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Abstract: The PIKfyve inhibitor apilimod is currently undergoing clinical trials for treatment of
COVID-19. However, although apilimod might prevent viral invasion by inhibiting host cell pro-
teases, the same proteases are critical for antigen presentation leading to T cell activation and there
is good evidence from both in vitro studies and the clinic that apilimod blocks antiviral immune
responses. We therefore warn that the immunosuppression observed in many COVID-19 patients
might be aggravated by apilimod.

Keywords: SARS-CoV-2; COVID-19; apilimod; LAM-002A; STA-5326; PIKfyve

1. Apilimod as Drug Candidate for Treatment and Prevention of COVID-19

In a screen of 12,000 clinical-stage or FDA-approved small molecules by Riva et al. [1],
apilimod (also known as LAM-002A or STA-5326) was identified as the most potent drug
for blocking replication of SARS-CoV-2 in iPSC-derived pneumocyte-like cells. Apilimod
was also found to block entry of SARS-CoV-2 pseudovirus in other cell lines [2]. Apilimod
blocks trafficking between lysosomes and endosomes and the trans-Golgi network by
inhibiting the cytosolic 5-phosphoinositide kinase PIKfyve [3,4], which results in “swollen”
endocytic vacuoles and somehow prevents SARS-CoV-2 invasion [5]. In June 2020, AI
Therapeutics, Inc. launched clinical trials to evaluate the treatment efficacy of apilimod in
adults with a confirmed SARS-CoV-2 infection (NCT04446377; currently in phase 2).

2. How Can Apilimod Prevent Host Cell Invasion of SARS-CoV-2?

We recently showed that apilimod inhibits the cathepsin class of lysosomal pro-
teases [6] and now argue that this underlies its antiviral effects. Following its binding to the
ACE2 receptor on the surface of host cells, the spike protein S of SARS-CoV-2, required for
fusion of the viral capsid with the host membrane, needs to be proteolytically activated by
host cell proteases (Figure 1A) [2]. Depending on the cell type, different host cell proteases
can be involved, especially furin [7], TMPRSS2 (transmembrane serine protease 2) [2], but
also other proteases (PC1, trypsin, matriptase, cathepsin B/S/L) (Figure 1A) [8]. Indeed, all
other drugs identified in the screen by Riva et al. were inhibitors of cysteine proteases [1]. It
thus seems likely that the protease inhibiting effect of apilimod interferes with SARS-CoV-2
invasion. However, in contrast to other members of the Coronaviridae, MERS-CoV and
SARS-CoV, which invade host cells predominantly via the lumen of endosomes, SARS-
CoV-2 mainly invades at the plasma membrane [9,10]. It is therefore unclear how inhibition
of lysosomal cathepsins can block viral invasion at the plasma membrane.
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Figure 1. SARS-CoV-2 and apilimod both inhibit the immune system in a similar manner. (A) Scheme of the viral S protein 
indicating the functional domains and the two proteolytic activation sites S1/2 and S2′. Apilimod, an inhibitor of PIKfyve, 
interferes with the endo/lysosomal trafficking and can indirectly block the activation of proteases as shown for Cathepsin 
B and L. Apilimod thereby likely interferes with proteolytic activation of the S protein and prevents host cell invasion. (B) 
Both upon infection with SARS-CoV-2 and upon exposure to apilimod, antigen presenting cells (APC) express lower levels 
of surface MHC class II (HLA-DR; MHCII) and produce less type I interferons (INF-α/β). 

  

Figure 1. SARS-CoV-2 and apilimod both inhibit the immune system in a similar manner. (A) Scheme of the viral S protein
indicating the functional domains and the two proteolytic activation sites S1/2 and S2′. Apilimod, an inhibitor of PIKfyve,
interferes with the endo/lysosomal trafficking and can indirectly block the activation of proteases as shown for Cathepsin
B and L. Apilimod thereby likely interferes with proteolytic activation of the S protein and prevents host cell invasion.
(B) Both upon infection with SARS-CoV-2 and upon exposure to apilimod, antigen presenting cells (APC) express lower
levels of surface MHC class II (HLA-DR; MHCII) and produce less type I interferons (INF-α/β).
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3. Does Apilimod Prevent SARS-CoV-2 Invasion by Inhibition of Activation of
Proteases?

Because uncontrolled proteolytic activity can be harmful for cells, activation of pro-
teases is tightly controlled by proteolytic activation in the trans-Golgi network and in
post-Golgi compartments of endo/lysosomal nature [11,12]. For example, for the activa-
tion of newly synthesized furin, an autoinhibitory fragment needs to be proteolytically
removed in the trans-Golgi network and this prevents premature proteolytic activity [12].
Similarly, cathepsins are synthesized as inactive zymogens and need to be proteolytically
activated [11]. TMPRSS2 undergoes autoproteolytic cleavage and this can lead to the
secretion of soluble TMPRSS [13,14], but the intracellular location of this cleavage remains
ill-defined. Therefore, not only direct inhibitors of furin and TMPRSS2, but also of proteases
mediating their activation and trafficking might block viral invasion. The broad inhibition
of lysosomal-Golgi trafficking by apilimod [3,4] might interfere with this proteolytic ac-
tivation, as indicated by the accumulation of inactive pro-forms of cathepsin A and D in
apilimod-treated cell lines [15]. This interference in zymogen activation could thus explain
how apilimod might inhibit the activity of plasma membrane-localized proteases [6] and
could well underlie its anti-viral activity.

4. Does Apilimod Disturb the Immune Response Against SARS-CoV-2?

However, drugs targeting lysosomal proteases will have counter-effective side effects,
as particularly the immune system heavily relies on many different proteases. First, antigen
presenting cells (APCs) rely on proteases for the processing of antigens for presentation
to T cells [16] and apilimod blocks this proteolytic degradation of ingested antigens in
cultured macrophages [17,18]. Second, cathepsins are needed for removal of the chaperone
Ii that blocks the antigen loading groove of MHC class II [11] and apilimod also blocks this
proteolytic cleavage [6]. Third, the activity of PIKfyve is required for trafficking of MHC
class II to the cell surface, as we showed that apilimod inhibited this process in cultured
dendritic cells [6]. As a consequence of these effects, apilimod strongly reduced the presen-
tation of peptides from influenza in human MHC class II (Figure 1B) [6]. Fourth, apilimod
might interfere with innate antiviral responses, as it was found to induce expression of
activating transcription factor 3 (ATF3) in cultured plasmacytoid dendritic cells, which
in turn represses production of anti-viral type I interferons [19]. Apilimod can thus be
expected to dampen the immune response against SARS-CoV-2.

The dampening of T cell responses by apilimod might be especially detrimental in
COVID-19 patients, since apilimod can be expected to aggravate the already impaired T cell
immunity observed in these patients (Figure 1B) [20–22]. COVID-19 patients often suffer
from lymphocytopenia [16]. A recent profiling of immune cells from blood of COVID-19
patients revealed a reduced expression of MHC class II and lower production of pro-
inflammatory cytokines compared to healthy controls (Figure 1B) [16,20]. SARS-CoV-2
infection blocks expression of type I interferons (Figure 1B) by myeloid [16] and other
cells [23–25] and lower levels of these cytokines are detected in serum of SARS-CoV-2
patients [26,27].

We therefore warn that apilimod and other drugs that target proteases may further
suppress the immune system in COVID-19 patients and additional caution has to be
applied in clinical trials.
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