as parameters ? expects, and one row per
parameter-set to be used during the evaluation. For instance, if we want to evaluate a
t-SNE implementation of ? that expects two parameters perplexity and number of itera-
tions (see [127] for details on these parameters), which range in ?4A?;4G8C~ ∈ {20, 40}
and 8C4A0C8>=B ∈ {100, 150, 200}, we provide a parameter-grid ?6A83 table equal to the
Cartesian product {20, 40} × {100, 150, 200}. This design allows �exibly evaluating
DR techniques having di�erent numbers and types of parameters over user-supplied
parameter grids.

Metrics M: This is the set of quality metrics to be used to assess the benchmarked
projections, stored as a dictionary (<=0<4 ,<2>34 . Here, <2>34 points to the Python
implementation of a metric, which is a function that expects a dataset 3 ∈ D and its 2D
projection 32� computed by one of the techniques ? ∈ P , and returns a metric value
(typically a scalar). As for projections, this design allows easily incorporating any of the
projection quality metrics known in the literature.

Visualizations V : This is the set of visualization tools o�ered to the analyst to explore
an evaluated benchmark. Each visualization Vis is a Python function receiving a tuple
(3=0<4 , ?=0<4 , ?0A0<B, 32� ,<). If a parameter is set to the prede�ned value each, then
the visualization will generate separate small-multiples for each of the values of that
parameter in R. If a parameter is set to the prede�ned value aggregate, then the visual-
ization will generate a single plot for all values of that parameter. These two options are
conceptually analogous to the SQL operations SELECT *, respectively SELECT SUM. This
allows one to easily specify visualizations having di�erent levels of data aggregation. For
example, if we want to display quality metrics, setting 3=0<4 = 402ℎ, ?=0<4 = 402ℎ cre-
ates one separate metric plot for each di�erent pair of dataset and DR technique in R.
Setting 3=0<4 = 402ℎ, ?=0<4 = 066A460C4 creates one metric plot that shows, for each
dataset, the aggregate (e.g., average, depending on the actual Vis implementation) val-
ues of metrics over all DR techniques. Finally, setting a parameter to a speci�c value,
e.g. ?=0<4 = C-(#�, creates a visualization only for the respective DR technique entries
present in R. The dictionary keys 3=0<4 , ?=0<4 ,<=0<4 show now their purpose: They
are used both for the user to select speci�c entries in R to visualize and to create la-
bels in the generated visualizations. This design allows specifying a quite large range of
visualizations, see the examples in [56, 209].

In terms of implementation, actual visualizations can be coded as Python scripts call-
ing Matplotlib [92] (as in [56]). A more interactive and �exible development work�ow
can be achieved by using Jupyter notebooks that allow for independent and interactive
execution of their code cells and rich presentation of their output (visualizations,
narrative text, mathematical equations, tables). Execution automation is supported
by Papermill [151] which allows the parameterization, instantiation, and execution of
Jupyter notebooks. For example, to generate for each dataset 3 a separate video showing
a small-multiple display of all its time-dependent projections ? (3) |3 ∈ D, one can write
a template video generation notebook and use Papermill to instantiate a new notebook

47

survey methodology

for each dataset 3 .

Extensibility and genericity: The above architecture is easily extensible: Adding
new datasets, metrics, DR techniques, or parameter grids implies simply adding entries
to the respective dictionaries. Dictionaries can be implemented either in Python or,
even simpler, as folders having �lenames as keys and the respective �le contents as
actual values. For large benchmarks, implementations using relational databases (e.g.,
SQL) could also be done relatively easily following the same template architecture. The
architecture is also generic, since the formats of datasets, respectively signatures of
functions implementing DR techniques, metrics, and visualizations, can accommodate
most, if not all, concrete instantiations thereof that we know of from the DR litera-
ture and practice. For instance, all DR technique implementations in Table 7 �t this
architecture. Parallelization can also be easily incorporated, e.g., by simple running
of multiple processes at the level of the for-loops in execute (a design used in [56]).
Finally, supporting time-dependent DR techniques implies only a small change to the
architecture, namely having 330C0 point to a sequence of tables rather than a single one
(as done in [209]).

4.5 discussion

Summarizing, we see a number of open challenges to the selection and sharing of DR
algorithms that, jointly, create a gap between the state-of-the art work in DR literature
and practical realities in the �eld, as follows.

Implementation: For selection (adoption), we note the lack of analysis of DR im-
plementations with respect to non-functional requirements such as programming
language, documentation quality, and ease of use. These make practitioners stay away
from techniques whose implementations score poorly along these requirements and,
conversely, favor techniques that have good-scoring implementations. For sharing,
we see that there is no single framework that provides implementations of most DR
techniques known in the literature – the closest to this is scikit-learn which implements
roughly half of the DR techniques for which we found a mainstream implementation.
For sharing, we do not see yet a momentum for researchers to develop DR algorithms
within mainstream data science frameworks – the dominant sharing form is still
standalone code.

Benchmarks – Datasets: Selecting a representative collection of datasets to gauge
DR techniques is hard. Typically, papers, surveys, and benchmarks use datasets that
are known in DR literature (for historical reasons) or in a given application domain.
However, gauging the quality of a DR technique at large should use datasets that ideally
represent well any problem. Espadoto et al. [56] do a �rst attempt in this direction
by characterizing datasets by traits (e.g., dimensionality, intrinsic dimensionality,
sparsity, provenance) and create a benchmark by sampling these dimensions. Vernier
et al. [209] use the same idea and aim to also cover dataset dynamics. However, both
these surveys admit to only very sparsely sample the space of all possible datasets.
Coming up with a good such sampling is an open, and important problem, in DR practice.

Benchmarks – Techniques: To our knowledge, most DR surveys and benchmarks
focus on techniques that handle quantitative data, and static projections (except [209]).

48

4.6 conclusions

Adding DR techniques that handle other attribute types such as categorical is another
open direction towards creating comprehensive benchmarks.

Benchmarks – Metrics: DR literature knows tens of di�erent quality metrics [22].
However, existing benchmarks implement only very few – the most being, to our
knowledge, the 6 metrics in [56]. A benchmark with a wide set of readily-implemented
metrics would be of high value to both practitioners and researchers.

Benchmarks – Extensibility: Some DR benchmarks [56] provide code that allows the
experiments to be reproduced and allow for some extensibility, in terms of adding new
projection techniques, metrics and datasets. In terms of storing results and creating
visualizations, users would bene�t from a more structured approach, with data saved
in portable formats, and with some form of integration with popular data visualization
and exploration tools, such as Tableau [31].

4.6 conclusions

We presented an overview of the challenges that exist in the process of selecting and
sharing DR techniques from the point of view of di�erent audiences, practitioners and
researchers, where we described the typical work�ows used in their processes. We listed
and ranked the most common sources of information about DR techniques, namely, pa-
pers, surveys, benchmarks, and frameworks, and compiled a list with popular frame-
works and techniques. We described the architecture used in two recent benchmarks
and showed how these can be extended to consider more datasets, techniques, and met-
rics.

We believe the visualization community would bene�t from a more integrated, well-
documented benchmark framework, where new techniques, datasets, and metrics could
be easily added by the user with minimal programming, and with the capability of inte-
gration with existing visualization tools.

In Chapters 5, 6 and 7 we develop the idea of using Neural Networks to create direct
and inverse projections. We present techniques and results for several experiments that
show how Neural Networks can be used to create projections that have high quality
and are very scalable. In the work presented in those chapters, we (re)use the evaluation
framework presented in this chapter, thereby providing additional con�rmation to its
practical added value.

49

5D E E P L E A R N I N G P R O J E C T I O N S

5.1 introduction

In Chapter 3, we detailed the importance and usefulness of multidimensional projection
techniques to the analysis of high-dimensional data, and also explored and explained in
detail the di�erences between several tens of projection techniques. In particular, follow-
ing that evaluation, we saw that t-SNE [127] is one of the top-ranking techniques, which
is in line with its popularity. Yet, t-SNE comes with some downsides: It is very slow for
large data sets (thousands of observations or more), due to its quadratic nature; its pa-
rameters can be tricky to get right, which can lead to unpredictable results [214]; and
it lacks the capability of projecting out-of-sample data, which is useful when compar-
ing several (time dependent) datasets [124, 148, 166]. Additionally, Chapter 3 shows that
no single projection technique is perfect – di�erent techniques have di�erent pro’s and
con’s. This makes it interesting to consider ways in which one can reduce the limitations
of any such technique, while keeping its advantages.

Work has been done to address the performance issue, such as tree-accelerated
SNE [126], H-SNE[158], A-SNE[159], and UMAP[138], which is a completely di�erent
algorithm but with the stated goal of having t-SNE quality at a higher speed. However,
in general, there is no technique in the t-SNE class that jointly addresses scalability,
stability, and out-of-sample handling. Moreover, t-SNE re�nements are algorithmically
not simple to understand and/or implement, which may limit their attractiveness. Such
limitations are, to a large extent, shared by many other projection techniques [148], so,
our discussion next should be seen in this larger context rather than focusing on t-SNE
class methods only. A way to handle these limitations jointly and independently on the
projection technique of choice is of considerable interest.

To address the above goal, we propose a learning-based approach to dimensionality
reduction: We take any projection technique (deemed suitable for an application at
hand), run it on a small subset of the available data, train a deep neural network to learn
the mapping from high to low dimensional space produced by the respective projection,
and use the trained network to project the entire dataset or similar datasets. We call
this technique Neural Network Projection, or NNP. This technique has the following
contributions:

Quality (C1): it provides similar results to the learned projection, as measured by
several well-known metrics in dimensionality reduction literature; brie�y put, such
metrics quantify how close the 2D projection re�ects the structure (inter-point distances
and nearest neighbors) of the high dimensional dataset;

Scalability (C2): it computes projections in linear time in the number of dimensions
and observations. Practically, we project datasets of up to a million observations and
hundreds of dimensions in a few seconds using commodity hardware, no matter which

This chapter is based on publication [52]

51

deep learning projections

projection technique we are emulating;

Ease of use (C3): it works without the need to set any complex parameters, except for
the number of training epochs, which is minimized by the use of early stopping (see
Section 5.4.1). NNP is implemented using only open-source infrastructure, so it is easily
replicable;

Genericity (C4): it can handle any kind of high-dimensional data that can be repre-
sented as high-dimensional vectors, and can mimic the behavior of di�erent types of
projection techniques;

Stability and out-of-sample support (C5): NNP allows one to project new observa-
tions for a learned projection without recomputing it, as is needed with standard t-SNE
and any other non-parametric methods;

This chapter is structured as follows. Section 5.2 discusses related work on multidi-
mensional projections. Section 5.3 details our method. Section 5.4 presents our results
that support our contributions outlined above. Section 5.5 discusses our proposal. Sec-
tion 5.6 concludes the chapter.

5.2 related work

Dimensionality reduction: Over the years tens of Dimensionality Reduction (DR)
methods have been developed. These propose quite di�erent trade-o�s between
the desirable features listed in Section 5.1. Please refer to Chapter 3 for a thorough
discussion of dimensionality reduction techniques.

Deep learning: Neural network approaches have been proposed for DR, such as autoen-
coders [88, 101], which aim to generate a compressed, low-dimensional representation
on their bottleneck layers by training the network to reproduce its inputs on its outputs.
Typically, autoencoders produce results comparable to PCA on the quality criterion (low
C1). Also, for di�erent types of datasets, one typically needs to design di�erent autoen-
coder architectures, which is time-consuming (low C3). Yet, autoencoders are easily par-
allelizable (high C2), predictable, and have out-of-sample capability (C5).

The ReNDA algorithm [15] is a very recent neural-based approach that uses two net-
works, improving on earlier work from the same authors. One network is used to im-
plement a nonlinear generalization of Fisher’s Linear Discriminant Analysis, using a
method called GerDA; the other network is an Autoencoder used as a regularizer. Ac-
cording to the results of the original paper, the method scores well on predictability and
has out-of-sample capability (C5). However, it requires labeled data, which none of the
other algorithms discussed in this study do. Also, it does not scale well for large datasets
(low C2).

Parametric t-SNE (pt-SNE) [124] was proposed to address some of the limitations
outlined in Section 5.1. pt-SNE uses a deep learning architecture consisting of Restricted
Boltzmann Machines (RBMs) [86] to pre-train a neural network to reduce dimensional-
ity, followed by a �ne-tuning stage that re�nes this network to minimize a cost function
based on t-SNE’s Kullback-Leibler (KL) divergence. The key advantage of pt-SNE is
its parametric nature (mapping the entire =D input space to the lower-dimensional
@D space), which allows out-of-sample behavior by construction. Only few DR meth-
ods in existence are parametric and thus have this ability (e.g., PCA [97], NCA [74],

52

5.3 method

autoencoders [88]). From these methods, PCA and NCA do not work well when the
intrinsic dimensionality of the input data is higher than the one of the output space,
due to their linear nature. More interestingly, a detailed discussion on why pt-SNE is
superior to autoencoders in terms of quality (criterion C1) is provided: pt-SNE aims to
capture the local data structure in =D, using Gaussian distributions, and to transfer this
structure to the low-dimensional @D space using the KL divergence cost. In contrast,
the cost function of autoencoders aims to maximize data variance in @D. This does
not create well-separated clusters in @D, even when these exist in =D, as this would
decrease variance and thus increase the reconstruction error. Similar to pt-SNE, our
method is also parametric (thus satisfying C5), uses a deep learning approach, and has
the same advantages vs autoencoders. In contrast to pt-SNE, however, we have a much
simpler neural network architecture, and thus a simpler training process, and a single
hyperparameter (number of training epochs or, alternatively, training loss); we use
supervised learning (with a given 2D scatterplot produced by a user-chosen projection
method as ground truth), and thus have a completely di�erent cost function (distance
to 2D ground-truth projection rather than KL divergence); and, �nally, our method can
learn any projection technique, not just t-SNE.

5.3 method

Our proposal is very simple: Consider a data universe D, i.e., the union of all data sets
created by a given application area, e.g. all fashion images, all handwritten digit images,
or all astronomical images related to a certain type of measurement. If we admit that
there exists some speci�c structure of the data in such a universe, i.e., the data samples
are not uniformly distributed along all dimensions, then a good projection should capture
well this data structure (which is e.g. re�ected in terms of segregating di�erent data
clusters in the visual space). We hypothesize that the way in which a given projection
technique % captures this data structure can be learned by using a limited number of
small training datasets � ⊂ D and their respective projections % (�) ⊂ R2.

Our proposal follows precisely this: Let �B be a randomly-selected subset of one or
several datasets � ⊂ D, and let % (�B) be the corresponding projection of �B . Let %== be
a neural network trained on �B aiming to mimic the behavior of % (�B). Let �? = � \�B
be the remaining data in � to be projected by %== .

Figure 5.1: Pipeline for learning projections (see Section 5.3).

53

deep learning projections

Figure 5.1 presents our idea, which consists of three main steps – creating the training
projection, training, and inference. To create the training projection, we project �B by
using any user-chosen projection technique % . We next use the projected subset % (�B)
alongside the original high-dimensional�B to train a feed-forward, fully-connected neu-
ral network %== to learn how to project high-dimensional data. Once %== is trained, we
use it to project the remaining points �? of � . By extension, we use %== to also project
di�erent datasets from the same universe D as � .

After empirical testing, varying the number of layers and the number of units in each
layer, we de�ned the architecture for %== as having three fully-connected hidden layers,
with 256, 512, and 256 units respectively, using ReLU activation functions, followed by a
2-element layer which uses the sigmoid activation function to encode the 2D projection,
scaled to the interval [0, 1]2 for implementation simplicity (Fig. 5.2). The number of units
in the input layer matches the dimensionality of the input data (= in Equation (2.1)). We
stress that this particular network architecture has nothing special about it. Other similar
architectures may work as well. The central goal in this chapter is to propose a novel way
to achieve dimensionality reduction by learning projections. In Chapter 6 we present a
detailed study of di�erent architectures and hyperparameters for this technique.

We initialize weights with the He uniform variance scaling initializer [82], and bias
elements using a constant value of 0.0001, which showed good results during testing.
We use the Adam [102] optimizer, a variant of the well-known Stochastic Gradient De-
scent, to train %== for at least 10 epochs and up to 200 epochs on an “early stopping”
setup. That is, training automatically stops on convergence, de�ned as the epoch where
the validation loss stops decreasing. In practice, no more than 60 epochs are needed to
achieve convergence, the average being 30 epochs (see Section 5.4.1). The cost function
used is mean squared error (MSE, Equation (5.1))

"(� =
1
#

#∑
8=1
‖y8 − ŷ8 ‖2 (5.1)

where y8 are the ground truth 2D coordinates provided by the training projection and ŷ8
are the 2D coordinates predicted by the network, respectively. MSE showed higher con-
vergence speed during testing than other common cost functions such as mean absolute
error and log hyperbolic cosine (logcosh).

Figure 5.2: Feed-forward network architecture used.

We test %== by comparing the projections it delivers on �? (unseen data during train-
ing) with the ground truth % (�?) obtained by running the projection % we desire to

54

5.4 results

mimic on �? . For this, we use two classes of metrics, as follows. General metrics cap-
ture desirable properties of a projection % (�) in a technique-agnostic manner, that is,
without considering the speci�c objective (cost) function that % tries to optimize. Such
metrics are often used in projection literature to compare di�erent techniques that do
not share implementation similarities [56, 148]. Technique-speci�c metrics consider the
cost functions used by speci�c techniques, and thus allow comparing these techniques
to our method, i.e., show how well our method manages to learn the ‘style’ of a projec-
tion by exposing how well it optimizes the underlying cost function. The de�nition of
all metrics can be found in 2.2.

5.4 results

We next show how our proposal covers the requirements listed in Section 5.1. For this,
we structure our evaluation into several tasks. We compare our results with those pro-
duced by several well-known projection techniques (t-SNE, UMAP, PCA, Isomap, MDS,
LAMP, LSP, pt-SNE, and LLE). We use a range of publicly available real-world bench-
mark datasets (See Section 2.3 for details) that have many observations and dimensions,
exhibit a non-trivial data structure, and come from di�erent application domains, as fol-
lows (Fig. 5.3 shows samples from these datasets):

Figure 5.3: Illustrative examples from the used datasets.

For each dataset, the split between training and test sets varies for each experiment
and is explained in detail next in each task-speci�c section.

55

deep learning projections

5.4.1 Training e�ort

It is important to assess what our method needs (training-data-wise and training-e�ort-
wise) to reach the quality of the training projection, or close to that. Figure 5.4 shows
t-SNE, UMAP, MDS, and LAMP projections of subsets of the MNIST dataset with two
and ten classes, respectively, alongside our method’s results. We used training sets �B
of varying sizes, all randomly and independently sampled from the MNIST dataset. We
included the two-class selection (digits 0 and 1) since we know that images for these
digits are quite di�erent. Hence, the obtained projections should clearly visually separate
samples from these two classes. For the two-class case, we see that our method yields
practically the same results as the ground truth methods (t-SNE, UMAP, LAMP, and
MDS, respectively), already when using only 1K training samples. For the 10-class case,
we obtain very similar results starting from roughly 5K training samples. Figure 5.4 also
shows how our learned projections get close to the neighborhood hit value ("=ℎ) of
the ground-truth projection as we increase the training-set size. It is important to note
that our method cannot formally exceed this ground-truth value, as we learn to mimic
this ground truth, not surpass it. Hence, when learning from good-quality projections,
we will achieve a high quality; when learning from less good projections, we will not
surpass that quality. Section 5.4.2 revisits this point with additional examples.

Figure 5.5 also shows how the quality improves for a �xed training set (3K samples)
as we increase the number of training epochs. As visible, we obtain projections already
very close to the ground truth from roughly 25..50 epochs for the more complex 10-
class MNIST dataset, and from roughly 10 epochs for the simpler 2-class MNIST dataset,
respectively.

Figure 5.6 provides more insight into the training process by showing how the loss
(cost) decreases during training as we increase the number of epochs (blue and green
curves for t-SNE and UMAP, respectively), for both the MNIST and FashionMNIST
datasets, when considering only 2 classes (easier problem) or all 10 classes (harder prob-
lem). The orange and red curves (for t-SNE and UMAP, respectively) shows what the
loss is for the validation set for the network trained for a given number of epochs. Note
that we did not include curves for LAMP and MDS in Fig. 5.6 to avoid overplotting, since
these curves are practically identical to the ones already shown for t-SNE and UMAP. As
visible, all curves converge quite quickly and similarly for all datasets, all projections. Of
course, the validation loss is a bit larger than the training loss. Separately, we see that
convergence is rapid for all four considered datasets. We can use these curves in practice
to �nd how many training epochs we need for a desired maximal loss. Conversely, we
can �x a preset maximal loss (in practice, 0.005) and compute the number of training it-
erations required for it. Table 9 shows the resulting numbers of training epochs required
which we can select this way. This justi�es the maximal preset of 200 training epochs
(and its average of 30 epochs) mentioned in Section 5.3.

Table 9: Number of training samples vs number of epochs needed to obtain convergence, MNIST
dataset.

Samples t-SNE: 2 classes t-SNE: 10 classes UMAP: 2 classes UMAP: 10 classes

1000 57 49 44 31

2000 30 33 21 30

3000 50 31 31 33

5000 32 21 28 23

9000 24 13 42 21

56

5.4 results

a) t-SNE, 2 classes b) t-SNE, 10 classes c) UMAP, 2 classes d) UMAP, 10 classes

G
ro

un
d

tr
ut

h
O

ur
s,

 |D
s
|
=

 1
K

O
ur

s,
 |D

s
|
=

 2
K

O
ur

s,
 |D

s
|
=

 3
K

O
ur

s,
 |D

s
|
=

 5
K

O
ur

s,
 |D

s
|
=

 9
K

NH:1.0

NH:1.0

NH:1.0

NH:1.0

NH:1.0

NH:1.0

NH: 0.9

NH: 0.7

NH: 0.6

NH: 0.72

NH: 0.82

NH: 0.86

NH :1.0

NH: 1.0

NH: 1.0

NH: 1.0

NH: 1.0

NH: 1.0

NH: 0.89

NH: 0.68

NH: 0.72

NH: 0.76

NH: 0.82

NH: 0.85

e) LAMP, 2 classes f) LAMP, 10 classes g) MDS, 2 classes h) MDS, 10 classes

NH:1.0

NH:1.0

NH:0.99

NH:1.0

NH:1.0

NH:1.0

NH:0.45

NH:0.39

NH:0.40

NH:0.41

NH:0.41

NH:0.41

NH:1.0

NH:0.99

NH:0.99

NH:0.99

NH:0.99

NH:0.99

NH:0.47

NH:0.41

NH:0.42

NH:0.43

NH:0.44

NH:0.45

Figure 5.4: Top row: MNIST dataset, 10K sample projections of 2 and 10 classes created by t-SNE,
UMAP, LAMP, and MDS. Next rows: Projections done by our method for varying train-
ing set sizes |�B |. #� stands for Neighborhood Hit ("=ℎ).

5.4.2 Capturing the structure of datasets

In dimensionality reduction, the quality of a projection, measured by any of the metrics
discussed in Section 5.3 (or any other desirable quality metric), highly depends on
the kind of input data and kind of projection technique used [148]. We �rst assess
this quality by visually comparing the results of eight di�erent projection techniques
with those created by our learning technique, trained on the respective projections.
The considered techniques are t-SNE, UMAP, Isomap, PCA, LAMP, LLE, and two
autoencoders using 1 layer and 3 layers respectively (AEC1 and AEC3). We included
the autoencoder-based techniques as they are related to our approach as they also use
deep learning. However, autoencoders work di�erently, since they do not use an actual
2D ground-truth to learn from, as we do. Figure 5.9 illustrates this for four datasets
(MNIST, Fashion MNIST, Dogs vs Cats, and IMDB). Figure 5.10 adds four extra datasets
to the evaluation (Spambase, Seismic, Har, and WBC). The training set sizes were 5K
samples in all cases. Several observations follow.

Learning quality: We see that our method can generate projections which are visually
almost identical to the ground-truth ones. However, we also see that the learned
projections appear sometimes to be slightly more ‘fuzzy’ than the ground truth ones.
This happens more for for certain (dataset, technique) combinations, see e.g. MNIST
with t-SNE (Fig. 5.9) or Har with t-SNE and UMAP (Fig. 5.10) and far less for other
combinations. The similarity of our results with ground-truth is also re�ected in the
neighborhood hit ("=ℎ) values: For all datasets, our method yields "=ℎ values which

57

deep learning projections

t-SNE (2 classes)

5
ep

o
ch

s
10

 e
p

o
ch

s
25

 e
p

o
ch

s
50

 e
p

o
ch

s
10

0
ep

o
ch

s
G

ro
u

n
d

 t
ru

th

t-SNE (10 classes) UMAP (2 classes) UMAP (10 classes) LAMP (2 classes) LAMP (10 classes) MDS (2 classes) MDS (10 classes)

Figure 5.5: Ground truth: MNIST dataset, 3K sample projections of 2 and 10 classes created by t-SNE,
UMAP, LAMP, and MDS. Rows above: Projections done by our method using varying
numbers of epochs.

0 10020 40 60 80
0.00

0.02

0.04

0.06

0.08

0.10

training epochs

m
ea

n
sq

ua
re

d
er

ro
r

lo
ss

t-SNE (training)
t-SNE (validation)
UMAP (training)
UMAP (validation)

0 10020 40 60 80
0.00

0.02

0.04

0.06

0.08

0.10

training epochs

t-SNE (training)
t-SNE (validation)
UMAP (training)
UMAP (validation)

MNIST
(2 classes)

0 10020 40 60 80
0.00

0.02

0.04

0.06

0.08

0.10

training epochs

t-SNE (training)
t-SNE (validation)
UMAP (training)
UMAP (validation)

MNIST
(10 classes)

FashionMNIST
(2 classes)

0 10020 40 60 80
0.00

0.02

0.04

0.06

0.08

0.10

training epochs

t-SNE (training)
t-SNE (validation)
UMAP (training)
UMAP (validation)

FashionMNIST
(10 classes)

Figure 5.6: Loss as function of number of training epochs, during both training and validation, for
MNIST and FashionMNIST datasets, 2-class and 10-class.

are very close to those of the ground-truth projection.

Projection quality: Figures 5.9 and 5.10 show quite clearly that di�erent ground-truth
projection techniques yield very di�erent results in terms of visual structures for the
same dataset. For example, for the Seismic dataset, PCA identi�es six clearly separated
compact clusters; AEC1 and AEC3 only �nd three clusters here; and LLE �nd numerous
small-size clusters (Fig. 5.10). We also see that the identi�ed clusters correlate some-
times well with class labels – for instance, all projections achieve a quite good visual
separation of the cats from the dogs class in the Cats & Dogs dataset (re�ected by the
high "=ℎ values of all images in the respective panel in Fig. 5.9). At the other extreme,
separating the two classes of IMDB is very hard for all projections. MNIST and Fashion

58

5.4 results

MNIST fall in the middle, with t-SNE and UMAP achieving good class separation, and
Isomap and PCA faring worse. Hence, di�erent projection techniques will fare very dif-
ferently in uncovering structures in the data for di�erent dataset. However, in all cases,
our learned projection mimics very closely this ground truth. In other words, if one can
�nd a projection technique that works well for a given dataset and task, e.g., showing
the correlation of data clusters with class labels, our method can learn to do the same.
Conversely, if a projection technique scores poorly on a dataset, e.g., cannot identify
interesting structures in the data, our technique will not be able to do better.

Since we learn from the ground-truth projections by considering them as ‘black
boxes’, we claim, although we cannot (of course) formally prove, that we can learn any
projection in the same way, apart from the eight techniques demonstrated in Figures 5.9
and 5.10. This is in contrast to the only other parametric projection technique based on
deep-learning that we are aware of [124], which can only learn t-SNE.

Dataset di�culty: Figure 5.7 shows additional results that illustrate how our method
behaves when the ‘di�culty’ of the dataset to be projected increases. For this, we con-
sidered two datasets (MNIST and Fashion MNIST) which all have 10 classes of samples.
The dimensions of these samples are known to be predictive of the class labels. That
is, a good projection should be able to create 10 well-separated clusters of same-label
samples. The di�culty of separation is also known to be higher for Fashion MNIST than
MNIST. We �rst only consider an easy separation problem, by taking only samples of
two classes of each of these datasets. In all cases, we used 5K training samples, and pro-
jected a di�erent set of 5K samples from each of these four datasets. Figure 5.7, top two
panels, show ground-truth projections computed by PCA, Isomap, MDS, and LLE for
these two-class datasets. We see that all projections can separate the two classes very
well (also indicated by the high"=ℎ values), and so do also our learned projections. The
bottom two panels in Fig. 5.7 show the projections of the full 10-class datasets. For these
more complicated datasets, we see that all the considered ground-truth techniques have
considerable di�culty in separating the 10 classes well, and so do also our learned pro-
jections. Hence, we can conclude that our learned projections mimic very closely the
behavior of the ground truth ones, whether this means good or poor class separation.

Table 36 in Section C.1 shows the values of the quality metrics introduced in Sec-
tion 2.2 (trustworthiness "C , continuity "2 , neighborhood hit "=ℎ , Shepard diagram
correlation "B and the technique-speci�c metric (C) for the 10 projection techniques
used to project the 10 datasets in Figures 5.9, 5.10, and 5.7. For each (dataset, projec-
tion) pair, we evaluate the 5 metrics both on the ground-truth projection and on our
learned projection, and next study the signed di�erence between the former and the
latter. Figure 5.8 visualizes these signed di�erences for all the 100 (dataset, projection)
combinations. Care was taken to compute the di�erences in the correct direction: For
the general metrics"C ,"2 ,"=ℎ , and"B , higher di�erence values are better, since these
indicate that our method yields higher quality than the original learned methods. For
the technique-speci�c metrics (C , lower is better, as this indicates that our technique
minimizes the underlying cost function better than the ground-truth projections. Over-
all, Figure 5.8 shows that the metric values of our projection are very close to the corre-
sponding ground-truth values, the di�erences being maximally 4% and on average under
2%, respectively. This strengthens the insight obtained earlier by visually comparing our
learned projections with the ground-truth ones that our method learns very well the
characteristics of the projections it was trained to mimic. Apart from that, Fig. 5.8 shows
that there is no clear correlation between high (or low) di�erence values and speci�c
projection techniques or speci�c datasets, with the exception of the (Har, LSP) combina-

59

deep learning projections

P
C

A
Is

om
ap

M
D

S
LL

E

O
ur

s
(t

ra
in

ed
 w

ith
 P

C
A

)
O

ur
s

(t
ra

in
ed

 w
ith

 Is
om

ap
)

O
ur

s
(t

ra
in

ed
 w

ith
 M

D
S

)
O

ur
s

(t
ra

in
ed

 w
ith

 L
LE

)

M
N

IS
T

(c
la

s
s

e
s

 0
 a

n
d

 1
)

P
C

A
Is

om
ap

M
D

S
LL

E

O
ur

s
(t

ra
in

ed
 w

ith
 P

C
A

)
O

ur
s

(t
ra

in
ed

 w
ith

 Is
om

ap
)

O
ur

s
(t

ra
in

ed
 w

ith
 M

D
S

)
O

ur
s

(t
ra

in
ed

 w
ith

 L
LE

)

F
a

s
h

io
n

 M
N

IS
T

(c
la

s
s
e

s
 T

-S
h

ir
ts

 a
n

d
 A

n
k

le
 B

o
o

ts
)

N
H

: 1
.0

N
H

: 1
.0

N
H

: 1
.0

N
H

: 1
.0

N
H

: 1
.0

N
H

: 1
.0

N
H

: 0
.9

9
N

H
: 1

.0

N
H

: 0
.9

9
N

H
: 1

.0
N

H
: 0

.9
9

N
H

: 1
.0

N
H

: 0
.9

9
N

H
: 1

.0
N

H
: 0

.9
9

N
H

: 1
.0

P
C

A
Is

om
ap

M
D

S
LL

E

O
ur

s
(t

ra
in

ed
 w

ith
 P

C
A

)
O

ur
s

(t
ra

in
ed

 w
ith

 Is
om

ap
)

O
ur

s
(t

ra
in

ed
 w

ith
 M

D
S

)
O

ur
s

(t
ra

in
ed

 w
ith

 L
LE

)

M
N

IS
T

(a
ll

 1
0

 c
la

s
s

e
s

)

N
H

: 0
.4

7
N

H
: 0

.5
1

N
H

: 0
.4

9
N

H
: 0

.3
7

N
H

: 0
.4

7
N

H
: 0

.5
2

N
H

: 0
.4

9
N

H
: 0

.3
6

P
C

A
Is

om
ap

M
D

S
LL

E

O
ur

s
(t

ra
in

ed
 w

ith
 P

C
A

)
O

ur
s

(t
ra

in
ed

 w
ith

 Is
om

ap
)

O
ur

s
(t

ra
in

ed
 w

ith
 M

D
S

)
O

ur
s

(t
ra

in
ed

 w
ith

 L
LE

)

F
a

s
h

io
n

M
N

IS
T

(a
ll

 1
0

 c
la

s
s

e
s
)

N
H

: 0
.5

4
N

H
: 0

.6
1

N
H

: 0
.5

6
N

H
: 0

.6
2

N
H

: 0
.5

2
N

H
: 0

.5
9

N
H

: 0
.5

2
N

H
: 0

.5
7

Figure 5.7: Learning di�erent projections for four datasets (MNIST and FashionMNIST, 2 and 10
classes). In each sub�gure, top row: Projections of 5K samples made with PCA, Isomap,
MDS, and LLE; bottom row: projections of di�erent 5K samples, same datasets, created
by our method trained on the data and projections from the top row. #� stands for
Neighborhood Hit ("=ℎ).

60

5.4 results

tion where our technique yields poorer "C , "2 , and "=ℎ values than the ground-truth,
but identical (C values. In other words, our learned projections perform equally well for
all techniques over all datasets.

LLE

AE3

AE1

t-SNE

MDS

H
ar

IM
D

B

LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

IM
D

B

LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

W
B

C
LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

LAMP

LSP

PCA

UMAP

Isomap

H
ar

LLE

AE3

AE1

t-SNE

MDS

M
N

IS
T

 (
fu

ll)
F

as
h

io
n

M
N

IS
T

 (
fu

ll)

LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

D
o

g
s
v
s

 C
at

s

LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

LAMP

LSP

PCA

UMAP

Isomap

LLE

AE3

AE1

t-SNE

MDS

LAMP

LSP

PCA

UMAP

Isomap

M
N

IS
T

 (
2

cl
as

se
s)

F
as

h
io

n
M

N
IS

T
 (

2
cl

as
se

s)
M

N
IS

T
 (

fu
ll)

eq
u

al
h

ig
h

er
lo

w
er

Our quality

vs

ground truth

IM
D

B
W

B
C

H
ar

Figure 5.8: Signed di�erence between quality metrics computed on ground-truth projections vs our
projection (trained with 5K samples), for 10 techniques and 10 datasets. Green indicates
cases when our technique exceeded the ground truth quality; red indicates the opposite
case.

5.4.3 Stability and out-of-sample data

We de�ne stability of a projection as the relation between the visual changes in % (�)
related to data changes in � . Ideally, a stable projection technique should not change
% (�) if � does not change at all, regardless of changes in parameters of the algorithm
% ; and conversely, when � changes, e.g. as new samples are added, then the old samples
should stay in % (�) as close as possible to their original locations. This way, the user can
relate changes in % (�) to actual data changes. For a similar reasoning applied to di�erent
infovis algorithms, i.e., treemaps, see [210], or even closer to the context of dimension-
ality reduction, graph drawing [14]. Hence, stability and out-of-sample capabilities are
closely related. Stability in the context of projecting high-dimensional data is argued for,
independently, by several authors: Joia et al. argue for stability for preserving the user’s
mental map for LAMP [95] and use Procrustes analysis to align projections of di�erent
datasets to ensure consistency. Rauber et al. analyze deeper the trade-o� stability vs accu-
racy for t-SNE and adapt the method to this end to handle time-dependent datasets [166].
Even closer to our focus, Van der Maaten [124] argues in detail about why out-of-sample

61

deep learning projections

t-SNE UMAP Isomap

Ours (trained by t-SNE) Ours (trained by UMAP) Ours (trained by Isomap) Ours (trained by PCA)

PCA

NH: 0.92

NH: 0.88

MNIST
NH: 0.91

NH: 0.88

NH: 0.47 NH: 0.47

NH: 0.47NH: 0.48
t-SNE UMAP Isomap

Ours (trained by t-SNE) Ours (trained by UMAP) Ours (trained by Isomap) Ours (trained by PCA)

PCA

NH: 0.79

NH: 0.73

NH: 0.74

NH: 0.71

NH: 0.59 NH: 0.53

NH: 0.53NH: 0.61

FashionMNIST

t-SNE UMAP Isomap

Ours (trained by t-SNE) Ours (trained by UMAP) Ours (trained by Isomap) Ours (trained by PCA)

PCA

NH: 0.91

NH: 0.90

Dogs vs Cats

 0.90NH: 0.90

 0.90NH: 0.90

 0.88NH: 0.888 0.89NH: 0.89

 0.89NH: 0.89 0.89NH: 0.89
t-SNE UMAP Isomap

Ours (trained by t-SNE) Ours (trained by UMAP) Ours (trained by Isomap) Ours (trained by PCA)

PCA

 0.63NH: 0.63

NH: 0.62NH: 0.62

IMDB

 0.62NH: 0.62

NH: 0.63NH: 0.6

NH: 0.59 NH: 0.59

NH: 0.59NH: 0.59NH: 0.59NH: 0.59

AEC3

NH: 0.61

Ours (trained by AEC3)

NH: 0.58

NH: 0.45

AEC1AEC1

Ours (trained by AEC1)

NH: 0.44

LAMPLAMP

Ours (trained on LAMP)

NH: 0.44

NH: 0.44NH: 0.44

LLE

Ours (trained on LLE)

NH: 0.37NH: 0.37

NH: 0.35NH: 0.35

AEC1

Ours (trained by AEC1)

AEC3

Ours (trained by AEC3)

LAMP

Ours (trained on LAMP)

NH: 0.53

NH: 0.53NH: 0.5333

NH: 0.65

NH: 0.61NH: 0.61

NH: 0.52

NH: 0.52NH: 0.52

NH: 0.62

NH: 0.59

LLE

Ours (trained on LLE)

AEC1

Ours (trained by AEC1)

AEC3

Ours (trained by AEC3)

LAMP

Ours (trained on LAMP)

LLE

Ours (trained on LLE)

NH: 0.89

NH: 0.89

 0.88NH: 0.88

NH: 0.89

NH: 0.87

NH: 0.87

NH: 0.89

 0.89NH: 0.89

AEC1

Ours (trained by AEC1)

 0.89NH: 0.89

NH: 0.89NH: 0.89

AEC3AEC3

Ours (trained by AEC3)

LAMP

Ours (trained on LAMP)

LLE

Ours (trained on LLE)

NH: 0.57

NH: 0.57NH: 0.57

NH: 0.58NH: 0.58

NH: 0.58

 0.58NH: 0.58

NH: 0.57

Figure 5.9: Projections (15K samples) learned from eight techniques (t-SNE, UMAP, Isomap, PCA,
LAMP, 1-layer and 3-layer autoencoders (AEC1, AEC3), and LLE) for the MNIST, Fash-
ion MNIST, Cats vs Dogs, and IMDB datasets. Below each projection the results of our
technique are shown. See Section 5.4.2. #� stands for Neighborhood Hit ("=ℎ).

62

5.4 results

t-SNE UMAP IsomapI

Ours (trained by t-SNE) Ours (trained by UMAP) Ours (trained by Isomap)O (i d b I) Ours (trained by PCA)

PCAPCA

NH: 0.95NH: 0.95

NH: 0.92NH: 0.92

Seismic
NH: 0.94NH: 0.94

NH: 0.92NH: 0.92

NH: 0.92NH: 0.92 NH: 0.90NH: 0.90

NH: 0.90NH: 0.90NH: 0.91NH: 0.91
t-SNE UMAPUMAP IsomappI

Ours (trained by t-SNE) Ours (trained by UMAP) Ours (trained by Isomap) Ours (trained by PCA)

PCA

NH: 0.80NH: 0.80

NH: 0.78

NH: 0.78

NH: 0.77

NH: 0.72 NH: 0.74NH: 0.74

NH: 0.74NH: 0.72

Spambase

t-SNE UMAP IsomapIsomap

Ours (trained by t-SNE)O (t i d b t SNE) Ours (trained by UMAP)O (t i d b UMAP) Ours (trained by Isomap)O (t i d b I) Ours (trained by PCA)

PCA

NH: 0.98

NH: 0.92

Har

 0.97NH: 0.97

NH: 0.54

NH: 0.44 NH: 0.73

NH: 0.71NH: 0.41
t-SNE UMAPUMAP IsomapIsomap

Ours (trained by t-SNE)Ours (trained by t SNE) Ours (trained by UMAP)Ours (trained by UMAP) Ours (trained by Isomap)Ours (trained by Isomap) Ours (trained by PCA)

PCAPCA

NH: 0.99

NH: 0.96

WBC

NH: 0.988

NH: 0.95

NH: 0.900 NH: 0.94

NH: 0.94NH: 0.90

AEC3

NH: 0.90

Ours (trained by AEC3)

NH: 0.90

0NH: 0.90

AEC1AEC1

Ours (trained by AEC1)

 0.90NH: 0.90

LAMP

Ours (trained on LAMP)Ours (trained on LAMP)

NH: 0.9090

NH: 0.90NH: 0.9090

LLE

Ours (trained on LLE)

NH: 0.91NH: 0.91

NH: 0.90NH: 0.90

AEC1

Ours (trained by AEC1)

AEC3AEC3

Ours (trained by AEC3)

LAMPLAMP

Ours (trained on LAMP)

NH: 0.68

NH: 0.67NH: 0.67

NH: 0.65NH: 0.65

NH: 0.61NH: 0.61

NH: 0.71NH: 0.71

NH: 0.70NH: 0.70

NH: 0.62NH: 0.62

NH: 0.61NH: 0.61

LLELLE

Ours (trained on LLE)

AEC1AEC1

Ours (trained by AEC1)Ours (trained by AEC1)

AEC3AEC3

Ours (trained by AEC3)

LAMPLAMP

Ours (trained on LAMP)

LLELLE

Ours (trained on LLE)Ours (trained on LLE)

NH: 0.76

NH: 0.78

NH: 0.82

NH: 0.80

NH: 0.82

NH: 0.77

NH: 0.77

NH: 0.66

AEC1AEC1

Ours (trained by AEC1)Ours (trained by AEC1)

NH: 0.93

NH: 0.93

AEC3AEC3

Ours (trained by AEC3)O (t i d b AEC3)

LAMPLAMP

Ours (trained on LAMP)O (i d LAMP)

LLE

Ours (trained on LLE)

NH: 0.94

NH: 0.94

NH: 0.94

NH: 0.94

NH: 0.82

NH: 0.81NH: 0.81

Figure 5.10: Projections (15K samples) learned from eight techniques (t-SNE, UMAP, Isomap, PCA,
LAMP, 1-layer and 3-layer autoencoders (AEC1, AEC3), and LLE) for the Seismic, Spam-
base, Har, and WBC datasets. Below each projection the results of our technique are
shown. See Section 5.4.2. #� stands for Neighborhood Hit ("=ℎ).

63

deep learning projections

t-
S

N
E

O
ur

s
(t

ra
in

ed
 w

ith
 t-

S
N

E
)

U
M

A
P

O
ur

s
(t

ra
in

ed
 w

ith
 U

M
A

P
)

2K samples 10K samples 30K samples 60K samples 100K samples

NH: 0.86 NH: 0.93 NH: 0.96 NH: 0.96 NH: 0.97

NH: 0.75 NH: 0.77 NH: 0.78 NH: 0.79 NH: 0.80

NH: 0.84 NH: 0.91 NH: 0.94 NH: 0.95 NH: 0.96

NH: 0.84 NH: 0.84 NH: 0.85 NH: 0.85 NH: 0.86

pt
-S

N
E

NH: 0.77 NH: 0.79 NH: 0.80 NH: 0.82 NH: 0.84

LA
M

P
O

ur
s

(t
ra

in
ed

 w
ith

 L
A

M
P

)
LS

P
O

ur
s

(t
ra

in
ed

 w
ith

 L
S

P
)

NH: 0.41 NH: 0.47 NH: 0.49 NH: 0.50 NH: 0.56

NH: 0.43 NH: 0.45 NH: 0.49 NH: 0.53 NH: 0.58

NH: 0.54 NH: 0.47 NH: 0.58

NH: 0.49 NH: 0.51 NH: 0.54 NH: 0.57 NH: 0.62

Figure 5.11: Out-of-sample capability: Projecting increasing number of samples from the MNIST
dataset with di�erent techniques. Empty spaces indicate tests that did not complete (the
ground-truth projection algorithm could not handle too many samples).#� stands for
Neighborhood Hit ("=ℎ).

64

5.4 results

capability for DR is essential for classi�cation and regression, and why this is not opti-
mally achieved by standard techniques such as autoencoders. Nonato and Aupetit argue
for stability as being a key feature of DR algorithms in a comprehensive recent survey
of such methods [148]. Also, one of the key criteria that UMAP was developed to satisfy
its stability [138]. An additional strong argument for out-of-sample capability, and how
add this to techniques such as LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering,
is made by Bengio et al. [20].

The joint added-value of stability and out-of-sample capability can actually be
explained intuitively, as follows:

Dynamic data: A dataset � may not be a singular item, but part of a collection {�8 },
as in the case of sampling a time-dependent some phenomenon. If projecting every
single element �8 of this collection yields fundamentally di�erent projections % (�8),
even though the frames �8 don’t change much with respect to each other, then the
projection method % may optimally represent the individual frames �8 taken separately,
but not the entire collection {�8 }. When analysis tasks target the collection, we need the
latter, not the former, optimization [148, 166].

Usability: A projection % (�) is the result of a given dataset � , plus any parameter
settings of the projection algorithm % itself. From a practical viewpoint, users do not
want to get massively di�erent results % (�) when only minute details change in either
the dataset or the parameters, otherwise the algorithm % is suboptimal: Users see
signi�cantly di�erent results for such minute changes, and next wonder whether these
re�ect indeed signi�cant changes in the data � , or just noise artifacts in � or issues
with parameter settings of % . An unstable DR method % does not give an answer to this,
leaving the user doubting how to interpret changes in the visualization % (�).

As outlined above, obtaining stability and out-of-sample capability is not trivial. Many
projection techniques use a random initialization, which means they create quite di�er-
ent results for the same dataset � for di�erent runs. Moreover, small parameter changes,
e.g., perplexity for t-SNE, or choice of control points for LAMP, to mention just a few, can
yield large changes in % (�) [214]. Dynamic t-SNE corrects such e�ects up to a certain
level, but comes with additional complexity and signi�cant computational costs [166].

Figure 5.11 shows projections of increasingly large, randomly-selected, point subsets
of the MNIST dataset, using �ve projection techniques (t-SNE, UMAP, pt-SNE, LAMP,
and LSP). We compare these with our method, trained on 5K samples from each of the
above projections. Several observations follow. First, by scanning rows in Fig. 5.11 left-to-
right, we see that in all ground-truth projections, except pt-SNE, the same-label clusters
move in the projection as the sample count changes. This con�rms that these methods
are not suitable for out-of-sample applications, as users would have di�culties in main-
taining the mental map of the data. In contrast, our method (trained with any of the
ground-truth projections), and pt-SNE, show stable clusters that stay in the same places
in the projection, and only grow denser as more samples are projected – thus, they have
the desired out-of-sample capability. The price to pay for this is the increased fuzziness
of our out-of-sample projections. This is especially visible when we learn from t-SNE
and UMAP: For those rows, our learned projections show clusters where points having
di�erent labels (colors) mix more than in the ground-truth projections, and have lower
"=ℎ values than these. However, for LAMP and LSP, our learned projections achieve
similar visual quality, and sometimes even marginally higher "=ℎ values as compared
to the ground truth. This is explained due to the poorer separation (quality) of the origi-

65

deep learning projections

T
im

e
(s

ec
o

n
d

s,
 lo

g
 s

ca
le

)

0.1

1

10

102

103

104

200K 400K 600K 800K 1M

Number of projected samples

t-SNE
UMAP

LAMP
LSP

Ours (t-SNE seed + train + inference)

MDS
Ours (UMAP seed + train + inference)
Ours (MDS seed + train + inference)
Ours (LAMP seed + train + inference)
Ours (LSP seed + train + inference)
Ours (inference only)
UMAP (inference only)
pt-SNE (inference only)

t-SNEUMAP

LAMP

MDS

LSP

UMAP (infer. only)

Ours (infer. only)

pt-SNE (infer. only)

Figure 5.12: Time to project varying number of samples, MNIST data set, oversampled to 1 million
observations (log time scale).

nal LAMP and LSP ground-truth, which is thus easier to learn than in the case of t-SNE
and UMAP. Separately, compared to pt-SNE, the only ground-truth projection discussed
here that has out-of-sample capability, we achieve only marginally lower "=ℎ values
(when trained with t-SNE) and actually higher "=ℎ values (when trained with UMAP).
Summarizing all above, we conclude that our method proposes a good trade-o� between
stability (and out-of-sample capability) vs projection accuracy.

5.4.4 Computational scalability

One of our main goals is to create a projection technique which scales to large datasets
(C2, Section 5.1). To analyze this, Figure 5.12 shows a time comparison between t-SNE,
UMAP, pt-SNE, MDS, LAMP, LSP, and our method trained to mimic these projections, for
increasingly large subsets of the MNIST dataset, up to one million samples. We trained
our method with (only) 5K samples, in line with training-set sizes found to be su�cient
in our earlier experiments (Section 5.4.1).

We �rst compare the performance of our end-to-end method, i.e., computing the train-
ing projection (called seeding in Fig. 5.12), training itself, and inference. The thin-dotted
lines in Fig. 5.12 show the sum of these three times for our method. As visible, these lines
are almost horizontal, which indicates that our timings are dominated by the constant
seeding plus training time, and not inference.

As comparison baselines, the continuous (undotted) lines show the timings of the
original ground-truth algorithms. We see that our method already runs much faster than
the ground-truth algorithms, even when considering the training cost: For the maximum
sample count (1 million), we are roughly three orders of magnitude faster than t-SNE and
two orders of magnitude faster than LAMP. The LSP, MDS, and UMAP implementations
we used in the test were not able to handle this large number of samples, shown by their
respective curves that stop in Fig. 5.12 at roughly 20K, 30K, respectively 500K samples.
From the slopes of these curves, we see that our method is several orders of magnitude
faster than these algorithms for the respective sample counts.

66

5.4 results

The above comparison of our end-to-end method, including seeding, training, and
inference, to the original algorithms, is a worst-case scenario: In practice, one would train
only once on a given data universe D and project many times on the same D. Hence, we
next analyze only the inference (projection) time for our method (blue long-dash curve).
This time is identical for learning any projection. We see that our method is faster than
all other ground-truth methods for all sample counts. For the maximal sample count,
we are about two orders of magnitude faster than LAMP, and three-and-a-half orders of
magnitude faster than t-SNE. We also see that we are one order of magnitude faster than
pt-SNE. This is an important result, since, as already discussed, pt-SNE is the only other
parametric projection technique using deep learning that we are aware of. This, together
with the quality results discussed in Figure 5.11, show that our method is a competing
alternative, concerning both quality and speed, to pt-SNE.

Finally, we consider UMAP’s out-of-sample capability (see Section 5.2 for details): We
run UMAP on our training set, which makes it learn a function to transform the high-
dimensional data to 2D. Note that this is completely di�erent from our deep learning –
it is a particular feature of UMAP’s implementation, not shared by any other projection
techniques we know of. Next, we let UMAP use this learned function to project the test
set. In this inference-only scenario, our method (again, the blue long-dash curve) is about
one-and-a-half orders of magnitude faster than UMAP (orange dashed curve).

Table 30 in Section A.2 lists all open-source software libraries used in all our exper-
iments. Our neural network implementation leverages the GPU power by using the
Keras framework. The t-SNE implementation used is a parallel version of Barnes-Hut
t-SNE [125], run on all four available CPU cores for all tests. The UMAP reference im-
plementation is not parallel, but is quite fast (compared to t-SNE) and well-optimized.
Our implementation, plus all code used in this experiment, are publicly available at
github.com/mespadoto/dlmp.

5.4.5 Projecting unrelated data

So far, we showed that our method can learn from a subset of a given dataset � to
project unseen samples from the same� . This serves the concrete purpose of accelerating
projections of large datasets (see e.g. Fig. 5.12 and related text), by training our method
on the projection of a small subset thereof, followed by inference on the entire dataset.
The same approach can be used when one wants to project very similar datasets, drawn
from the same distribution, i.e., sampling the same phenomenon.

A di�erent question arises in this context: Can we use our method to project (infer)
data which is quite di�erent from the training data? In other words: Can we reuse the
training done on a given type of data from some universe D (for which we have, for
instance, su�cient training samples) to generate a network able to project data from a
related, but still di�erent, universe D′?

To answer this question, we conducted the following experiment. We trained our
method using UMAP and t-SNE projections of 2K observations from CIFAR-10 (classes
Airplane, Frog and Truck), which can be seen as a sampling of D, the universe of natu-
ral images of vehicle-and-animal shapes. Next, we used the trained network to project
4K observations from CIFAR-100 (classes Trees, Large Carnivores and Vehicles 2), which
constitutes a sampling of D′ – a universe related, but not identical to, D. We selected
these classes because they contain images that are similar perceptually between the two
universes D and D′, with the goal of checking the capability of generalization of our
method. Note however that D and D′ are quite di�erent: While both contain images,
these are of di�erent kinds, and acquired by di�erent procedures.

67

github.com/mespadoto/dlmp

deep learning projections

Figure 5.13 shows the obtained results. First, we show the projections obtained by
directly reusing the network trained on D. As visible, the results, shown in Fig. 5.13b,
are quite far from the ground truth (classical t-SNE and UMAP projections, Fig. 5.13a).
This con�rms that D and D′ are, indeed, quite di�erent, so directly reusing the training
from D to D′ is not possible.

We next consider training the network from scratch, using a small number f of 100
to 1000 samples from D′, mimicking the situation when the user has only few avail-
able data from D′ to train on. The results are shown in Fig. 5.13c. As visible, when we
increase f , the from-scratch training results get closer to the ground-truth (Fig. 5.13a).
Next, we consider a network pre-trained on D (the original universe), which we further
train (�ne-tune) with f samples for an increasing number of epochs 4 (from 100 to 700).
The procedure is very similar to transfer learning [150]. Figure 5.13d shows the results
of this �ne tuning for di�erent combinations of f and 4 . If we look at the rows of Fig-
ure 5.13d, we see that the respective images are more similar to Fig. 5.13a than the image
(c) corresponding to the same row. As we increase f and 4 , these images become increas-
ingly more similar to the ground truth. For instance, we see that the �ne-tuned network
can already capture the green spike detail marked in blue in Fig. 5.13a from f = 500,
4 = 500, as shown by the red circles in image (d). When training from scratch, this detail
requires f = 1000 samples to become visible for UMAP, and cannot be captured even for
this sample count for the t-SNE projection. Hence, we conclude that we can mimic the
ground-truth projection of D′ better by �ne-tuning a network pre-trained on a di�erent
universe D than training from scratch on D′ with the same number of samples.

We can draw the following conclusions from this experiment:

• Directly extrapolating training from a universe D to a di�erent universe D′ will
not give good projection results;

• Fine-tuning an existing training on D with a small number of samples drawn from
D′ is possible and can lead to results close to the ground-truth projection of data
from D′.

We should stress that the above experiment only hints the possibility of transfer-
learning-like training of projections. We do not have enough evidence to assess how
much additional training data (from D′) and training time is needed, in general, when
extrapolating between two di�erent universes. Moreover, the relationship between the
additional training data and training e�ort required to reach a certain similarity to the
ground-truth projection and the similarity of the universes D and D′ is yet unknown.
We consider this to be an interesting topic for future work.

5.5 discussion

We next discuss how our proposal meets the requirements introduced in Section 5.1.

Quality (C1): We showed that our method achieves very similar quality (measured
by �ve established metrics in dimensionality reduction) to projections well-known to
perform well in this area on six challenging multidimensional datasets having up to
thousands of dimensions, which are often used as benchmarks in machine learning.
Visual comparison also shows that our projections are very close to those computed by
existing methods, which, as discussed already, are slower and harder to con�gure.

Scalability (C2): Even when considering training, our method is roughly one order
of magnitude faster than t-SNE and roughly 5 times faster than UMAP for more than

68

5.5 discussion

a) Ground truth

b) Pre-trained network

without fine tuning

c) Projection from scratchd) Pre-trained network with fine tuning

σ
 =

 1
00

σ
 =

 2
00

σ
 =

 5
00

σ
 =

 1
00

0

e = 100 e = 200 e = 500 e = 700

c) Projection from scratchd) Pre-trained network with fine tuning

σ
 =

 1
00

σ
 =

 2
00

σ
 =

 5
00

σ
 =

 1
00

0

e = 100 e = 200 e = 500 e = 700

a) Ground truth

U
M

A
P

 p
ro

je
ct

io
n

t-
S

N
E

 p
ro

je
ct

io
n

detail

b) Pre-trained network

without fine tuning

detail

Figure 5.13: Projecting data (4K samples) by �ne tuning pre-trained networks mimicking UMAP
and t-SNE. a) Test projection. b) Inference by pre-trained network without any �ne
tuning. Training uses 2K samples from universe D. c) Projections made by our method
trained from scratch from f samples from the new universe D′. d) Projections made
by with �ne-tuning the pre-trained network with varying numbers of training epochs
4 and using di�erent numbers f of samples from D′. Red markers show how the �ne-
tuned network can already capture a ground-truth detail (shown separately in blue)
with fewer training samples f than when training from scratch with the same f .

69

deep learning projections

roughly 30K samples. As explained in Section 5.4.4, this is a worst case, since one
typically trains once and infers many times on a given data universe. For such cases,
our method is more than three to four orders of magnitude faster than t-SNE and UMAP,
and allows projecting data of millions of samples in a few seconds. The complexity of
our method is linear in the number of observations and dimensions. Besides t-SNE and
UMAP, our method is actually also faster than other projection methods such as Isomap,
LAMP, and MDS.

Ease of use (C3): During inference, our method simply executes a trained neural
network, which requires no parameter setting. There is no need for guessing the ‘right’
values of parameters such as t-SNE’s perplexity [214]. During training, the only free
parameter to be set is the maximal loss or, alternatively, number of training epochs.
The two are related, see Section 5.4.1. As also explained there, a preset of 200 training
epochs yielded a loss of 0.005, i.e., practical convergence, for all examples we considered.

Genericity (C4): Our method can learn the behavior of any type of projection tech-
nique. We provided examples in Section 5.4 showing this for t-SNE, LAMP, UMAP,
MDS, Isomap, LLE, PCA, and pt-SNE. All that is needed to learn is a number of samples
from the data universe of interest, represented as =-dimensional feature vectors, and
their 2D coordinates computed by the desired projection technique. No other aspects
or parameters of the training or inference process are projection-technique speci�c –
that is, projections to be learned can be seen as black boxes. Moreover, no restrictions
exist in terms of the dimensionality = of the input feature space in which the data is
represented and/or the dimensionality @ of the projected data. While we demonstrated
our approach only for @ = 2 (2D projections), which are the most commonly used in
infovis, producing higher-dimensional, e.g., 3D projections [38], is equally easy. Such
projections are preferred in certain cases as they can preserve the original data structure
better than 2D projections [38, 178]. Of course, for our method to be usable, data should
come as =-dimensional feature vectors. This is direct e.g. in the case of tabular data
or images, as discussed in the examples in the paper; for other data types, such as
text or videos, suitable feature extraction methods should be used. This is however
not a limitation of our method as opposed to other dimensionality reduction methods.
Separately, we note that we have only considered projecting quantitative data so far.
However, extending our approach to handle categorical data is straightforward by using
e.g. one-hot encoding or similar techniques [162].

Stability and out-of-sample support (C5): These two issues are strongly intercon-
nected, and actually also connected with the question of how far our networks can
generalize what they learn. Let us detail. As outlined in Section 5.3, we take a training
set �B which is supposed to represent well the overall data distribution in a given
so-called data universe D, i.e., datasets related to a particular application, such as all
handwritten digits, all human face images, all patients in a given population, all street
views, and similar. Our approach learns how to project data in D based on training
projections of data in �B . Hence, the better �B represents the variability of data in D,
the better will our projections mimic actual projections of the same data. Given that
neural network inference works deterministically, out-of-sample support is stable in the
sense that the same data items (in a dataset � ⊂ D) are projected to the same locations,
which is not the case for many projection methods such as t-SNE, UMAP, and LAMP, to
mention just a few. Separately, given the dense structure of the fully-connected network
we use (which averages activations from multiple units in an earlier layer to determine

70

5.5 discussion

those of the current layer), our approach is stable in the sense that small changes in
an input dataset yield only small changes in the resulting projection (see example
in Section 5.4.3). Again, this result is far from evident for many existing projection
techniques.

Limitations: Our results show that there is a trade-o� between the inherent stability
and out-of-sample support of our method (discussed above) and the quality (in terms
of cluster separation) of the resulting projections. Compared to t-SNE and UMAP,
our projections show fuzzier, or less sharply separated clusters. Compared to the
other tested projections (MDS, Isomap, LLE, LAMP, autoencoders, PCA), however, our
results are almost identical both visually and in terms of the evaluated quality metrics.
This trade-o� is needed to provide stability: Our method cannot project samples as
‘freely’ as e.g. t-SNE, since it needs to behave deterministically, like any parametric
DR technique; on the other hand, this ensures that the same location in =D space
projects to the same place in @D space, which is not the case for t-SNE or any other
non-parametric DR technique. A similar trade-o� between stability and quality exists
actually also for dynamic (t-SNE) projections [166] and also for parametric t-SNE [124].
Note that, if desired, we can reduce fuzziness (or, more formally, achieve a higher
�t of the learned representation with the training data) by increasing the number of
training epochs, decreasing the training loss, or similar well-known techniques in
machine learning. However, this is undesired as it can quickly lead to over�tting, i.e., it
will create suboptimal projections from data which is very di�erent from the training set.

Relation to autoencoders: Both our method and autoencoders use deep learning
to perform dimensionality reduction and are parametric techniques. However, the
similarities end here: Our method learns from a 2D projection (scatterplot) provided
by a user-chosen projection technique; in contrast, autoencoders train with the
=-dimensional data itself. Autoencoders propose an own embedding of the high-
dimensional data into 2D. In contrast, we learn whichever embedding was provided to
us by the training projection.

Generalization: Related to the last point above, the question arises of how far can
our approach generalize, or, how densely do we need to sample an universe D by the
training set �B to create good projections. This is an open question in machine (and
deep) learning in general. Yet, we can make the following practical points. First, for the
types of (non-trivial) data universes we consider in our evaluations, a few thousands of
samples yield already high-accuracy results. Secondly, the larger D is, the larger (and
better spread) the training set �B needs to be. Section 5.4.5 outlines the limits of this
extrapolation: The farthest away is D spread from the training set �B , the more will
our projections di�er from the actual ground-truth projections obtained using classical
projection methods. Again, this is not a surprise, but a well-known fact in machine
learning. We argue that this is not a problem in practice when using projections. Indeed:
In all cases we are aware of, researchers typically work for a reasonable amount of time
on a given, and �xed, data universe D. Hence, they can once train a network from a
comprehensive �B ⊂ D, after which they can use the network with no changes for data
in the same D. Moreover, for cases where one targets a new data universe D′, for which
obtaining a comprehensive training set �B is expensive, the transfer-learning-like
approach in Section 5.4.5 can be used. As shown in that Section, one can �ne-tune a
pre-trained network (on widely available data from a related universe D) with as few as

71

deep learning projections

hundreds of samples from D′.

5.6 conclusion

We have presented NNP, a new method for creating projections of high-dimensional
data using a machine learning approach. Based on a small number of 2D projections
of a subset of samples from a given data universe, obtained using any user-chosen pro-
jection technique, we train a neural network to mimic the 2D projection output, and
next use the network to infer projections of unseen data from the same universe. Our
method can mimic the quality and visual style of a wide range of established projection
techniques, including the well-known visual cluster separation provided by SNE-class
methods; is orders of magnitude faster than such methods; has a single parameter for
training (with documented preset), and no parameters for inference; can handle datasets
of any (quantitative) kind and dimensionality; and delivers inherent stability and out-of-
sample support. Our method is simple to implement, requiring only generic (and easily
available) software for neural networks, and we provide its source code for replication
and actual usage. We show how our approach yields good trade-o�s between quality
(on the one side) and speed, ease of use, genericity, generalizability, and stability (on the
other side).

Many future work directions are next possible. First, we consider generalizing our
approach to compute stable projections of dynamic (time-dependent) high-dimensional
data and also mixed quantitative-and-qualitative data. Secondly, we consider using dif-
ferent network architectures, cost functions, and training procedures for more accurate
handling of more complex data universes. Last but not least, we consider more re�ned
approaches to tackle the transfer learning problem for generalizing learning from a given
number of jointly considered data universes and projection techniques.

In Chapter 6, we present a detailed study of how architectural and hyperparameter
choices in�uence the behavior of NNP, and we introduce K-Nearest-Neighbors Projec-
tion, which improves on NNP by using local neighborhood information during the train-
ing phase.

72

6I M P R O V I N G D E E P L E A R N E D P R O J E C T I O N S

6.1 introduction

In Chapter 5 we presented NNP [52], which tries to address the issues of scalability, stabil-
ity and out-of-sample capability found in popular techniques such as t-SNE. NNP uses
a deep learning approach to achieve that: a fully-connected regression neural network
trained from a small subset of samples of a high-dimensional dataset and their corre-
sponding 2D projection (produced by any DR technique). Next, the network can infer
the 2D projection on any high-dimensional dataset drawn from a similar distribution as
the training set. This method is much faster than the underlying DR technique (orders of
magnitude faster than t-SNE), works deterministically, thereby providing out-of-sample
capability by construction, and is simple to implement.

However, it is visible in the examples from Chapter 5 and in Figure 6.1, that the NNP
projections have some amount of di�usion, i.e., they separate similar-sample clusters
less clearly than in a ground-truth t-SNE projection. While visible, it is unclear (i) how
much di�usion a�ects the quality of a projection; (ii) how it depends on hyperparameter
settings; and (iii) how one can reduce it.

a) b) c)

Figure 6.1: Example of di�usion introduced by NNP. (a) Ground-truth t-SNE projection (b) Inferred
NNP (10K samples) with di�usion. (c) Inferred KNNP (10K samples) showing less di�u-
sion.

Di�usion can have several causes, e.g.: (1) under�tting, by training for too few epochs
or having too little data to learn from; (2) over�tting, by not having proper regular-
ization or also by having too little data to learn from; (3) imperfect optimization, with
the optimizer getting stuck in local minima. Recently, Espadoto et al.[51] studied the
causes of di�usion by exploring the hyperparameter space of NN projections, showing
how these in�uence the results’ quality, gauged by the projection quality metrics. They
showed that NNP is stable with respect to hyperparameter settings, thereby complet-
ing the claim made in Chapter 5 that they can be reliably used for out-of-sample and
noisy-data contexts. However, they did not propose a way to reduce di�usion.

This chapter is based on the book chapter (to be published) Improving Deep Learning Projections by Neighborhood
Analysis. T. S. Modrakowski, M. Espadoto, A. Falcão, N. S. T. Hirata, A. C. Telea.

73

improving deep learned projections

In this chapter, we extend NNP by proposing a novel approach to deep learning pro-
jections. Rather than learning from a single sample at a time, we project whole groups of
related (neighboring) samples at a time. This aids the network to learn how to preserve
neighborhoods. To do this, we explore di�erent schemes of e�cient nearest-neighbor
search in high-dimensional data during both training and inference. We evaluate our
method, called K-Nearest-Neighbors Projection (KNNP) against NNP on a variety of
datasets and using several quality metrics, and show that our strategy is both compu-
tationally scalable and also leads to quality improvements.

The structure of this chapter is as follows. Section 6.2 discusses related work on DR
and neural networks. Section 6.3 details our experimental setup for the NNP evalua-
tion. Section 6.4 presents our results for optimizing NNP, which are next discussed in
Section 6.5. Section 6.6 presents the new KNNP Projection method, whose results are
discussed next in Section 6.7. Finally, Section 6.8 concludes the chapter.

6.2 related work

Related work can be split into dimensionality reduction, deep learning in general, and
deep learning projections, as follows.

Dimensionality reduction: Many Dimensionality Reduction (DR) techniques have
been developed over the years, with di�erent trade-o�s of ease of use, scalability,
distance preservation, and out-of-sample capability. Please refer to Chapter 3 for a
thorough discussion of dimensionality reduction techniques.

Deep learning: Building well-performing neural network (NN) architectures is very
challenging due to the many degrees of freedom allowed by their design process. We
outline below �ve typical such degrees of freedom.

Network Architecture: Part of the power of NNs comes from having many possible
architectures, in particular regarding number of layers and layer sizes, if we restrict
ourselves to fully-connected networks. There is not a one-size-�ts-all set of guidelines
to architecting NNs, which are typically created empirically.

Regularization: NNs can be prone to over�tting, which makes them fail to generalize dur-
ing inference for unseen data. Regularization techniques try to address this by making
the learning process harder, so the NN can train for more epochs and generalize better.
Regularization techniques include !2, !1, max-norm, early stopping, and data augmenta-
tion. The !: regularization techniques, also known as weight pruning (: = 1) and weight
decay (: = 2), work by adding a penalization term of the form _‖w ‖: to the NN loss
function, which equals the :-norm of the weights w of a selected network layer. The
parameter _ controls the amount of regularization.
!1 [152] regularization decreases layer weights with the less important getting down

to zero, leading to models with sparse weights. !2 [107] regularization decreases layer
weights to small but non-null values, leading to models where every weight only
slightly contributes to the model. Both regularization techniques were observed to help
prevent over�tting. Max-norm [193], originally proposed for Collaborative Filtering,
was successfully applied as a regularizer for NNs. It imposes a maximum value W for the
norm of the layer weights. This way, weight values are kept under control, similarly to
!2, but using a hard limit. Early stopping [225] is a simple but e�ective way to prevent
over�tting, especially when combined with the other regularization techniques outlined

74

6.2 related work

above. The idea is to stop training when the training loss �) and validation losses �+
diverge, i.e., �) keeps decreasing while �+ stops decreasing or worse, starts increasing,
both of which signal over�tting.

Optimizers: Di�erent optimizers are used for minimizing the non-linear NN cost. The
most used optimizers are based on Mini-batch Stochastic Gradient Descent (SGD) which
is a variant of classic Gradient Descent (GD). GD aims to �nd optimal weights w (that
minimize the error created by the NN for the training set) by adjusting these iteratively
via the gradient ∇� of the loss function � with respect tow as

wC = wC−1 − [∇� (6.1)

where the learning rate [controls how large is each update step "C . Classic GD uses all
data samples at each iteration of Equation (6.1), which is costly for large datasets. Stochas-
tic Gradient Descent (SGD) alleviates this by using only one sample, picked randomly, at
each iteration. This speeds up computation at the cost of having to solve a harder prob-
lem, as there is less information available to the optimizer. A commonly used optimizer
today is Mini-batch SGD, which uses one batch of samples for each GD iteration, thus
achieves a compromise between classic GD and SGD. The Momentum method [163] im-
proves SGD convergence by adding to the update vector uC = [∇� at step "C a fraction
a of the previous update vector uC−1 (Equation (6.2)), i.e.

wC = wC−1 − (auC−1 + uC) (6.2)

However, tuning the learning rate [is not trivial: Too small values may make the
NN take too long to converge; conversely, too high values may make training miss
good minima. Adaptive learning optimizers, such as Adaptive Moment Estimation
(ADAM) [102], alleviate this by using squared gradients to compute the learning rate
dynamically. This greatly improves convergence speed. However, [222] found that
ADAM can �nd solutions that are worse than those found by Mini-batch SGD. Solving
this problem is still an open research question.

Data augmentation: Such techniques generate data that are similar, but not identical, to
existing training data, to improve training when training-sets are small. Such techniques
highly depend on the data type. Augmentation can be used for regularization since
adding more training data creates models that generalize better.

Loss functions: Finally, one needs to select an appropriate loss function � . For regression
problems, commonly used loss functions are Mean Squared Error (MSE), Mean Absolute
Error (MAE), logcosh, and Huber loss. Table 10 shows the de�nitions of these functions,
where ŷ = {~̂8 } is the inferred output vector of the NN and y = {~8 } is the training
sample ŷ should match. MSE and logcosh are smoother functions which are easier to
optimize by GD or similar methods outlined above. MAE is harder to optimize since its
gradient is constant. The Huber loss is somewhere in between the above, according to
the parameter U : For values of U near zero, Huber behaves like MAE; for larger U values,
it behaves like MSE. MAE and Huber losses are known to be more robust to outliers
than MSE.

Deep learning projections: Early on, autoencoders [88, 101] were proposed to gener-
ate a compressed, low-dimensional representation on their bottleneck layers by training
the network to reproduce its inputs on its outputs. Typically, autoencoders produce re-
sults comparable to PCA. The ReNDA algorithm [15] uses two networks, improving on

75

improving deep learned projections

Table 10: Typical NN loss functions.
Function De�nition

MSE 1
=

∑=
8=1 (~8 − ~̂8)2

MAE 1
=

∑=
8=1 |~8 − ~̂8 |

logcosh 1
=

∑=
8=1 ;>6 (2>Bℎ (~8 − ~̂8))

Huber

1
2 (~ − ~̂)

2 if |~ − ~̂ | ≤ U

U |~ − ~̂ | − 1
2U otherwise

earlier work from the same authors. One network is used to implement a nonlinear gen-
eralization of Fisher’s Linear Discriminant Analysis, using a method called GerDA; the
other network is an Autoencoder used as a regularizer. The method scores well on pre-
dictability and has out-of-sample capability. However, it requires labeled data, which
may not be always available. Parametric t-SNE (pt-SNE) [124] was proposed to address
the out-of-sample limitation of t-SNE. Being of parametric nature (mapping the entire
=D input space to the lower-dimensional @D space), it allows out-of-sample behavior by
construction. Only few other DR methods are parametric and thus have this ability (e.g.,
PCA [97], NCA [74], autoencoders [88]).

Lastly, there is NNP, as described in Chapter 5, which is simple to implement, gener-
ically learns any projection % for any dataset � ⊂ R= , has deterministic (thus, out-of-
sample) behavior, and is orders of magnitudes faster than classical projection techniques,
in particular t-SNE.

6.3 nnp evaluation

While NNP has several advantages, as mentioned in Chapter 5, its quality and stability
vs parameter setting has not yet been assessed in detail. We address these issues by
performing a set of experiments that explore the design space of NNP (Section 6.3.1).
For each experiment, we evaluate NNP using several quality metrics (Section 2.2).

6.3.1 Parameter space exploration

For each experiment, we train and test the NN projection with various combinations of
datasets and hyperparameter settings, and then interpret the obtained results both quan-
titatively and qualitatively. All parameter values used for each experiment are detailed
in this section. Early stopping was used on all experiments, stopping training if the val-
idation loss stops decreasing for more than 10 epochs. Except when noted otherwise in
di�erent experiments, the optimizer used was ADAM and the loss function was MSE. As
dataset, we use MNIST [112] with 10K test-set samples, and varying training-set sizes of
2K, 5K, 10K and 20K samples. We chose this dataset as it is complex, high-dimensional,
has a clear class separation, and it is well known in dimensionality reduction literature.
MNIST was also used in the original evaluation of NNP (Section 5.4), which makes it
easy to compare our results.

In line with the design choices available to NNs outlined in Section 6.2, we explore
the performance of NN projections in the following directions.

NetworkArchitecture (Section 6.4.5):We selected three sizes of neural networks with
360 (small), 720 (medium) and 1440 (large) total number of units, and distributed them

76

6.3 nnp evaluation

into three di�erent layouts, namely straight (st), wide (wd) and bottleneck (bt), thus
yielding nine di�erent architectures, as follows:

• Small - straight: 120, 120 and 120 units;

• Small - wide: 90, 180 and 90 units;

• Small - bottleneck: 150, 60 and 150 units;

• Medium - straight: 240, 240 and 240 units;

• Medium - wide: 180, 360 and 180 units;

• Medium - bottleneck: 300, 120 and 300 units;

• Large - straight: 480, 480 and 480 units;

• Large - wide: 360, 720 and 360 units;

• Large - bottleneck: 600, 240 and 600 units.

Besides these, we also tested the original NNP architecture (See Figure 5.2), called
next Standard, which has three fully-connected hidden layers, with 256, 512, and
256 units respectively. All architectures use ReLU activation functions, followed by a
2-element layer which uses the sigmoid activation function to encode the 2D projection.

Regularization (Section 6.4.1): We explored the following regularization techniques:

• !1 with _ ∈ {0, 0.001, 0.01, 0.1} with 0 meaning no regularization;

• !2 with _ ∈ {0, 0.001, 0.01, 0.1} with 0 meaning no regularization;

• Max-norm constraint, with W ∈ {0, 1, 2, 3}, with 0 meaning no constraint;

Optimizers (Section 6.4.2): We studied two optimizers: ADAM and Mini-batch SGD
with learning rates [∈ {0.01, 0.001} and momentum a = 0.9. In both cases, we set the
batch size at 32 samples.

Data augmentation (Section 6.4.3): We explored two data augmentation strategies:

• Noise Before: We add Gaussian noise of zero mean and di�erent standard devia-
tions f ∈ {0, 0.001, 0.01}, with 0 meaning no noise, to the high-dimensional train-
ing data, project this entire (noise + clean samples) dataset, and ask the NN to
learn the projection. The idea is that, if the projection to learn (t-SNE in our case)
can successfully create well-separated clusters even for noisy data, then our NN
should learn how to do this as well;

• Noise After: We create the training projection from clean data. We next add Gaus-
sian noise (same f as before) to the data and train the NN to project the entire
(noise + clean samples) dataset to the clean projection. The aim is to force the NN
to learn to project slightly di�erent samples to the same 2D point.

Loss functions (Section 6.4.4): We studied four types of loss functions: Huber, with
parameters U ∈ {1, 5, 10, 20, 30}; Mean Squared Error (MSE), used in the original
evaluation of NNP (Section 5.3); Mean Absolute Error (MAE); and logcosh.

Adding more data: For all above directions, we use di�erent training-set sizes (2K, 5K,
10K and 20K samples) to evaluate how this a�ects the results – that is, how the NN
projection quality depends on both hyperparameter values and training-set size.

77

improving deep learned projections

6.4 nnp evaluation results

Table 11: E�ect of regularization. Rows show metrics for t-SNE (GT row) vs NN projections using
di�erent training-set sizes. Bold shows values closest to GT.

a) !1 regularization
Model _ "=ℎ "C "2 "B # epochs Time (s)

GT 0.929 0.990 0.976 0.277

2K

0 0.705 0.843 0.957 0.443 50 6.20
0.001 0.677 0.827 0.948 0.439 58 7.14
0.01 0.660 0.815 0.945 0.438 94 10.93
0.1 0.632 0.806 0.943 0.454 82 9.98

5K

0 0.738 0.871 0.962 0.423 26 7.22
0.001 0.692 0.845 0.953 0.436 38 10.05
0.01 0.670 0.835 0.947 0.427 68 18.29
0.1 0.599 0.815 0.945 0.459 53 14.58

10K

0 0.834 0.902 0.968 0.337 45 22.32
0.001 0.753 0.852 0.958 0.348 31 16.09
0.01 0.722 0.833 0.951 0.352 39 19.12
0.1 0.665 0.811 0.947 0.345 61 30.67

20K

0 0.885 0.922 0.967 0.341 49 47.28
0.001 0.816 0.883 0.960 0.364 30 29.35
0.01 0.743 0.842 0.954 0.366 28 26.89
0.1 0.707 0.822 0.946 0.364 25 24.17

b) !2 regularization
"=ℎ "C "2 "B # epochs Time (s)

0.929 0.990 0.976 0.277
0.695 0.839 0.956 0.437 35 4.61
0.711 0.847 0.958 0.432 29 4.27
0.684 0.834 0.954 0.433 42 5.57
0.683 0.830 0.952 0.428 68 8.54
0.767 0.880 0.963 0.422 53 14.33
0.742 0.875 0.963 0.419 28 7.71
0.733 0.866 0.959 0.416 55 15.24
0.709 0.860 0.958 0.429 45 12.51
0.833 0.899 0.967 0.342 43 20.93
0.821 0.899 0.966 0.340 55 27.88
0.798 0.880 0.963 0.337 34 17.37
0.773 0.865 0.961 0.336 36 18.48
0.885 0.922 0.967 0.341 46 43.49
0.870 0.915 0.966 0.343 34 33.06
0.853 0.902 0.963 0.344 40 38.05
0.826 0.883 0.960 0.339 38 37.87

a) |T|=2K b) |T|=20K

λ
=

0
λ

=
0
.0

0
1

λ
=

0
.0

1
λ

=
0
.1

Training (t-SNE) Training (NN) Test (NN) Training (t-SNE) Training (NN) Test (NN)

Figure 6.2: !1 regularization: E�ect of _ for di�erent training-set sizes. Compare the ground truth
(training-set, projected by t-SNE) with the NN results on the training-set, respectively
test-set.

We next present the details of each experiment along with the obtained results.

78

6.4 nnp evaluation results

a) |T|=2K d) |T|=20K

λ
=

0
λ

=
0

.0
0

1
λ

=
0

.0
1

λ
=

0
.1

Training (t-SNE) Training (NN) Test (NN) Training (t-SNE) Training (NN) Test (NN)

Figure 6.3: !2 regularization: E�ect of _ for di�erent training-set sizes. Compare the ground truth
(training-set, projected by t-SNE) with the NN results on the training-set, respectively
test-set.

6.4.1 Regularization

We use increasing amounts of !1 and !2 regularization to test if, by having a penalty
term on the cost function during training, the NN can generalize better. We use !1 and
!2 separately, to study how their e�ects compare to each other.

Figures 6.2 and 6.3 show the results. We see that, for both !1 and !2, the higher the
regularization values _, the worse are the results. For instance, the resulting projection
(train or test) becomes completely unrelated to the ground truth (training t-SNE projec-
tion) when _ = 0.1. Separately, we see that !2 regularization performs better – that is, it
produces projections which are closer to the ground truth than the corresponding pro-
jections produced using !1 regularization for the same _ values. Table 11 con�rms the
above visual �ndings by showing quality metrics for the !1 and !2 regularization exper-
iments. Overall, we see that !2 regularization produces "=ℎ , "C , and "2 metrics closer
to the ground-truth (GT) values than !1 regularization. This table also shows another
interesting insight: The NN projections yield higher Shepard correlation"B values than
the ground truth t-SNE projection, for all regularization settings (slightly higher for !1
than !2). This tells us that the NN aims to preserve the =D distances in the 2D projec-
tion more than the t-SNE projection does (see de�nition of "B , Table 1). This explains,
in turn, the di�usion we see in the NN projections. In contrast, t-SNE does not aim to
optimize for distance preservation, but neighborhood preservation, which results in a
better cluster separation but lower "B values.

The rightmost two columns in Tables 11(a,b) show the training e�ort needed for con-
vergence (epochs and seconds). We see that convergence is achieved for all cases in under
70 epochs, regardless of the regularization type (!1 or !2) or strength _. Also, !1 and !2
regularization have comparable costs, with !2 being slightly faster than !1 for smaller

79

improving deep learned projections

training datasets. Overall, the above tells us that the NN converges robustly regardless
of regularization settings.

Next, we study max-norm regularization, to see how this a�ects the NN generaliza-
tion capability. Figure 6.4 shows that the projection quality is not strongly dependent on
W , and the metrics in Table 12(a) con�rm this. More importantly, we see that max-norm
yields projections which are better in terms of all quality metrics than !1 and !2 regu-
larization, and closer to the t-SNE ground truth. E�ort-wise, max-norm regularization is
very similar to !1 and !2 (compare rightmost columns in Table 12 (a) with those in Ta-
ble 11(a,b)). In conclusion, for this particular problem we determine that regularization
brings no clear bene�t.

Table 12: E�ect of max-norm (left) and optimizers (right). Metrics shown for t-SNE (GT row) vs
NN projections using di�erent training-set sizes. Bold shows values closest to GT.

a) Max-norm regularization

Model W "=ℎ "C "2 "B # epochs Time (s)

GT 0.929 0.990 0.976 0.277

2K

0 0.701 0.839 0.956 0.443 44 5.45
1 0.692 0.836 0.956 0.431 32 4.47
2 0.699 0.842 0.957 0.441 45 5.80
3 0.698 0.837 0.956 0.441 31 4.47

5K

0 0.759 0.881 0.964 0.417 51 13.34
1 0.756 0.880 0.964 0.421 40 10.70
2 0.740 0.866 0.961 0.420 24 7.05
3 0.755 0.879 0.963 0.423 48 13.23

10K

0 0.824 0.898 0.966 0.337 37 18.14
1 0.840 0.904 0.967 0.338 31 15.43
2 0.829 0.903 0.967 0.340 37 18.67
3 0.837 0.905 0.968 0.338 53 26.63

20K

0 0.886 0.923 0.967 0.342 56 52.65
1 0.870 0.918 0.967 0.340 26 25.22
2 0.881 0.917 0.967 0.341 30 28.88
3 0.879 0.920 0.967 0.345 34 34.11

b) Optimizers

Model Optimizer ([) "=ℎ "C "2 "B # epochs Time (s)

GT 0.929 0.990 0.976 0.277

2K
ADAM 0.696 0.841 0.956 0.447 30 3.72

SGD (0.01) 0.625 0.791 0.938 0.464 97 8.32
SGD (0.001) 0.610 0.787 0.938 0.464 455 36.56

5K
ADAM 0.733 0.861 0.960 0.421 19 5.27

SGD (0.01) 0.655 0.817 0.945 0.439 86 16.90
SGD (0.001) 0.641 0.808 0.942 0.443 402 77.17

10K
ADAM 0.842 0.905 0.968 0.343 56 26.51

SGD (0.01) 0.707 0.821 0.949 0.362 75 28.55
SGD (0.001) 0.690 0.812 0.948 0.360 392 147.60

20K
ADAM 0.882 0.920 0.968 0.339 43 40.77

SGD (0.01) 0.769 0.838 0.952 0.356 129 94.30
SGD (0.001) 0.754 0.836 0.952 0.370 423 309.19

6.4.2 Optimizer

The quality of the NN projection obviously depends on how well the optimization
method used during training can minimize the cost function (Section 6.2). To �nd out
how the projection quality is in�uenced by optimization choices, we trained the NN
using the ADAM optimizer with its default settings, and also with SGD with learning
rates [∈ {0.01, 0.001}. Figure 6.5 shows that the ADAM optimizer produces results with
considerably less di�usion than SGD. Table 12(b) clearly con�rms this, as ADAM scores
better than SGD for all considered quality metrics. We also see here that ADAM con-
verges much faster than SGD. Since, additionally, ADAM works well with its default
parameters, we conclude that this is the optimizer of choice for our problem.

6.4.3 Noise-based data augmentation

We turn to data augmentation to try to reduce di�usion in the NN projection. For this, we
add noise to the data as described in Section 6.3.1 to observe if it improves learning. Fig-
ure 6.6 shows that both the Noise before and Noise after strategies produce quite similar
results, which are also close to the ground truth. Table 13(a,b) con�rms this, additionally

80

6.4 nnp evaluation results

a) |T|=2K d) |T|=20K

no
 m

ax
 n

or
m

γ=
1
.0

γ=
2
.0

γ=
3
.0

Training (t-SNE) Training (NN) Test (NN) Training (t-SNE) Training (NN) Test (NN)

Figure 6.4: Max-norm: E�ect of W for di�erent training-set sizes. Compare the ground truth
(training-set, projected by t-SNE) with the NN results on the training-set, respectively
test-set.

a) |T|=2K d) |T|=20K

A
D

A
M

S
G

D
 η

=
0
.0

1

Training (t-SNE) Training (NN) Test (NN) Training (t-SNE) Training (NN) Test (NN)

S
G

D
 η

=
0
.0

0
1

Figure 6.5: Optimizer: E�ects of di�erent settings (ADAM, SGD with [∈ {0.001, 0.01}) for di�er-
ent training-set sizes. Compare the ground truth (training-set, projected by t-SNE) with
the NN results on the training-set, respectively test-set.

showing that the Noise after strategy yields slightly higher quality metrics on average
than Noise before. More importantly, if we compare these values with those obtained
by trying di�erent regularization techniques and optimizers (Tables 11-12), we see that
Noise after slightly improves the projection quality.

81

improving deep learned projections

Table 13: E�ect of data augmentation. Rows show metrics for t-SNE (GT row)) vs NNP (other
rows). Right two columns in each table show training e�ort (epochs and time). Bold shows
values closest to GT.

a) Noise after strategy

Model Noise f "=ℎ "C "2 "B # epochs Time (s)

GT 0.929 0.990 0.976 0.277

2K
0 0.717 0.846 0.958 0.448 31 8.84

0.001 0.726 0.852 0.960 0.430 37 10.57
0.01 0.729 0.856 0.960 0.433 54 14.52

5K
0 0.783 0.892 0.966 0.401 43 23.28

0.001 0.780 0.895 0.966 0.408 52 29.44
0.01 0.783 0.892 0.966 0.401 47 26.84

10K
0 0.849 0.909 0.968 0.339 44 44.06

0.001 0.844 0.909 0.968 0.337 36 37.76
0.01 0.848 0.910 0.968 0.333 59 60.31

20K
0 0.887 0.924 0.966 0.340 55 105.87

0.001 0.888 0.924 0.967 0.336 46 88.09
0.01 0.885 0.925 0.967 0.339 51 97.06

b) Noise before strategy

"=ℎ "C "2 "B # epochs Time (s)

0.929 0.990 0.976 0.277
0.712 0.842 0.957 0.446 23 7.17
0.679 0.842 0.959 0.422 33 9.57
0.682 0.833 0.956 0.421 20 6.86
0.785 0.894 0.966 0.401 62 33.34
0.793 0.884 0.966 0.364 31 17.91
0.802 0.888 0.967 0.366 49 28.68
0.849 0.908 0.968 0.336 36 35.61
0.798 0.901 0.966 0.304 37 39.58
0.802 0.904 0.966 0.302 53 55.58
0.888 0.925 0.967 0.337 40 76.08
0.865 0.920 0.967 0.385 42 81.55
0.869 0.920 0.967 0.392 41 80.52

6.4.4 Loss function

Next we study the e�ect of using di�erent loss functions. Figure 6.7 shows that MAE
produces visual clusters that are slightly sharper than the ones created with the other
loss functions studied. Also, we see that this e�ect is more pronounced on tests with
lower numbers of training samples. This e�ect is con�rmed by looking at the quality
metrics in Table 14 (a): For instance, using MAE yields an increase of "=ℎ from roughly
0.70 (when using the other loss functions) to roughly 0.74 for the smallest test-set of 2K
samples; for the largest test-set of 20K samples, the comparable "=ℎ increase is from
roughly 0.87 to 0.88. Still, MAE achieves consistently the best quality metrics for almost
all the tested cases, as compared to using the other loss functions. Separately, we see in
Table 14 (a) that the training e�ort for MAE is higher than when using the other loss
functions. However, as the number of samples increases, the training-e�ort di�erence
decreases, which is important, as it tells us that, for realistic (larger training-sets) cases,
using MAE is not really costing more than using other loss functions. Given the quality
increase, we conclude that MAE is the best loss function.

6.4.5 Network Architecture

Finally, we study the e�ect of using di�erent NN architectures. Figure 6.8 shows that the
architecture Large - bottleneck produces visual clusters that are slightly sharper than the
ones created by the other architectures studied. This is con�rmed by the quality metrics
in Table 14 (b): We see that Large - bottleneck has a"=ℎ about 0.04 higher for all training-
set sizes. Also, while this architecture is larger than the others, its training e�ort is quite
similar to that of the other architectures.

6.5 insights from evaluation

We next summarize the obtained insights from the evaluation of NNP, as follows.

Optimal settings: Our experiments showed that NNP attains optimal quality (and clos-
est to the ground-truth t-SNE projection) with no regularization, ADAM optimizer, Noise

82

6.5 insights from evaluation

no
 n

oi
se

σ
=

0
.0

0
1

Training (t-SNE) Training (NN) Test (NN) Training (t-SNE) Training (NN) Test (NN)

σ
=

0
.0

1

a) |T|=2K b) |T|=20K

no
 n

oi
se

σ
=

0
.0

0
1

σ
=

0
.0

1

N
oi

se
 a

fte
r

N
oi

se
 b

ef
or

e

Figure 6.6: Noise after and noise before data augmentation: E�ect of noise strength f ∈
{0, 0.001, 0.01}. Compare the ground truth (training-set, projected by t-SNE) with the
NN results on the training-set, respectively test-set.

after data augmentation, MAE loss function, and Large - Bottleneck architecture. The
choice of f (noise standard deviation for data augmentation) a�ects very little the mea-
sured quality, so one should not be concerned in practice by how to set this parameter.

Given the above optimal settings, with f = 0.01, we did one last experiment to
evaluate how they perform when combined. We ran both the original Std architecture
and the Large - Bottleneck, both using the optimal settings, to better assess the e�ect
of the architecture change. In Table 15 we see that Large - Bottleneck performs better
than Std on practically all metrics and for all training-set sizes. This improvement
can be seen even when compared to the best results of each individual test, especially
for smaller training-set sizes. Figure 6.9 shows this improvement in the form of less
fuzziness and better separated clusters.

Quality: We have measured four well-known projection quality metrics: neighborhood
hit, trustworthiness, continuity, and Shepard diagram correlation. Our experiments
show that all these metrics are stable with respect to hyperparameter settings. More
importantly, the optimal setting outlined above yields values closer to the ground-truth
(t-SNE) values than the results presented for NNP in Section 5.4. As the training-set

83

improving deep learned projections

Table 14: E�ect of di�erent loss functions (left) and architectures (right). Rows show metrics for
t-SNE (GT row) vs NN projections using di�erent training-set sizes. Bold shows values
closest to GT.

a) Loss Functions

Model Loss (U) "=ℎ "C "2 "B # epochs Time (s)

GT 0.929 0.990 0.976 0.277

2K

Huber (1.0) 0.706 0.839 0.956 0.445 34 5.94
Huber (5.0) 0.687 0.827 0.953 0.447 16 3.99
Huber (10.0) 0.704 0.839 0.957 0.431 45 7.53
Huber (20.0) 0.692 0.835 0.956 0.442 32 5.88
Huber (30.0) 0.695 0.836 0.956 0.433 30 5.98

logcosh 0.704 0.839 0.957 0.434 33 6.37
MAE 0.742 0.866 0.962 0.423 78 11.05
MSE 0.704 0.842 0.957 0.442 40 6.86

5K

Huber (1.0) 0.762 0.883 0.964 0.420 50 14.50
Huber (5.0) 0.745 0.871 0.963 0.426 26 8.34
Huber (10.0) 0.769 0.886 0.965 0.416 69 19.79
Huber (20.0) 0.763 0.884 0.965 0.420 62 18.18
Huber (30.0) 0.768 0.883 0.965 0.420 55 16.16

logcosh 0.768 0.883 0.965 0.425 54 16.03
MAE 0.781 0.893 0.965 0.418 57 16.56
MSE 0.753 0.874 0.963 0.428 30 9.67

10K

Huber (1.0) 0.831 0.898 0.968 0.338 38 19.56
Huber (5.0) 0.833 0.902 0.968 0.342 40 20.64
Huber (10.0) 0.837 0.906 0.969 0.344 52 26.98
Huber (20.0) 0.831 0.900 0.968 0.344 38 19.97
Huber (30.0) 0.831 0.902 0.968 0.348 36 19.55

logcosh 0.818 0.893 0.967 0.347 25 14.00
MAE 0.848 0.912 0.968 0.333 58 29.55
MSE 0.839 0.906 0.968 0.339 65 32.42

20K

Huber (1.0) 0.856 0.907 0.967 0.353 20 19.57
Huber (5.0) 0.881 0.918 0.967 0.344 44 41.69
Huber (10.0) 0.882 0.921 0.968 0.344 36 34.48
Huber (20.0) 0.881 0.920 0.967 0.342 45 43.96
Huber (30.0) 0.877 0.915 0.967 0.341 29 28.71

logcosh 0.884 0.919 0.967 0.335 35 35.46
MAE 0.887 0.927 0.966 0.339 47 44.55
MSE 0.871 0.914 0.967 0.341 23 21.68

b) Network Architecture

Model NN Arch "=ℎ "C "2 "B # epochs Time (s)

GT 0.929 0.990 0.976 0.277 0 0

2K

small st 0.680 0.827 0.951 0.437 30 5.11
small bt 0.670 0.819 0.950 0.453 18 3.85
small wd 0.672 0.820 0.949 0.463 17 3.82

medium st 0.683 0.827 0.952 0.441 17 3.83
medium bt 0.690 0.833 0.955 0.456 25 4.96
medium wd 0.702 0.838 0.956 0.438 44 7.17

large st 0.692 0.835 0.956 0.447 19 4.66
large bt 0.720 0.852 0.961 0.430 50 8.95
large wd 0.713 0.847 0.959 0.434 45 8.30

5K

small st 0.744 0.875 0.962 0.414 66 18.31
small bt 0.719 0.855 0.958 0.423 17 5.78
small wd 0.726 0.864 0.959 0.424 40 12.21

medium st 0.761 0.879 0.963 0.418 42 12.67
medium bt 0.742 0.872 0.962 0.426 33 10.54
medium wd 0.740 0.873 0.963 0.419 40 12.53

large st 0.752 0.874 0.964 0.408 29 10.95
large bt 0.761 0.880 0.964 0.420 34 12.02
large wd 0.755 0.878 0.964 0.423 38 13.87

10K

small st 0.818 0.893 0.966 0.338 43 21.02
small bt 0.820 0.893 0.966 0.330 54 27.35
small wd 0.794 0.879 0.963 0.330 28 15.35

medium st 0.828 0.900 0.968 0.343 45 22.74
medium bt 0.820 0.895 0.967 0.343 31 16.68
medium wd 0.825 0.899 0.967 0.338 49 25.74

large st 0.831 0.902 0.968 0.338 32 20.34
large bt 0.836 0.905 0.969 0.341 36 21.97
large wd 0.830 0.900 0.968 0.338 30 19.31

20K

small st 0.865 0.910 0.965 0.335 30 30.81
small bt 0.838 0.891 0.965 0.353 16 15.74
small wd 0.865 0.910 0.965 0.345 37 34.66

medium st 0.882 0.922 0.967 0.339 45 41.97
medium bt 0.882 0.921 0.967 0.340 45 41.35
medium wd 0.874 0.917 0.967 0.346 34 32.92

large st 0.886 0.924 0.967 0.340 45 50.74
large bt 0.890 0.925 0.967 0.342 37 42.48
large wd 0.878 0.917 0.967 0.345 29 33.03

increases in size, the NNP quality metrics consistently approach the ground-truth values
– see Tables 11-14 for training-sets from 2K to 20K samples. The di�erence of the two
is under 5% on average for training-sets of 20K points. Visual examination of the NNP
projections shows that these exhibit a discernible amount of di�usion as compared to
the ground-truth t-SNE projections. While di�usion clearly decreases with training-set
size, it is still present even for the optimal parameter settings and 20K training samples –
compare e.g. the inference on unseen data in Figure 6.6(b), Test (NN), with Figure 6.6(b),
Training (t-SNE).

Stability: An important result of our experiments is that NNP is stable with respect to
training set sizes, hyperparameter settings, noise and loss functions. Indeed, Figures 6.2-
6.8 show, regardless from the already discussed di�usion e�ect, practically the same
shape and relative positions of the data clusters in the test projections (NN method run on
unseen data) and the ground-truth t-SNE projections, for all tested con�gurations. The
stability of NNP with respect to training data, parameter settings, and noise is in stark
contrast with the instability of the ground-truth t-SNE projection with respect to all

84

6.6 improving nnp by neighborhood analysis

Training (t-SNE) Training (NN) Test (NN)

a) |T|=2K

Training (t-SNE) Training (NN) Test (NN)

b) |T|=20K

H
ub

er
 α
=
1

H
ub

er
 α
=
5

H
ub

er
 α
=
1
0

H
ub

er
 α
=
2
0

H
ub

er
 α
=
3
0

M
S

E
M

A
E

lo
gc

os
h

Figure 6.7: Loss: E�ect of di�erent loss functions. Compare the ground truth (training-set, projected
by t-SNE) with the NNP results on the training-set, respectively test-set.

these three factors, and is of important practical added-value in many applications [214].

6.6 improving nnp by neighborhood analysis

Following our analysis of the NNP evaluation (Section 6.5), we see that NNP scores very
well on stability and quality consistency with respect to hyperparameter values. In the
same time, the quality is still on average 5% lower than that of the ground-truth (t-SNE)

85

improving deep learned projections

Training (t-SNE) Training (NN) Test (NN)

a) |T|=2K

Training (t-SNE) Training (NN) Test (NN)

b) |T|=20K

S
m

al
l S

t
S

m
al

l B
t

S
m

al
l W

d
M

ed
iu

m
 S

t
M

ed
iu

m
 B

t
M

ed
iu

m
 W

d
La

rg
e

S
t

La
rg

e
B

t
La

rg
e

W
d

Figure 6.8: Arch: E�ect of di�erent architectures. Compare the ground truth (training-set, projected
by t-SNE) with the NNP results on the training-set, respectively test-set.

projection. This is visible in the still higher di�usion of NNP as compared to t-SNE. Our
experiments show that hyperparameter settings, including regularization, data augmen-

86

6.6 improving nnp by neighborhood analysis

Table 15: E�ect of using optimal settings. Metrics shown for t-SNE (GT row) vs NN projections
using di�erent training-set sizes. Bold shows values closest to GT.

Model NN Arch "=ℎ "C "2 "B # epochs Time (s)

GT 0.929 0.990 0.976 0.277 0 0

2K std 0.753 0.871 0.963 0.433 73 14.58

large bt 0.773 0.878 0.964 0.426 82 18.44

5K std 0.794 0.904 0.964 0.411 129 60.26

large bt 0.813 0.906 0.966 0.411 70 37.19

10K std 0.850 0.916 0.967 0.334 113 104.39

large bt 0.850 0.913 0.966 0.331 108 112.53

20K std 0.884 0.923 0.964 0.335 121 215.66

large bt 0.891 0.929 0.964 0.335 101 205.07

a) |T|=2K b) |T|=20K

Figure 6.9: E�ect of using optimal settings. Optimal settings for Std and Large - Bottleneck NN
architectures. Compare the ground truth (training-set, projected by t-SNE) with the NNP
results on the training-set, respectively test-set.

tation, optimizer, loss function and network architecture cannot fully eliminate di�usion,
although by using MAE as loss function, quality metrics increased in value.

The strong visual separation of data clusters produced by t-SNE is likely one of the
most praised feature of this method. t-SNE achieves this by essentially considering the
preservation of neighborhoods rather than of point-pair distances. We next leverage this
intuition in the context of NNP’s deep learning approach to projections.

Consider the NNP approach, where each training sample x is fed into the network
with its corresponding ground-truth (t-SNE) coordinate % (x) as a training label. We re-
place each such training pair (x, % (x)) with a pair of neighborhoods (a (x), % (a (x)). Here,
a (x) are the K nearest neighbors of x in � ; and % (a (G)) are the ground-truth projec-
tions of these neighbors. We compute neighborhoods a using both a fast approximate
nearest-neighbor search [131] and an exact, slower, brute-force search, to check whether
the approximate search has any negative impact on quality. We call our new model K-
Nearest-Neighbors Projection, or KNNP.

During inference, we compute nearest neighbors over points from the training set.
There are two reasons for this: (1) The training set is already learned (known) by the
network; (2) The training set is already indexed for fast search [131].

We tune the hyperparameters of the KNNP model following the results in Section 6.5.
We use MAE as our loss function, which is averaged over the neighbors as each one is
treated as a single sample or label. We chose ADAM as our optimizer. The architecture
of the network follows the one in Section 6.3.1 aside from the input and output layers

87

improving deep learned projections

which are scaled so that each input layer containing =� points outputs a single 2D
point.

6.7 knnp evaluation
S

tr
ai

gh
t

B
ot

tle
ne

ck
W

id
e

Small Medium Large
Approximate Exact Approximate Exact Approximate Exact

lower than t-SNE equal to t-SNE higher than t-SNE

S
tr

ai
gh

t
B

ot
tle

ne
ck

W
id

e

M
N

IS
T

D
o

g
s

vs
 C

at
s

N
N

P

5

10

25

50

K
N

N
P

N
N

P

5

10

25

50

K
N

N
P

N
N

P

5

10

25

50

K
N

N
P

N
N

P

5

10

25

50

K
N

N
P

N
N

P
5

10

25

50

K
N

N
P

N
N

P

5

10

25

50

K
N

N
P

K

K

K

K

K

K

Figure 6.10: Comparison of the di�erence in four quality metrics "=ℎ , "C , "2 , and "B between
t-SNE and NNP, respectively t-SNE and KNNP. The comparison is done on the MNIST
and Dogs vs Cats datasets, for �ve values, using both exact and approximate search,
for three architecture styles (wide, straight, bottleneck), each having three sizes (small,
medium, large). Red colors indicate cases which are farthest below t-SNE’s quality.

We next compare the KNNP method introduced in Section 6.6 with the original NNP
method using the optimized hyperparameter settings from Section 6.4 and with the

88

6.7 knnp evaluation

ground-truth t-SNE projection. For this, we use as metrics Turstworthiness ("C), Conti-
nuity ("2), Neighborhood Hit ("=ℎ) and Shepard diagram correlation ("B), as de�ned in
Section 2.2. In addition to the MNIST dataset (Section 6.3.1), we use three more datasets
to the comparison, namely Fashion MNIST [223], Dogs vs Cats [49] and IMDB Movie
Review [122]. Please refer to Section 2.3 for a detailed description of the datasets.

We next show the performance of KNNP vs NNP and t-SNE, for training data (Sec-
tion 6.7.1) and test data (Section 6.7.2). We also show how quality depends on the train-
ing set size (Section 6.7.3) and evaluate KNNP’s speed vs other techniques (Section 6.7.4).
Finally, we show actual projection plots computed by KNNP, NNP, and t-SNE (Sec-
tion 6.7.5). Due to space restrictions, we present only a subset of our results.

S
tr

ai
gh

t
B

ot
tle

ne
ck

W
id

e

Small Medium Large
Approximate Exact Approximate Exact Approximate Exact

lower than NNP equal to NNP higher than NNP

S
tr

ai
gh

t
B

ot
tle

ne
ck

W
id

e

M
N

IS
T

D
o

g
s

vs
 C

at
s

g
g

5

10

25

50

5

10

25

50

5

10

25

50

5

10

25

50

5

10

25

50

5

10

25

50

K

Figure 6.11: Comparison of quality metrics of KNNP vs NNP for the same datasets, architectures,
and parameters as in Fig. 6.10. Green indicates cases where KNNP performs better than
NNP.

6.7.1 Quality on training data

Figure 6.10 compares the performance of KNNP, the original method (NNP), and the
ground truth (GT, t-SNE) across four quality metrics. Red, yellow, and green indicate that
the respective method has a quality lower than, similar to, respectively higher than GT.

89

improving deep learned projections

lo
w

er
 th

an
 N

N
P

sa
m

e
as

 N
N

P
hi

gh
er

 th
an

 N
N

P

Figure 6.12: Comparison of KNNP vs NNP quality metrics for di�erent training set sizes on MNIST
(left) and Dogs vs Cats (right). Green marks cases where KNNP outperforms NNP.

We see that, for = 5 neighbors, KNNP performs slightly better than NNP, in virtually
all cases and for all quality metrics. We also see that quality does not vary much with
architecture style or size. Hence, when running on a tight computational budget (where
one cannot train or test large architectures), KNNP has a small edge over NNP.

6.7.2 Quality on testing data

So far, we compared both deep learning projections (KNNP and NNP) against each other
and against the GT (t-SNE). For testing data, we cannot do the latter comparison, since t-
SNE is not a deterministic method, and does not have an out-of-sample capability. Hence,
for testing data, we next compare KNNP and NNP – trained on the same data, and tested
on the same data – against each other only.

Figure 6.11 shows that KNNP gets the largest quality boost vs NNP for = 5 neigh-
bors again. As in Fig. 6.10, the style and size of architecture do not in�uence the results.
Overall, KNNP yields better quality than NNP. However, which metric (of the four eval-
uated) is most improved depends on the dataset. This is expected, since neither NNP nor
KNNP do explicitly optimize for a given quality metric.

6.7.3 Quality as function of training set size

Figure 6.12 shows how the quality of KNNP compares to that of NNP for di�erent
training-set sizes. We see that the added-value of KNNP vs NNP is higher for fewer
training samples, particularly so for = 5 neighbors. Hence, when the user can only
use a small training-set, the relative added-value of KNNP vs NNP increases.

6.7.4 Computational scalability

We next compare the speed of KNNP, NNP, and other well-known techniques for up
to 1M test samples. Figure 6.13a shows the projection time (log scale) as a function of
the dataset size for parametric techniques. We see that all techniques are linear with

90

6.7 knnp evaluation

dataset size. NNP is the fastest of all compared techniques, with KNNP using approx-
imate nearest-neighbor (ANN) search coming close. Figure 6.13b adds non-parametric
techniques to the comparison, speci�cally MDS [206], t-SNE, LSP [154], and LAMP [95].

a) b)

pr
oj

ec
tio

n
tim

e
(lo

g
sc

al
e)

pr
oj

ec
tio

n
tim

e
(lo

g
sc

al
e)

#samples #samples

Figure 6.13: Projection times for parametric techniques only (a) and for parametric and non-
parametric techniques (b)

We see the same trend as before. Also, we see that KNNP is faster than all non-
parametric techniques. Separately, Figure 6.14 shows training time for the parametric
techniques for up to 1M training samples. Beyond 250K samples, UMAP failed to �nish
training. NNP and KNNP with ANN search show basically the same speed, being both
faster than KNNP with brute-force search.

pr
oj

ec
tio

n
tim

e
(lo

g
sc

al
e)

#samples

Figure 6.14: Comparison of training times between parametric techniques

6.7.5 Projection scatterplots

Figure 6.15 shows samples of scatterplots created with t-SNE, NNP, and KNNP with ANN
and brute force search. We see that KNN creates scatterplots which are less fuzzy than
NNP, being very close to the ones that t-SNE creates. For test data, note that both NNP
and KNNP place point clusters at di�erent locations than t-SNE. This is expected since,
as explained, t-SNE is non-parametric. We also see that KNNP delivers visually identical
plots for approximate vs exact search. Hence, we can use the faster approximate (ANN)
search without fear of quality loss.

91

improving deep learned projections

Figure 6.15: Projections created by t-SNE, KNN, and KNNP (approximate and exact search variants)
on MNIST and Dogs vs Cats datasets during training and testing (inference).

6.8 discussion and conclusions

We presented an in-depth study aimed at assessing and improving the quality of dimen-
sionality reduction (DR) using supervised deep learning. For this, we �rst explored the
design space of NNP in six directions: training-set size, network architecture, regular-
ization, optimization, data augmentation, and loss functions. We sampled each direction
using several settings (method types and parameter values) and compared the result-
ing projections with the ground-truth (t-SNE method) quantitatively, using four quality
metrics, and also qualitatively by visual inspection. Our exploration delivered an opti-
mal hyperparameter setting that brings NNP closer to the quality of the t-SNE ground
truth. Separately, we showed that NNP is stable with respect to all parameter settings,
training-set size, and noise added to the input data.

Secondly, we further improved NNP quality by proposing KNNP, a re�nement of the
method that learns by projecting entire neighborhoods rather than individual samples.
While improving quality, KNNP keeps the same attractive features of NNP, namely com-
putational scalability, out-of-sample capability, and robustness to parameter settings. We
also inferred optimal parameter settings for KNNP (= 5 nearest neighbors found by

92

6.8 discussion and conclusions

approximate fast search) apart from the already established parameters it inherits from
NNP discussed above.

Our results complement recent evaluations [52, 58] and show that supervised deep
learning is a practical, robust, simple-to-set-up, and high-quality alternative to t-SNE
for dimensionality reduction in data visualization. More broadly, we believe that our
methodology can be directly used to reach the same goals (optimal settings and proof
of stability) for any projection technique under study, whether using deep learning or
not. We plan to extend these results in several directions. First, we aim to generalize
the (K)NNP approach to work without the need of supervision. Secondly, we aim to ex-
tend our approach to project time-dependent data in a stable and out-of-sample manner,
which is a long-standing, but not yet reached, goal for high-dimensional data visualiza-
tion.

In Chapter 7, we present NNInv, a technique inspired by NNP and KNNP that is used
to create inverse projections, i.e., the maping from low- to high-dimensional space. We
present several experiments that show its quality over di�erent datasets and when com-
pared to other inverse projection techniques.

93

7D E E P L E A R N I N G I N V E R S E P R O J E C T I O N S

7.1 introduction

As we already explained, multidimensional projections take observations from a high-
dimensional dataset � and generate a typically two-dimensional scatterplot % (�). The
usefulness of those projections is detailed in these previous chapters, as well as the var-
ious applications of projections in data science and information visualization at large.
Inverse projections aim at the opposite task: given some dataset � and its 2D projection
% (�), inverse projections create a mapping between the two spaces, which can be used
to infer a high-dimensional point x ∈ R# (not necessarily part of �) based on any point
y ∈ R2 (not necessarily part of % (�)). This enables the user to generate points that are
between existing high-dimensional points by selecting regions in 2D space.

Computing inverse projections has received increased importance in visual analyt-
ics and beyond. The iLAMP [5] and Radial Basis Functions (RBF) [6] inverse projections
were used to interpolate between high-dimensional observations so that these vary
smoothly in a given projection, for 3D shape morphing applications. The same methods
were adapted to create space-�lling dense maps of decision zones of classi�ers to help un-
derstanding their behavior in machine learning engineering [58, 171] (Chapter 8). Dense
maps are prominently featured in the well-known TensorFlow framework for classi�er
engineering [191]. However, computing inverse projections is hard: Algorithms like iL-
AMP and RBF are slow, have multiple free parameters, and their quality strongly depends
on the dataset � and direct projection technique % being used [58]. Moreover, compared
to the tens of direct projection algorithms discussed in Chapter 3, only a handful – to
our knowledge, only the iLAMP and RBF techniques listed above for the general case –
inverse projection techniques exist.

In Chapter 5, we described NNP, a technique to deep-learn any direct projection tech-
nique, and showed that this approach leads to high-quality projections, among other
desirable features. The question then rises naturally: Can we use a similar deep-learning
approach to construct inverse projections? This is precisely what NNInv, the technique
presented in this chapter, does. Given a dataset� and projection % (�), computed by any
desired, user-chosen, technique % , we learn the inverse mapping % (�) → � using a deep
neural network. Next, we use the learned mapping to project any sample y ∈ R2 to =D
space. We validate the accuracy, speed, and ease of use of our technique using both quan-
titative quality metrics and dense maps on a couple of real-world datasets, and compare
our results with other techniques such as iLAMP and RBF.

This chapter is structured as follows. Section 7.2 details our method. Section 7.3
presents our results. Section 7.4 concludes the chapter.

7.2 method

We start with a dataset � ⊂ R# and a projection technique % . Both can be freely chosen
by users depending e.g. on their application of interest and the features that % should

This chapter is based on publication [59].

95

deep learning inverse projections

manifest, e.g., good cluster segregation, distance preservation, or any other known qual-
ity metrics, as described in Chapters 2 and 3. We hypothesize that the way in which %
captures the data structure in� can be used to create an inverse projection %−1 by using a
small training set�B ⊂ � and its respective projection % (�B) ⊂ % (�). We next construct
%−1 by training a neural network on the training set)B = (�B , % (�B)), with �B selected
by random sampling of� . We use the remaining data)? = (�\�B , % (�)\% (�B)), unseen
during training, for validation. The cost function aims to generate samples in � that are
as close as possible to the training ones in �B . Summarizing, our method has three steps:
In step 1, we create the projection % (�B) of the training samples �B using any desired
projection technique % . In step 2, we train a neural network using the training set)B . In
step 3, we validate the trained network using the test set)? . The trained network is our
inverse projection %−1. For any given 2D point y, we can now infer its high-dimensional
counterpart by %−1 (y).

After extensive empirical testing, varying the number of layers, units per layer, and
activation functions, we set the architecture of %−1 to four fully-connected hidden layers,
with 2048 units each, using ReLU activation functions, followed by an =-element layer,
which uses a sigmoid activation to encode the inverse projection, scaled to the interval
[0, 1] for implementation simplicity – that is, we assume that our high-dimensional data
resides in [0, 1]# instead of R# . We initialize weights with the He uniform-variance
scaling initializer [82], and bias elements by a constant value 0.01, which showed good
results during testing. We use the Adam [102] optimizer to train %−1 for up to 300 epochs.
We stop training automatically on convergence, de�ned as the moment when the valida-
tion loss stops decreasing. In practice, we need 150 epochs on average for convergence
(see Section 7.3.1). As cost function, we use mean squared error, which showed better
convergence speed during testing than mean absolute error and log hyperbolic cosine
(logcosh). To test quality, we compare the =D inferred samples %−1 (�?) with ground
truth �? using the mean squared error metric.

7.3 results

We tested our method on the following:

Projections: We use for % t-SNE [127] and UMAP [138], which have high-quality
and are well known in the dimensionality reduction community [148]. We also tested
other methods such as PCA and LAMP [95], with similar results, omitted here for brevity.

Inverse projections: We compare our method with two alternatives: iLAMP [5] and
RBF [6]). Besides PCA, these are the only inverse projection methods we are aware of.
PCA shows poor results as both direct and inverse projections for data of high intrinisic
dimensionality, so we omit this from the presentation.

Datasets: We use one synthetic dataset and two well-known real-world benchmark
datasets in machine learning. The synthetic dataset (Blobs) has 60K observations sam-
pled from a Gaussian distribution with 5 di�erent centers (clusters) and 50 dimensions.
For the real-world datasets we used MNIST and FashionMNIST, which are described in
detail in Section 2.3.

We next discuss our method in terms of scalability (Section 7.3.1), quantitative assess-
ment of quality (Section 7.3.2), and qualitative assessment of quality (Section 7.3.3).

96

7.3 results

7.3.1 Scalability in training and inference

Scalability implies the e�ort required to train our method and, separately, the e�ort
needed to infer %−1 (.) as function of the size |. | of the dataset . to inversely project.
Table 16 shows the number of training epochs needed to obtain convergence (de�ned as
in Section 7.2) as function of the training set size |�B |, for all three considered datasets
and % = t-SNE. The �gures for other projections (UMAP, PCA) are very similar. Columns
2..4 indicate averages for multiple runs that select �B by randomly sampling � (see Sec-
tion 7.2). Overall, we see that we obtain convergence for roughly 150 epochs for all
datasets and training-set sizes, and also that this number of epochs is quite stable for
training-set sizes |�B | larger than 1K samples.

Table 16: Training e�ort until convergence.
Average # epochs for each dataset �

Training set size |�B | Blobs Fashion-MNIST MNIST Avg.

500 268.0 214.0 213.5 192.5

1000 190.5 129.0 147.5 149.0

2000 153.0 112.0 111.0 112.5

5000 103.0 120.5 138.0 127.5

7000 127.0 118.5 151.0 144.0

10000 82.0 124.5 142.5 146.5

average |�B | per � 153.9 136.4 150.6 145.3

Figure 7.1 shows the inference speed for all three datasets. Note that speed does not
depend on the projection method % , by construction. Also, in this experiment, we con-
sider any point y ∈ R2, i.e., not only points in the test-set �B , since we don’t need
ground truth information to assess speed, and since in actual use one would not have
such ground truth available. We see that both RBF and iLAMP have a superlinear behav-
ior, while NNInv (our method) is almost linear. More importantly, NNInv is roughly one
magnitude order faster than RBF and nearly two orders of magnitude faster than iLAMP
for 40K samples or more. This speed-up is crucial for applications that need to inversely
project hundreds of thousands of samples (or more), like in the construction of dense
maps (see [58, 171] and Section 7.3.3 next). In such cases, NNInv allows constructing
such maps in seconds, whereas iLAMP and RBF require (tens of) minutes, which makes
human-in-the-loop usage of such dense maps impossible in visual analytics scenarios –
which are one of the key reasons why dense maps are built in the �rst place.

7.3.2 Quantitative Assessment of Quality

Besides being fast, we want an inverse projection to be accurate. That is, given some
ground truth pair (x ∈ R=, y = % (x) ∈ R2), unseen by training, we want that %−1 (y)
be as close as possible to x. This follows the same idea as, on the one hand, normal-
ized stress metrics used to gauge the quality of projections in the literature [128, 192],
and on the other hand classical validation of inference models in machine learning. We
measure quality in our case by computing the average inverse-projection mean square
error "(� = ‖x − %−1 (% (x))‖2/|�? | over the test set �? . The closer MSE is to zero, the
better %−1 is. Figure 7.2 shows MSE for our three datasets, two projections (t-SNE and
UMAP), three tested inverse projections (iLAMP, RBF, and NNInv). We also consider sev-
eral training-set sizes |�B | to show how MSE depends on the training amount. For Blobs,
a relatively easy-to-project synthetic data, all methods have basically zero error, except

97

deep learning inverse projections

NNInv NNInv NNInv

number of inversely projected points (x1000)

Figure 7.1: Inverse projection speed as function of number of samples.

RBF. MNIST and FashionMNIST show similar behavior: Our method (NNInv) achieves
consistently lowest error. The second-best method is iLAMP. Errors are larger for these
real-world complex datasets than for the synthetic Blob, which is expected.

NNinv+tSNE

iLAMP+tSNE

NNinv+UMAP

NNinv+tSNE
iLAMP+tSNE

Figure 7.2: Mean square error of inverse projection (lower=better).

7.3.3 Qualitative Assessment of Quality

We now show why having a fast and accurate inverse projection is important for a
concrete application – understanding the decision zones of classi�ers. In supervised
machine learning, a classi�er "2 is trained on a labeled training-set �B , which typically
sparsely samples some continuous universe* (* ⊂ R= in our case), and partitions* in
so-called decision zones /8 , so that any x ∈ /8 gets label ;8 at inference time. The classi�er
accuracy is evaluated using a labeled test-set �? . Visualizing the decision zones /8
helps understanding the behavior of "2 , as well as areas in * where training may have
been suboptimal and thus may need extra e�ort. Recently, a method to construct dense
decision maps using inverse projections was proposed [171]. Brie�y put, every pixel y in
an image is colored by the label assigned to %−1 (y) by a classi�er"2 trained on the same
data used to construct the projection % from which %−1 was derived. The quality of such
decision maps depends on the projection % used, with t-SNE and UMAP performing
better than several other tested methods [58]. However, while acknowledging its impor-

98

7.3 results

tance, the e�ect on quality of the inverse projection %−1 used was not tested. We alleviate
the above limitation in [58] and also show why our inverse projection achieves better re-
sults for dense maps visualizing classi�er decision zones. For this, we construct decision
maps for projections % ∈ {tSNE,UMAP}, datasets � ∈ {Blobs,MNIST, FashionMNIST},
inverse projections %−1 ∈ {iLAMP, RBFp, RBFc,NNInv}, and classi�ers � ∈ {LR,CNN}.
Here, RBFp and RBFc are two versions of the RBF inverse projection, using �xed
control points, respectively control points de�ned as centers of clusters obtained
from the input data � (for details, we refer to the original paper [6]). !' is a simple
logistic regression classi�er, used since we know it produces piecewise-linear decision
boundaries and hyperpolyhedral decision zones; and CNN is a convolutional neural
network, which we know it works well for image data like (Fashion)MNIST. All decision
maps are images of 5002 pixels, so |�? | = 250000 points (Fig. 7.3). Importantly, all
maps were constructed completely from unseen data – that is, we do not use any of the
data points or their projections present in the training set�B . We discuss our results next.

Blobs dataset: As expected, for this simple dataset, both t-SNE and UMAP separate
well the 5 clusters present in the data. The LR trained on this dataset achieved 100%
accuracy. All inverse projections %−1 appear as compact zones that surround the
corresponding projection scatterplots. For the LR classi�er, we know that the decision
boundaries should be piecewise linear. UMAP yields more concentrated clusters, so
the corresponding dense maps resemble very much Voronoi diagrams of the respective
cluster con�gurations – which is indeed expected, and a positive sign of the correctness
of the dense maps. For the t-SNE projection, iLAMP and NNInv are closest to such
linear boundaries, while RBFp and RBFc create more jagged boundaries. This is a �rst
hint that iLAMP and NNInv are better inverse projections.

MNIST dataset: The CNN classi�er used obtained a 99.6% training-set accuracy. As the
projection (and underlying dataset) is more complex, the inverse projections are more
challenged. Recent studies have empirically shown that decision zones of such neural
networks, used for natural-image dataset classi�cation, are connected, with relatively
smooth boundaries [64]. Hence, we expect our dense maps to show this. In Fig. 7.3, we
�rst observe that both iLAMP and NNInv are closest to the above properties, while
RBFc generates highly noisy, sprayed-points-like, disconnected, and complex-shaped
decision zones (see dashed-line annotations in �gure). These generate the false im-
pression that the classi�er has di�culties for such samples, which is not true, given
the observed accuracy. RBFp also generates noisy/disconnected zones, albeit less than
RBFc, but more than iLAMP and NNInv. Both RBFp and RBFc also generate visible ‘false
islands’, i.e., signi�cant-size areas in the decision maps that have a label which does
not match any signi�cant number of points having the same label in the scatterplots
(see continuous-line annotations in �gure). These convey the false impression that
the classi�er creates certain decision zones in areas where actually nothing like this
happens. While both above phenomena exist also for NNInv, this is to far smaller extents.

FashionMNIST dataset: The CNN classi�er used obtained a 98.7% training-set accu-
racy. We can make the same observations made for MNIST’s decision zones, even to
stronger extents. RBFc and RBFp generate highly fragmented, jagged, and disconnected
decision zones, with RBFp being better than RBFc. iLAMP and NNInv generate smoother,
more connected, and quite similar zones. This is quite interesting, since the two meth-
ods are completely di�erent. However, iLAMP generates noisier zones and more jagged

99

deep learning inverse projections

Projection scatterplot P
-1 = iLAMP P

-1 = RBF clusters (RBFc) P
-1 = RBF fixed control points (RBFp) P

-1 = Our method (NNInv)

B
lo

bs
 (

P
 =

 t
-S

N
E

,C
 =

 L
R

)
B

lo
bs

 (
P

 =
 U

M
A

P,
C

 =
 L

R
)

M
N

IS
T

 (
P

 =
 t

-S
N

E
,C

 =
 C

N
N

)
M

N
IS

T
 (

P
 =

 U
M

A
P,

C
 =

 C
N

N
)

F
as

hi
on

M
N

IS
T

 (
P

 =
 t

-S
N

E
,C

 =
 C

N
N

)
F

as
hi

on
M

N
IS

T
 (

P
 =

 U
M

A
P,

C
 =

 C
N

N
)

Figure 7.3: Dense maps constructed for combinations of classi�ers "2 , projections % , inverse pro-
jections %−1, and datasets. See Section 7.3.3.

100

7.4 discussion and conclusion

boundaries (see annotations in �gure). Given, again, the mentioned insights on how such
zones/boundaries should be [64], we �nd NNInv being better than iLAMP.

7.4 discussion and conclusion

In this chapter, we presented NNInv, a new method for computing inverse projections
from 2D to high-dimensional data spaces by learning the behavior of a direct projection
method. Our method is generic (can handle any direct projection method and type of
high-dimensional dataset), easy to use (does not require any user parameters), one to
two orders of magnitude faster than existing inverse projection methods, and simple to
implement using existing out-of-the-box deep learning toolkits [34]. We compared our
method on three datasets, two state-of-the-art projections (UMAP and t-SNE), against
three inverse projection methods (iLAMP, RBFc, and RBFp). We found our method to
deliver higher accuracy, and decision zones that match equally well or better to known
properties of such zones for both simple (linear regression) and more complex (convolu-
tional neural network) classi�ers.

Our method can be extended in several directions. First, the design space of its un-
derlying neural network can be better explored to reach higher accuracy and/or less
training e�ort. Secondly, di�erent quality metrics can be used to deliver inverse projec-
tions which are speci�cally suited for specialized tasks such as assessing confusion zones
of classi�ers. Finally, we can apply our inverse projection to support more applications
beyond decision map exploration in machine learning.

In Chapters 8 and 9, we present two applications of direct and inverse projections,
namely, a technique for drawing machine learning classi�er decision boundaries, and a
technique for drawing multivariate functions, in the context of optimization problems.

101

8C L A S S I F I E R D E C I S I O N B O U N D A R Y M A P S

8.1 introduction

Advances in machine learning (ML) enabled breakthroughs in application areas such as
computer vision, image processing, path planning and business intelligence. However,
most ML methods still work largely as black boxes, due to the lack of interpretability
behind the decision functions they employ. As such, methods can become very complex,
as in the case of deep learning (DL) methods, practitioners and users have challenges in
understanding, customizing and trusting them [169, 197]. To alleviate this, recent work
has focused on visually explaining how ML techniques learn and take their decisions [41,
70, 167, 168].

One such interpretability challenge regards the so-called decision boundaries of clas-
si�ers. Formally put, let � be the sample space input for a classi�er. The classi�er can
be seen as a function 5 that assigns a class label to every point in � . Understanding
how 5 , de�ned by the training process, partitions � into same-class regions, separated
by decision boundaries, can help many tasks related to classi�er design, for example, lo-
cate how training samples a�ect the classi�cation of test samples close to them in � ;
spot areas in � that require more or have redundant training samples; and �nd if the
classi�er technique used is too “sti�” to separate complex labeled sample distributions
in � [81, 141].

Visualizing complex-shaped decision boundaries embedded in a high-dimensional
space � is very challenging. All existing solutions essentially project � to R2 by some
projection method % so as to visualize the boundaries and/or zones. A recent method in
this area [171] proposes an improvement with respect to the classical way of visualiz-
ing projections as color-coded sparse scatterplots, by creating dense maps where every
2D image pixel encodes one or more high-dimensional points and their assigned labels.
This way, the user e�ectively sees how the classi�er partitions the high-dimensional
space into decision zones having di�erent labels. An earlier similar technique was pro-
posed [180]. In contrast to that work, we propose here to evaluate and extend the method
proposed in [171], due to its simplicity and genericity.

The quality of dense maps constructed crucially depends on two factors: (a) the quality
of the projection % and (b) the quality of the inverse projection %−1. A recent study [58]
addressed the �rst by studying a set of 28 projection techniques on 4 classi�ers and 2 real-
world datasets and outlining good combinations. Separately, aspect (b) was addressed by
proposing a new inverse projection technique called NNInv (Chapter 7), which is faster
and more accurate than state-of-the-art ones.

Although addressing computational challenges, both these recent developments [58,
59] do not further elaborate on the interpretability of decision maps. Speci�cally, even
for good-quality direct and inverse projections, such maps can still show signi�cant
noise, visible as jagged boundaries and/or isolated salt-and-pepper islands, which are
due to inherent distortions caused when mapping this high-dimensional space � to 2D.

This chapter is based on publication [170]

103

classifier decision boundary maps

Such artifacts can further in�uence the way that users interpret the behavior of the stud-
ied classi�ers.

In this chapter, we extend previous work [58] by proposing several new techniques
that address the above points. First, we propose a quality metric to gauge the correctness
of the direct projection and use it to selectively remove badly-projected points, while
keeping the overall structure of the projection intact. This decreases the amount of noise
along decision boundaries and also removes spurious small-scale islands. Secondly, we
propose several ways to visualize the high-dimensional distances between samples in the
2D projection. This lets users see which areas in the data space are close(st) to decision
boundaries, thus, potentially important to further study or re�ne, for example, by data
augmentation. To obtain the best quality, we combine in our work the direct projections
suggested previously [58] with the novel NNInv inverse projection.

The structure of this chapter is as follows. Section 8.2 overviews related work. Sec-
tion 8.3 presents the experimental setup used to study how dense maps depend on DR
techniques and classi�ers, covering a combination of 28 DR techniques and 4 classi�ers.
Section 8.4 presents and discusses our results regarding the choice of DR techniques.
Section 8.5 introduces our new �ltering technique for removing artifacts in dense maps
caused by projection distortions. Section 8.6 introduces a new technique for highlighting
data-space points close to decision boundaries based on the computation and rendering
of the high-dimensional distance-to-boundary. Section 8.8 concludes the chapter.

8.2 background

8.2.1 Preliminaries

As outlined in Section 8.1, (is sampled from a particular universe or subspace, � ⊂ R# ,
for example,the space of all images of digits [112]. A classi�er for � is a function
5 : � → � which associates to every x ∈ � a class label from a categorical do-
main "2 , for example, the digits 0 to 9. The function 5 is constructed via a training
set (C = {(x8 , 28) |x8 ∈ �, 28 ∈ �} and tested via a similar but disjoint test set () . Dif-
ferent machine learning (ML) techniques exist to construct 5 , some of the best known
being k-Nearest Neighbors (k-NN), Logistic Regression (LR), Support Vector Machines
(SVM) [39], Random Forests (RF) [26] and Convolutional Neural Networks (CNN) [106].
The decision zone for a label 2 ∈ � is then the set�/ (2) = {x ∈ � |5 (x) = 2}, with bound-
ary m�/ (2). Such sets are typically compact, given the underlying contiguity hypothesis
usual in many ML contexts [132].

8.2.2 Decision Boundary Maps

Exploring how well 5 was learned from (C is typically done by comparing how well
the inferred labels 5 (x8) match the actual labels 28 for all x8 ∈ () . To visualize these,
one typically constructs a scatterplot % (x) |x ∈ () of such points, color-coded by their
labels. The underlying idea is that, if % preserves data structure and assuming a relatively
smooth behavior of the classi�er 5 , then decision zones will appear as same-color point
clusters in the scatterplot. Conversely, di�erently colored “outlier” points in a cluster
typically indicate classi�cation problems. While simple to construct, such scatterplots
do not show how the classi�er 5 labels the entire universe � but only a sparse sampling
() thereof. Simply put, we do not know what happens in the blank space between the
scatterplot points. In particular, the decision boundaries m�/ (2) of the classi�er are not
explicitly visualized, leaving the user to guessing their actual position [168].

104

8.2 background

Image-based densemaps improve upon this by coloring each pixel of the target (screen)
image by the assigned label(s) of samples in � that project there [81, 141]. Recently, the
Decision Boundary Maps [171] technique was proposed (see also Figure 8.1a): For every
pixel y of the target (projection) space, data samples x ∈ � are created, by gathering the
scatterplot points . = {% (x)} that project into y. If this yields fewer than * points, one
adds to . * − |. | synthetically created points %−1 (y′), where y′ are random points in
the pixel y. Finally, the respective pixel is colored to re�ect the labels 5 (x ∈ .) with hue
mapping label value and saturation label variation over . , respectively.

Decision boundary maps are independent on the classi�er technique 5 being studied;
have no complex-to-set free parameters; and e�ectively create dense maps where each
image pixel is colored to re�ect how 5 behaves for the =D point(s) that project there
via % . Decision zones �/ (2) are directly visible as all image pixels showing "2 ’s color
and decision boundaries m�/ (2) show up as pixels having di�erent-color neighbors. Few
compact zones with simple (smooth) boundaries tell that the classi�er has little di�culty
in taking decisions over � . Multiple disjoint same-color zones and/or zones with tortu-
ous boundaries tell the opposite. Small-size “islands” of one color embedded in large
zones of di�erent colors suggest misclassi�cations and/or training problems.

To compute decision maps, t-SNE [127] and LAMP [95] were used to implement % and
iLAMP [5] was used for %−1, respectively. More recently, NNInv was proposed, which
is a more accurate and faster to compute implementation for %−1, based on deep learn-
ing [59]. It is worth noting that both NNinv and iLAMP �t %−1 from data. That is, given a
set of projected points . ⊂ R2 and their =D counterparts - ⊂ R# , these methods learn
a mapping %−1 : R2 → R# through an optimization process that aims to minimize a
reconstruction error. The di�erence is in what and how is optimized for: While iLAMP
generates inverse samples by returning a weighted average of =D data points based on
the distances between their 2D counterparts, NNInv �ts by regression a function that
better suits the training data using Neural Networks. As %−1 is inferred from �nite data,
it can be used to invert any DR method. Hence, iLAMP and NNinv are especially use-
ful for projection methods that do not provide an inverse mapping, for example, t-SNE.
However, if desired, they can also be used for projection methods that do provide an
inverse function, for example, Principal Component Analysis (PCA). A separate ques-
tion is which is a suitable implementation for the direct projection % , since it is well
known that di�erent DR methods create widely di�erent projections for the same in-
put [56, 128, 148, 192].

105

classifier decision boundary maps

Test data S
T

Augmented data

P
-1

P

Classifier f
scatterplot

pixel y

subsamples y’

nD sample x P(x)

newly created samples P
-1
(y’)

dense map

labels f(x)

Fashion MNIST

subset S2

subset S10

4 x 28 = 112 dense maps

select 5 best
projections

4 x 5 = 20 dense maps

4 classifiers

28 projections

4 classifiers

5 projections

stage 1

stage 2

a)

b)

minimum
sample
density U

Figure 8.1: (a) Dense map construction algorithm; (b) Two-phase experiment set-up.

8.3 experiment setup

As explained in Section 8.2.2, the quality of a decision map depends heavily on the choice
of projection technique % used. Consider, for example, a toy two-class k-NN classi�er
for a 3D data space � ⊂ R3 trained with a simple (C consisting of one sample of each
class. We know in this case that the decision boundary should be a plane halfway the
two training samples. So, a good 2D projection % should ideally render two compact
half-planar decision zones. Conversely, a poor % may create several same-class zones
having complex curved boundaries; if we saw such an image, we would wrongly judge
the behavior of this classi�er.

To study which of the many projection techniques in existence are most suitable for
constructing e�ective decision maps, we designed and executed a two-stage experiment,
as follows (see Figure 8.1b).

Data:We select two di�erent subsets of the Fashion MNIST dataset, which is described
in detail in Section 2.3, as follows:

• (2: A two-class subset (classes T-Shirt and Ankle Boot) that we hand-picked to be
linearly-separable;

• (10: An all-class subset (T-Shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag and Ankle Boot). This is a non-linearly-separable dataset.

Classi�ers: We consider the same classi�ers used in the original decision boudary
map paper [171]: LR, RF, k-NN and CNN. Please refer to Table 32 in Section A.4 for
implementation details. For CNN, we used two convolutional layers with 64 �lters each
and 3 × 3 kernels, followed by one 4096-element fully-connected layer, trained with the
Adam optimizer [102]. These classi�ers create very di�erent decision boundaries: At one
extreme, LR boundaries are linear (hyperplanes). k-NN boundaries are piecewise-linear
(facets of =D convex polyhedra). RF creates typically more complex boundaries than

106

8.3 experiment setup

k-NN. At the other extreme, CNN boundaries can have arbitrarily complex topologies
and geometries, due to the complex decision function 5 coded by the deep network
structure. However, CNNs are known to perform very well for classifying images like
our dataset, while at the other extreme simple classi�ers like LR are highly challenged
by such data.

Training: The four classi�ers were separately trained on the two subsets (2
(|(C | = 2160 samples, |() | = 240 samples) and (10 (|(C | = 10, 800 samples, |() | = 1200
samples). We veri�ed that the training yielded good accuracies in all cases (Table 17).
This is essential to know when we next gauge the dense maps’ ability to capture a
classi�er behavior (see stage 1 below).

Table 17: Accuracy of classi�ers, 2-class and 10-class problems.
Classi�er Technique 2-Class 10-Class

Logistic Regression (LR) 1.0000
Random Forest (RF) 1.0000 0.8332
k-Nearest Neighbors (KNN) 0.9992 0.8613
Convolutional Neural Network (CNN) 1.0000 0.9080

Projections: Table 18 lists the 28 selected projection techniques (%) to create dense
maps as well as the parameter settings (default indicates using the standard ones the
algorithms come with). As selection criteria, we considered well-known projections of
high quality, as per the evaluation in Chapter 3, good computational scalability, ease
of use (% should come with well-documented parameter presets) and publicly available
implementation.

107

classifier decision boundary maps

Table 18: Projections tested in phase 1 (Section 8.4.2). Projections tested in phase 2 (Section 8.4.2)
are marked in bold.
Projection Parameters

Factor Analysis [97] iter: 1000
Fast Independent Component Analysis (FastICA) [93] fun: exp, iter: 200
Fastmap [63] default parameters
IDMAP [142] default parameters
Isomap [203] neighbors: 7, iter: 100
Kernel PCA (Linear) [181] default parameters
Kernel PCA (Polynomial) degree: 2
Kernel PCA (RBF) default parameters
Kernel PCA (Sigmoid) default parameters
Local A�ne Multidimensional Projection (LAMP) [95] iter: 100, delta: 8.0
Landmark Isomap [33] neighbors: 8
Laplacian Eigenmaps [17] default parameters
Local Linear Embedding (LLE) [175] neighbors: 7, iter: 100
LLE (Hessian) [46] neighbors: 7, iter: 100
LLE (Modi�ed) [229] neighbors: 7, iter: 100
Local tangent space alignment (LTSA) [230] neighbors: 7, iter: 100
Multidimensional Scaling (MDS) (Metric) [109] init: 4, iter: 300
MDS (Non-Metric) init: 4, iter: 300
Principal Component Analysis (PCA) [97] default parameters
Part-Linear Multidimensional Projection (PLMP) [155] default parameters
Piecewise Least-Square Projection (PLSP) [155] default parameters
Projection By Clustering [153] default parameters
Random Projection (Gaussian) [43] default parameters
Random Projection (Sparse) [43] default parameters
Rapid Sammon [156] default parameters
Sparse PCA [231] iter: 1000
t-Stochastic Neighbor Embedding (t-SNE) [127] perplexity: 20, iter: 3000
Uniform Manifold Approximation (UMAP) [138] neighbors: 10

Dense maps: We use a two-stage creation and analysis of dense maps, as follows
(Figure 8.1b). In stage 1, for (2, we create dense maps using all 28 projections for all 4
classi�ers, yielding a total of 112 dense maps. All maps have a 400× 400 pixel resolution.
Since (2 is quite simple (two linearly separable classes), and since all classi�ers for (2
have very high accuracies (Table 17), the resulting maps should display (ideally) two com-
pact zones separated by a smooth, ideally linear, boundary. We visually verify which of
the 112 maps best comply with these criteria and next select the �ve projections (of the 28
tested ones) which realize these maps. These are shown in bold in Table 18. Next, in step
2 of the study, we create dense maps, for all 4 classi�ers again but using the more com-
plex (10 dataset. Finally, we explore these visually to gain �ne-grained insights allowing
us to further comment on the dense-map suitability of these 5 hand-picked projections.

8.4 analysis of evaluation results

We next discuss the results and insights obtained in our two-stage experiment.

108

8.4 analysis of evaluation results

a) Logistic Regression

b) Random Forest

Figure 8.2: Dense maps for Logistic Regression (a) and Random Forest (b) classi�ers on the 2-class
(2 dataset, all 28 tested projections.

8.4.1 Phase 1: Picking the Best Projections

As stated in Section 8.3, all four tested classi�ers yield almost perfect accuracy for the
simple 2-class problem (2 (Table 17). Hence, their decision boundaries are “where they
should be”, that is, perfectly separating the two classes in (2. Moreover, since (2 is by

109

classifier decision boundary maps

construction linearly separable, the dense maps constructed for these classi�ers should
clearly show two compact decision zones separated by a smooth, simple, boundary.
We use this as a visual criterion to rank how well the tested projection techniques can
achieve this. Figures 8.2 and 8.3 show the dense maps for all 28 tested projections versus
the four tested classi�ers, where red and blue indicate pixels mapping samples classi�ed
to one of the two labels in (2. Interestingly, we see that even for this very simple
problem not all projections perform the same. Our key observations are as follows:

Stability: The dense maps are surprisingly stable for the same projection over all
four classi�ers, except for LLE, LTSA, Random Projection (Gaussian) and Random
Projection (Sparse). Hence, we already �ag these four projections as less suitable.

Smoothness: All projections have relatively smooth boundaries, except Random
Projection (Gaussian), Random Projection (Sparse) and MDS (Non-Metric). Since we
expect smooth boundaries, these projections are less suitable. The projections which
yield boundaries closest on average to the expected straight line are MDS, UMAP,
Projection by Clustering, t-SNE and PLMP.

Compactness: Projections succeed up to widely di�erent degrees in creating
the expected two compact, genus-zero, decision zones. t-SNE, UMAP, Projection by
Clustering and IDMAP do this almost perfectly. MDS (Non-Metric), the two Random
Projections, LLE (Hessian) and LTSA perform the worst.

Summarizing the above, we select MDS (Metric), PLMP, Projection by Clustering,
UMAP and t-SNE as the overall best projections to analyze further in phase 2, discussed
next.

8.4.2 Phase 2: Re�ned Insights on Data

We now examine how the �ve projections selected in phase 1 perform on the 10-class
dataset (10, which is a harder classi�cation problem. We already see this in the lower
achieved accuracies (Table 17). Hence, we expect to have signi�cantly more complex
boundaries. Figure 8.4, that shows the dense maps for our 4 classi�ers for the 5 selected
projections, con�rms this. Several interesting patterns are visible, as follows:

Overall comparison: For a given projection, the dense map patterns are quite
similar over all four tested classi�ers. This is correct, since the dense map is constructed
based on the scatterplot created by that projection from the test set () , which is �xed.
The variations seen along columns in Figure 8.4 are thus precisely those capturing
the di�erences of decision boundaries of di�erent classi�ers. We see, for instance,
that LR tends to create slightly simpler boundaries than the other three classi�ers.
Conversely, variations along rows in Figure 8.4 can be purely ascribed to the projection
characteristics. Techniques designed to better separate data clusters, such as t-SNE
and UMAP, show more compact decision zones with simpler boundaries than MDS,
PLMP and Projection by Clustering. Also, the choice of neighborhood used internally
by the projection technique to estimate points in the lower dimension (2D) does not
seem to play a key in�uence: MDS, which uses global neighborhoods, shows similar
pattern-variations along classi�ers to the other four projections, all of which use local
neighborhoods.

110

8.4 analysis of evaluation results

a) k Nearest Neighbors

b) Convolutional Neural Network

Figure 8.3: Dense maps for k-Nearest Neighbor (k-NN) (a) and Convolutional Neural Network
(CNN) (b) classi�ers on the 2-class (2 dataset, all 28 tested projections.

Islands: The dense maps in Figure 8.4 show many small color islands. An island indi-
cates that (at least) one sample was assigned a label di�erent from the labels of samples
that project close to it. In turn, this means that

(a) the island does not actually exist in the high-dimensional space� , so the projection
% did a bad job in distance preservation when mapping =D points to 2D; or

111

classifier decision boundary maps

Figure 8.4: Dense maps for all classi�ers, 10-class dataset, �ve best-performing projections.

(b) the island may exist in� , that is, there exist very similar samples that get assigned
di�erent labels. This case can be further split into

(b1) the island actually exists in � , that is, similar points in � do indeed have
di�erent labels and the classi�er did a good job capturing this; or

(b2) the island does not exist in� , that is, the classi�er misclassi�ed points which
are similar in the feature space but actually have di�erent labels.

To understand which of these cases actually occur in Figure 8.4, we plot misclassi�ed
points atop the dense map as half-transparent white disks. Figure 8.5 shows this for the
LR and CNN classi�ers, all projections. Regions having many (densely packed) misclas-
si�cations show up as white areas. The insets (t-SNE dense map) exemplify how islands
point to two of the above-mentioned issues: In Figure 8.4a, we see two very small color
islands around the misclassi�ed samples � and �. These islands indicate the extent up
to which other samples, close to � or �, would also get misclassi�ed. In contrast, the
detail in Figure 8.4b shows a (red) island containing no white dots (misclassi�cations).
This island either re�ects a real variation of the label over similar points in � (case (b1)
above) or else re�ects a t-SNE projection artifact (case (a) above). To decide which of
these cases actually occurs, we need additional techniques (discussed in Section 8.5).

Separately, we see that overall, the LR dense maps have more white dots than the CNN
ones, which correlates with the lower LR accuracy (Table 17). We also see that the white
points are non-uniformly spread over the dense maps by di�erent projections. MDS and
PLMP show many islands without white dots. As explained above, this either re�ects
densely-packed di�erent-label points in � (case (b1)) or MDS and PLMP projection er-
rors (case (a)). At the other extreme, t-SNE and even more so UMAP, strongly pack the

112

8.5 dense map filtering

C
o

n
vo

lu
ti

o
n

al
 N

eu
ra

l N
et

w
o

rk
L

o
g

is
ti

c
R

eg
re

ss
io

n
MDS(Metric) PLMP Projection by Clustering t-SNE UMAP

detail (a)

detail (b)

A BA

Figure 8.5: Classi�cation errors (white dots) shown atop of the dense maps, logistic regression (LR)
and CNN classi�ers.

white dots, which tells that misclassi�cations actually occur for quite similar data sam-
ples. Densely-packed white points e�ectively show the confusion zones, so one can use
them to decide which kinds of samples need to be further added to the training set to
improve accuracy.

8.5 dense map filtering

As showed in Section 8.4.2, dense maps exhibit patterns such as non-smooth decision
boundaries and/or small islands in the decision zones (Figures 8.4 and 8.5). As discussed
there, such artifacts can be caused by either densely-packed di�erent-label points in the
data space� (case (b1)) or errors of the projection % (case (a)). For test data, for which we
have ground-truth, we can disambiguate between these two cases—islands containing
(many) misclassi�cations are likely due to case (b1), whereas the remaining islands are
likely due to case (a).

However, using this method to interpret dense map images is suboptimal, since

• we need to interpret such maps also in actual inference mode (after testing), when
no ground-truth labels are available;

• having to visually �lter dense map artifacts like decision boundary jaggies and
small islands is tedious.

Moreover, we note that such artifacts are very likely to happen anyways, even for a
well-trained classi�er (few misclassi�cations): Due to the ill-posed nature of DR, even
the best performing projections % will eventually misplace points in a 2D scatterplot.
This limitation is well known and discussed in several works [9, 56, 133, 134, 148]. The
same limitations are shared by the inverse projection %−1 [5, 6, 59].

We propose to alleviate such artifacts by �ltering the 2D scatterplot based on a quality
metric that computes, locally, how well % preserves the high-dimensional data structure
in � . Several such metrics exist, such as trustworthiness, continuity and normalized
stress [56, 148]; neighborhood hit [95]; false neighbors, missing neighbors [133]; and the
projection precision score [179]. Given our goals of characterizing how well a =D com-
pact neighborhood maps to a similarly-compact 2D neighborhood, we use here the Jac-

113

classifier decision boundary maps

card set-distance [134] between the :-nearest neighbors E2
:
(8) of a point in the 2D pro-

jection and its neighbors E=
:
(8) in =� , given by

��: (8) =
|E2
:
(8) ∩ E=

:
(8) |

|E2
:
(8) ∪ E=

:
(8) |

. (8.1)

The �� value of a point 8 ranges between zero (if none of the 2D :-nearest neighbors
of point 8 are among its =D :-nearest neighbors, worst case) and one (if all of its 2D
:-nearest neighbors are exactly the same as its =D :-nearest neighbors, best case).

Having computed the �� rank (Equation (8.1)), we next �lter out from the projection
low-ranked points and construct the dense map from the remaining points as described
in Section 8.2.2. Setting an absolute removal threshold is however hard and moreover
depends on the neighborhood size : . To explain this, Figure 8.6 shows the distribution
of number of samples per ��: value for the MNIST dataset projected by t-SNE for four
di�erent: values. As visible, the distribution shape is relatively stable as function of: . As
: increases, the distribution shifts to the right, as the likelihood that large neighborhoods
coincide in 2D and =D increases—in the limit, when : equals to the total point count,
�� = 1 for all points. Conversely, as : decreases, the distribution slightly shifts to the
left, as the likelihood that neighbors of a point come in exactly the same order in 2D and
=D is very small. Figure 8.6 shows a second, equally important, aspect, namely that the
signal ��: has a discrete nature. Indeed, for a given : , Equation (8.1) can take at most
: + 1 di�erent values.

Hence, for low : , ��: splits the projected points in : bins, with relatively more points
per bin as when using higher : values—compare for example, the vertical axes of the im-
ages in Figure 8.6 for low versus high: values. In turn, this means that setting an absolute
threshold to eliminate low ��: value points is hard: A too low threshold will eliminate
too few points, while a slightly higher threshold may eliminate too many points. Hence,
we proceed by (1) using a higher : value (roughly 10% of the dataset size) and next (2)
we sort points on their ��: value and remove the g lowest-ranked points, where g is a
user-given percentage of the total dataset size.

k k

k k

Figure 8.6: Histogram of � �: rank for varying values of : for MNIST dataset, t-SNE projection.

114

8.6 distance-enriched dense maps

Figure 8.7 shows results for di�erent g values for the MNIST dataset, projected by
t-SNE. Setting g is intuitive: Small values keep more data points, including potentially
wrongly-projected ones, which cause islands and boundary jaggies in the dense maps.
Larger values �lter the projection better, yielding smoother decision boundaries and/or
fewer islands due to projection problems but show fewer data in the �nal image. As
visible, �ltering does not change overall size and shape of the depicted decision zones,
which is important, as it does not a�ect the insights that the �ltered images convey. In
practice, we found that g values in the range of 15% to 20% of the dataset size give a
good balance between removing artifacts and keeping enough data to have an insightful
dense map. This is the setting used next in all images in this chapter.

a) Removing τ = 1% (600) of all projected points b) Removing τ = 5% (3000) of all projected points

c) Removing τ = 10% (6000) of all projected points d) Removing τ = 20% (12000) of all projected points

Figure 8.7: Removing poorly projected points with low � �: ranks to �lter dense map artifacts for
the MNIST dataset, projected by t-SNE, inversely projected by iLAMP.

8.6 distance-enriched dense maps

The dense map �ltering e�ectively removes many of the confusing small-scale islands
created by projection errors, thus, creates simpler-to-inspect decision zones. As already
explained, a key use-case for these is for users to see which points (in the data space �)
are close, respectively far away from, the decision boundaries. The distance-to-boundary
information indicates the classi�cation con�dence—so, if a classi�er performs poorly,
one can use this distance to infer on what kind data in � such problems occur and next
alleviate this by for example, adding more training samples of that kind.

However, the decision map does not (yet) show the distance 3=� (x) from a sample
x ∈ � to its closest decision boundary m�/ ⊂ � in the =D space. Rather, the map shows
how close the projection % (x) of x is to the projection % (m�/) of the decision boundaries.
Simply put, for every pixel y having some color (label), the user can visually �nd the
closest di�erently-colored pixel y′. The distance

32� (y) = min
y′ |5 (y)≠5 (y′)

‖y − y′‖ (8.2)

can thus be seen as a projection of the actual=D distance3=� (x) we are interested in. The
two distances are not the same, given the local compression and stretching caused when

115

classifier decision boundary maps

mapping the =D space to 2D by nonlinear projections such as t-SNE or UMAP [9, 148].
Note that Equation (8.2) is nothing but the so-called distance transform [62] of the set of
pixels that constitute the decision zone boundaries m�/ .

Note that an exact computation of 3=� is impossible in general, since we do not
have an analytic description of m�/ for typical classi�ers. Hence, we next propose
two classi�er-independent heuristics to estimate 3=� (Sections 8.6.1 and 8.6.2) as
well as a third, more exact, method and better suited for neural network classi�ers,
based on adversarial examples (Section 8.6.3). Figure 8.8 compares the 2D distance-to-
boundary 32� (computed by Equation (8.2), implemented using the fast distance trans-
form method [30]), with two versions of the3=� estimation we propose next, called38<6

=�
and 3==

=�
respectively. In this �gure, distances are encoded by a luminance colormap for

illustration purposes. The decision zones and distance maps in Figure 8.8 depict a syn-
thetic “Blobs” dataset with 60K observations sampled from a Gaussian distribution with
5 di�erent centers (clusters), each one representing samples of one class and 50 dimen-
sions. For classi�cation, a simple LR model was used, so as to create simple-to-interpret
decision boundaries, which are best as we next want to study the distance-to-boundary
behavior. The same dataset was used to test the quality of the NNInv inverse projection
in Chapter 7.

In Figure 8.8, we see that, while 32� and 3=� are both low close to the decision bound-
aries and high deep in the decision zones, they have quite di�erent local trends. For in-
stance, points which have the same colors in Figure 8.8b, that is, are at the same distance-
to-boundary (32�) in 2D, can have quite di�erent colors in Figures 8.8c,d, that is, have
di�erent distances 3=� to the true =D decision boundaries. Hence, we cannot use 32�
as a ‘proxy’ to assess 3=� . We need to compute and show, 3=� to the user so one can
estimate how close (or far) from a decision boundary an actual observation is.

a) decision zones b) Euclidean distance transform d
2D

c) Image-based distance d
nD

img

d) Neighbor-based distance d
nD

nn

Figure 8.8: Dense map (a) and various distance-to-boundary maps (b–d) for Blobs dataset, com-
puted using UMAP for % and NNInv for %−1.

8.6.1 Image-Based Distance Estimation

For every pixel q in the dense map, we �nd the closest pixel r having a di�erent label
(Figure 8.9a). Let& and"B be the sets of=D samples in () that map to q and r respectively
via %−1. By construction, points in & and "B have thus di�erent labels. Hence, the =D
decision boundary m�/ lies somewhere between these point-sets. To estimate where, for
every point pair (x& ∈ &, x' ∈ '), we compute the point x&' along the line segment
(x& , x') ⊂ � where the classi�er function 5 changes value, that is, turns from the label
5 (x&) to the label x'). For this, we use a bisection search, as we assume that 5 varies
relatively smoothly between x& and x' . We use a maximum number of) = 5 bisection

116

8.6 distance-enriched dense maps

steps, which proved to give good results in practice. We then estimate the distance of q
to the closest decision boundary as the average

3
8<6

=�
(q) = 1

|& | |' |
∑

x& ∈&,x' ∈'
‖x& − x&' ‖. (8.3)

q

r

Q

R

x
Q

x
R

x
QR

∂DZ

2D image space nD data space

a)

q

Q
x
Q

∂DZ

2D image space nD data space

b)

x
R

Figure 8.9: Estimation of distance-to-boundary 38<6
=�

(a) and 3==
=�

(b). See Sections 8.6.1 and 8.6.2.

Although Equation (8.3) is simple to evaluate, it can produce noisy estimations of 3=� .
The main issue is that it assumes that the closest decision boundary to some point q in
the 2D projection (i.e., pixel r) corresponds, by the inverse mapping %−1, to the closest
decision boundary in =D to %−1 (r).

8.6.2 Nearest-Neighbor-Based Distance Estimation

We can improve upon the dense map-based heuristic presented in Section 8.6.1 by dispos-
ing of the dense map as a tool to compute 3=� . Rather, we rely on searching the =D data
directly for nearest-neighbor samples that have a di�erent label, as follows (Figure 8.9b).
For every pixel q in the dense map, let again & be the set of =D samples that map to it
via %−1.

For each x& ∈ & , we next �nd the closest data point x' ∉ & that is classi�ed di�erently
than x& and then again apply bisection to �nd where, along the line segment (x& , x'),
the classi�er 5 changes value. Finally, we compute 3=� (q) by averaging all distances
from x& to the corresponding bisection points G&' . Formally put, we compute 3=� as

3===� (q) =
1
|& |

∑
x& ∈&,x'= argmin

x∉& |5 (x)≠5 (x&)
‖x−x& ‖

‖x& − x&' ‖. (8.4)

Estimating 3=� this way is more accurate than using Equation (8.3) since we do not
rely on computing x' using the possibly inaccurate dense map but directly use the =D
points (. We implement Equation (8.3) by searching for nearest neighbors in =D space
using the :3-tree spatial search structure provided by scikit-learn [1].

8.6.3 Adversarial Based Distance Estimation

The third proposed heuristic is based on adversarial examples [75, 197]. An adversarial
perturbation n of a data sample x can cause a trained classi�er to assign a wrong label

117

classifier decision boundary maps

to this so-called adversarial example x + n , that is, a label di�erent from the one that it
assigns to the unperturbed sample x. By de�nition, the minimal length ‖n ‖ of such a
perturbation is the distance from x to the closest decision boundary to x. Hence, we can
compute the distance-to-boundary for a dense map pixel q by �rst gathering again all
points & that project to q and next averaging their distances to their closest =D bound-
aries computed as above. This de�nes

303E=� (q) =
1
|& |

∑
x& ∈&

min
5 (x&)≠5 (x&+n)

‖n ‖ . (8.5)

Compared to the distance-to-boundary heuristics given by Equations (8.3) and (8.4),
Equation (8.5) yields a mathematically accurate distance to boundary, within the limits of
sampling the perturbation space n . In practice, this demands extensive computational re-
sources, roughly three times more than evaluating Equation (8.4) and 30 times more than
evaluating Equation (8.4). Moreover, the method is not guaranteed to yield a valid adver-
sarial perturbation for all possible samples x. Another limitation is that this approach is
only suitable for classi�ers 5 obtained through an iterative gradient-based optimization
process, such as neural networks [75].

Figure 8.10a shows the dense maps (a) for the MNIST (top row) and FashionMNIST
(bottom row) datasets respectively. Images (b-d) show the three distance-to-boundary
functions 38<6

=�
, 3==
=�

and 303E
=�

given by Equations (8.3)–(8.5), respectively, visualized
using the same luminance colormap as in Figure 8.8. Several observations follow.

First, we see that the=D distances3=� roughly follow the patterns of the 2D Euclidean
distances 32� , that is, are low close to the 2D decision boundaries and high deeper in-
side the decision zones. However, the =D distances are far less smoothly varying as we
get farther from the 2D boundaries. This indicates precisely the stretching and compres-
sion caused by % and %−1 mentioned earlier. Secondly, we see that 38<6

=�
is signi�cantly

less smooth than 3==
=�

. This is explained by the lower accuracy of the former’s heuristic
(Section 8.6.1). A separate problem appears for 303E

=�
: For the FashionMNIST dataset, the

image shown is very dark, indicating very low 303E
=�

values for most pixels. Upon fur-
ther investigation, we found that the neural network model trained for this case was too
fragile—for almost every sample, an adversarial sample could be easily obtained. More-
over, as already mentioned, the cost of computing 3==

=�
is far larger than for the other

two distance models. Given all above, we conclude that 3==
=�

o�ers the best balance of
quality and speed and we choose next to use this distance-to-boundary model.

118

8.6 distance-enriched dense maps

M
N

IS
T

F
as

hi
on

M
N

IS
T

a) decision zones b) image-based distance d
nD

img
c) neighbor-based distance d

nD

nn
d) adversarial-based distance d

nD

adv

Figure 8.10: Dense map and distance maps for MNIST (top row) and FashionMNIST dataset (bot-
tom row), with projection % set to UMAP and %−1 to NNInv respectively.

8.6.4 Visualizing Boundary Proximities

Visualizing the raw distance 3=� by direct luminance coding (Figure 8.10) does not op-
timally help us in exploring the regions of space that are close to decision boundaries.
However, these are the areas one is most interested in, since these are the regions where
classi�ers may work incorrectly, by de�nition. For this, we apply a nonlinear transfor-
mation to 3=� to compress the high-value ranges and allocate more bandwidth to the
low-value range. Also, we combine both decision zone information (shown by categori-
cal colors in earlier �gures) with the distance-to-boundary information in a single image.
For this, we set the S (saturation) and V (value) color components of every pixel q in this
image to

+ (q) = 0.1 + 0.9(1 − 3===� (q)/3<0G)
:1 (8.6)

((q) = (10B4 (1.0 − 3===� (q)/3<0G)
:2 (8.7)

Here, 3<0G is a normalization factor equal to the maximal value of 3==
=�

over the entire
dense map; :1 and :2 are constants that control the nonlinear distance normalization;
and (10B4 is the original saturation value of the categorical color used for q’s label. The
H (hue) component stays equal to the categorical-color encoding of the decision zone la-
bels. Figure 8.11 shows the e�ect of :1 and :2 for the MNIST and FashionMNIST datasets.
Compared to showing only the decision-zone information (Figure 8.11a), adding the dis-
tance information highlights (brightens) areas that are close in =D to the decision bound-
aries. Higher :1 values highlight these zones more and darken areas deep in the decision
zones more. Higher :2 values strengthen this e�ect, as pixels close to decision bound-
aries become desaturated. This allows us to ensure that such pixels will be bright in the
�nal images, no matter how dark the original categorical colors used to encode labels
are.

119

classifier decision boundary maps

a) decision zones

M
N

IS
T

F
as

hi
on

M
N

IS
T

b) blended map k
1
 = 0.5, k

2
 = 0.3 c) blended map k

1
 = 1.5, k

2
 = 0.7 d) blended map k

1
 = 2, k

2
 = 0.9

Figure 8.11: (a) Dense map for MNIST (top row) and FashionMNIST (bottom row) datasets. (b–
d) Combined dense map and distance-to-boundary maps for di�erent :1 and :2 values.

Figure 8.11 is to be interpreted as follows: Dark areas indicate data samples deep inside
decision zones, that is, areas where a classi�er will very likely not encounter inference
problems. Bright areas indicate zones close to decision boundaries, where such problems
typically appear and in which one should look for misclassi�cations and/or add extra
labeled samples to improve training. Thin bright areas tell that the =D distance varies
there much more rapidly than the perceived 2D (image-space) distance, so the projection
compresses distances there. These are areas on which one will typically want to zoom in,
to see more details. In contrast, thick bright areas tell that the =D distance varies there
slower than the perceived 2D distance, so the projection stretches distances there. Such
areas normally do not require zooming to see additional details.

Figure 8.12 shows a di�erent use-case for distance maps. Atop of the distance maps
shown in Figure 8.11 (:1 = 2, :2 = 0.9), we now plot the misclassi�ed points for MNIST
and FashionMNIST, encoding their respective distance-to-boundary 3=� in opacity. Mis-
classi�cations which are close to decision boundaries show up thus as opaque white,
while those deeper in the decision zones show up half-transparent. We see now that
most misclassi�cations occur either close to the smooth decision boundaries (MNIST) or
atop of small decision-zone islands (FashionMNIST). Since islands, by de�nition, create
decision boundaries, it follows that, in both cases, misclassi�cations predominantly oc-
cur close to decision boundaries. Hence, decision boundaries can serve as an indicator
of areas prone to misclassi�cations, thus potential targets for re�ning the design of a
classi�er for example, by data annotation or augmentation.

120

8.6 distance-enriched dense maps

a) b)

Figure 8.12: Misclassi�cations with opacity coding distance-to-boundary for (a) MNIST and
(b) FashionMNIST datasets.

Enridged Distance Maps

Figure 8.11 encodes distance-to-boundary by luminance and saturation, which are good
visual variables for ordinal tasks, for example, estimating which points are closer or far-
ther from decision boundaries. However, this encoding is less suitable for quantitative
tasks, for example, estimating equal-distance points or how much farther (or closer) a
given point is to its closest decision boundary than another point. We address these tasks
by using enridged cushion maps [221]. For this, we �rst slightly smooth 3=� by applying
a Gaussian �lter with radius pixels. Next, we pass the �ltered distance through a peri-
odic transfer function 5 (G) = (G mod ℎ)/ℎ and use the resulting value 5 (3=�) instead of
3=� to compute (and + via Equations (8.6) and (8.7). Note that the transfer function 5

is only piece wise continuous [221], and requires smooth signals as input to yield visually
smooth cushions. Since our high-dimensional distance 3=� is not overall smooth, due to
the already discussed inherent projection errors and also due to the numerical approxi-
mations used when computing it (see Sections 8.6.1–8.6.3), �ltering is required. Besides
�ltering, a second di�erence between our approach and the original technique [221] is
that we visualize directly the distance, whereas they visualized a shaded height plot of
the distance. We choose in our case to visualize the distance directly as this is faster to
compute and more robust to noise—height plot shading requires normal computations
which, given our inherently noisy distance estimations, can easily become unreliable.

Figure 8.13 shows the results for the MNIST and FashionMNIST datasets. Each ap-
parent luminance band in the image shows points located within the same distance-
to-boundary interval. Dark thin bands are analogous to contours or isolines, of the
distance-to-boundary. Finally, the thickness of the bands indicate distance compression
(thin bands) respectively distance stretching by the projection (thick bands). We also see
how increasing the �lter radius progressively smooths the image, removing projection
artifacts and making it easier to interpret.

121

classifier decision boundary maps

M
N

IS
T

F
as

hi
on

M
N

IS
T

a) decision zones b) no smoothing c) smoothing K = 2 d) smoothing K = 4 e) smoothing K = 6

Figure 8.13: Enridged distance maps for MNIST (top row) and FashionMNIST (bottom row) datasets.
Images (b–e) show the progressive noise-smoothing e�ect of the �lter radius .

8.7 discussion

We summarize our �ndings and insights concerning the construction and interpretation
of classi�er decision maps as follows.

Novelty: While dense maps have been used earlier in high-dimensional data visu-
alization to analyze projection quality [9, 133], they have not been used for explicitly
visualizing the decision zones of any classi�er. Besides showing the actual decision
zones by color coding, we also compute and show the actual distance-to-boundary,
which highlights zones close to boundaries, where a classi�er is most prone to misclas-
sify data. The work of Schultz et al. [180] is closest to our work and, to our knowledge,
the only other method (apart from ours) which aims to explicitly visualize classi�er
decision zones. However, several important di�erences between our work and that
exist, as follows:

• Computation of inverse projection %−1: In Schultz et al. [180], this is done by ex-
tending non-parametric projections % to parametric forms, by essentially modeling
% as the e�ect of several �xed-bandwidth Gaussian interpolation kernels. This is
very similar to the way iLAMP works. However, as shown in Chapter 7, iLAMP
is far less accurate and far slower than other inverse projection approaches such
as NNinv. In our work, we let one freely choose how %−1 is implemented, regard-
less of % . In particular, we use the deep-learning inverse projection NNinv which
is faster and more accurate than iLAMP;

• Supervised projections % : In Schultz et al. [180], the projection % is implemented
using so-called discriminative dimensionality reduction which selects a subset of
the =D samples to project, rather than the entire set, so as to reduce the complexity
of DR and thus make its inversion more well posed. More precisely, label informa-
tion for the =D samples is used to guide the projection construction. While this,
indeed, makes % easier to invert, we argue that it does not parallel the way typical
practitioners work with DR in machine learning. Indeed, in most cases, one has an
=D dataset and projects it fully, to reason next about how a classi�er trained on
that dataset will behave. Driving % by class label is, of course, possible but risky,
since % next does not visualize the actual data space. Moreover, discriminative DR

122

8.7 discussion

is quite expensive to implement ($ (# 2) for # sample points). Note that our outlier
�ltering (Section 8.5) achieves roughly the same e�ect as discriminative DR but at
a lower computational cost and with a very simple implementation;

• Distance to boundary: In Schultz et al. [180], this quantity, which is next essential
for creating dense decision boundary maps, is assumed to be given by the pro-
jection algorithm % . Quoting from Schultz et al. [180]: “We assume that the label
5 (x) is accompanied by a nonnegative real value A (x) ∈ R which scales with the
distance from the closest class boundary.” Obviously, not all classi�ers readily pro-
vide this distance. Moreover, getting hold of this information (for classi�ers which
provide it) implies digging into the classi�er’s internals and implementation. We
avoid such complications by providing ways to estimate the distance to boundary
generically, that is, considering the classi�er as a black box (Section 8.6).

• Computational scalability: Schultz et al. [180] does not discuss the scalability of
their proposal, only hinting that the complexity is squared in the number of input
samples. Complexity in the resolution of the decision maps is not discussed. In
contrast, we detail our complexity (see Scalability below).

Genericity: We can generically construct decision maps, including the estima-
tion of distance-to-boundary, for datasets in any dimension and for any classi�er. This
makes our techniques easily usable for a wide range of applications in machine learning.

Best techniques: We evaluate the construction of dense maps using 28 direct
projection techniques and 3 inverse projection techniques respectively. To limit the
amount of work required to analyze hundreds of classi�er-projection combinations,
we designed a two-phase experiment where we pre-select the best projections (using
a simple classi�cation problem) to study next in detail. t-SNE and UMAP appear to be
the best projections for constructing dense maps in terms of recognizability of decision
boundaries in the produced patterns, limited errors (spurious islands) and concentration
of confusion zones (misclassi�cations). Since UMAP has similar properties with t-SNE
but is signi�cantly faster, we label it as the optimal candidate for this task. For the
inverse projection, NNInv is the technique of choice.

Replicability and extensibility: To be useful, our work on evaluating projection-
based dense maps must be accessible, replicable and extensible. All involved materials
and methods (projections, datasets, dense maps, classi�ers, automated work�ow scripts)
are available online (mespadoto.github.io/dbm/). We intend to organically extend
this repository with new instances along all above-mentioned dimensions.

Scalability: Computational scalability of our method is in�uenced by the complexity
of the direct projection technique % and inverse projection technique %−1; and the
number # of high-dimensional points and resolution (number of pixels "B) in the
decision boundary map image. Summarizing our method, we (1) use % to project #
samples to 2D; (2) for each of the "B pixels, we use %−1 to infer its high-dimensional
sample; and (3) use the classi�er 5 to infer the label of that sample, which we �nally
draw at the respective pixel. Denote the cost of projecting a single sample by�% ; the cost
of inverting the projection at a single pixel by �%−1 ; and the cost of classifying a single
sample by �5 , respectively. Then, the cost of our entire method is #�% + '(�%−1 +�5).
Several insights can be drawn from this. First, our method is linear in the resolution
of the decision boundary image. This is the dominant cost factor, since the number of
pixels "B in a typical decision map is larger than the number of samples # (see for

123

mespadoto.github.io/dbm/

classifier decision boundary maps

instance the example datasets discussed in Section 8.3. If using a fast inverse projection
%−1 such as NNinv and deep learning classi�ers 5 , which are both practically linear
in # , the entire pipeline can be run to construct decision maps in a few seconds on a
typical desktop PC.

Limitations: Constructing accurate decision maps is an even harder problem than
the already di�cult task of accurately projecting high-dimensional data into 2D. While
our study showed that the (UMAP, NNInv) combination of direct and inverse projection
techniques yields good results in terms of visually easy-to-identify decision zones,
we cannot guarantee such results for any high-dimensional dataset and classi�er
combination. More precisely, errors caused by the direct and/or inverse projections can
still manifest themselves as jaggy boundaries and/or islands present in the resulting
decision maps. These errors can be decreased by further �ltering wrongly projected
points that lead to poor neighborhood preservation (Section 8.5). Also, showing the
distance-to-boundary (Section 8.6) can highlight the presence of remaining errors.

Applications: Currently, our decision maps can only show how a classi�er partitions
the high-dimensional space into decision zones corresponding to its di�erent classes.
This can help the practitioner to better understand the behavior of such a classi�er but
not directly to improve the classi�er. Recent separate work has shown that projections
are e�ective tools for data annotation purposes, that is, creating new labeled samples
for increasing the size of training sets with little human e�ort by visually extrapolating
labels of existing samples to close unlabeled ones [19]. Our decision maps can very likely
help such data annotation by informing the user how to perform this visual extrapolation
so as not to cross decision boundaries. Separately, our decision maps could help in data
augmentation tasks by showing which areas in the high-dimensional space are densely
populated by misclassi�cations (Figure 8.12). Selecting 2D points in such areas can be
used to easily generate high-dimensional samples, via the inverse projection, to augment
a training set. We consider all these directions for future work.

8.8 conclusions

We have presented an end-to-end pipeline for constructing decision maps for under-
standing the behavior of classi�ers in machine learning. To this end, we have evaluated
28 well-known projections on a two-class, respectively ten-class, subset of a well-known
machine learning benchmark, using four well-known classi�ers. Our evaluation shows
wide and to our knowledge, not yet known, di�erences between the behavior of the
studied projections. Using a visual analytics methodology, we next re�ned our analysis
to a small set of �ve high-quality projections and found that t-SNE and UMAP perform
best for this task. We next proposed a �ltering approach to decrease the adverse impact
of inherent projection errors and thereby construct more faithful, less noisy, decision
maps. Finally, we proposed to visualize the distance-to-boundary of every decision map
point (computed by three di�erent approximations we propose) and thereby augment
the amount of information on classi�er behavior that these maps convey.

Several future work directions are possible. First and foremost, we plan to use our de-
cision maps to support data annotation and/or augmentation tasks to help practitioners
in designing better classi�ers with limited e�ort. Secondly, decision maps can be used to
compare the behavior of di�erent classi�ers addressing the same problem. Finally, our
technique can be adapted to visualize high-dimensional spatial partitioning schemes,

124

8.8 conclusions

such as =-dimensional Voronoi diagrams and thereby give more insights in the behavior
of high dimensional data spaces.

In Chapter 9, we present a technique for drawing multivariate functions, in the con-
text of optimization problems, which uses direct and inverse projections. This new tech-
nique can be seen as the “continuous” version of the decision boundary map technique
presented in this chapter.

125

9V I S UA L I Z I N G O P T I M I Z AT I O N P R O B L E M S

9.1 introduction

Operations Research (OR), also called Management Science, plays a crucial role in many
industries, from logistics to �nance. Although its origins as a discipline date from the
1950s, with the development of the Simplex algorithm for Linear Programming [42, 98],
it is a �eld in constant development since them. The OR practitioner has many tools at
their disposal which improve their productivity, such as algebraic modeling languages
like GAMS [27], AMPL [68] and more recently, JuMP [48], which enable the use of no-
tation very close to the mathematical de�nition of optimization problems. Yet, to our
knowledge, there are no well-established visualization tools that help understand multi-
variate objective functions with respect to the decision variables and constraints (if any)
of the problem. Such tools are important as a complement to more formal tools for get-
ting an overall understanding of how an objective function behaves subject to its many
parameters.

In this chapter we describe a technique called OptMap, which is an image-based vi-
sualization tool that uses multidimensional projections to enable the OR practitioner to
literally see the decision variables and constraint spaces using a two-dimensional dense
map, regardless of the number of variables and constraints in the problem. We show
that OptMap can be used in several ways, such as a debugging aid to help diagnose er-
rors in the de�nition of constraints; as a tool to provide insight of the optimizer’s inner
workings, by plotting the path taken from a starting point to a solution; and as a general
tool to visually explore the high-dimensional space of the decision variables in terms of
objective function value and constraint feasibility.

OptMap aims to cover the following aspects, which, to our knowledge, are not
achieved by existing visualization techniques in the context of optimization:

Quality (C1): We provide high-quality visualizations, that encode information at
every available screen pixel, by using a combination of dense maps, direct, and inverse
projection techniques;

Genericity (C2): We can handle many kinds of optimization problems for single-
valued objective functions. The only requirements we impose are that the user provides
implementations of the objective function, constraints (if any), and the domain of each
variable;

Simplicity (C3): Our technique is based on existing projection techniques which have
a straightforward implementation, allowing easy replication and deployment;

Ease of use (C4): Our technique has few hyperparameters, all with given presets. In
most cases, users do not have to adjust those to obtain good results;

This chapter is based on publication [54]

127

visualizing optimization problems

Scalability (C5): By using a fast projection technique and caching results when
possible, our method is fast enough to allow its use during the rapid development-test
cycle of optimization models.

We structure the chapter as follows. Section 9.2 presents the notations used and dis-
cusses related work on visualization for multivariate functions and optimization prob-
lems, Section 9.3 details our method. Section 9.4 presents the results that support our
contributions outlined above. Section 9.5 discusses our proposal. Section 9.6 concludes
the chapter.

9.2 background

Related work concerns optimization techniques (Section 9.2.1) and visualization
(Section 9.2.2). Please refer to Chapter 3 for a thorough discussion of dimensionality
reduction techniques.

9.2.1 Optimization

Optimization problems come in many forms with respect to the kind of function to be
optimized, the type of decision variables, and the existence of constraints. Functions are
typically grouped into linear, convex and non-convex. Linear functions are of the form
5 (x) = ax + 1, which de�nes a hyperplane; convex functions can have many forms,
but can be de�ned as those where the set of points above their graph forms a convex set;
non-convex functions are neither linear nor convex (linear functions are also convex). De-
cision variables can be continuous or discrete: Problems with only discrete variables are
called Integer Programs (IP) [77], whereas problems with a combination of discrete and
continuous variables are called Mixed Integer Programs (MIP). Lastly, problems can be
constrained or unconstrained. Constraints can be characterized just as functions (linear,
convex, non-convex). Additionally, we have box constraints, which are simple restric-
tions on the variables’ domains. Problems with continuous variables, linear objective
functions, and linear constraints are called Linear Programs (LP). Other problems are
solved by Nonlinear Programming (NLP) techniques.

We next de�ne a few notations for optimization problems. Let 5 : R= → R be some
function to be minimized. Let x = (G1, . . . , G=), G8 , 1 ≤ 8 ≤ =, be an =-dimensional vector
of = decision variables G8 . Decision variables can be any combination of discrete (Z) and
continuous (R). Let $ be the optimization problem described as

minimize 5 (x)
subject to x ∈ (

(9.1)

where (is the feasible set of all points that can be considered as valid for the optimization
problem. For unconstrained problems, (is R= . For constrained problems there is a set
of constraint functions 2: (x) ∈ {0, 1}, : ∈ 1, ..., , where 0 means that the point x is
infeasible with respect to the constraint 2: . That is, for constrained problems, the feasible
set is de�ned as (= {x :

∏
2: (x) = 1, : ∈ 1, ..., }.

Solvers are algorithms that �nd one of several (approximate) solutions to a problem$.
To do this e�ciently, solvers use the characteristics of the problem, such as the type of
decision variables, objective function and constraints, and employ adequate heuristics
to avoid exploring all possible x ∈ (, which would be impractical in most cases. Proba-
bly the most popular solver algorithm is the Simplex [42, 98], used for linear problems

128

9.2 background

and implemented by software such as Clp [66], Cbc [67] and GLPK [130]. For non-linear
optimization problems there are other algorithms such as Gradient Descent, Nelder-
Mead [145] and L-BFGS [118], to name a few. Many solvers work iteratively, i.e., start
from a given point x0 and evolve this point until su�ciently close to the solution of $.

A solution is an =-dimensional point found by the solver which meets the criteria of
being feasible (x ∈ () and optimal. The de�nition of optimality depends on the type of
problem and solver used: For linear functions with linear constraints, solvers are guaran-
teed to �nd a global optimum solution, which means that no other =-dimensional point
provides a lower value for the objective function 5 , given those constraints. For non-
linear functions, solvers may return di�erent local optima, depending on the starting
point x0 used and the shape of the objective function.

Lastly, a solver may provide the user with a trace, or path to solution, which is the set
of all =-dimensional points where it evaluated the objective function, starting from x0
and ending with the solution, if one was found, else ending with the last point evaluated
by the solver.

9.2.2 Visualization

The visualization of 2D functions 5 : R2 → R is usually done by means of 3D height
plots, contour plots, or color (heatmap) plots. For functions 5 : R= → R with more than
two variables (= > 2), there are far fewer options, with Hyperslice [220] being a notable
one. Hyperslice presents a multidimensional function E as a matrix of orthogonal two-
dimensional slices, each showing the restriction of 5 to one of the 2D subspaces in '= ,
using the 2D function plotting outlined earlier (contour plots, color plots, 3D height
plots).

Visualizing constrained optimization problems is similar to the above, since not only
the function has to be visualized but constraint feasibility as well. Most techniques used
for this are based on overlaying contour plots with constraint information, with one case
where image-based techniques are used [219]. Still, such techniques cannot work with
more than two dimensions (= > 2).

The authors of iLAMP [5] used direct and inverse projection techniques applied to
non-linear optimization problems, to help users interactively identify good starting
points for optimization problems. However, iLAMP is computationally expensive, and
has quite a number of free parameters the user needs to set. The NNInv method de-
scribed in Chapter 7 accelerates inverse projections by over two orders of magnitude
as compared to iLAMP by deep learning the inverse projection function %−1. The same
deep learning idea was also used to accelerate the direct projection % by Neural Network
Projection (NNP), described in Chapter 5. NNInv was used in the image-based (dense
map) technique to visualize the decision boundaries for Machine Learning classi�ers,
described in Chapter 8, for problems with arbitrary dimension. That method can be con-
ceptually seen as the visualization of a function 5 : R= → � , where 5 is a classi�er for
=D data and "2 is a class (label) set. Here, we share the same idea of using a dense pixel
map to visualize high-dimensional functions. However, we treat real-valued functions 5
rather than classi�ers; and our aim is understanding optimization problems rather than
understanding the output of a classi�er, so we treat a di�erent problem and use-case.

129

visualizing optimization problems

9.3 method

We next describe the OptMap technique. Figure 9.1 shows a high-level diagram of
OptMap, with each step described in detail next.

Grid-like Sample

2. Create uniform sample

DR with PCA

Phase 1: Create Mappings between Spaces

2D → nD

Phase 2: Create Visualization

1. Define variable’s domains

1. Start with
blank image

2. Sample points in 2D
 and inverse project

3. Train projectors

3. Color points based
on nD projected points

Lightness

Hue

4. Draw path to solution

Evaluate

Project path

Figure 9.1: OptMap Pipeline.

1. De�ne variables domains: the user speci�es the domain of each variable G8 for
5 (G1, . . . , G=). When the range is the entire real axis R, we suggest selecting a reasonable
�nite range to avoid having a too coarse sampling for that variable;

2. Sample data: We uniformly sample the ranges de�ned above for each variable,
yielding a regular sample grid�= ⊂ R= . We constrain the maximum number of sample
points #<0G to avoid combinatorial explosion. In this chapter, we used #<0G = 5M for
all experiments. We evaluate 5 on �= and call the resulting dataset � .

3. Create mappings: we use PCA [97] trained on � to create the mappings % and %−1
from R= to R@ , respectively from R@ to R= .

4. Create a 2D grid: We create an uniform grid �2 ⊂ R2 similar to �= . Simply put,
�2 is a pixel image of some �xed resolution (set to 8002 for the experiments in this
chapter). Next, we use the trained %−1 to map each grid point (pixel) p ∈ �2 to a
high-dimensional point x ∈ R= . Finally, we evaluate the objective function 5 (x) and
optional constraints.

5. Color pixels: We color all pixels p ∈ �2 by the values of 5 (%−1 ()), using a continuous
color map, set to the Viridis color map [92] in the examples in this chapter. Additionally,
we set the luminance of p to re�ect 5 (%−1 (p))’s membership of the constraint-set (,
thereby indicating constraint feasibility.

6. Draw path to solution: if the solver provides the trace to a solution, as de�ned in
Section 9.2.1, we can draw it in the 2D grid by projecting them using % .

130

9.4 results

9.4 results

We next show several experiments that show how our OptMap technique performs in
di�erent scenarios. First, we use OptMap to visualize high-dimensional functions that
have a known shape (Section 9.4.1). Since we know the ground truth, we can check how
OptMap performs. Next, test our method on several unconstrained and constrained opti-
mization problems (Secs. 9.4.2 and 9.4.3 respectively) and show the added value OptMap
provides in these actual use cases.

 Dimensions (n)
 2 3 5 7 10 20

S
ty

bl
in

sk
i-T

an
g

R
as

tr
ig

in

 S
te

p

 R

os
en

br
oc

k

 S
p

he
re

Li
ne

a
r

Figure 9.2: Dense maps for functions with known shape as de�ned in Table 19, with increasing
dimensionality = > 2. Compare these with the ground-truth maps for = = 2.

9.4.1 Ground-Truth Functions

We use the six functions 5 listed in Table 19 to test OptMap. The corresponding dense
maps, computed as explained in Section 9.3, are shown in Fig. 9.2. In all cases, the domain
used for all variables was G8 ∈ [−5, 5]. All these functions have a predictable shape and
also generalize to many dimensions. We created dense maps using increasing numbers
of dimensions = ∈ {2, 3, 5, 7, 10, 20}. The dense map for = = 2 was created for reference
only, without using OptMap. Indeed, for = = 2, we can directly visualize 5 , e.g., by color
coding, similar to [220]. Showing these maps for = = 2 is however very useful. Indeed,

131

visualizing optimization problems

Table 19: De�nition of =-dimensional selected functions for ground-truth testing.

Function Name De�nition Function Name De�nition

Linear 5 (x) =
=∑
8=1

G8 Rosenbrock [173] 5 (x) =
=−1∑
8=1

[
100

(
G8+1 − G28

)2
+ (1 − G8)2

]
Sphere 5 (x) =

=∑
8=1

G2
8

Rastrigin [165] 5 (x) = �= +
=∑
8=1

[
G2
8
−� cos(2cG8)

]
, where:� = 10

Step 5 (x) =

0
=∑
8=1

G8 < 0

2
=∑
8=1

G8 < 2

4
=∑
8=1

G8 < 4

5 >Cℎ4AF8B4

Styblinski-Tang [194] 5 (x) =

=∑
8=1

G4
8
−16G2

8
+5G8

2

Table 20: Solvers used for unconstrained problems.
Solver Type Solver

Gradient-free Nelder-Mead [145]

Simulated Annealing

Gradient required
Gradient Descent

Conjugated Gradient [79]

L-BFGS [118]

Hessian required Newton

(1) for = = 2, we can show 5 directly, without any approximation implied by OptMap;
and (2) given the functions’ expressions (Table 19), we know that they behave similarly
regardless of =. Hence, if for = > 2 OptMap produces images similar to the ground
truth ones for = = 2, we know that OptMap works well. And indeed, Fig. 9.2 shows us
exactly this – the OptMap images for = > 2 are very similar to the ground-truth ones
for = = 2. The di�erences imply some distortion and rotations, which, we argue, are are
expected and reasonably small, given the inherent information loss when mapping a =D
phenomenon to 2D.

9.4.2 Unconstrained Problems

We next use OptMap to show how di�erent solvers perform when solving di�erent un-
constrained problems (that is, variants of Equation (9.1)). For this, we select a subset of
the functions de�ned in 19, namely Sphere, Rastrigin and Styblinski-Tang functions, with
varying dimensionality =. We use the solvers listed in Table 20, grouped by solver type,
namely whether it is gradient-free or if it requires a gradient or a Hessian. In Figure 9.3
we use OptMap to show the trace provided by each solver, i.e., all the points evaluated
by the solver to get to the solution. We see that for a simple function with a global
optimum (Sphere) most solvers �nd an optimal solution, except for the gradient-free
methods, which seem to struggle with the high-dimensionality of the problem (= = 20
dimensions). For the Styblinski-Tang function, we see di�erent but close optima were
found by most solvers. We also see that both gradient-free methods evaluated many
more points than the other methods, but that Nelder-Mead kept moving in the right

132

9.4 results

 Nelder-Mead Simulated Annealing Gradient Descent Conjugated Gradient L-BGFS Newton

 R

as
tr

ig
in

10
 d

im
en

si
on

s

 8.954 6.605 0.0 8.954 0.0 8.954

S

ph
e

re
20

 d
im

en
si

on
s

 4.465 1.170 0.0 7.30e-30 0.0 5.08e-31

 -167.557 -164.092 -181.694 -181.694 -181.694 -167.557

S
ty

bl
in

sk
i-T

an
g

5

di
m

en
si

on
s

Figure 9.3: Dense maps created with OptMap for unconstrained problems using the solvers de�ned
in Table 20 and some of the functions de�ned in Table 19. White circles indicates start-
ing points (random vectors in 5, 10 and 20 dimensions respectively). Red circles indicate
optimal points found by the solver. The magenta lines and points show each point eval-
uated by the solver to get to the solution. The numbers below each image indicate the
value of the objective function at the solution; red values indicate that the solver failed
to �nd an optimal solution.

direction. For the same problem, Simulated Annealing had problems converging to an
optimal solution and eventually gave up. For the Rastrigin function, which has many
optima, we see that only Gradient Descent and L-BFGS managed to �nd the solution in
a straightforward way, while the other methods converged to the wrong solution or did
not converge.

9.4.3 Constrained Problems

We next show how our OptMap performs when dealing with constrained optimization
problems – that is, �nding the minimum of some =-dimensional function 5 whose vari-
ables who are constrained as described in Section 9.2.1. Table 21 shows the de�nition of
constrained problems (objective functions and constraints) we used. The �rst three prob-
lems used are very common in the optimization literature [77]. The last two problems use
the same Sphere and Styblinski-Tang functions de�ned earlier, but with nonlinear con-
straints added to them. Figure 9.4 shows how OptMap visualizes the problem space and
solution for each problem. Unfortunately, the solvers used in this experiment, namely
Clp [66], Cbc [67], GLPK [130] and Ipopt [211] do not provide trace information to be
drawn through the algebraic modeling language we used, JuMP [48], so we only draw
the straight-line path from the (randomly chosen) starting point to solution.

For all problems, we can see the relationship between the objective function and the
constraints of the problem, which provides insight on how close to boundary conditions
the solutions are. For example, in in the problems Schedule, Sphere and Styblinski-Tang,
we see that the solution found is at the boundary of one or more constraints. This is not
the case for the Diet and Knapsack problem, which indicates that some tuning to the

133

visualizing optimization problems

solver’s settings may be required to obtain better results, or even some adjustments to
the problem de�nition may be done, such as the relaxation of some constraints.

 Diet Schedule Knapsack Sphere Styblinski-Tang

 LP, Min, 4 vars, GLPK LP, Max, 6 vars, Clp IP, Max, 7 vars, Cbc NLP, Min, 10 vars, Ipopt NLP, Min, 10 vars, Ipopt

Figure 9.4: Dense maps created with OptMap for the constrained problems de�ned in Table 21.
White circle indicates starting points (zero vector). Red circle indicate optimal points
found by the solver. Magenta lines shows the path from the starting point to the solu-
tion, and darker areas indicate unfeasible regions. The text below each image indicate
type of problem, direction (minimization or maximization), number of variables, and
solver used.

9.4.4 Performance

OptMap’s computation time can be divided in two phases (Fig. 9.1): In phase 1, most of
the time is spent while running PCA for the sampled points in the grid�= to de�ne the
mapping between the =D and 2D spaces. This is a task that has to be done only once for
a given function 5 and can be reused afterwards when one changes the solver. In phase
2, most of the time is spent by evaluating the objective function 5 and its constraints.
Since the evaluation of functions is usually very fast and the pixel grid �2 is of limited
size (8002 in our experiments), phase 2 takes only a few seconds to run on our platform.
Table 22 shows the time it takes to run PCA in phase 1 for #<0G = 5M points, where
we see that time increases very quickly with dimensionality. However, since phase 1 is
required to be run only once, and since it takes at most a few minutes to run even with a
high number of dimensions = (see Table 22), we argue that this is not a crucial limitation
of OptMap.

9.5 discussion

We discuss next how OptMap performs with respect to the criteria laid out in Section 9.1.

Quality (C1): Figures 9.2, 9.3 and 9.4 show examples of the quality of the visualizations
and the kind of insight they can provide for optimization problems. Our dense maps
are pixel-accurate, in the sense that they show actual information inferred from the
=D function 5 under investigation at each pixel, without interpolation. This is in
contrast with many other dimensionality reduction methods which either show a
sparse sampling of the =D space (by means of a 2D scatterplot), leaving the user to
guess what happens between scatterplot points; or use interpolation in the 2D image
space to ‘�ll’ such gaps [47, 133, 188], which creates smooth images that may com-
municate wrong insights, since we do not know the underlying projection is continuous.

Genericity (C2): We show how our technique performs for optimization problems
with varying nature, complexity, and dimensionality. We also show that our method
can be used simply for visualizing high-dimensional, continuous, functions by a single

134

9.5 discussion

Table 21: De�nition of constrained optimization problems.
Name De�nition

Diet

minimize 0.14G1 + 0.4G2 + 0.3G3 + 0.75G4

subject to 23G1 + 171G2 + 65G3 + G4 ≥ 2000.0,
0.1G1 + 0.2G2 + 9.3G4 ≥ 30.0,

0.6G1 + 3.7G2 + 2.2G3 + 7G4 ≥ 200.0,
6G1 + 30G2 + 13G3 + 5G4 ≥ 250.0,

G1, G2, G3, G4 ≥ 0.0

Schedule

maximize 300G1 + 260G2 + 220G3 + 180G4 − 8~1 − 6~2

subject to 11G1 + 7G2 + 6G3 + 5G4 ≤ 700.0,
4G1 + 6G2 + 5G3 + 4G4 ≤ 500.0,

8G1 + 5G2 + 5G3 + 6G4 − ~1 ≤ 0.0,
7G1 + 8G2 + 7G3 + 4G4 − ~2 ≤ 0.0,

~1 ≤ 600.0,
~2 ≤ 650.0,

G1, G2, G3, G4, ~1, ~2 ≥ 0.0

Knapsack

maximize 60G1 + 70G2 + 40G3 + 70G4 + 20G5 + 90G6

subject to G1 + G2 − 4~ ≥ 0.0,
G5 + G6 + 4~ ≥ 4.0,

30G1 + 20G2 + 30G3 + 90G4 + 30G5 + 70G6 ≤ 2000.0,
G3 − 10G4 ≤ 0.0,

G1, G2, G3, G4, G5, G6, ~ ≥ 0.0,
G1, G2, G3, G4, G5, G6 ≤ 10.0,

~ ≤ 1.0,
G1, G2, G3, G4, G5, G6, ~ ∈ Z

Sphere

minimize
10∑
8=1

G28

subject to
10∑
8=1

G28 ≥ 5.0

Styblinski-Tang
minimize

10∑
8=1
G48 − 16G28 + 5G8

2

subject to
10∑
8=1

G28 ≥ 5.0

135

visualizing optimization problems

Table 22: Time to project #<0G = 5M points with di�erent dimensionalities = using PCA.
Dimensions = Time (sec)

3 1.19

5 0.85

7 1.45

10 2.38

20 6.62

50 32.74

100 108.71

2D image, in contrast to multiple images that have to be navigated and correlated by
interaction [220]. We also show that our technique is independent of the optimization
solvers being used;

Simplicity (C3): We use PCA for direct and inverse projections, which is a very
well known, simple, fast, and deterministic projection method. OptMap’s complete
implementation has about 250 lines of Julia code. Note that we also experimented
with other methods for the direct projection – namely, t-SNE as learned by NNP –
and inverse projection – namely, NNInv, obtaining good results. However, for the
optimization problems presented in this chapter, PCA yielded better results (based on
ground truth comparison). Since PCA is also simpler and faster than NNP and NNInv,
we preferred it in our work.

Ease of use (C4): Apart from the timing experiment in Section 9.4.4, we executed
all experiments using the same maximum number of sample points #<0G with good
results, which shows that the technique requires little to no tuning to work properly;

Scalability (C5): Section 9.4.4 shows that our method is highly scalable with the
number of sample points and dimensions, which enables its interactive usage during
the development cycle of optimization models.

Limitations: The projected points, such as the starting, trace, and solution points, are
placed in the 2D image space at approximate positions, due to the inherent discrete na-
ture of the pixel grid �2. This can cause situations such as the one in Fig. 9.4 (Sphere
problem), where the optimal point found by the solver – which is obviously feasible – is
placed slightly inside the unfeasible region, which can be misleading. Secondly, we no-
ticed that due to the inherently imperfect mapping between =D and 2D spaces, equality
constraints that compare against constants might not be satis�ed during the evaluation,
which will make the drawing of feasible regions fail.

9.6 conclusion

In this chapter we presented OptMap, an image-based visualization technique that
allows the visualization of multidimensional functions and optimization problems.
OptMap exploits the idea of constructing dense maps of high-dimensional spaces, by
using direct and inverse projections to map these spaces to a 2D image space. Suitable
choices for the sampling of these spaces, as well as using e�cient and well-understood di-
rect and inverse projection implementations, make OptMap scalable to real-world prob-
lems. We show that OptMap performs well in di�erent scenarios, such as unconstrained

136

9.6 conclusion

and constrained optimization, with many examples that demonstrate its genericity and
speed. Additionally, we show that OptMap can be used for the visualization of standalone
high-dimensional functions, even when these are not part of an optimization problem.

Several future work directions exist. First and foremost, it is interesting to consider us-
ing more accurate direct and inverse projections for constructing OptMap. Secondly, we
consider using OptMap in concrete applications, and gauging its added-value in helping
engineers designing better optimization strategies, as opposed to existing tools-of-the-
trade for the same task.

This chapter concludes the presentation of applications for multidimensional pro-
jections. In Chapter 10, we conclude the core of the thesis by presenting SSNP, Self-
Supervised Network Projection, which is a technique for creating direct and inverse
projections with a single training. SSNP is the result of the combination of several ideas
of using deep learning for projections, such as those presented in Chapters 5, 6 and 7.

137

10S E L F - S U P E R V I S E D N E T W O R K P R O J E C T I O N

10.1 introduction

In Chapters 5 to 9, we presented several techniques and applications which demon-
strate the importance of multidimensional projections as tools for the analysis of
high-dimensional data. In this chapter, we present yet another technique called Self-
Supervised Network Projection, or SSNP, which is based on a single neural network
trained with a dual objective, one of reconstructing the input data, as in a typical au-
toencoder, and the other of data classi�cation using pseudo-labels cheaply computed by
a clustering algorithm to introduce neighborhood information, since intuitively, cluster-
ing gathers and aggregates �ne-grained distance information at a higher level, telling
how groups of samples are similar to each other (at cluster level), and this aggregated
information helps us next in producing projections which re�ect this higher-level simi-
larity.

This method aims to jointly cover all the following characteristics, which, to our
knowledge, is not yet achieved by existing DR methods:

Quality (C1): It provides better cluster separation than standard autoencoders, and
close to state-of-the-art DR methods, as measured by well-known metrics in DR
literature;

Scalability (C2): It can do inference in linear time in the number of dimensions
and observations, allowing us to project datasets of up to a million observations and
hundreds of dimensions in a few seconds using commodity GPU hardware;

Ease of use (C3): It produces good results with minimal or no parameter tuning;

Genericity (C4): It can handle any kind of high-dimensional data that can be repre-
sented as real-valued vectors;

Stability and out-of-sample support (C5): It can project new observations for a
learned projection without recomputing it, in contrast to standard t-SNE and any other
non-parametric methods;

Inverse mapping (C6): It provides, out-of-the-box, an inverse mapping from the low-
to the high-dimensional space;

Clustering (C7): It provides, out-of-the-box, the ability to learn how to mimic cluster-
ing algorithms, by assigning labels to unseen data.

We structure this chapter as follows: Section 10.2 discusses related work on dimen-
sionality reduction, Section 10.3 details our method, Section 10.4 presents the results

This chapter is based on publication [53]

139

self-supervised network projection

that support our contributions outlined above, Section 10.5 discusses our proposal, and
Section 10.6 concludes the chapter.

10.2 background

In Chapter 3 we present a detailed study of di�erent DR techniques, and in Chapters 5
to 7 we discuss the use of neural networks to create multidimensional projections. Please
refer to those chapters for details.

10.3 method

As stated in Section 5.2, autoencoders have desirable DR properties (simplicity, speed,
out-of-sample and inverse mapping capabilities), but create projections of lower qual-
ity than, e.g., t-SNE and UMAP. We believe that the key di�erence is that autoencoders
do not use neighborhood information during training, while t-SNE and UMAP do that.
This raises the following questions: Could autoencoders produce better projections if using
neighborhood information? and, if so, How to inject neighborhood information during
autoencoder training? Our technique answers both questions by using a network archi-
tecture with a dual optimization target. First, we have a reconstruction target, exactly as
in standard autoencoders; next, we use a classi�cation target based on pseudo-labels as-
signed by some clustering algorithm e.g. K-means [120], Agglomerative Clustering [99],
or any other way of assigning labels, including using “true” ground-truth labels if avail-
able.

Encoder layers

Activation: ReLU
Init: Glorot Uniform
Bias: constant 0.0001

Embedding layer
Activation: Linear
Init: Glorot Uniform
Bias: constant 0.0001
L2: 0.5

Decoder layers

Activation: ReLU
Init: Glorot Uniform
Bias: constant 0.0001

Dense layer: 512 units

Input: n-dimensional

Dense layer: 128 units

Dense layer: 32 units

Dense layer: 2 units

Dense layer: 512 units

Dense layer: 128 units

Dense layer: 32 units

Classifier output:
k classes

Softmax activation
Categorical cross entropy loss

Reconstruction output:
n-dimensional

Sigmoid activation
Binary cross entropy loss

Direct
Projection

N
P

Inverse
Projection

N
I

Clustering
N

C

Figure 10.1: SSNP network architecture used
for training.

Dense layer: 512 units

Input: n-dimensional

Dense layer: 128 units

Dense layer: 32 units

Output: 2-dimensional

Projection
Network

N
P

Input: 2-dimensional

Dense layer: 512 units

Dense layer: 128 units

Dense layer: 32 units
Inverse

Mapping
Network

N
I

Output: n-dimensional

Dense layer: 512 units

Input: n-dimensional

Dense layer: 128 units

Dense layer: 32 units

Dense layer: 2 units

Dense layer: 512 units

Dense layer: 128 units

Dense layer: 32 units

Clustering
Network

N
C

Output: k classes

Figure 10.2: Three SSNP networks used during
inference.

Our key idea is that labels –ground-truth or given by clustering – are a high-level
similarity measure between data samples which can be used to infer neighborhood in-
formation, i.e., same-label data are more similar than di�erent-label data. Since classi�ers

140

10.4 results

seek to learn a representation that separates input data based on labels, by adding an ex-
tra classi�er target to an autoencoder, we learn how to project data with better cluster
separation than standard autoencoders.

SSNP �rst takes a training set�CA ⊂ � and assigns to it pseudo-labels.CA ∈ Z by using
some clustering technique. We then take samples (x ∈ �CA , ~ ∈ .CA) to train a neural
network with two target functions, one for reconstruction, other for classi�cation, which
are then added together to form a joint loss. The errors from this joint loss are then back-
propagated to the entire network, during training. This network (Figure 10.1) contains
a two-unit bottleneck layer, same as an autoencoder, used to generate the 2D projection
when in inference mode. After training, we ‘split’ the trained layers of the network to
create three new networks for inference: a projector #? (x), an inverse projector #8 (p) and,
as a by-product, a classi�er #2 (x), which mimics clustering algorithm used to create .CA
(see Figure 10.2). The entire training-and-inference operation of SSNP is summarized in
Figure 10.3.

Step 1: Label assignment
 In: Clustering algo, D

tr

 Out: Y
tr

Clustering (K-means, Affinity Propagation, DBSCAN, etc)
Ground Truth labels

Step 2: Training
 In: D

tr
, Y

tr

Out: Trained network

Stochastic Gradient Descent
Joint optimization of classifier and reconstruction targets

Step 3: Assembly of final networks
In: Trained network
Out: N

P
, N

I
, N

C

Dismantle trained network
Construct final networks based on trained layers

Step 4: Inference
In: D→N

P
P(D)→N

I
D→N

C

Out: N
P
→P(D) N

I
→D N

C
→ Y

Networks trained and ready to use for
Direct projection, inverse projection and clustering

Figure 10.3: SSNP training-and-inference pipeline.

10.4 results

To evaluate SSNP’s performance we propose several experiments to compare it with
other DR techniques using di�erent datasets. We select the following evaluation metrics,
which are widely used in the projection literature: Trustworthiness ("C), Continuity
("2), Neighborhood Hit ("=ℎ) and Shepard diagram correlation ("B). All metrics are
de�ned in Section 2.2.

We next show how SSNP performs on di�erent datasets when compared to t-SNE,
UMAP, autoencoders, and NNP. We use di�erent algorithms to generate pseudo-labels,
and also use ground-truth labels. For conciseness, we name SSNP variants using K-
means, agglomerative clustering and ground-truth labels as SSNP(Km), SSNP(Agg) and
SSNP(GT), respectively. We use two types of datasets: synthetic blobs and real-world
data. The synthetic blobs datasets are sampled from a Gaussian distribution where we
vary the number of dimensions (100 and 700), the number of cluster centers (5 and 10),
and use increasing values of the standard deviation f . This yields datasets with clus-
ter separation varying from very sharp to fuzzy clusters. All synthetic datasets have 5K
samples.

141

self-supervised network projection

Table 23: Quality measurements for the synthetic blobs experiment with 100 and 700 dimensions, 5
and 10 cluster centers.

100 dimensions 700 dimensions

5 clusters 10 clusters 5 clusters 10 clusters

Algorithm f "C "2 "B "=ℎ "C "2 "B "=ℎ f "C "2 "B "=ℎ "C "2 "B "=ℎ

AE

1.3

0.923 0.938 0.547 1.000 0.958 0.963 0.692 1.000

1.6

0.909 0.914 0.739 1.000 0.953 0.955 0.254 1.000

t-SNE 0.937 0.955 0.818 1.000 0.967 0.977 0.192 1.000 0.917 0.951 0.362 1.000 0.960 0.976 0.346 1.000

UMAP 0.921 0.949 0.868 1.000 0.957 0.970 0.721 1.000 0.906 0.933 0.878 1.000 0.954 0.965 0.471 1.000

SSNP-KM 0.910 0.919 0.687 1.000 0.956 0.959 0.602 1.000 0.904 0.908 0.568 1.000 0.953 0.955 0.399 1.000

AE

3.9

0.919 0.926 0.750 1.000 0.959 0.963 0.484 1.000

4.8

0.910 0.914 0.615 1.000 0.953 0.954 0.354 1.000

t-SNE 0.931 0.953 0.707 1.000 0.966 0.978 0.227 1.000 0.914 0.950 0.608 1.000 0.960 0.977 0.331 1.000

UMAP 0.911 0.940 0.741 1.000 0.956 0.969 0.537 1.000 0.906 0.931 0.697 1.000 0.954 0.965 0.390 1.000

SSNP-KM 0.910 0.918 0.622 1.000 0.955 0.958 0.549 1.000 0.905 0.907 0.612 1.000 0.953 0.954 0.296 1.000

AE

9.1

0.905 0.901 0.569 1.000 0.938 0.945 0.328 0.999

11.2

0.911 0.906 0.600 1.000 0.955 0.954 0.382 1.000

t-SNE 0.913 0.951 0.533 1.000 0.948 0.974 0.254 1.000 0.914 0.950 0.492 1.000 0.959 0.977 0.296 1.000

UMAP 0.888 0.939 0.535 1.000 0.929 0.966 0.342 1.000 0.905 0.931 0.557 1.000 0.953 0.965 0.336 1.000

SSNP-KM 0.888 0.917 0.595 0.998 0.927 0.952 0.437 0.995 0.904 0.906 0.557 1.000 0.950 0.945 0.314 0.998

 700 dimensions, 5 clusters

 =

11
.2

=
4.

8

=

1.
6

SSNP (Km) Autoencoder t-SNE UMAP

 700 dimensions, 10 clusters

SSNP (Km) Autoencoder t-SNE UMAP

 100 dimensions, 5 clusters

=

9.
1

=
3.

9

 =
1.

3

SSNP (Km) Autoencoder t-SNE UMAP

 100 dimensions, 10 clusters

SSNP (Km) Autoencoder t-SNE UMAP

 =
9.

1

=

3.
9

 =

1.
3

 =

11
.2

=
4.

8

=

1.
6

Figure 10.4: Projection of synthetic blobs datasets with SSNP(Km) and other techniques, with di�er-
ent number of dimensions and clusters. In each quadrant, rows show datasets having
increasing standard deviation f .

Real-world datasets are selected from publicly available sources, matching the criteria
of being high-dimensional, reasonably large (thousands of samples), and having a non-
trivial data structure: MNIST [112], Fashion MNIST [223], Human Activity Recognition
(HAR) [8], Reuters Newswire Dataset [204] [176]. All datasets are described in detail in
Section 2.3.

142

10.4 results

 SSNP (Km) SSNP (Agg) Autoencoder t-SNE UMAP SSNP (GT)
R

eu
te

rs

 H

A
R

F
a

sh
io

nM
N

IS
T

 M

N
IS

T

Figure 10.5: Projection of real-world datasets with SSNP and other techniques. Left to right: SSNP
using K-means, SSNP using Agglomerative clustering, Autoencoder, t-SNE, UMAP, and
SSNP using ground truth labels.

All datasets had their attributes rescaled to the interval [0, 1], to conform with the
sigmoid activation function used at the reconstruction layer (see Figure 10.1).

10.4.1 Quality: Synthetic Datasets

Figure 10.4 shows the projection of the synthetic blob datasets with SSNP(Km) using
the correct number of clusters, alongside Autoencoders, t-SNE and UMAP. We see that
in most cases SSNP-Km shows better visual cluster separation than Autoencoders. Also,
SSNP-Km preserves the spread of the data better than t-SNE and UMAP, which can be
seen by the fact that the projections using these look almost the same regardless of the
standard deviation in the data. We omit the plots and measurements for NNP, since these
are very close to the ones created by the technique it is trying to mimic, typically t-SNE–
see e.g. [52].

Table 23 shows the quality measurements for this experiment for the datasets using 5
and 10 cluster centers. We see that SSNP performs very similarly quality-wise to AE, t-
SNE, and UMAP. We will bring more insight to this comparison in Section 10.4.2, which
studies more challenging, real-world, datasets.

10.4.2 Quality: Real-World Datasets

Figure 10.5 shows in the �rst three columns the projection of real-world datasets by SSNP
using pseudo-labels assigned by K-means and Agglomerative Clustering, alongside the
projection created by an autoencoder. The next three columns show the same datasets
projected by t-SNE, UMAP, and SSNP using ground-truth labels. Again, we omit the
plots and measurements for NNP, since they are very close to the ones created by t-SNE
and UMAP.

143

self-supervised network projection

Table 24: Quality measurements for the real-world datasets.
Dataset Method "C "2 "B "=ℎ

MNIST

SSNP(Km) 0.882 0.903 0.264 0.767

SSNP(Agg) 0.859 0.925 0.262 0.800

AE 0.887 0.920 0.009 0.726

SSNP(GT) 0.774 0.920 0.398 0.986

NNP 0.948 0.969 0.397 0.891

t-SNE 0.985 0.972 0.412 0.944

UMAP 0.958 0.974 0.389 0.913

FashionMNIST

SSNP(Km) 0.958 0.982 0.757 0.739

SSNP(Agg) 0.950 0.978 0.707 0.753

AE 0.961 0.977 0.538 0.725

SSNP(GT) 0.863 0.944 0.466 0.884

NNP 0.963 0.986 0.679 0.765

t-SNE 0.990 0.987 0.664 0.843

UMAP 0.982 0.988 0.633 0.805

HAR

SSNP(Km) 0.932 0.969 0.761 0.811

SSNP(Agg) 0.926 0.964 0.724 0.846

AE 0.937 0.970 0.805 0.786

SSNP(GT) 0.876 0.946 0.746 0.985

NNP 0.961 0.984 0.592 0.903

t-SNE 0.992 0.985 0.578 0.969

UMAP 0.980 0.989 0.737 0.933

Reuters

SSNP(Km) 0.794 0.859 0.605 0.738

SSNP(Agg) 0.771 0.824 0.507 0.736

AE 0.747 0.731 0.420 0.685

SSNP(GT) 0.720 0.810 0.426 0.977

NNP 0.904 0.957 0.594 0.860

t-SNE 0.955 0.959 0.588 0.887

UMAP 0.930 0.963 0.674 0.884

Figure 10.5 shows that SSNP with pseudo-labels shows better cluster separation than
Autoencoders, and, for more challenging datasets, such as HAR and Reuters, SSNP with
ground-truth labels looks better than t-SNE and UMAP. SSNP and Autoencoder were
trained for 10 epochs in all cases. SSNP used twice the number of classes as the target
number of clusters for the clustering algorithms used for pseudo-labeling. We see also
that SSNP creates elongated clusters, in a star-like pattern. We believe this is due to the
fact that one of the targets of the network is a classi�er, which is trained to partition the
space based on the data. This results in placing samples that are near a decision boundary
between classes closer to the center of the star pattern; samples that are far away from
a decision boundary are placed near the tips of the star, according to its class.

Table 24 shows the quality measurement for this experiment. We see that SSNP with
pseudo-labels consistently shows better cluster separation than Autoencoders, as mea-
sured by the "=ℎ , as well as better distance correlation, as measured by "B . For the
harder HAR and Reuters datasets, SSNP with ground-truth labels shows "=ℎ results
that are competitive and even better than the ones for t-SNE and UMAP. For the"C and
"2 metrics, SSNP outperforms again Autoencoders in most cases; for FashionMNIST
and HAR, SSNP yields "C and "2 values close to the ones for NNP, t-SNE, and UMAP.

144

10.4 results

Table 25: Set-up time for di�erent methods,
using 10K training samples, MNIST
dataset. All SSNP variants and Au-
toencoders were trained for 10 epochs.
t-SNE is here for reference only, since
it is a non-parametric technique.

Method Training time (s)

SSNP(GT) 6.029

SSNP(Km) 20.478

SSNP(Agg) 31.954

Autoencoder 3.734

UMAP 25.143

t-SNE 33.620

NNP(t-SNE) 51.181

Figure 10.6: Inference time for SSNP and other
techniques. All techniques trained
with 10K samples from the MNIST
dataset. Inference done on MNIST
upsampled up to 1M samples.

10.4.3 Computational Scalability

Table 25 shows the time required to set up SSNP and other projection techniques. For
SSNP, this means training the network. For t-SNE, this means actual projection of the
data, since this technique is non-parametric. All SSNP variants take far under a minute
to set up, with SSNP(GT) being the fastest, as it does not need the clustering step. Of the
pseudo-labeling varieties, SSNP(Km) is the fastest. We used 10K training samples, which
is on the conservative side. In practice, we get good results (quality-wise) with as few as
1K samples.

Figure 10.6 shows the time needed to project up to 1M samples using SSNP and
the other techniques. Being GPU-accelerated neural networks, SSNP, Autoencoders and
NNP perform very fast, all being able to project up to 1M samples in a few seconds – an
order of magnitude faster than UMAP, and over three orders of magnitude faster than
t-SNE.

10.4.4 Inverse Projection

Figure 27 shows a set of digits from the MNIST dataset – both the actual images G and the
ones obtained by inverse projection %−1 (% (x)). We see that SSNP(Km) yields results very
similar to Autoencoders, so SSNP’s dual-optimization target succeeds in learning a good
inverse mapping based on the direct mapping given by the pseudo-labels (Section 10.3).
Table 26 strengthens this insight by showing the values for Mean Squared Error between
original and inversely-projected data for SSNP(Km) and Autoencoder, which, again, are
very similar. Furthermore, the SSNP MSE errors are of the same order of magnitude –
that is, small – as those obtained by the recent NNInv technique and the older iLAMP [5]
one – compare Table 26 with Figure 2 in [59], not included here for space reasons.

10.4.5 Data clustering

Table 28 shows how SSNP performs when doing classi�cation or clustering, which cor-
responds respectively to its usage of pseudo-labels or ground-truth labels. We see that

145

self-supervised network projection

Table 26: Inverse projection Mean Square Er-
ror (MSE) for SSNP(Km) and Autoen-
coder, trained with 5K samples, tested
with 1K samples.

SSNP(Km) Autoencoder

Dataset Train Test Train Test

MNIST 0.0474 0.0480 0.0424 0.0440

FashionMNIST 0.0309 0.0326 0.0291 0.0305

HAR 0.0072 0.0074 0.0066 0.0067

Reuters 0.0002 0.0002 0.0002 0.0002

Table 27: Sample images from MNIST inversely
projected by SSNP and Autoencoder,
both trained with 10 epochs and 5K
samples. Bright images show the orig-
inal data.

Original

Autoencoder

SSNP(Km)

Original

Autoencoder

SSNP(Km)

Original

Autoencoder

SSNP(Km)

SSNP generates good results in both cases when compared to the ground-truth labels
and, respectively, the underlying clustering algorithm. We stress that this is a side re-
sult of SSNP. While one gets this for free, SSNP only mimics the underlying clustering
algorithm that it learns, rather than doing clustering from scratch.

Table 28: Classi�cation/clustering accuracy of SSNP when compared to ground truth (GT) and clus-
tering labels (Km), trained with 5K observations, test with 1K observations.

SSNP(GT) SSNP(Km)

Dataset Train Test Train Test

MNIST 0.984 0.942 0.947 0.817

FashionMNIST 0.866 0.815 0.902 0.831

HAR 0.974 0.974 0.931 0.919

Reuters 0.974 0.837 0.998 0.948

10.4.6 Implementation details

Table 31 in Section A.3 lists all open-source software libraries used to build SSNP and the
other tested techniques. Our neural network implementation leverages the GPU power
by using the Keras framework. The t-SNE implementation used is a parallel version of
Barnes-Hut t-SNE [125, 207], run on all available CPU cores for all tests. The UMAP
reference implementation is not parallel, but is quite fast (compared to t-SNE) and well-
optimized. Our implementation, plus all code used in this experiment, are publicly avail-
able at github.com/mespadoto/ssnp.

10.5 discussion

We discuss next how SSNP performs with respect to the seven criteria laid out in
Section 10.1.

Quality (C1): As shown in Figures 10.4 and 10.5, SSNP provides better cluster separa-
tion than Autoencoders, as measured by the selected metrics (Tables 23 and 24). The
choice of clustering algorithm does not seem to be a key factor, with K-means and

146

github.com/mespadoto/ssnp

10.6 conclusion

Agglomerative clustering yielding similar results for all metrics;

Scalability (C2): SSNP, while not as fast to train as standard Autoencoders, is still
very fast, with most of the training time being used by clustering – visible by the
fact that SSNP(GT)’s training time is close to Autoencoder’s one. In our experiments,
K-means seems to be faster than Agglomerative clustering, being thus more suitable
when training SSNP with very large datasets. Inference time for SSNP is very close to
Autoencoders and NNP, and much faster than UMAP (let alone t-SNE), which shows
SSNP’s suitability to cases where one needs to project large amounts of data, such as
streaming applications;

Ease of use (C3): SSNP yielded good projection results with little training (10 epochs),
little training data (5K samples) and a simple heuristic of setting the number of clusters
for the clustering step to twice the number of expected clusters in the data. Other
clustering techniques which do not require setting the number of clusters can be used,
such as DBSCAN [61] and A�nity Propagation [69], making SSNP usage even simpler.
We see this experiments as part of future work;

Genericity (C4): We show results for SSNP with di�erent types of high-dimensional
data, namely tabular (HAR), images (MNIST, FashionMNIST), and text (Reuters). We
believe this shows the versatility of the method;

Stability and out-of-sample support (C5): All measurements we show for SSNP are
based on inference, i.e., we pass the data through the trained network to compute them.
This is evidence of the out-of-sample capability, which allows one to project new data
without recomputing the projection, as is the case for t-SNE and other non-parametric
methods;

Inverse mapping (C6): SSNP shows inverse mapping results which are, quality-wise,
very similar to results from Autoencoders, NNInv and iLAMP, which is evidence of
SSNP’s inverse mapping abilities;

Clustering (C7): SSNP is able to mimic the behavior of the clustering algorithm used
as its input, as a byproduct of the training with labels. We show that SSNP produces
competitive results when compared to pseudo- or ground truth labels. Although SSNP
is not a clustering algorithm, it provides this for free (with no additional execution cost),
which can be useful in cases where one wants to do both clustering and DR.

In addition to the good performance shown for the aforementioned criteria, a key
strength of SSNP is its ability of performing all the operations described in Section 10.4
after a single training phase, which saves e�ort and time in cases where all or a subset of
those results (e.g., direct projection, inverse projection, clustering) are needed.

10.6 conclusion

We presented a new dimensionality reduction technique called SSNP. Through several
experiments, we showed that SSNP creates projections of high-dimensional data that
obtain a better visual cluster separation than autoencoders, the technique that SSNP is
closest to, and have similar (albeit slightly lower) quality to those obtained by state-of-
the-art methods. SSNP is, to our knowledge, the only technique that jointly addresses all
characteristics listed in Section 10.1, namely producing projections that exhibit a good

147

self-supervised network projection

visual separation of similar samples, handling datasets of millions of elements in seconds,
being easy to use (no complex parameters to set), handling generically any type of high-
dimensional data, providing out-of-sample support, and providing an inverse projection
function.

One low-hanging fruit is to study SSNP in conjunction with more advanced clustering
algorithms than the K-means and agglomerative clustering used in this paper, yielding
potentially even better visual cluster separation. A more ambitious, but realizable, goal
is to have SSNP learn its pseudo-labeling during training and therefore remove the need
for using a separate clustering algorithm. We plan to explore this directions in future
work.

148

11C O N C L U S I O N S

In the previous chapters, we gradually developed a body of work with the goal of
answering the two research questions outlined in Section 1.2. In this chapter, we
conclude this thesis by summarizing how our work managed to answer these questions.
We state the contributions made in each chapter in the context of the research questions,
and lastly, we outline some directions for future work.

We repeat below the research questions in Section 1.2 for convenience:

RQ1: How do current projection methods fare concerning quality, stability, and ease of
use? What can we teach the practitioner concerning the plethora of such methods available
nowadays?

RQ2: How can we create projection algorithms which can handle millions of observations
with hundreds of dimensions at interactive rates; project new, unseen data, in the same
way old data was projected; and tell users what data points belong to the empty spaces
between a projection’s scatterplot points?

We addressed question RQ1 by designing, running, and analyzing the results of the
benchmark described in Chapter 3. This is the largest benchmark of DR techniques that
we are aware of – it evaluates 44 DR techniques over 18 real-world datasets, using grid-
search to explore di�erent combinations of values for the techniques’ hyperparameters.
This resulted in more than 5000 unique runs of each technique. We used 7 di�erent
metrics to assess the quality for each run, and to determine which were the best DR
techniques and their parameters. The results systematically show that techniques which
are local and nonlinear, such as t-SNE and UMAP, perform the best overall. We believe
this to be good evidence of the power of nonlinear techniques, and of the need to use local
neighborhood information to create good visualizations of complex data. Finally, we
made all benchmark code and results public, so others can bene�t from the infrastructure
developed by us, and even use it to create their own benchmarks and/or compare their
DR techniques with existing ones. To our knowledge, ours is the only benchmark in DR
literature that provides all its results – data, code, methodology – fully openly, thereby
allowing replicability, extensibility, and helping usability.

In Chapter 4, we described in detail the architecture developed for the benchmark.
Such details – how to set up a large-scale quantitative study in terms of software
architecture – are unfortunately rare in DR literature. Hence, we see our contribution as
a valuable starting point to other researchers that wish to develop benchmarks like ours.

To answer question RQ2, we had �rst to ask ourselves: How can we have the desir-
able properties of local and nonlinear techniques, such as good visual cluster separation,
while adding fast out-of-sample capability, and without making the process overly com-
plex? The �rst attempt to answer this question is presented in Chapter 5, where we
present our Neural Network Projection (NNP). We show that NNP can mimic the results
of many other DR techniques (all techniques that we tested were successfully imitated
by NNP) by taking a sample of data projected with some technique of choice and train-

149

conclusions

ing a regression neural network in a supervised way. Although the idea is very simple,
we show that it is very powerful: NNP can reproduce results obtained with other tech-
niques with a very small error, while being a few orders of magnitude faster when doing
inference for new points, thanks to GPU acceleration.

Despite the fact that NNP performs well in a variety of scenarios, we found that
the resulting projections typically had a certain fuzziness as compared to the training
ground-truth, with some visible scattering of projected points that can be undesirable
for some applications. To address this issue, we adopted two approaches, which are
described in Chapter 6. First, we did a systematic exploration of the design space for the
neural network used in NNP. This resulted in �nding optimal settings that improved
over the initial implementation of NNP presented in Chapter 5. Next, we changed the
architecture of NNP’s neural network to be able to accept entire neighborhoods, rather
than individual samples, during the training of the network. This approach, which we
called KNNP, for K-Nearest-Neighbor Projection, led to further improvements in the
quality of NNP, with the trade-o� of being slightly slower than NNP.

During the course of the development of this thesis, we were faced with inverse
projections – techniques that map points from low- to high-dimensional spaces – at
various stages. First, during our survey work in Chapter 3, we realized that inverse
projections are far less studied (and available) than direct projections. Secondly, during
the development and testing of NNP (Chapter 5), the natural question arose whether
deep learning can also be used for inverse projection tasks. Following this, we sought
out to adapt NNP to create inverse projections. This resulted in NNInv, which is
presented in Chapter 7. Similar to NNP, NNInv obtains good results, is generic, fast, and
has built-in out-of-sample capability, something far more critical for inverse than for
direct projections.

In Chapter 8 we present a technique called Decision Boundary Maps. This technique
uses direct and inverse projections to draw 2D dense maps of ML classi�er decision
boundaries. We show many variants of this technique, and how it can be useful to un-
derstand the inner workings of machine learning (ML) classi�ers. This technique relies
heavily on NNInv, which enabled signi�cant speed-ups and interactive working for the
Decision Boundary Maps.

Chapter 9 presents OptMap, which is a technique for drawing high-dimensional
optimization problems in 2D dense maps. This can be seen as a continuous variant of
the Decision Boundary Maps described earlier. Although OptMap does not use NNP or
NNInv for now, it further demonstrates how direct and inverse projections and dense
maps can be combined for a di�erent high-dimensional data exploration problem.

To conclude our answer to question RQ2, Chapter 10 presents a new technique
called SSNP, for Self-Supervised Network Projection. This is a slightly di�erent
approach to using neural networks for projections than the ones at Chapters 5 to 7.
First, we use a clustering algorithm to assign pseudo-labels to the data. Then we use
those pseudo-labels to train a network with a joint optimization target, where we
train a classi�er alongside an autoencoder. By using the pseudo-labels as a proxy for
similarity, we show that SSNP can learn to do direct projections with better cluster
separation than traditional autoencoders, and without requiring an initial training
projection, like NNP and NNInv do. Another bene�t of SSNP is that we get three
networks in one training: a direct projector, which uses the �rst half of the autoen-
coder up to the bottleneck layer; an inverse projector, which uses the second half of

150

conclusions

the autoencoder, from the bottleneck layer to the output; and a clustering network,
which can mimic the behavior of the clustering algorithm used for training. All of
this is achieved computationally very e�ciently, at rates comparable to NNP and NNInv.

In terms of future work, we see many possible directions. In particular, there are
several sub-areas related to DR and multidimensional projections that can bene�t from
our results:

Dynamic projections for time-dependent and/or streaming data: With NNP we propose a
solution for projecting new data for a known distribution, but what if the distribution
of the data changes with time? Dynamic projections can address this problem [166].
NNP and related techniques could be extended to handle dynamic data.

Graph drawing: There are many techniques for graph drawing/layout, and both DR
techniques and neural networks have been used to that [76, 108]. Exploring how our
DR techniques can be extended to graph drawing is de�nitely an interesting option.

Explanation of projections: As projection techniques get more sophisticated, there is a
need to explain how they work based on input data. In particular, it is interesting to
understand why NNP (and related techniques) work so well, what characterizes the
cases when they do not work that well, and use this information to further improve
their quality.

Handling of categorical data: Most if not all projection techniques deal with quantitative
data, while projecting categorical data is a much less explored problem. Extending
direct (and inverse) projections such as NNP to handle such data seems to be a quite
low-hanging fruit.

Quality metrics: When developing our benchmark, we faced many di�culties for
identifying good metrics, let alone �nding implementations. We believe there is a need
for better quality metrics for projections, as well as proper usable implementations
thereof.

Projection software: Many attempts to create projection applications, frameworks, and
libraries were made in the last decades. With a few exceptions, most are not maintained
and/or lack the implementation of many interesting DR techniques. The development
of a new projection library, with implementations that strive to be high-quality, but also
didactic in nature, could make the DR arena interesting for a larger audience.

151

AA P P E N D I X : I M P L E M E N TAT I O N D E TA I L S

a.1 survey

Table 29 lists the software packages used in Chapter 3.

Table 29: Software components implementing the benchmark.
Package name Available at Used for

numpy www.numpy.org general computations

scipy www.scipy.org (statistics, metrics)

pandas pandas.pydata.org

scikit-image scikit-image.org

scikit-learn scikit-learn.org projections

Multicore TSNE github.com/DmitryUlyanov/Multicore-TSNE

umap-learn github.com/lmcinnes/umap

keras keras.io

DR Toolbox lvdmaaten.github.io/drtoolbox

Tapkee tapkee.lisitsyn.me

Vispipeline vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex

matplotlib matplotlib.org visualization

a.2 nnp

Table 30 lists the software packages used in Chapter 5.

Table 30: Software used for implementing the discussed techniques.
Technique Available at

t-SNE github.com/DmitryUlyanov/Multicore-TSNE

UMAP github.com/lmcinnes/umap

PCA scikit-learn.org

MDS

Isomap

LLE

Autoencoders keras.io (TensorFlow backend)

Our technique

Parametric t-SNE lvdmaaten.github.io/tsne

LAMP vicg.icmc.usp.br/vicg

LSP

a.3 ssnp

Table 31 lists the software packages used in Chapter 10. Unless noted otherwise, all
experiments were run on a 4-core Intel E3-1240 v6 running at 3.7 GHz with 64 GB RAM
and an NVidia GeForce GTX 1070 GPU with 8 GB VRAM, where applicable.

153

www.numpy.org
www.scipy.org
pandas.pydata.org
scikit-image.org
scikit-learn.org
github.com/DmitryUlyanov/Multicore-TSNE
github.com/lmcinnes/umap
keras.io
lvdmaaten.github.io/drtoolbox
tapkee.lisitsyn.me
vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex
matplotlib.org
github.com/DmitryUlyanov/Multicore-TSNE
github.com/lmcinnes/umap
scikit-learn.org
keras.io
lvdmaaten.github.io/tsne
vicg.icmc.usp.br/vicg

appendix: implementation details

Table 31: Software used for the evaluation.
Technique Available at

SSNP (our technique) keras.io (TensorFlow backend)

Autoencoder

t-SNE github.com/DmitryUlyanov/Multicore-t-SNE

UMAP github.com/lmcinnes/umap

K-means scikit-learn.org

Agglomerative Clustering

a.4 classifier decision boundary maps

Table 32 lists the software packages used in Chapter 8.

Table 32: Software used for implementing the discussed techniques.
Technique Available at

Logistic Regression Classi�er scikit-learn.org

Random Forest Classi�er

k-Nearest Neighbors Classi�er

Convolutional Neural Network keras.io (TensorFlow backend)

a.5 optmap

Table 33 lists the software packages used in Chapter 9.

Table 33: Software used for the evaluation.
Library Available at

Images github.com/JuliaImages/Images.jl

ColorTypes github.com/JuliaGraphics/ColorTypes.jl

ColorSchemes github.com/JuliaGraphics/ColorSchemes.jl

Luxor github.com/JuliaGraphics/Luxor.jl

CSV github.com/JuliaData/CSV.jl

DataFrames github.com/JuliaData/DataFrames.jl

MultivariateStats github.com/JuliaStats/MultivariateStats.jl

Optim github.com/JuliaNLSolvers/Optim.jl

Clp github.com/jump-dev/Clp.jl

Cbc github.com/jump-dev/Cbc.jl

GLPK github.com/jump-dev/GLPK.jl

Ipopt github.com/jump-dev/Ipopt.jl

154

keras.io
github.com/DmitryUlyanov/Multicore-t-SNE
github.com/lmcinnes/umap
scikit-learn.org
scikit-learn.org
keras.io
github.com/JuliaImages/Images.jl
github.com/JuliaGraphics/ColorTypes.jl
github.com/JuliaGraphics/ColorSchemes.jl
github.com/JuliaGraphics/Luxor.jl
github.com/JuliaData/CSV.jl
github.com/JuliaData/DataFrames.jl
github.com/JuliaStats/MultivariateStats.jl
github.com/JuliaNLSolvers/Optim.jl
github.com/jump-dev/Clp.jl
github.com/jump-dev/Cbc.jl
github.com/jump-dev/GLPK.jl
github.com/jump-dev/Ipopt.jl

BA P P E N D I X : H Y P E R PA R A M E T E R S E A R C H S PA C E

b.1 survey

Table 34 presents the hyperparameter search space used for the DR technique evaluated
in Chapter 3. Only techniques which have free parameters are listed. To make reading
easier, Table 34 (second column) lists the parameter names as used in the respective
implementations.

Table 34: Hyperparameter search space used for all projection techniques.
Projection Parameters c8 Parameters description and function Parameter sampling

AE c1 : model size Size of the Autoencoder network Small (1 hidden layer 2 units),

Medium (3 hidden layers 16, 2 and 16 units),

Large (f5 hidden layers, 128, 32, 2, 32, 128 units).

DM c1 : t Number of iterations 2, 5, 10

c2 : width Standard deviation for Gaussian kernel 1, 5, 10

GDA c1 : kernel Kernel type gauss, linear

GPLVM c1 : sigma Standard deviation for Gaussian kernel 0.5, 1.0, 2.0

FA c1 : Max number of iterations 1000, 2000

F-MAP No parameters

F-ICA c1 : fun Function used in the approximation to neg-entropy logcosh, exp

c2 : max iter Max number of iterations 200, 400

IDMAP c1 : fraction delta Fraction of the di�erence between projected 2.0, 8.0, 12.0

distance and original space distance

c2 : iter Number of iterations 100, 200

c3 : init Initialization type fastmap, random

ISO c1 : #neighbors Number of neighbors to consider for each point 3, 5, 7

L-ISO c1 : #neighbors Number of neighbors to consider for each point 4, 8, 16

LAMP c1 : fraction delta Fraction of the di�erence between projected 2.0, 8.0, 12.0

distance and original space distance

c2 : iter Number of iterations 100, 200

c3 : sample type Sample Type random, clustering centroid

LE No parameters

LLC c1 : k Number of neighbors to consider for each point 8, 12

c2 : #analyzers Number of analyzers 10, 20

c3 : max iter Max number of iterations 200, 400

LLE c1 : #neighbors Number of neighbors to consider for each point 5, 7, 11

c2 : max iter Max number of iterations 100, 200

c3 : reg Regularization constant 0.001, 0.01, 0.1

H-LLE c1 : #neighbors Number of neighbors to consider for each point 7, 11

c2 : max iter Max number of iterations 100, 200

c3 : reg Regularization constant 0.001, 0.01, 0.1

M-LLE c1 : #neighbors Number of neighbors to consider for each point 5, 7, 11

c2 : max iter Max number of iterations 100, 200

c3 : reg Regularization constant 0.001, 0.01, 0.1

LMNN c1 : k Number of neighbors to consider for each point 3, 5, 7

LPP c1 : #neighbors Number of neighbors to consider for each point 4, 7, 11

155

appendix: hyperparameter search space

Table 34 continued

Projection Parameters c8 Parameters description and function Parameter sampling

LSP c1 : fraction delta Fraction of the di�erence between projected 2.0, 8.0, 12.0

distance and original space distance

c2 : #iter Number of iterations 100, 200

c3 : #neighbors Number of neighbors to consider for each point 4, 8, 16

c4 : control point type Method for selecting control points random, k-means

LTSA c1 : #neighbors Number of neighbors to consider for each point 5, 7, 11

c2 : max iter Max number of iterations 100, 200

c3 : reg Regularization constant 0.001, 0.01, 0.1

L-LTSA c1 : #neighbors Number of neighbors to consider for each point 4, 7, 11

MC c1 : analyzers Number of local factor analyzers 10, 20

c2 : max iter Max number of iterations 200, 400

MCML No parameters

MDS c1 : init Number of runs of the SMACOF algorithm 2, 4

c2 : max iter Max number of iterations 300, 500

L-MDS c1 : #neighbors Number of neighbors to consider for each point 4, 7, 11

N-MDS c1 : init Number of runs of the SMACOF algorithm 2, 4

c2 : max iter Max number of iterations 300, 500

L-MVU c1 : k1 Number of neighbors to consider for each point 3, 5, 7

c2 : k2 Number of neighbors to consider for embedding non-landmark points 8, 12, 15

NMF c1 : init Initialization type random, nndsvdar

c2 : max iter Max number of iterations 200, 400

c3 : alpha Constant that multiplies the regularization terms 0.0, 0.5

c4 : l1 ratio Regularization mixing constant 0.0, 0.5

PBC c1 : init Initialization type fastmap, random

c2 : cluster factor Density of clusters in the projected space 1.5, 4.5, 9.0

c3 : fraction delta Fraction of the di�erence between projected 2.0, 8.0, 12.0

distance and original space distance

c4 : iter Number of iterations 100, 200

PCA No parameters

I-PCA No parameters

K-PCA-P c1 : degree Polynomial degree 2, 3, 5

K-PCA-R c1 : gamma Kernel coe�cient None, 0.05, 0.5

K-PCA-S c1 : gamma Kernel coe�cient None, 0.05, 0.5

P-PCA c1 : max iter Max number of iterations 200, 400

S-PCA c1 : alpha Sparsity controlling parameter 0.01, 0.1, 0.5

c2 : max iter Max number of iterations 1000, 2000

c3 : ridge alpha Amount of ridge shrinkage 0.05, 0.5

PLSP No parameters

G-RP No parameters

S-RP No parameters

R-SAM No parameters

T-SNE c1 : perplexity Similar to the number of neighbors 5.0, 15.0, 30.0, 50.0

c2 : early exaggeration Distance between clusters in the projected space 6.0, 12.0, 18.0

c3 : #iter Number of iterations 1000, 3000

SPE c1 : #neighbors Number of neighbors to consider for each point 6, 12, 18

c2 : updates Number of updates 20, 70

T-SVD c1 : #iter Number of iterations 5, 10

UMAP c1 : init Initialization type spectral, random

c2 : min dist Min distance allowed between points 0.001, 0.01, 0.1, 0.5

c3 : #neighbors Number of neighbors to consider for each point 5, 10, 15

b.2 nnp

As described at various places in Chapter 5, our method learns the style of a given pro-
jection technique. For this, suitable training projections are needed. To obtain these, we

156

B.2 nnp

used di�erent datasets, and di�erent parameter settings of the underlying projection
techniques (to obtain good quality ground-truth projections that we next want to train
on). To support replication, Table 35 lists all the hyperparameter settings used for all
projection techniques mentioned in Chapter 5, for each considered dataset.

Table 35: Hyperparameters used by all projection techniques and datasets in this chapter.
Dataset Projection Hyperparameters

MNIST t-SNE perplexity=25, iter=3000

pt-SNE perplexity=30

UMAP neighbors=10, min_dist=0.001

FashionMNIST t-SNE perplexity=10, iter=1000

UMAP neighbors=5, min_dist=0.3

Dogs vs Cats t-SNE perplexity=30, iter=1000

UMAP neighbors=10, min_dist=0.3

IMDB t-SNE perplexity=300, iter=5000

UMAP neighbors=60, min_dist=0.7

WBC t-SNE perplexity=150, iter=3000

UMAP neighbors=40, min_dist=0.5

HAR t-SNE perplexity=30, iter=3000

UMAP neighbors=10, min_dist=0.001

Spambase t-SNE perplexity=100, iter=3000

UMAP neighbors=30, min_dist=0.1

Seismic Bumps t-SNE perplexity=200, iter=3000

UMAP neighbors=60, min_dist=0.5

CIFAR100 t-SNE perplexity=30, iter=5000

UMAP neighbors=11, min_dist=0.0

CIFAR100 t-SNE perplexity=30, iter=5000

UMAP neighbors=11, min_dist=0.0

All datasets Isomap None

PCA None

Autoencoder 1 1 hidden layer: 2 units(linear)

Autoencoder 3 3 hidden layers: 16 units(sigmoid),

2 units(linear), 16 units(sigmoid)

LLE neighbors=50

LSP fraction delta=8.0, iterations=100

neighbors=8, control point type=random

LAMP fraction delta=8.0, iterations=100

sample type=random

MDS metric=True

157

CA P P E N D I X : M E A S U R E M E N T S F R O M E X P E R I M E N T S

c.1 nnp

Table 36 presents values for all metrics, for all experiments done in Chapter 5, comparing
our method to the original techniques.

Table 36: Metrics computed for all datasets and techniques. Superscript > indicates “original” tech-
nique, superscript = indicates our technique.

Dataset Technique ">
=ℎ

">C ">2 ">B ">
B86<0

"=
=ℎ

"=C "=2 "=B "=f

MNIST (2-class)

LAMP 0.996 0.899 0.973 0.813 0.914 0.996 0.901 0.973 0.793 0.916

LSP 0.995 0.922 0.971 0.787 0.911 0.996 0.916 0.969 0.788 0.913

PCA 0.997 0.900 0.967 0.771 0.000 0.995 0.898 0.966 0.755 0.000

UMAP 0.999 0.977 0.987 0.615 1.273 0.999 0.945 0.979 0.609 1.288

Isomap 0.999 0.903 0.974 0.739 0.000 0.999 0.903 0.972 0.735 0.000

LLE 0.998 0.931 0.972 0.616 0.003 0.997 0.925 0.967 0.603 0.064

AE3 0.995 0.948 0.968 0.531 0.386 0.992 0.939 0.969 0.528 0.131

AE1 0.994 0.891 0.958 0.602 0.378 0.992 0.887 0.959 0.592 0.158

t-SNE 0.999 0.993 0.985 0.544 1.571 0.997 0.952 0.981 0.547 2.510

MDS 0.996 0.903 0.944 0.864 0.913 0.990 0.901 0.968 0.810 0.923

Fashion (2-class)

LAMP 0.992 0.914 0.969 0.925 0.922 0.994 0.915 0.968 0.927 0.922

LSP 0.984 0.911 0.931 0.815 0.926 0.980 0.909 0.953 0.874 0.925

PCA 0.993 0.909 0.966 0.926 0.000 0.994 0.910 0.966 0.929 0.000

UMAP 0.998 0.961 0.982 0.796 2.048 0.999 0.931 0.976 0.803 2.077

Isomap 0.998 0.932 0.970 0.858 0.000 0.999 0.935 0.972 0.867 0.000

LLE 0.997 0.927 0.952 0.844 0.005 0.998 0.925 0.951 0.850 0.071

AE3 0.998 0.948 0.958 0.739 0.626 0.999 0.943 0.958 0.734 0.333

AE1 0.995 0.915 0.963 0.823 0.547 0.994 0.914 0.963 0.823 0.360

t-SNE 0.998 0.984 0.978 0.621 1.999 0.993 0.926 0.975 0.627 3.356

MDS 0.993 0.915 0.947 0.937 0.925 0.996 0.918 0.967 0.920 0.930

MNIST

LAMP 0.445 0.710 0.916 0.442 0.956 0.442 0.710 0.917 0.432 0.957

LSP 0.554 0.761 0.917 0.422 0.957 0.496 0.724 0.897 0.429 0.963

PCA 0.470 0.732 0.926 0.477 0.000 0.474 0.737 0.926 0.467 0.000

UMAP 0.894 0.967 0.968 0.308 1.248 0.797 0.846 0.945 0.336 1.260

Isomap 0.512 0.779 0.962 0.504 0.000 0.508 0.782 0.949 0.505 0.000

LLE 0.366 0.653 0.841 -0.132 0.008 0.352 0.657 0.834 -0.101 0.221

AE3 0.606 0.867 0.927 0.165 0.320 0.583 0.846 0.927 0.169 0.201

AE1 0.449 0.723 0.914 0.337 0.357 0.443 0.725 0.916 0.344 0.227

t-SNE 0.910 0.984 0.969 0.414 1.642 0.776 0.890 0.959 0.422 2.739

MDS 0.453 0.786 0.881 0.622 0.926 0.428 0.768 0.920 0.584 0.930

Fashion

LAMP 0.525 0.911 0.976 0.835 0.933 0.523 0.911 0.977 0.842 0.933

LSP 0.501 0.832 0.863 0.380 0.954 0.476 0.820 0.891 0.608 0.965

PCA 0.539 0.911 0.975 0.868 0.000 0.528 0.911 0.975 0.872 0.000

UMAP 0.737 0.978 0.987 0.656 2.006 0.671 0.950 0.982 0.664 2.023

Isomap 0.608 0.930 0.979 0.754 0.000 0.597 0.929 0.979 0.764 0.000

LLE 0.623 0.918 0.975 0.579 0.004 0.591 0.906 0.973 0.588 0.071

AE3 0.648 0.954 0.973 0.530 0.703 0.608 0.940 0.974 0.528 0.341

AE1 0.535 0.907 0.972 0.710 0.630 0.527 0.905 0.972 0.724 0.376

t-SNE 0.778 0.990 0.984 0.692 1.736 0.663 0.952 0.981 0.710 3.009

MDS 0.560 0.921 0.951 0.887 0.927 0.518 0.911 0.973 0.826 0.933

159

appendix: measurements from experiments

Table 36 continued

Dataset Technique ">
=ℎ

">C ">2 ">B ">
B86<0

"=
=ℎ

"=C "=2 "=B "=f

Dogs vs Cats

LAMP 0.874 0.672 0.886 0.369 0.955 0.879 0.676 0.888 0.403 0.955

LSP 0.854 0.668 0.795 0.253 0.903 0.869 0.668 0.817 0.326 0.928

PCA 0.889 0.684 0.884 0.336 0.000 0.891 0.688 0.890 0.339 0.000

UMAP 0.897 0.814 0.944 0.259 2.232 0.898 0.755 0.920 0.264 2.306

Isomap 0.869 0.704 0.926 0.415 0.000 0.890 0.723 0.923 0.432 0.000

LLE 0.887 0.679 0.878 0.175 0.023 0.500 0.562 0.505 0.193 0.000

AE3 0.881 0.696 0.881 0.231 0.660 0.888 0.698 0.885 0.238 0.654

AE1 0.886 0.676 0.871 0.249 0.680 0.892 0.682 0.875 0.265 0.655

t-SNE 0.901 0.914 0.923 0.289 2.446 0.902 0.754 0.910 0.327 3.353

MDS 0.885 0.651 0.803 0.611 0.896 0.884 0.679 0.857 0.347 0.929

IMDB

LAMP 0.576 0.651 0.604 0.143 0.836 0.584 0.650 0.597 0.137 0.842

LSP 0.593 0.641 0.714 0.178 0.621 0.590 0.656 0.649 0.179 0.730

PCA 0.591 0.686 0.646 0.167 0.000 0.591 0.686 0.646 0.166 0.000

UMAP 0.618 0.690 0.835 0.255 3.615 0.618 0.662 0.734 0.248 3.833

Isomap 0.588 0.616 0.756 0.242 0.000 0.593 0.638 0.702 0.246 0.000

LLE 0.584 0.604 0.619 -0.033 0.082 0.569 0.601 0.587 0.003 0.483

AE3 0.570 0.549 0.604 0.141 0.082 0.570 0.550 0.602 0.117 0.055

AE1 0.670 0.568 0.654 0.080 0.394 0.669 0.564 0.646 0.053 0.054

t-SNE 0.640 0.767 0.844 0.510 1.951 0.632 0.667 0.777 0.458 2.155

MDS 0.575 0.602 0.634 0.333 0.435 0.575 0.594 0.601 0.110 0.796

WBC

LAMP 0.942 0.888 0.978 0.913 0.587 0.937 0.886 0.977 0.912 0.589

LSP 0.958 0.935 0.979 0.806 0.899 0.914 0.871 0.959 0.833 0.904

PCA 0.941 0.891 0.979 0.919 0.000 0.936 0.890 0.978 0.919 0.000

UMAP 0.978 0.966 0.990 0.854 3.890 0.953 0.914 0.976 0.861 3.925

Isomap 0.900 0.828 0.968 0.520 0.000 0.896 0.814 0.950 0.584 0.000

LLE 0.818 0.728 0.888 0.685 0.000 0.810 0.736 0.898 0.696 0.239

AE3 0.939 0.894 0.975 0.793 0.563 0.939 0.895 0.973 0.785 0.480

AE1 0.933 0.888 0.974 0.863 0.659 0.932 0.888 0.972 0.856 0.482

t-SNE 0.993 0.995 0.983 0.726 1.113 0.956 0.922 0.970 0.748 1.650

MDS 0.939 0.898 0.950 0.925 0.546 0.932 0.888 0.976 0.893 0.562

HAR

LAMP 0.820 0.953 0.992 0.959 0.884 0.773 0.941 0.991 0.958 0.884

LSP 0.937 0.972 0.987 0.707 0.996 0.440 0.692 0.706 0.233 0.996

PCA 0.725 0.930 0.989 0.941 0.000 0.711 0.927 0.988 0.941 0.000

UMAP 0.971 0.972 0.965 0.268 1.342 0.538 0.734 0.941 0.328 1.436

Isomap 0.441 0.609 0.895 -0.093 0.000 0.407 0.632 0.677 -0.075 0.000

LLE 0.767 0.920 0.984 0.728 0.001 0.665 0.861 0.898 0.746 0.029

AE3 0.820 0.957 0.986 0.712 0.489 0.804 0.953 0.987 0.717 0.378

AE1 0.759 0.939 0.989 0.821 0.720 0.784 0.945 0.991 0.820 0.383

t-SNE 0.990 0.999 0.998 0.641 0.549 0.915 0.977 0.995 0.642 1.607

MDS 0.798 0.942 0.902 0.927 0.888 0.725 0.922 0.987 0.951 0.904

Spambase

LAMP 0.708 0.635 0.800 0.516 0.771 0.699 0.634 0.798 0.527 0.783

LSP 0.703 0.626 0.714 0.284 0.798 0.646 0.563 0.644 0.294 0.823

PCA 0.737 0.639 0.814 0.465 0.000 0.737 0.645 0.816 0.462 0.000

UMAP 0.779 0.819 0.894 0.583 3.184 0.770 0.714 0.854 0.576 3.258

Isomap 0.718 0.648 0.807 0.447 0.000 0.724 0.644 0.803 0.488 0.000

LLE 0.625 0.572 0.726 0.496 0.000 0.611 0.559 0.693 0.511 0.391

AE3 0.655 0.559 0.637 0.057 0.068 0.647 0.555 0.631 0.066 0.057

AE1 0.676 0.577 0.700 0.294 0.117 0.672 0.571 0.689 0.288 0.076

t-SNE 0.800 0.886 0.891 0.581 2.410 0.765 0.725 0.863 0.600 2.880

MDS 0.738 0.642 0.795 0.707 0.593 0.746 0.655 0.834 0.489 0.727

160

C.1 nnp

Table 36 continued

Dataset Technique ">
=ℎ

">C ">2 ">B ">
B86<0

"=
=ℎ

"=C "=2 "=B "=f

Seismic Bumps

LAMP 0.899 0.943 0.960 0.829 0.559 0.904 0.943 0.961 0.834 0.557

LSP 0.931 0.957 0.962 0.797 0.685 0.909 0.945 0.970 0.858 0.688

PCA 0.896 0.913 0.950 0.819 0.000 0.899 0.912 0.949 0.824 0.000

UMAP 0.941 0.984 0.991 0.404 2.757 0.921 0.977 0.987 0.408 2.737

Isomap 0.916 0.812 0.932 -0.082 0.000 0.905 0.648 0.813 -0.099 0.000

LLE 0.914 0.957 0.967 0.336 0.000 0.899 0.921 0.942 0.334 0.024

AE3 0.896 0.900 0.910 0.449 1.155 0.898 0.898 0.911 0.460 0.137

AE1 0.896 0.858 0.831 0.542 2.622 0.900 0.862 0.835 0.559 0.191

t-SNE 0.945 0.988 0.992 0.342 0.468 0.920 0.979 0.988 0.353 0.606

MDS 0.902 0.945 0.930 0.863 0.607 0.906 0.928 0.962 0.822 0.620

161

B I B L I O G R A P H Y

[1] Scikit-learn: Machine learning in python. JMLR, 12:2825–2830.

[2] D. K. Agra�otis. Stochastic proximity embedding. Journal of Computational Chem-
istry, 24(10):1215–1221, 2003.

[3] G. Albuquerque, M. Eisemann, and M. Magnor. Perception-based visual quality
measures. In Proc. IEEE VAST, pages 11–18, 2011.

[4] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami. Contributions to the study of
SMS spam �ltering: new collection and results. In Proc. ACM Symposium on Doc-
ument Engineering, pages 259–262, 2011.

[5] E. Amorim, E. V. Brazil, J. Daniels, P. Joia, L. G. Nonato, and M. C. Sousa. iLAMP:
Exploring high-dimensional spacing through backward multidimensional projec-
tion. In Proc. IEEE VAST, pages 53–62, 2012.

[6] E. Amorim, E. V. Brazil, J. Mena-Chalco, L. Velho, L. G. Nonato, F. Samavati, and
M. C. Sousa. Facing the high-dimensions: Inverse projection with radial basis func-
tions. Computers & Graphics, 48:35–47, 2015.

[7] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger. Indi-
cations of nonlinear deterministic and �nite-dimensional structures in time series
of brain electrical activity: Dependence on recording region and brain state. Phys-
ical Review E, 64(6):061907–1–061907–8, 2001.

[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz. Human activity
recognition on smartphones using a multiclass hardware-friendly support vec-
tor machine. In Proc. Intl. Workshop on Ambient Assisted Living, pages 216–223.
Springer, 2012.

[9] M. Aupetit. Visualizing distortions and recovering topology in continuous projec-
tion techniques. Neurocomputing, 10(7):1304–1330, 2007.

[10] M. Aupetit. Sanity check for class-coloring-based evaluation of dimension reduc-
tion techniques. In Proceedings of the Fifth Workshop on Beyond Time and Errors:
Novel Evaluation Methods for Visualization, pages 134–141. ACM, 2014.

[11] M. Aupetit and M. Sedlmair. SepMe: 2002 new visual separation measures. In Proc.
IEEE Paci�cVis, 2016.

[12] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel ap-
proach. Neural computation, 12(10):2385–2404, 2000.

[13] H. U. Bauer and K. R. Pawelzik. Quantifying the neighborhood preservation of
self-organizing feature maps. IEEE Transactions on neural networks, 3(4):570–579,
1992.

[14] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of dynamic
graph visualization. CGF, 36(1):133–159, 2017.

163

bibliography

[15] M. Becker, J. Lippel, A. Stuhlsatz, and T. Zielke. Robust dimensionality reduction
for data visualization with deep neural networks. Graphical Models, 108:101060,
2020.

[16] R. Becker, W. Cleveland, and M. Shyu. The visual design and control of trellis
display. Journal of Computational and Graphical Statistics, 5(2):123–155, 1996.

[17] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering. In Advances in Neural Information Processing Systems (NIPS),
pages 585–591, 2002.

[18] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[19] B. Benato, A. Telea, and A. Falcão. Semi-supervised learning with interactive label
propagation guided by feature space projections. In Proc. SIBGRAPI, pages 144–
152, 2018.

[20] Y. Bengio, J. Paiement, P. Vincent, O. Dellaleau, N. L. Roux, and M. Ouimet. Out-
of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering.
In Proc. NIPS, pages 177–184, 2003.

[21] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: A cpu and gpu math compiler in python.
In Proc. SCIPY, volume 1, pages 3–10, 2010.

[22] E. Bertini, A. Tatu, and D. Keim. Quality metrics in high-dimensional data visual-
ization: An overview and systematization. IEEE TVCG, 17(12):2203–2212, 2011.

[23] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neigh-
bor” meaningful? In International conference on database theory, pages 217–235.
Springer, 1999.

[24] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[25] M. Brand. Charting a manifold. In Proc. NIPS, pages 985–992, 2002.

[26] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[27] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, and U. America. The general
algebraic modeling system, 1998.

[28] A. Buja, D. Cook, and D. F. Swayne. Interactive high-dimensional data visualiza-
tion. Journal of Computational and Graphical Statistics, 5(1):78–99, 1996.

[29] K. Bunte, M. Biehl, and B. Hammer. A general framework for dimensionality
reducing data visualization mapping. Neural Computation, 24(3):771–804, 2012.

[30] T. T. Cao, K. Tang, A. Mohamed, and T. S. Tan. Parallel banding algorithm to com-
pute exact distance transform with the GPU. In Proc. ACM I3D, pages 83–90, 2010.

[31] C. Chabot, C. Stolte, and P. Hanrahan. Tableau software. Tableau Software, 2003.

[32] L. Chen and A. Buja. Local multidimensional scaling for nonlinear dimension re-
duction, graph drawing, and proximity analysis. Journal of the American Statistical
Association, 104(485):209–219, 2009.

164

bibliography

[33] Y. Chen, M. Crawford, and J. Ghosh. Improved nonlinear manifold learning for
land cover classi�cation via intelligent landmark selection. In Proc. IEEE IGARSS,
pages 545–548, 2006.

[34] F. Chollet and others. Keras. 2015. url keras.io.

[35] S. Christian, S. Io�e, V. Vanhoucke, and A. Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning, 2016. arXiv:1602.07261.

[36] P. M. Ciarelli and E. Oliveira. Agglomeration and elimination of terms for dimen-
sionality reduction. In Proc. IEEE ISDA, pages 547–552, 2009.

[37] R. R. Coifman and S. Lafon. Di�usion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

[38] D. Coimbra, R. Martins, T. Neves, A. Telea, and F. Paulovich. Explaining three-
dimensional dimensionality reduction plots. Information Visualization, 15(2):154–
172, 2016.

[39] C. Cortes and V. Vapnik. Support vector machine. Machine learning, 20(3):273–297,
1995.

[40] J. Cunningham and Z. Ghahramani. Linear dimensionality reduction: Survey, in-
sights, and generalizations. JMLR, 16:2859–2900, 2015.

[41] R. Cutura, S. Holzer, M. Aupetit, and M. Sedlmair. VisCoDeR: A tool for vi-
sually comparing dimensionality reduction algorithms. In Proc. ESANN. Univ.
Catholique Louvain, 2018.

[42] G. B. Dantzig. Origins of the simplex method. In A history of scienti�c computing,
pages 141–151. 1990.

[43] S. Dasgupta. Experiments with random projection. In Proc. of the Sixteenth con-
ference on Uncertainty in arti�cial intelligence, pages 143–151. Morgan Kaufmann,
2000.

[44] T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated hate speech detec-
tion and the problem of o�ensive language. In Proc. AAAI ICWSM, pages 512–515,
2017.

[45] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proc. CVPR, pages 248–255, 2009.

[46] D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding tech-
niques for high-dimensional data. Proceedings of the National Academy of Sciences,
100(10):5591–5596, 2003.

[47] D. van Driel, X. Zhai, Z. Tian, and A. Telea. Enhanced attribute-based explanations
of multidimensional projections. In Proc. EuroVA. Eurographics, 2020.

[48] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathemat-
ical optimization. SIAM Review, 59(2):295–320, 2017.

[49] J. Elson, J. J. Douceur, J. Howell, and J. Saul. Asirra: a CAPTCHA that exploits
interest-aligned manual image categorization. In Proc. ACM CCS, pages 366–374,
2007.

165

keras.io

bibliography

[50] D. Engel, L. Hattenberger, and B. Hamann. A survey of dimension reduction meth-
ods for high-dimensional data analysis and visualization. In Proc. IRTG Workshop,
volume 27, pages 135–149. Schloss Dagstuhl, 2012.

[51] M. Espadoto, A. Falcao, N. Hirata, and A. Telea. Improving neural network-based
multidimensional projections. In Proc. IVAPP. SCITEPRESS, 2020.

[52] M. Espadoto, N. Hirata, and A. Telea. Deep learning multidimensional projections.
Information Visualization, 2020. doi.org/10.1177/1473871620909485.

[53] M. Espadoto, N. Hirata, and A. Telea. Self-supervised dimensionality reduction
with neural networks and pseudo-labeling. In Proc. IVAPP. SCITEPRESS, 2021.

[54] M. Espadoto, F. Rodrigues, N. Hirata, and A. Telea. Optmap: Using dense maps for
visualizing multidimensional optimization problems. In Proc. IVAPP. SCITEPRESS,
2021.

[55] M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C. Telea. Towards a
quantitative survey of dimension reduction techniques - companion site, 2019. url
mespadoto.github.io/proj-quant-eval/.

[56] M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C. Telea. Towards a
quantitative survey of dimension reduction techniques. IEEE TVCG, 2019.

[57] M. Espadoto, R. M. Martins, A. Kerren, N. S. Hirata, and A. C. Telea. Dimen-
sionality reduction online benchmark, 2019. url github.com/mespadoto/
proj-quant-eval.

[58] M. Espadoto, F. C. M. Rodrigues, and A. C. Telea. Visual analytics of multidimen-
sional projections for constructing classi�er decision boundary maps. In Proc.
IVAPP, pages 132–144. SCITEPRESS, 2019.

[59] M. Espadoto, F. C. M. Rodrigues, N. S. T. Hirata, R. Hirata Jr., and A. C. Telea. Deep
learning inverse multidimensional projections. In Proc. EuroVA. Eurographics,
2019.

[60] M. Espadoto, E. F. Vernier, and A. C. Selecting and sharing multidimensional pro-
jection algorithms: A practical view. In Proc. EuroVis - VisGap Workshop. The
Eurographics Association, 2020.

[61] M. Ester, H. P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In Proc. KDD, pages 226–231,
1996.

[62] R. Fabbri, L. Costa, J. Torellu, and O. Bruno. 2d euclidean distance transform algo-
rithms: A comparative survey. ACM Computing Survey, 40(1):1–44, 2008.

[63] C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. ACM SIGMOD, 24(2):163–174,
1995.

[64] A. Fawzi, S. M. Moosavi-Dezfooli, P. Frossard, and S. Soatto. Empirical study of the
topology and geometry of deep networks. In Proc. IEEE CVPR, pages 3762–3770,
2018.

166

mespadoto.github.io/proj-quant-eval/
github.com/mespadoto/proj-quant-eval
github.com/mespadoto/proj-quant-eval

bibliography

[65] I. K. Fodor. A survey of dimension reduction techniques, 2002.

[66] J. Forrest, S. Vigerske, T. Ralphs, L. Hafer, jpfasano, H. G. Santos, M. Saltzman, h-i
gassmann, B. Kristjansson, and A. King. coin-or/clp, April 2020.

[67] J. Forrest, S. Vigerske, H. G. Santos, T. Ralphs, L. Hafer, B. Kristjansson, jpfasano,
E. Straver, M. Lubin, rlougee, jpgoncal1, h-i gassmann, and M. Saltzman. coin-
or/cbc, March 2020.

[68] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL. A modeling language for math-
ematical programming, 2003.

[69] B. J. Frey and D. Dueck. Clustering by passing messages between data points.
Science, 315(5814):972–976, 2007.

[70] R. Féraud and F. Clérot. A methodology to explain neural network classi�cation.
Neural Networks, 15(2):237–246, 2002.

[71] A. Gisbrecht and B. Hammer. Data visualization by nonlinear dimensionality re-
duction. WIREs Data Mining Knowledge Discovery, 5:51–73, 2015.

[72] A. Globerson and S. T. Roweis. Metric learning by collapsing classes. In Proc. NIPS,
pages 451–458, 2006.

[73] Y. Goldberg and Y. Ritov. Local procrustes for manifold embedding: a measure
of embedding quality and embedding algorithms. Machine learning, 77(1):1–25,
2009.

[74] J. Goldberger, S. Roweis, G. E. Hinton, and R. R. Salakhutdinov. Neighbourhood
components analysis. NIPS, 17:513–520, 2005.

[75] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples, 2014. arXiv:1412.6572.

[76] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
Proc. ACM SIGKDD, pages 855–864, 2016.

[77] B. Guenin, J. Könemann, and L. Tuncel. A gentle introduction to optimization. Cam-
bridge University Press, 2014.

[78] I. Guyon, A. Sa�ari, G. Dror, and G. Cawley. Agnostic learning vs. prior knowledge
challenge. In Proc. IEEE IJCNN, pages 829–834, 2007.

[79] W. W. Hager and H. Zhang. Algorithm 851: CG_DESCENT, a conjugate gradient
method with guaranteed descent. ACM Transactions on Mathematical Software
(TOMS), 32(1):113–137, 2006.

[80] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Stochastic algorithms for constructing approximate matrix decompositions. 2009.

[81] L. Hamel. Visualization of support vector machines with unsupervised learning.
In Proc. IEEE CIBCB, 2006.

[82] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti�ers: Surpassing human-
level performance on imagenet classi�cation. In Proc. IEEE ICCV, pages 1026–1034,
2015.

167

bibliography

[83] X. He and P. Niyogi. Locality preserving projections. In Proc. NIPS, pages 153–160,
2004.

[84] M. Hearst. What is text mining. SIMS, UC Berkeley, 2003.

[85] N. Heulot, J. D. Fekete, and M. Aupetit. Visualizing Dimensionality Reduction Arti-
facts: An Evaluation. 2017.

[86] G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800, 2002.

[87] G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In Proc. NIPS, pages
857–864, 2003.

[88] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[89] P. Ho�man and G. Grinstein. A survey of visualizations for high-dimensional data
mining. Information Visualization in Data Mining and Knowledge Discovery, 104:
47–82, 2002.

[90] M. Hopkins, E. Reeber, G. Forman, and J. Suermondt. Spambase dataset. 1999.

[91] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected convolutional net-
works, 2016. arXiv:1608.06993.

[92] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in science &
engineering, 9(3):90–95, 2007.

[93] A. Hyvarinen. Fast ICA for noisy data using gaussian moments. In Proc. IEEE
ISCAS, volume 5, pages 57–61, 1999.

[94] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for visualizing multi-
dimensional geometry. In Proc. IEEE Visualization, pages 361–378, 1990.

[95] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G. Nonato. Local a�ne
multidimensional projection. IEEE TVCG, 17(12):2563–2571, 2011.

[96] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G. Nonato. Vispipeline,
2011. url vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex.

[97] I. T. Jolli�e. Principal component analysis and factor analysis. In Principal Com-
ponent Analysis, pages 115–128. Springer, 1986.

[98] L. V. Kantorovich. Mathematical methods of organizing and planning production.
Management science, 6(4):366–422, 1960.

[99] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, 2005.

[100] J. Kehrer and H. Hauser. Visualization and visual analysis of multifaceted scienti�c
data: A survey. IEEE TVCG, 19(3):495–513, 2013.

[101] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2013.
arXiv:1312.6114.

168

vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex

bibliography

[102] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014.
arXiv:1412.6980.

[103] A. Kirk. Data Visualization: a successful design process. Packt Publishing Ltd, 2012.

[104] D. Kotzias, M. Denil, N. d. Freitas, and P. Smyth. From group to individual labels
using deep features. In Proc. ACM SIGKDD, pages 597–606, 2015.

[105] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, MSc thesis, Dept. of Computer Science, Univ. of Toronto, Canada, 2009.

[106] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classi�cation with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems
(NIPS), pages 1097–1105, 2012.

[107] A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In
NIPS, pages 950–957, 1992.

[108] J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov, and A. C. Telea.
Graph layouts by t-sne. 36(3):283–294, 2017.

[109] J. B. Kruskal. Multidimensional scaling by optimizing goodness of �t to a non-
metric hypothesis. Psychometrika, 29(1):1–27, 1964.

[110] S. Lafon and A. B. Lee. Di�usion maps and coarse-graining: A uni�ed framework
for dimensionality reduction, graph partitioning, and dataset parameterization.
IEEE TVCG, 28(9):1393–1403, 2006.

[111] N. D. Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. In Proc. NIPS, pages 329–336, 2004.

[112] Y. LeCun and C. Cortes. MNIST handwritten digits dataset, 2010. url yann.lecun.
com/exdb/mnist.

[113] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In
Proc. NIPS, pages 556–562, 2001.

[114] J. A. Lee and M. Verleysen. Quality assessment of dimensionality reduction: Rank-
based criteria. Neurocomputing, 72(7):1431–1443, 2009.

[115] S. Lespinats and M. Aupetit. CheckViz: Sanity check and topological clues for
linear and nonlinear mappings. Computer Graphics Forum, 30(1):113–125, 2011.

[116] S. Lespinats, M. Aupetit, and A. Meyer-Baese. ClassiMap: A new dimension reduc-
tion technique for exploratory data analysis of labeled data. IJPRAI, 29(6), 2015.

[117] S. Lisitsyn, C. Widmer, and F. J. I. Garcia. Tapkee: An e�cient dimension reduction
library. JMLR, 14(1):2355–2359, 2013.

[118] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical programming, 45(1-3):503–528, 1989.

[119] S. Liu, D. Maljovec, B. Wang, P. T. Bremer, and V. Pascucci. Visualizing high-
dimensional data: Advances in the past decade. IEEE TVCG, 23(3):1249–1268, 2015.

169

yann.lecun.com/exdb/mnist
yann.lecun.com/exdb/mnist

bibliography

[120] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[121] W. Lueks, A. Gisbrecht, and B. Hammer. Visualizing the quality of dimensionality
reduction. Neurocomputing, 112:109–123, 2013.

[122] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning
word vectors for sentiment analysis. In Proc. of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pages
142–150. Association for Computational Linguistics, 2011.

[123] L. v. d. Maaten. An introduction to dimensionality reduction using matlab. Tech-
nical report, Maastricht University, 2007.

[124] L. v. d. Maaten. Learning a parametric embedding by preserving local structure.
In Proc. AI-STATS, 2009.

[125] L. v. d. Maaten. Barnes-hut-SNE, 2013. arXiv:1301.3342.

[126] L. v. d. Maaten. Accelerating t-SNE using tree-based algorithms. JMLR, 15:3221–
3245, 2014.

[127] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9:2579–2605,
2008.

[128] L. v. d. Maaten and E. Postma. Dimensionality reduction: A comparative review.
Technical report, Tilburg University, Netherlands, 2009.

[129] L. v. d. Maaten, E. Postma, and H. v. d. Herik. MATLAB toolbox for dimensionality
reduction. Maastricht Univ., 2007.

[130] A. Makhorin. GLPK: GNU Linear Programming Kit), 2008. url www.gnu.org/
software/glpk/glpk.html.

[131] Y. A. Malkov and D. A. Yashunin. E�cient and robust approximate near-
est neighbor search using hierarchical navigable small world graphs, 2016.
arXiv:1603.09320.

[132] C. D. Manning, H. Schütze, and P. Raghavan. Introduction to Information Retrieval,
volume 39. Cambridge University Press, 2008.

[133] R. Martins, D. Coimbra, R. Minghim, and A. Telea. Visual analysis of dimension-
ality reduction quality for parameterized projections. Computers & Graphics, 41:
26–42, 2014.

[134] R. M. Martins, R. Minghim, A. C. Telea, and others. Explaining neighborhood
preservation for multidimensional projections. In CGVC, pages 7–14, 2015.

[135] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D. Patterson,
H. Tang, G. Y. Wei, P. Bailis, V. Bittorf, and others. MLPerf benchmark, 2019.
arXiv:1910.01500.

[136] M. McCann and A. Johnston. SECOM dataset. 2008.

[137] B. McCormick. Visualization in scienti�c computing. Computer graphics, 21(6),
1987.

170

www.gnu.org/software/glpk/glpk.html
www.gnu.org/software/glpk/glpk.html

bibliography

[138] L. McInnes and J. Healy. UMAP: Uniform manifold approximation and projection
for dimension reduction, 2018. arXiv:1802.03426.

[139] J. Melville. SmallVis benchmark, 2018. url github.com/jlmelville/smallvis.

[140] T. Mendonça, P. M. Ferreira, J. S. Marques, A. R. Marcal, and J. Rozeira. PH 2-a
dermoscopic image database for research and benchmarking. In 2013 35th an-
nual international conference of the IEEE engineering inmedicine and biology society
(EMBC), pages 5437–5440. IEEE, 2013.

[141] M. A. Migut, M. Worring, and C. J. Veenman. Visualizing multi-dimensional deci-
sion boundaries in 2d. Data Mining and Knowledge Discovery, 29(1):273–295, 2015.

[142] R. Minghim, F. V. Paulovich, and A. A. Lopes. Content-based text mapping using
multi-dimensional projections for exploration of document collections. In Proc.
SPIE, volume 6060. Intl. Society for Optics and Photonics, 2006.

[143] S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict the success of
bank telemarketing. Decision Support Systems, 62:22–31, 2014.

[144] R. Motta, R. Minghim, A. Lopes, and M. Oliveira. Graph-based measures to assist
user assessment of multidimensional projections. Neurocomputing, 150:583–598,
2015.

[145] J. A. Nelder and R. Mead. A simplex method for function minimization. The com-
puter journal, 7(4):308–313, 1965.

[146] S. A. Nene, S. K. Nayar, H. Murase, and others. Columbia object image library
(coil-20), 1996.

[147] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits
in natural images with unsupervised feature learning. In Proc. NIPS workshop on
deep learning and unsupervised feature learning, 2011.

[148] L. Nonato and M. Aupetit. Multidimensional projection for visual analytics: Link-
ing techniques with distortions, tasks, and layout enrichment. IEEE TVCG, 2018.
doi 10.1109/TVCG.2018.2846735.

[149] M. OL, S. R, and W. WH. Pattern recognition via linear programming: Theory and
application to medical diagnosis. Large-scale numerical optimization, pages 22–31,
1990.

[150] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE TKDE, 22(10):1345–1359,
2010.

[151] Papermill. Papermill. url papermill.readthedocs.io.

[152] M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear
models. J Royal Stat Soc: Series B, 69(4):659–677, 2007.

[153] F. V. Paulovich and R. Minghim. Text map explorer: a tool to create and explore
document maps. In Proc. Intl. Conference on Information Visualisation (IV), pages
245–251. IEEE, 2006.

171

github.com/jlmelville/smallvis
http://dx.doi.org/10.1109/TVCG.2018.2846735
papermill.readthedocs.io

bibliography

[154] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least square projec-
tion: A fast high-precision multidimensional projection technique and its applica-
tion to document mapping. IEEE TVCG, 14(3):564–575, 2008.

[155] F. V. Paulovich, C. T. Silva, and L. G. Nonato. Two-phase mapping for projecting
massive datasets. IEEE TVCG, 16(6):1281–1290, 2010.

[156] E. Pekalska, D. d. Ridder, R. P. W. Duin, and M. A. Kraaijveld. A new method of
generalizing sammon mapping with application to algorithm speed-up. In Proc.
ASCI, volume 99, pages 221–228, 1999.

[157] J. Peltonen and Z. Lin. Information retrieval approach to meta-visualization. Ma-
chine Learning, 99(2):189–229, 2015.

[158] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Hierarchical
stochastic neighbor embedding. Computer Graphics Forum, 35(3):21–30, 2016.

[159] N. Pezzotti, B. Lelieveldt, L. v. d. Maaten, T. Höllt, E. Eisemann, and A. Vilanova.
Approximated and user steerable t-SNE for progressive visual analytics. IEEE
TVCG, 23:1739–1752, 2017.

[160] N. Pezzotti, J. Thijssen, A. Mordvintsev, T. Hollt, B. v. Lew, B. Lelieveldt, E. Eise-
mann, and A. Vilanova. GPGPU linear complexity t-SNE optimization. IEEE TVCG,
26(1):1172–1181, 2020.

[161] G. Polzlbauer. Survey and comparison of quality measures for self-organizing
maps. In Proc. Workshop on Data Analysis (WDA), pages 67–82, 2004.

[162] K. Potdar, P. Pardawala, and C. Pai. A comparative study of categorical variable
encoding techniques for neural network classi�ers. Intl J of Computer Applications,
175(4):7–9, 2017.

[163] N. Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151, 1999.

[164] R. Rao and S. K. Card. The table lens: Merging graphical and symbolic represen-
tations in an interactive focus+context visualization for tabular information. In
Proc. ACM SIGCHI, pages 318–322, 1994.

[165] L. A. Rastrigin. Systems of extremal control. Nauka, 1974.

[166] P. Rauber, A. X. Falcão, and A. Telea. Visualizing time-dependent data using dy-
namic t-SNE. In Proc. EuroVis: Short Papers, pages 73–77, 2016.

[167] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea. Visualizing the hidden ac-
tivity of arti�cial neural networks. IEEE TVCG, 23(1):101–110, 2017.

[168] P. E. Rauber, A. X. Falcão, and A. C. Telea. Projections as visual aids for classi�ca-
tion system design. Information Visualization, 17(4):282–305, 2017.

[169] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the
predictions of any classi�er. In Proc. ACM SIGMOD KDD, pages 1135–1144, 2016.

[170] F. Rodrigues, M. Espadoto, R. Hirata, and A. C. Telea. Constructing and visualizing
high-quality classi�er decision boundary maps. Information, 10(9):280, 2019.

172

bibliography

[171] F. C. M. Rodrigues, R. Hirata, and A. C. Telea. Image-based visualization of classi-
�er decision boundaries. In 2018 31st SIBGRAPI Conference on Graphics, Patterns
and Images (SIBGRAPI), pages 353–360. IEEE, 2018.

[172] C. Rohkohl, B. Keck, H. Hofmann, and J. Hornegger. RabbitCT—an open platform
for benchmarking 3d cone-beam reconstruction algorithms a. Medical Physics, 36
(9):3940–3944, 2009.

[173] H. Rosenbrock. An automatic method for �nding the greatest or least value of a
function. The Computer Journal, 3(3):175–184, 1960.

[174] D. A. Ross, J. Lim, R. S. Lin, and M. H. Yang. Incremental learning for robust visual
tracking. International Journal of Computer Vision, 77(1):125–141, 2008.

[175] S. T. Roweis and L. L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

[176] G. Salton and M. J. McGill. Introduction to modern information retrieval. McGraw-
Hill, 1986.

[177] F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human
face identi�cation. In Proc. IEEE WACV, pages 138–142, 1994.

[178] H. Sanftmann and D. Weiskopf. 3d scatterplot navigation. IEEE TVCG, 18(11):
1969–1978, 2012.

[179] T. Schreck, T. v. Landesberger, and S. Bremm. Techniques for precision-based vi-
sual analysis of projected data. Information Visualization, 9(3):181–193, 2010.

[180] A. Schulz, A. Gisbrecht, and B. Hammer. Using discriminative dimensionality
reduction to visualize classi�ers. Neural Processing Letters, 42(1):27–54, 2015.

[181] B. Schölkopf, A. Smola, and K. Müller. Kernel principal component analysis.
In Proc. International Conference on Arti�cial Neural Networks, pages 583–588.
Springer, 1997.

[182] B. Schölkopf, A. J. Smola, and K. R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[183] M. Sedlmair and M. Aupetit. Data-driven evaluation of visual quality measures.
Comp Graph Forum, 34(3):545–559, 2015.

[184] M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on scatterplot and
dimension reduction technique choices. IEEE TVCG, pages 2634–2643, 2013.

[185] C. Seifert, V. Sabol, and W. Kienreich. Stress maps: analysing local phenomena in
dimensionality reduction based visualisations. In Proc. IEEE VAST, 2010.

[186] L. Sharan, R. Rosenholtz, and E. Adelson. Material perception: What can you see
in a brief glance? Journal of Vision, 9(8):784–784, 2009.

[187] M. Sikora and L. Wróbel. Application of rule induction algorithms for analysis of
data collected by seismic hazard monitoring systems in coal mines. Archives of
Mining Sciences, 55(1):91–114, 2010.

173

bibliography

[188] R. d. Silva, P. Rauber, R. Martins, R. Minghim, and A. C. Telea. Attribute-based
visual explanation of multidimensional projections. In Proc. EuroVA, 2015.

[189] V. D. Silva and J. B. Tenenbaum. Sparse multidimensional scaling using landmark
points, 2004.

[190] M. Sips, B. Neubert, J. Lewis, and P. Hanrahan. Selecting good views of high-
dimensional data using class consistency. Comp Graph Forum, 28(3):831–838, 2009.

[191] D. Smilkov and S. Carter. TensorFlow Playground. 2019.

[192] C. Sorzano, J. Vargas, and A. Pascual-Montano. A survey of dimensionality reduc-
tion techniques, 2014. arXiv:1403.2877.

[193] N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. In Intl. Conf. on
Computational Learning Theory, pages 545–560. Springer, 2005.

[194] M. Styblinski and T. S. Tang. Experiments in nonconvex optimization: stochastic
approximation with function smoothing and simulated annealing. Neural Net-
works, 3(4):467–483, 1990.

[195] D. F. Swayne, D. Cook, and A. Buja. XGobi: Interactive dynamic data visualization
in the x window system. J Computational and Graphical Statistics, 7(1):113–130,
1998.

[196] C. Szegedy, V. Vanhoucke, S. Io�e, J. Shlens, and Z. Wojna. Rethinking the incep-
tion architecture for computer vision. In Proc. CVPR, pages 2818–2826, 2016.

[197] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus. Intriguing properties of neural networks, 2013. arXiv:1312.6199.

[198] J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualizing large-scale and high-dimensional
data. In Proc. WWW, pages 287–297, 2016.

[199] A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel, M. Magnor,
and a. D. Keim. Combining automated analysis and visualization techniques for
e�ective exploration of high dimensional data. In Proc. IEEE VAST, pages 59–66,
2009.

[200] A. Tatu, P. Bak, E. Bertini, D. Keim, and J. Schneidewind. Visual quality metrics and
human perception: An initial study on 2d projections of large multidimensional
data. In Proc. AVI, pages 49–56. ACM, 2010.

[201] Y. W. Teh and S. T. Roweis. Automatic alignment of hidden representations. In
Proc. NIPS, pages 841–848, 2002.

[202] A. C. Telea. Combining extended table lens and treemap techniques for visualizing
tabular data. In Proc. EuroVis, pages 120–127, 2006.

[203] J. B. Tenenbaum, V. D. Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[204] M. Thoma. The Reuters dataset, July 2017. url martin-thoma.com/
nlp-reuters.

174

martin-thoma.com/nlp-reuters
martin-thoma.com/nlp-reuters

bibliography

[205] M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Jour-
nal of the Royal Statistical Society, 61(3):611–622, 1999.

[206] W. S. Torgerson. Theory and Methods of Scaling. Wiley, 1958.

[207] D. Ulyanov. Multicore-TSNE, 2016. url github.com/DmitryUlyanov/
Multicore-TSNE.

[208] J. Venna and S. Kaski. Visualizing gene interaction graphs with local multidimen-
sional scaling. In Proc. ESANN, pages 557–562, 2006.

[209] E. Vernier, R. Garcia, I. d. Silva, J. Comba, and A. Telea. Quantitative evaluation of
time-dependent multidimensional projection techniques. In Proc. EuroVis, 2020.

[210] E. F. Vernier, J. Comba, and A. Telea. Quantitative comparison of dynamic
treemaps for software evolution visualization. In Proc. IEEE VISSOFT, 2018.

[211] A. Wächter and L. T. Biegler. On the implementation of an interior-point �lter
line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106(1):25–57, 2006.

[212] S. Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: a structure for e�cient
numerical computation. Comp Sci Eng, 13(2):22–30, 2011.

[213] Y. Wang, K. Feng, X. Chu, J. Zhang, C. W. Fu, M. Sedlmair, X. Yu, and B. Chen. A
perception-driven approach to supervised dimensionality reduction for visualiza-
tion. IEEE TVCG, 24(5):1828–1840, 2018.

[214] M. Wattenberg. How to use t-SNE e�ectively, 2016. url distill.pub/2016/
misread-tsne.

[215] K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin
nearest neighbor classi�cation. In Proc. NIPS, pages 1473–1480, 2006.

[216] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In Proc. ICML, 2004.

[217] K. Q. Weinberger, B. Packer, and L. K. Saul. Nonlinear dimensionality reduction by
semide�nite programming and kernel matrix factorization. In AISTATS. Citeseer,
2005.

[218] H. Wickham. Tidy data. Journal of Statistical Software, 59(10), 2014.

[219] R. Wicklin. Visualize the feasible region for a constrained opti-
mization, 2018. url blogs.sas.com/content/iml/2018/11/07/
visualize-feasible-region-constrained-optimization.html.

[220] J. J. van Wijk and R. van Liere. Hyperslice. In Proc. Visualization, pages 119–125.
IEEE, 1993.

[221] J. J. van Wijk and A. Telea. Enridged contour maps. In Proc. IEEE Visualization,
pages 69–543, 2001.

[222] A. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of
adaptive gradient methods in machine learning. In NIPS, pages 4148–4158. Curran
Associates, Inc., 2017.

175

github.com/DmitryUlyanov/Multicore-TSNE
github.com/DmitryUlyanov/Multicore-TSNE
distill.pub/2016/misread-tsne
distill.pub/2016/misread-tsne
blogs.sas.com/content/iml/2018/11/07/visualize-feasible-region-constrained-optimization.html
blogs.sas.com/content/iml/2018/11/07/visualize-feasible-region-constrained-optimization.html

bibliography

[223] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms, 2017. arXiv:1708.07747.

[224] H. Xie, J. Li, and H. Xue. A survey of dimensionality reduction techniques based
on random projection, 2017. arXiv:1706.04371.

[225] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent
learning. Constructive Approximation, 26(2):289–315, 2007.

[226] A. Yates, A. Webb, M. Sharpnack, H. Chamberlin, K. Huang, and R. Machiraju.
Visualizing multidimensional data with glyph SPLOMs. Computer Graphics Forum,
33(3):301–310, 2014.

[227] H. Yin. Nonlinear dimensionality reduction and data visualization: A review. Intl.
Journal of Automation and Computing, 4(3):294–303, 2007.

[228] T. Zhang, J. Yang, D. Zhao, and X. Ge. Linear local tangent space alignment and
application to face recognition. Neurocomputing, 70(7):1547–1553, 2007.

[229] Z. Zhang and J. Wang. MLLE: Modi�ed locally linear embedding using multiple
weights. In Advances in Neural Information Processing Systems (NIPS), pages 1593–
1600, 2007.

[230] Z. Zhang and H. Zha. Principal manifolds and nonlinear dimensionality reduction
via tangent space alignment. SIAM Journal on Scienti�c Computing, 26(1):313–338,
2004.

[231] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal
of Computational and Graphical Statistics, 15(2):265–286, 2006.

176

A C K N O W L E D G M E N T S

This work would not be possible without the dedication, patience and hard work of my
two supervisors, Nina and Alex. My deepest thanks to both of you for putting up with
me and my idiosyncrasies over the years. You made my life a lot easier, and I certainly
made yours a bit more di�cult.

Many thanks goes to friend and colleague Caio Rodrigues, for the scienti�c, philo-
sophical, and existential discussions over beer and vlaamse frites. Proost!.

I also thank prof. Arnaldo Mandel, for showing me that Mark Twain was right: “It
ain’t what you don’t know that gets you into trouble; it’s what you know for sure that just
ain’t so.”

Last but certainly not least, I thank my family, Adriana, James, and Robert, for putting
up with my long leaves of absence while undertaking this project, and for the love and
support over the years. This work is dedicated to you.

This thesis was �nanced in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) and by the University of Groningen. My sincere thanks
to both organizations for their support.

177

colophon

This document was typeset using the typographical look-and-feel classicthesis de-
veloped by André Miede. The style was inspired by Robert Bringhurst’s seminal book
on typography “The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of February 20, 2021 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Resumo
	Publications
	Contents
	1 Introduction
	1.1 Multidimensional Projections
	1.2 Objectives
	1.3 Contributions
	1.4 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Quality metrics
	2.2.1 Scalar metrics
	2.2.2 Point-pair metrics
	2.2.3 Local Metrics

	2.3 Datasets

	3 Survey of Existing Techniques
	3.1 Related Work
	3.1.1 Surveys from Machine Learning
	3.1.2 Surveys from InfoVis
	3.1.3 Summary of Current Surveys

	3.2 Datasets
	3.2.1 Dataset Traits
	3.2.2 Chosing Datasets

	3.3 Projection techniques
	3.3.1 Projection Traits
	3.3.2 Selected Projections

	3.4 Quality metrics
	3.5 Measurement method
	3.6 Results
	3.7 Discussion
	3.8 Conclusion

	4 Survey Methodology
	4.1 Introduction
	4.2 Background
	4.3 Operational Workflows
	4.3.1 Practitioner workflow
	4.3.2 Researcher workflow

	4.4 Architecting an Evaluation Benchmark
	4.5 Discussion
	4.6 Conclusions

	5 Deep Learning Projections
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.4 Results
	5.4.1 Training effort
	5.4.2 Capturing the structure of datasets
	5.4.3 Stability and out-of-sample data
	5.4.4 Computational scalability
	5.4.5 Projecting unrelated data

	5.5 Discussion
	5.6 Conclusion

	6 Improving Deep Learned Projections
	6.1 Introduction
	6.2 Related Work
	6.3 NNP Evaluation
	6.3.1 Parameter space exploration

	6.4 NNP Evaluation Results
	6.4.1 Regularization
	6.4.2 Optimizer
	6.4.3 Noise-based data augmentation
	6.4.4 Loss function
	6.4.5 Network Architecture

	6.5 Insights from Evaluation
	6.6 Improving NNP by Neighborhood Analysis
	6.7 KNNP Evaluation
	6.7.1 Quality on training data
	6.7.2 Quality on testing data
	6.7.3 Quality as function of training set size
	6.7.4 Computational scalability
	6.7.5 Projection scatterplots

	6.8 Discussion and conclusions

	7 Deep Learning Inverse Projections
	7.1 Introduction
	7.2 Method
	7.3 Results
	7.3.1 Scalability in training and inference
	7.3.2 Quantitative Assessment of Quality
	7.3.3 Qualitative Assessment of Quality

	7.4 Discussion and Conclusion

	8 Classifier Decision Boundary Maps
	8.1 Introduction
	8.2 Background
	8.2.1 Preliminaries
	8.2.2 Decision Boundary Maps

	8.3 Experiment Setup
	8.4 Analysis of Evaluation Results
	8.4.1 Phase 1: Picking the Best Projections
	8.4.2 Phase 2: Refined Insights on Data

	8.5 Dense Map Filtering
	8.6 Distance-Enriched Dense Maps
	8.6.1 Image-Based Distance Estimation
	8.6.2 Nearest-Neighbor-Based Distance Estimation
	8.6.3 Adversarial Based Distance Estimation
	8.6.4 Visualizing Boundary Proximities

	8.7 Discussion
	8.8 Conclusions

	9 Visualizing Optimization Problems
	9.1 Introduction
	9.2 Background
	9.2.1 Optimization
	9.2.2 Visualization

	9.3 Method
	9.4 Results
	9.4.1 Ground-Truth Functions
	9.4.2 Unconstrained Problems
	9.4.3 Constrained Problems
	9.4.4 Performance

	9.5 Discussion
	9.6 Conclusion

	10 Self-Supervised Network Projection
	10.1 Introduction
	10.2 Background
	10.3 Method
	10.4 Results
	10.4.1 Quality: Synthetic Datasets
	10.4.2 Quality: Real-World Datasets
	10.4.3 Computational Scalability
	10.4.4 Inverse Projection
	10.4.5 Data clustering
	10.4.6 Implementation details

	10.5 Discussion
	10.6 Conclusion

	11 Conclusions
	A Appendix: Implementation Details
	A.1 Survey
	A.2 NNP
	A.3 SSNP
	A.4 Classifier Decision Boundary Maps
	A.5 OptMap

	B Appendix: Hyperparameter Search Space
	B.1 Survey
	B.2 NNP

	C Appendix: Measurements from Experiments
	C.1 NNP

	Bibliography
	Acknowledgments
	Colophon

