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ABSTRACT
Low-mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star
and the other is a less massive star. It is challenging to unambiguously determine whether an LMXB hosts a black hole or a
neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this
problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest
classifier to identify the type of compact object using the energy spectrum in the energy range 5–25 keV obtained from the Rossi
X-ray Timing Explorer archive. We report an average accuracy of 87 ± 13 per cent in classifying the spectra of LMXB sources.
We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification.
With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g. Swift,
XMM–Newton, XARM, Athena, and NICER), such methods can be extremely useful for faster and robust classification of X-ray
sources and can also be deployed as part of the data reduction pipeline.

Key words: X-rays: binaries – methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

Low-mass X-ray binaries (LMXBs) are binary systems where one
of the components is a black hole (BH) or a neutron star (NS) and
the other component is a less massive star, usually a main sequence,
a white dwarf, or an evolved star of M < 1 M�. Some LMXBs
combine long periods of quiescence (from a few months to decades)
with short periods where the source is in outburst that lasts from days
to years. In quiescence, LMXBs are very faint (∼1030–1033 erg s−1),
while during outbursts LMXBs increase several orders of magnitude
their fluxes (see e.g. McClintock & Remillard 2006).

The energy spectra of LMXB systems are described by two
main components: a thermal component and a hard component.
The thermal component is usually described by a multicolour disc
blackbody (Mitsuda et al. 1984) and it is thought to be produced by
an accretion disc (Shakura & Sunyaev 1973). The hard component
is thought to be produced by the so-called corona, which is a
region of hot plasma around the compact object (e.g. Sunyaev &
Titarchuk 1980). This component is usually described by a thermal
Comptonisation model (e.g. Titarchuk 1994; Done, Gierliński &
Kubota 2007). The contribution of these components to the X-ray
emission of LMXBs varies during an outburst, modifying its spectral

� E-mail: rp2503@rit.edu

and timing properties (e.g. van der Klis 1989; Méndez & van der
Klis 1997; Homan & Belloni 2005; Remillard & McClintock 2006;
Belloni 2010; Tetarenko et al. 2016). LMXBs show different spectral
states during an outburst based on its spectral and timing properties
(e.g. Homan & Belloni 2005; Remillard & McClintock 2006; Belloni
2010). The two main states are the high/soft state (HSS) and low/hard
state (LHS). In the HSS, the accretion disc is thought to extend down
to the surface of the NS or the last stable orbit (if the compact object
is a BH). Because of that the energy spectrum is dominated by the
accretion disc, which is described by the thermal component. In the
LHS, the disc is thought to be truncated at larger radius than that in
HSS, so the spectrum is dominated by the corona, usually described
by the Comptonised component. Between these two spectral states,
the source can show different intermediate states with spectral and
timing properties between the properties of the LHS and HSS. The
evolution along these states can be well studied with the hardness–
intensity diagram (HID; see e.g. Homan et al. 2001) and the colour–
colour diagram (CCD; e.g. Hasinger & van der Klis 1989; van der
Klis 1989).

One of the fundamental questions when studying LMXBs is
whether the compact object in the binary is a NS or a BH. The
presence of one or the other can have a significant impact on
the physical interpretation of the phenomenology observed. With
the large-scale sky surveys and transient search programmes [e.g.
INTEGRAL/JEM-X (Lund et al. 2003), Swift/BAT Transient Monitor
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(Krimm et al. 2013), MAXI (Matsuoka et al. 2009), eROSITA
(Merloni et al. 2012)], the sample of LMXBs is ever increasing. Such
newly detected transient sources are usually characterised by their
fast variation (days) of luminosity by orders of magnitude. The early
identification of the nature of the compact object is very important
for the community to be able to trigger expensive (and usually
difficult to plan) observing campaigns (Middleton et al. 2017). These
campaigns, in most cases, can only be triggered if the nature of the
compact object is known. There are only a few methods that allow
the community to unambiguously identify the nature of the compact
object: coherent pulsations (Patruno & Watts 2012, and references
therein) and presence of thermonuclear bursts (for reviews, see e.g.
Lewin, van Paradijs & Taam 1993; Cumming 2004; Galloway et al.
2008; Strohmayer et al. 2018), which determines unambiguously
that the compact object is a NS, and the estimation of the mass
based on the mass function of the system. Apart from that, one can
only estimate the nature of the compact object by comparing its X-
ray timing and spectral properties and X-ray–radio correlation with
those of other known sources.

As we mentioned above, the energy spectra of LMXB systems are
described by a thermal component and the Comptonised component.
In addition, NS LMXBs also show emission from the surface of the
NS and the so-called ‘boundary layer’; this component is generally
described by a blackbody (e.g. Mitsuda et al. 1984; Di Salvo et al.
2000; Gierliński & Done 2002; Lin, Remillard & Homan 2007). It
is also possible to use the presence of this additional component on
the NS LMXB energy spectra to distinguish between BH and NS
systems. Probably this is the most commonly used method when a
new system is discovered, and at the same time it is probably one
of the most unreliable methods. See, for example, the case of XTE
J1812–182 (Markwardt, Pereira & Swank 2008; in’t Zand et al. 2017;
Goodwin et al. 2019), MAXI J1810–222 (Maruyama et al. 2018;
Negoro et al. 2019), or MAXI J1807+132 (Shidatsu et al. 2017).
Following the detection of a new transient LMXB, the individual
spectra obtained typically do not result in statistically significant
deviations between the different spectral models in order to infer the
nature of the corresponding compact object.

The identification of the compact object can also be done based on
the X-ray timing properties of the system. As we mentioned earlier,
if coherent pulsations are found, we can determine unambiguously
that the system hosts a NS (see Patruno & Watts 2012, and references
therein). The presence of quasi-periodic oscillations (QPOs) at
frequencies between 300 and 1200 Hz (the so-called kilohertz QPO,
se.g. van der Klis 2006; van Doesburgh, van der Klis & Morsink
2018) strongly suggests that the compact object is a NS too. However,
the presence of the low-frequency QPOs in the mHz to 50 Hz
range does not always unambiguously pinpoint the nature of the
system (Klein-Wolt & van der Klis 2008). Both BH and NS are
also similar in terms of broad-band noise up to 500 Hz (Klein-Wolt
& van der Klis 2008). Above 500 Hz, the broad-band noise of BH
systems decreases while NS systems can show broad-band noise
up to higher frequencies (Sunyaev & Revnivtsev 2000). In terms of
radio emission, BH systems are generally brighter than NS systems
in the radio band, when observed at comparable X-ray luminosity
(Fender & Kuulkers 2001; Fender 2006; Migliari & Fender 2006;
Corbel et al. 2013; Fender & Gallo 2014).

The nature of the compact object can also be identified by esti-
mating the mass function of the system and measuring, estimating,
or assuming the mass of the companion star. The mass function
only gives a lower limit of the mass of the compact object given
uncertainties in the inclination of the system. If the compact object
is > 4–5 M�, then it is usually agreed that system contains a BH

(e.g. Casares, Charles & Naylor 1992; McClintock et al. 2001;
Orosz 2003; Casares 2007; Muñoz-Darias, Casares & Martı́nez-
Pais 2008). If it is of the order of 2 M� or less, then it is most
probably a NS (Orosz 2003; Lattimer & Prakash 2004, 2007;
Casares 2007; Ziółkowski 2008; Demorest et al. 2010; Lattimer
2012).

In some rare occasions, the mass estimate is in the 2 M� < M <

4 M� range. In this case, it is not possible to determine unambigu-
ously the nature of the compact object. GRO J0422+32 gives a good
example of the limitations of this method. Gelino & Harrison (2003)
estimated the mass of GRO J0422+32 to be 3.97 ± 0.95 M�, and
therefore a BH identification. However, about 10 yr later Kreidberg
et al. (2012) explored possible systematic underestimations of the
inclination of X-ray binary systems, which can increase the mass of
the compact objects. They found this was the case of GRO J0422+32
and, taking into account this underestimation, they obtained a mass
of 2.1 M�, suggesting that GRS J0422+32 was instead a NS
system.

However, it is not always possible to have an estimation for the
mass of the companion star and, as a result, estimate the mass function
of the system. Despite this fact, it is still possible to estimate the mass
function of the compact object. Casares (2015) found a correlation
between the full width at half maximum of the H α line of the
accretion disc and the velocity semi-amplitude of the companion star
that, combined with supplementary information on orbital periods,
can be used to estimate the mass function of the compact object from
single-epoch spectroscopy. Another correlation between the mass
ratio of the binary system and the ratio of the double-peak separation
to the line width can be used to estimate the mass function of the
system (Casares 2016) and, from there, try to determine the nature
of the compact object.

All the methods of classifying LMXB sources that have been
employed so far have had their own drawbacks. One technique that
is yet to be explored to classify LMXBs is the use of machine-
learning (ML) algorithms. ML algorithms have been successfully
used to solve problems in various domains of astronomy. They
have been used to identify the furthest quasars in the Universe
(Mortlock et al. 2011), classify galaxies based on their morphology
(Storrie-Lombardi et al. 1992; Bazell & Aha 2001; de la Calleja
& Fuentes 2004; Banerji et al. 2010), to detect small near-Earth
asteroids (Waszczak et al. 2017), and even for hunting exoplanets
(Thompson et al. 2015; Pearson, Palafox & Griffith 2018). ML
has also been applied in the X-ray domain by Huppenkothen et al.
(2017) to classify light curves of the unusual BH X-ray binary GRS
1915+105. An effort to distinguish between different types of X-
ray binaries has been reported by Gopalan, Vrtilek & Bornn (2015),
where they use a three-dimensional coordinate system comprising
of colour–colour–intensity diagrams to find clusters of data that can
distinguish between BH and NS.

In this work, we explore whether ML applied to the X-ray energy
spectra of LMXBs can be used to identify the nature of the compact
object. In order for ML algorithms to work, a large data base of
classified data is needed to develop a robust classification model.
For this reason, we use the full archive from the Rossi X-ray
Timing Explorer (RXTE) mission (Bradt, Rothschild & Swank 1993).
This is probably the largest data base today of X-ray observations
of LMXBs, providing us with more than 8500 observations from
33 NS systems and more than 6000 observations from 28 BH
systems.

The outline of the paper is as follows. Section 2 describes the
structure and composition of the data used in this work. In Section 3,
we explain the process of choosing an ML algorithm for classifying
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LMXBs along with a small description of the chosen algorithm – the
random forest (RF). This is followed by different methods employed
and their results in Section 4. In Section 5, we analyse the results
based on different factors that govern the classification and predict
the classes for sources with unknown classification. Summary and
future scope of this work are presented in Section 6.

2 DATA R E D U C T I O N A N D P R E PA R AT I O N

We used data from the Proportional Counter Array (PCA; Glasser,
Odell & Seufert 1994) instrument aboard the RXTE. The PCA is
an array of five proportional counters units (PCUs) with a total
collecting area of 6500 cm2; each PCU has an energy range of 2–
60 keV. We selected a total of 61 sources that are classified as BH
or NS binaries, depending on the nature of the compact object. We
chose those sources that have been extensively studied in the past
and the classification is well known and consistent across different
studies and catalogues (see e.g. Corral-Santana et al. 2016; Tetarenko
et al. 2016, for BH). After source selection, we obtain all data from
pointed observations corresponding to these sources from the RXTE
archive.1

To calculate X-ray colours, we use the 16-s time-resolution
Standard 2 mode data. For each of the five PCA detectors (PCUs),
we calculate a soft colour and a hard colour, which are defined as the
ratio between the count rate in the 6.0–16.0 and 2.0–6.0 keV bands,
and the ratio between the 16.0–20.0 and 2.0–6.0 keV bands. We also
calculate the intensity defined as the count rate in the 2–20 keV band.
To obtain the count rates in these exact energy ranges, we make a
linear interpolation between all the PCU channels. We then carry out
dead-time corrections, we subtract the background contribution in
each band using the standard bright source background model for
the PCA (version 2.1e1), and we remove instrumental drop-outs to
obtain the colours and intensity for each time interval of 16 s. It is
important to take into account that the RXTE gain epoch changes
with each new high voltage setting of the PCUs (Jahoda et al. 2006).
We normalized our data to the Crab (method introduced by Kuulkers
et al. 1994) in order to correct for this effect and the differences in
effective area between the PCUs.

For each observation, we obtain the background, response, and
the spectrum files from which we extract the count rate values of
the desired energy spectrum range in a text file using the XSPEC

software (Arnaud 1996). We then reject all observations that have a
net count rate less than 5 counts per second in order to avoid low
signal-to-noise spectra.

For each observation, we used 43 channels within the energy
range of 5–25 keV. ML algorithms require each observation to be
of the same size; hence, we keep the number of channels fixed to
43.

We use these 43 count rate values directly as an input vector for
the ML algorithm. Due to variations in the sensitivity of particular
channels with time, energy ranges tend to vary a little bit for each
spectrum (Jahoda et al. 1996, 2006). The interstellar absorption NH

can vary from source to source, and therefore adds another variable
that the ML algorithm must take into account. We found that in
practice, ignoring data below the 5 keV range to avoid the effect of
NH produced higher accuracy in classification. We chose the upper
bound as above the energy value of 25 keV the instrument efficiency
begins to deteriorate and the corresponding values contain minimal
information about the spectrum.

1https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl

We also choose to ignore other potential contributions or effects
on the spectra as otherwise it would result in further reduction of our
already small sample of spectra. Furthermore, the objective of using
ML is to identify intrinsic characteristics of the spectra belonging
to two classes and accounting for these effects would add more
human biases. Among the potential contributions and/or effects, we
ignored that from possible absorption/emission lines on top of the
X-ray continuum (i.e. the ∼6.5 keV iron line). This is because such
lines generally contribute only a few percentages of the total flux,
their strength varies differently between sources, between states of
a given source, and in most cases are not resolved given the low
spectral resolution of the RXTE/PCA data. We also did not take
into account the effects of the different source inclination. This
is because little is known about the inclination, and generally the
uncertainties are very large (Muñoz-Darias et al. 2013; Motta et al.
2015).

In the final data set, we have a fairly balanced representation of
the two classes with 8669 observations from 33 sources identified
as NS LMXBs (58 per cent) and 6216 observations from 28 sources
identified as BH LMXBs (42 per cent). In Fig. 1, we show the number
of observation per source for each class in the data set. As can be
observed, a few sources have >1000 observations while some have
<20 observations.

3 A L G O R I T H M SE L E C T I O N A N D
DESCRI PTI ON

ML is a branch of computer science that consists of algorithms
that can learn to identify patterns in the data without any prior
specification of a rule or model. By learning from the information in
the data, an ML algorithm tries to approximate an underlying model
that can define the data. Such models are used for handling various
problems like classification, regression, clustering, etc. An algorithm
tries to approximate these models in its ‘training phase’ and based
on the process it uses to approximate these models it is divided into
two categories: supervised and unsupervised techniques.

For implementing an ML method, the data set should contain a
specific number of features for each input object. In the supervised
training method, each set of input features corresponds to a label
or a target value. The data set is divided into train, validation, and
test sets. The model is trained using the former, and then validated
using the validation set. Multiple models with different initial settings
are trained on the first set, and the best one is selected using the
validation set. Supervised ML problems can further be divided into
two types – classification and regression. Simply put, when the
expected outcome is a real-valued number, it is considered as a
regression problem (Ramı́rez, Fuentes & Gulati 2001; Firth, Lahav
& Somerville 2003; Nesseris & Garcı́a-Bellido 2012) whereas when
the objective is to categorize data, it is known as a classification
problem (Bazell & Aha 2001; McGlynn et al. 2004; Ball et al. 2006;
Zhao et al. 2007). In the unsupervised type of ML techniques, there
is no requirement for a predefined label/class, and the algorithm tries
to understand the relation between the input features without the
help of the user. Some common examples of unsupervised learning
include clustering tasks (Feitzinger & Galinski 1987; Wagstaff &
Laidler 2005; Rebbapragada et al. 2009), dimensionality reduction
(Hojnacki et al. 2007), estimating the density function (Ferdosi et al.
2011), and association.

In this work, we approach the problem of classifying an X-ray
spectrum into either a BH or a NS. This is a supervised binary
classification problem. There are several ML algorithms that can be
used for handling this type of binary classification problem. As per
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Figure 1. Source-wise distribution of data on BH and NS classes. The mean is approximately 244 observations with some sources having 1000+ observations
while others having less than 20. The list of individual sources along with their total number of observations and class labels can be also found in Table A2.

the ‘no free lunch theorem for optimisation’ (Wolpert & Macready
1997), there is no one particular algorithm that excels in all scenarios.
However, there are a few points the user should consider while
selecting the right ML algorithm. In our case, the first criterion is
accuracy. The algorithm that can provide the highest percentage of
correct classifications is usually the most favourable.

One of the weaknesses of using ML methods is that they are a
‘black-box’ when the user wants to understand the decision-making
process that leads to a given result. This property of an ML algorithm
is known as interpretability. Sometimes the most accurate algorithms
are the least interpretable or vice versa. Therefore, there is usually a
trade-off between the two criteria for selecting the best algorithm
(Nakhaeizadeh & Schnabl 1997). It is worth mentioning that it
is possible to study the decision-making process of an algorithm;
however, the nature of the data can make it very difficult (or virtually
impossible) to understand the process. In cases where the data have
features (or input vector to the ML algorithm) that have some
direct physical meaning (for example, temperature, mass, etc.), it
is possible to draw correlations or understand which physical feature
has the most significant contribution to the decision-making process.
In the problem studied in this paper, data consist of count rate
values corresponding to a certain energy range. Therefore, it is
very difficult to visualize and/or understand the decision-making
process. Therefore, we decided that it was more favourable to choose
an algorithm that is more accurate, even if it compromised the
interpretability.

In this work, we experimented with the following algorithms:

(i) Classification and Regression Trees (CART) or more com-
monly known as Decision Trees (Breiman et al. 1984): use a tree-
like structure to map the input vector to the target values. Based on
the target values, they can be either classification trees or regression
trees.

(ii) Random Forest (RF) (Breiman 2001): is an ensemble method
that combines the output of several decision trees to improve on
the prediction of a single tree. As we will see in Section 3.1 this
method has the highest accuracy compared to the other algorithms

and therefore is our algorithm of choice. We will talk about it in more
detail later in Section 3.0.1.

(iii) XGBoost (XGB) (Chen & Guestrin 2016): is another
ensemble method that implements ML algorithms in a gradient
boosting framework (Mason et al. 2000) to improve efficiency and
speed.

(iv) Logistic Regression (LR) (Cox 1958): is a multivariate
analysis model that predicts the probability of membership to any
class based on the values of some predictor variables; these variables
are not constrained to follow a given (normal) distribution, not even
be continuous.

(v) k-Nearest Neighbours (KNNs) (Cover & Hart 2006): is a
non-parametric classification technique that works on the following
simple principle: Given a query for prediction, it finds the k-closest
neighbours to the data point in the training sample by calculating the
Euclidean distance from every point and then assigns the class that
is the most common among its k-nearest neighbours.

(vi) Support Vector Machines (SVM) (Cortes & Vapnik 1995):
is a type of kernel-based algorithm that builds a set of hyperplanes
in the high-dimensional feature space such that they have the
maximum possible distance from the nearest data point of any class,
thus optimizing the separation between the different classes in the
data.

For further reference on the detailed workings of these algorithms,
see Ivezic et al. (2014), an astronomy-oriented textbook for ML.

We chose these algorithms as they fall into the category of
traditional ML algorithms that are usually known to show satisfactory
performance even with a limited amount of data. They also have
significantly lower execution times as compared to the widely
popular deep learning methods (see for e.g. Kotsiantis, Zaharakis
& Pintelas 2007).

3.1 Random Forest

Random Forest is an ensemble technique that is used to boost the
prediction made by an individual decision tree (Breiman 2001). A
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Figure 2. Illustration of the decision-making procedure in an RF algorithm.

decision tree is one of the most intuitive yet powerful ML algorithms
(Breiman et al. 1984). A decision tree is made up of branches
of nodes, where sets of if-this-then-that rules are applied to the
features of the input data, and based on the result, lead down one
of the branches of the tree. The final layer of nodes, also known as
leaf nodes, contains a predicted class label that is compared to the
expected class for a particular input vector. Although the decision tree
algorithm has proven to be very efficient (see for e.g. Vasconcellos
et al. 2011), a decision tree, if improperly trained, can at times
overfit the data (chapter 3 in Mitchell 1997). The idea behind RF
is to combine the decisions of several such trees to improve upon
the decision of a single overtrained tree. Taking a majority vote over
the decision of all the trees helps in reducing the variance of the
predictions (Breiman 2001). The probability of a source belonging
to one class or the other is also calculated in a similar way, i.e. by
dividing the number of trees that predicted the same class by the total
number of trees. The basic working of an RF algorithm is explained
below:

(1) From a total number of K input features, the algorithm chooses
a number I such that I � K.

(2) Using bootstrap sampling, the algorithm chooses a training set
for a tree by selecting a subset from the complete training data. It
keeps the remaining data for validating the predictions.

(3) The algorithm chooses I random features at every node of the
tree and then calculates the most optimal split for the training set
using these features.

(4) The algorithm grows every tree to its maximum depth without
any pruning (unlike a solitary decision tree that is pruned after
growing fully to prevent overfitting (see Breiman et al. 1984).

(5) The algorithm then repeats the above step to generate many
such trees.

(6) After the training is completed, the algorithm uses a majority
vote to predict the class of the input data. To calculate the majority
vote for a given input vector, the algorithm selects the class that
was predicted by the majority of individual trees. To calculate the
probability/confidence of the prediction, the algorithm uses the ratio
of trees that predicted the particular class to the total number of trees.

A decision tree algorithm works from top to bottom (see Fig. 2) and
usually chooses a variable at each step that optimally splits the set.
Depending on the particular splitting algorithm used, the selection
process of the variable varies. Here, we use the default gini impurity
method (Breiman et al. 1984) that is a measure of the likelihood of an

Figure 3. Comparison of the performance of different ML algorithms using
the 10-fold cross-validation process. The algorithms on the x-axis (from left
to right) are RF, Decision Tree (CART), LR, XG-Boost, KNNs, and Support
Vector Machines. The RF performs the best with an overall accuracy of
91 ± 2 per cent.

incorrect classification of a randomly chosen element, if the element
was randomly labelled according to the distribution of labels in the
data set.

We illustrate the decision-making process of an RF algorithm in
Fig. 2. We implement the RF algorithm using the scikit-learn2

(Pedregosa et al. 2011) library of PYTHON. We use grid search
combined with cross-validation to find the best hyperparameters for
the algorithm. Hyperparameters are a set of parameters defined prior
to the training process that are used to tune the performance of the ML
algorithm. The optimal hyperparameters obtained were as follows:

(i) Min samples leaf = 3 (the minimum number of samples re-
quired to be at the leaf node).

(ii) Min samples split = 8 (the minimum number of samples
required to split an internal node).

(iii) Max features = 2 (the number of features to consider when
looking for the best split).

(iv) N estimators = 1000 (the number of trees in the forest).

3.2 Comparison of algorithms

For selecting the best classification method, we train and test different
algorithms and compare them using ‘accuracy’ as a metric, which is
defined as the ratio of the number of observations correctly classified
to their class (NS or BH) to the total number of observations.

To compare the algorithm, we first split the data set consisting
of 14 885 observations into training and test sets and use k-fold
cross-validation technique (Burman 1989), in which we divide the
data set into k even samples. Then, we use one sample as a test
set while training on the remaining k − 1 samples. We repeat this
process for each of the k samples in the process covering the entire
data set. We use 10-fold cross-validation (k = 10) along with the
default hyperparameters for each algorithm. Results of the 10-fold
cross-validation and comparison between the different algorithms
are presented in Fig. 3. We find that the RF algorithm performs the
best among all the selected methods, giving the highest accuracy

2https://scikit-learn.org/stable/
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Table 1. Performance of the algorithm for the two classes using the
traditional train–test split method.

Class No. of Correctly Misclassified Accuracy
test obs. classified (per cent)

NS 867 814 53 94
BH 622 545 77 88

Total 1489 1359 130 91

of 91 ± 2 per cent. Therefore, in the following sections we only
report on the results of the classifications obtained using the RF
algorithm.

4 ME T H O D S A N D I N I T I A L R E S U LT S

We apply the RF algorithm with the best combination of hyperparam-
eters to the data set described in Section 2. Since the data set contains
14 885 observations for 61 individual X-ray sources, each source
is represented by multiple observations taken at different times.
Given that the LMXBs studied here are variable in nature, different
observations for the same source could be sampling a different
physical spectral state (i.e. different geometrical configurations).
Therefore, the classification of the energy spectra of LMXBs can
be treated as any other typical ML binary classification problem
where each observation is considered independent of the others.
However, due to the nature of the problem and the limitations of our
data (e.g. time-variability factors in the data, correlations between
spectra of the same source taken at different times, and unequal
number of observations for different sources), we had to use different
strategies to train the model and evaluate its performance. We used
the following:

(i) Traditional train–test split (observation-wise splitting): In this
approach, the 14 885 spectra are randomly split into a training set and
a test set consisting, respectively, of 90 per cent and 10 per cent of the
observations. Here, we assume that each observation is independent
of the rest, meaning that there are no correlations between different
observations for the same source.

(ii) Source-wise splitting: Rather than splitting on the basis of
observations, we split the data set into training and test sets on the
basis of sources. We use spectra corresponding to 34 sources for the
training and the testing is performed on the remaining 27 sources.

(iii) Leave-one source out: In this method, we train the RF model
on all observations corresponding to all sources except one. The
observations corresponding to the excluded source are used for the
testing.

Detailed description of each of these approaches is provided in the
following sections.

4.1 Method 1: traditional train–test split

The orthodox way to perform any ML classification experiment is
to divide the complete data set into train and test sets. For this, we
used the train test split function of the scikit-learn
(Pedregosa et al. 2011) PYTHON library. We keep 90 per cent of
the data (13 396 observations) for the training and validation. The
remaining 10 per cent of the data (1500 observations) are used for
the testing. We train the RF algorithm with the best combination of
parameters described in Section 3.0.1. Testing the trained RF model
results in an overall accuracy of ∼91 per cent. Table 1 shows the

Figure 4. Distribution of the data for the source-wise train–test split method.
Both the train and test data sets have a good ratio of data for the two classes.

performance of the classifier for observations of both classes. The
performance is equally good for the two classes.

The major drawback with the traditional train–test split method
for our case is that it does not take into account potential correlations
between different spectra of a given source. As a result, some
observations from the same source might be used in both the training
and test sets. Testing the classifier on different observations of a
source that also had some of its data in the training set could lead
to a biased and overestimated value of the accuracy as the classifier
would be able to identify spectra belonging to the same source very
easily. However, in the real-life scenario we would have data from a
newly discovered X-ray source that needs to be classified. Since it
is not possible to determine the expected accuracy for the real-life
scenario with this method, we only use it for comparing the perfor-
mance of different algorithms and choosing the best among them
(Section 3).

4.2 Method 2: source-wise train–test split

To avoid the shortcomings of the traditional observation-wise train–
test split, we split our data source wise; i.e. we select some sources
to be used for training, while testing on the remaining sources. In
order to maximize the usage of data available for training, we choose
all the sources with less than 100 observations as the test sources
while the remaining are used for training. With this criterion, we
had a training set of 34 sources with a total of 13 601 observations
(∼90 per cent of the data) and a test set of 27 sources with a total of
1284 observations (∼10 per cent of the data). The training set consists
of 7950 BH LMXB observations from 21 sources (58 per cent) and
5651 NS LMXB observations from 13 sources (41 per cent). The
test set consists of 719 BH LMXB observations from 15 sources
(56 per cent) and 565 NS LMXB observations from 12 sources
(44 per cent). These details are also represented in a graphical form
in Fig. 4.

As can be observed from the figure, a satisfactory ratio between
BH and NS observations is maintained in the train and test sets.
The complete list of 27 sources used in the test set, actual class of
each source from the literature, and total number of observations
for each source are listed in Table A1. For each source, we provide
all observations corresponding to that source to the classifier and
each observation is assigned to ‘BH’ or ‘NS’ class. The percentage
accuracy is computed by dividing the number of observations
assigned to the actual class by the total number of observations
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for that source. We provide the percentage accuracy for each source
in the test set in the last column of the table.

The results obtained with this approach are also presented in
Fig. 5 where most of the sources have above 60 per cent accu-
racy and only two sources have less than 50 per cent accuracy.
For a quantitative analysis of the algorithm’s performance, we
calculate the sigma-clipped average source-wise accuracy using
sigma clipped stats function of the astropy PYTHON library
(Astropy Collaboration 2013). The sigma-clipped average accuracy
gives an outlier resistant estimate of the algorithm’s performance
where the points lying beyond 3σ from the mean value are itera-
tively removed while computing the statistic. Sigma-clipped mean
percentage accuracy for the test set comes out to be 88 per cent with
a standard deviation of 12 per cent. Further class-wise performance
is detailed in Table 2.

4.3 Method 3: leave-one source out

The source-wise train–test split method discussed in Section 4.2
closely mirrors the scenario we may have in terms of the available
number of observations for a new source (which is not likely to exceed
100). However, the major drawback with the source-wise train–test
split approach is that the test set remains unutilized for the training
of the model. Although the test set contains only ∼10 per cent of
the observations, these observations might occupy a region in the
model space crucial for identifying the classification boundary (the
boundary in the model space that separates the data of the two classes)
that might not be represented by the observations in the training set.
Therefore, in order to optimize the usage of available data, we use
the leave-one source out method, where we keep all observations
from one source as our test data while using all the remaining
sources for training. We repeat this experiment for each source, so
that we have the results for all the observations from each of the
61 sources.

In the leave-one-source-out method, the sizes of the training and
test sets vary in each run. Our final model would be trained on the
entire data set whereas in this method, each model is using one source
less than what the final model would use. Therefore, the coverage of
the model in the feature space through this approach is closest to the
final model. This can also be seen as a type of cross-validation
method tailored for our data. We present the resulting accuracy
for each source calculated through this method in Table A2 and
Fig. 6.

There are four sources that lie below the 50 per cent average
accuracy mark. The sigma-clipped average accuracy using this
method comes out to be 87 ± 13 per cent, which gives a lower bound
proxy on the performance of our final model. We present the class-
wise performance in Table 3.

5 R ESULTS AND INTERPRETATION

The average accuracies of the sources for both method 2 and method
3 are similar but less than that of method 1 (91 per cent). This
is expected because of the bias in method 1 discussed earlier in
Section 4.1. While the average accuracy decreases for methods 2
and 3 when compared to method 1, it is safe to say that the ML
algorithm seems to do a satisfactory job in the overall classification of
LMXB sources. The lower bound of the accuracy (87 ± 13 per cent)
indicates that the RF algorithm is able to identify the classification
boundary between the two types of X-ray sources in the 43-
dimensional space of their energy spectra. However, we note that
there are a few sources for which the accuracy is very low and

most of the observations of those sources are misclassified. In
particular, there are four sources, namely XTE J1118+480 (BH),
XTE J1748–288 (BH), IGR J00291+5934 (NS), and 1A 1246–
588 (NS), which have less than 50 per cent accuracy out of which
the observations of XTE J1118+480 and XTE J1748–288 are
consistently misclassified with an overall accuracy percentage of
∼10 per cent and ∼30 per cent, respectively, in methods 2 and 3.
This motivates us to study these sources in more detail and probe
the possible reasons for the misclassification of their spectra. It is
difficult to determine the reasons for the misclassifications directly
from the RF algorithm. Therefore, we study the correlations between
predictions of the RF algorithm and the factors that can influence
them. Two such factors that can influence the energy spectra are
the signal-to-noise ratio (SNR) and the physical states of LMXB
systems.

5.1 Effect of SNR

For each observation, SNR is calculated by dividing the net count
rate by the error in the net count rate. This information is ob-
tained from the header of the spectra.pha file of the observa-
tions retrieved from the RXTE archive for each source. The SNR
ranges from as low as 4 to more than 5800. To investigate the
influence of SNR on the classification, we divide all observations
into three SNR ranges, namely <100, 100–1000, and >1000, and
analyse the predicted probability of classification using method
3 (Section 4.3). The predicted probabilities are obtained using
the predict proba function of the RF model and serve as a
measure of classification confidence. The distribution of predicted
probabilities of correct identification for all observations in differ-
ent SNR ranges is shown in Fig. 7. For observations with SNR
<100, the distribution of predicted probabilities peaks at 0.58.
For the other two SNR ranges, namely 100–1000 and >1000,
the distribution peaks at 0.87 and 0.91, respectively. These results
are also presented in Table 4. This analysis indicates that the
performance of the classification model increases with the increase
in SNR.

We further investigated the misclassified sources by checking their
average SNR. Among all the sources, only 1A 1246-588 had an
average SNR less than 100 (avg. SNR = 48). This analysis indicates
that, while the accuracy of the prediction increases in general with
increasing SNR, a low SNR alone is the main reason behind the poor
classification of the spectra for some sources.

5.2 Correlation between predicted probability of correct
identifications and state transitions

In Fig. 8(a), we plot the CCD diagrams of two atoll-NS LMXBs
(top panel) and HID diagrams of two BH LMXBs (bottom panel).
The two atoll-NS sources are 4U 1728–34 (423 observations) and
4U 1636–53 (1563 observations) and the two BH sources are H
1743–32 (558 observations) and GRO J1655–40 (546 observations).
We chose these systems as they have observations sampling all the
typical spectral states.

We colour each observation based on the predicted probability
of correct identification obtained from method 3 (leave-one source
out) as shown in the colour bar plotted on the right side. Most of
the misclassified observations (darker coloured circles) belong to the
LHS or intermediate states while the HSS observations are very well
classified (lighter coloured points).

In Fig. 8(b), we show the HID and CCD diagrams for the four
sources for which our algorithm performs the worst. While the
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Figure 5. Plot showing individual source-wise accuracies for sources in the test set of the source-wise train–test split method. The points are coloured based
on the classes and the size of the points corresponds to the number of observations in each source.

Table 2. Performance of the RF classification model for NS–BH
classification using the source-wise train–test split method.

Class No. of sources
Avg. per cent

accuracy σ

NS 12 88 11
BH 15 80 25

Total 27 88 12

state transitions for these sources are not as pronounced as for the
sources shown in Fig. 8(a), we can still observe that the misclassi-
fications (dark points) are predominantly in the hard region of the
spectra.

In Fig. 9, we further investigate the correlation between hard
colour and predicted probability of correct identification of NS and
BH LMXB observations for the different SNR ranges mentioned
in Section 5.1. It follows the results shown in Figs 7 and 8. For
the case of NS LMXBs, we find that most of the observations in
the low-SNR range have predicted probability peaking around 0.5
and hard colour value of 1.0. In the case of low-SNR observations
in BH LMXBs, the predicted probabilities of most observations
decrease as we increase the hard colour value and then increase
back again at hard colour values >2. The same trend follows for
BH LMXBs with SNR between 100 and 1000 although most obser-
vations this time have low hard colour values and higher predicted
probabilities. For BH LMXBs with SNR >1000, most observations
have low hard colour values and high predicted probabilities. In
the case of the higher SNR ranges (>100) for NS LMXBs, most
observations have predicted probability around 1.0 and hard colour
values <1.0. These plots again indicate that the algorithm can
classify observations with low hard colour values, i.e. observations
in the HSS, the best and the prediction accuracy increases with
SNR.

5.3 Prediction for sample sources with unknown classification

We use the final RF model trained on all 61 sources to predict the
classification of a sample of 13 systems where the nature of the
compact object is still unknown or under debate. These 13 sources
were sampled with a total of 766 RXTE/PCA observations. Our
results and predictions are summarized in table 5.

If >50 per cent of the observations of a source were predicted to
belong to a particular class, that class was assigned to the source.
Among the 13 sources, 5 sources (XTE J1901+014, XTE J1719–
291, XTE J1727–476, IGR J17285–2922, and XTE J1856+053)
have very few observations (<10) that meet our criteria for good
data (i.e. net count rate >5 counts per second) and thus it is difficult
for us to make any comments on the predicted classes for these
sources. The remaining 8 sources (4U 1822–371, 4U 1957+11, IGR
J17494–3030, SAX J1711.6–3808, SLX 1746–331, Swift J1842.5–
1124, XTE J1637–498, and XTE J1752–223) all have more than 30
observations each. Based on our criteria for classification mentioned
earlier, six sources (4U 1822–371, 4U 1957+11, SLX 1746–331,
Swift J1842.5–1124, XTE J1637–498, and XTE J1752–223) were
classified as BH LMXBs while two sources (IGR J17494–3030 and
SAX J1711.6–3808) were classified as NS LMXBs.

Among the 8 sources with >30 observations, 5 sources have
prediction percentage >60 per cent. Our model predicts that the
source SAX J1711.6–3808 is a NS LMXB for 94 per cent of its
observations; however, Sánchez-Fernández et al. (2006) claim that
SAX J1711.6–3808 might contain a BH with a high-spin parameter
based on their fit of the X-ray spectra. For 88 per cent of its
observations, the source SLX 1746–331 is predicted to have a
BH, as speculated by White & Van Paradijs (1996) in their paper.
Multiple works have argued that the compact object in 4U 1957+11
is a BH (Nowak et al. 2011; Gomez, Mason & Robinson 2015)
and our algorithm predicts the same for 72 per cent of its 121
observations. XTE J1752–223 is considered a BH LMXB candidate
by Shaposhnikov et al. (2010) in their paper and our algorithm
classified 67 per cent of its observations as a BH LMXB. The nature
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Figure 6. Plot showing individual source-wise accuracies using the leave-one source out method of cross-validation. The points are coloured based on the
classes and the area of the points corresponds to the number of observations in each source.

Table 3. Performance of the RF classifier for NS–BH classifica-
tion using the leave-one source out method. Average accuracies
and standard deviations are computed using 3σ clipping to get a
robust estimate of the statistics.

Class No. of sources Avg. accuracy σ

NS 33 89 11
BH 28 85 14

Combined 61 86.63 13.08

Figure 7. Distribution of predicted probabilities (confidence) for different
SNR ranges. The distributions peak at 0.58, 0.87, and 0.91 (top to bottom),
indicating that observations with higher SNR are correctly classified with a
greater confidence.

Table 4. Predicted probability and distribution of observations for
different ranges of SNR.

SNR range Mode of predicted Total obs.
Data (per

cent)
probabilities

<100 0.58 2706 18.2
100–1000 0.87 10 348 69.5
>1000 0.91 1831 12.3

of the compact object in XTE J1637–498 is uncertain, but Tetarenko
et al. (2016) consider it as a BH in their data base. 66 per cent of the
observations of XTE J1637–498 are classified as BH LMXB by our
algorithm.

For the remaining three sources out of the aforementioned eight,
the prediction percentage is <60 per cent, but still >50 per cent.
For these sources, we consider that the algorithm is confused about
the nature of the compact object in the LMXBs. The source 4U
1822–371 is predicted to be a BH LMXB for 55 per cent of its
observations but Jonker & van der Klis (2001) detected pulsations
from this source indicating that it most certainly is a NS LMXB.
Armas Padilla, Wijnands & Degenaar (2013) have suggested that
the source IGR J17494–3030 might be a NS LMXB and our trained
model also predicts the same for 54 per cent of its 97 observations.
Swift J1842.5–1124 was classified by Zhao et al. (2016) as a BH
LMXB candidate and our trained model predicts that it is a BH for
51 per cent of its observations. Apart from that, it is also important to
note that all the 13 sources in our prediction sample have an average
SNR <100, which is the region where the algorithm has the worst
performance as shown in Fig. 7.

6 SUMMARY AND DI SCUSSI ON

We used archival data from the PCA instrument aboard the RXTE
mission (now decommissioned) to train an RF algorithm that we
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Figure 8. CCDs and HIDs for NS and BH LMXB systems, respectively. Left-hand panel shows the CCDs and HIDs for two NS (top) and two BH (bottom)
sources with good classification accuracy. Right-hand panels show the same diagrams for poorly classified NS and BH systems using the RF classifier. Probability
of correct identification for each observation using method 3 is colour coded as shown in the adjacent colour bars. The source identifiers and their original
classes are indicated on top of each diagram with their accuracy percentage from Table A2.

subsequently use to classify a group of LMXB systems into BH or NS
LMXB just by using their energy spectra as input. The data consist of
43 count rate values corresponding to the energy range of 5–25 keV
for each observation of a source. The data set consists of 14 885
observations from 61 individual sources: 6216 observations from 28
BH systems and 8669 observations corresponding to 33 NS systems.
We perform the training and testing using three different methods
for a robust assessment of the performance of the RF algorithm for
NS–BH classification. We obtain the outlier-resistant average model
accuracy of 87 ± 13 per cent at 1σ confidence level in classifying
these systems. The final trained model is used to predict the classes
of X-ray sources of unknown nature.

We also analyse the results of the classification by looking at
the effect that SNR and state transitions have on the predicted
probabilities of correct identification. As expected, it is observed
that with better SNR the mean predicted probability of correct
identification for observations increases. It is also observed that
most of the observations (especially in the high SNR ranges)
with a higher predicted probability have low hard colour values
and lie in the HSS.The higher predicted probability values of
observations in the HSS can be attributed to their high SNR values.
Another possible explanation to justify the better classification of
observations in the HSS is the presence of a NS surface in the
spectra of the HSS, which would be absent in the HSS spectra of
BH LMXBs.

To further investigate this, in Fig. 10 we plot the feature importance
for the input spectra. The feature importance represents the relative
importance that the ML algorithm gives to the given input data (in
this case, flux at a given energy bin). Fig. 10 shows that both the lower
end and higher end of the spectra appear to be the most important
parts of the energy spectra in order to differentiate between BH and
NS. The least important part of the spectrum is around 18–19 keV,
and around 12 keV there is a small bump suggesting that there might
be weak features at this energy that also play an important role in the
classification. The fact that Fig. 10 does not show a flat distribution
is important, as it indicates that the algorithm is taking into account
underlying differences in the energy spectra, which probably relate

to subtle intrinsic physical differences between BH and NS (e.g.
the presence of a surface and a boundary layer in the NS, potential
differences in the size of the corona, contribution of the jet to the
X-rays, etc.).

This, in turn, is pivotal to argue that if future works can use more
interpretable class of algorithms (see for e.g. Villaescusa-Navarro
et al. 2020; Udrescu & Tegmark 2020, and references therein) for
this type of classification, then there is potential to use ML techniques
to learn more about the differences between BHs and NSs from their
spectral characteristics.

The main objective of this work was to probe whether ML
techniques can be employed to determine the class of a newly
observed LMXB source just by using the information contained
in its energy spectra. Our results show that despite below average
performance for a few sources, the RF algorithm does a reasonably
good job in classifying the NS–BH LMXBs overall. The most
important aspect of this method is the speed of the classifications.
Given an energy spectrum of an LMXB source, the algorithm is able
to assign a class label to it in a fraction of a second. The algorithm also
gives a probability of the predicted class for the spectrum that can be
used as a confidence measure for the prediction. This algorithm has
the potential of being used as a tool to very quickly flag the spectra of
a newly identified source that can be helpful for scheduling follow-
ups on particular objects of interest. It is also important to note that
in most cases the net confidence of the predictions increases for a
source as we add more observations.

One issue that we face currently in our work is that our classifica-
tion model cannot be used directly to classify the energy spectra from
other X-ray missions. The main reason for this is that most of the
other currently active X-ray missions have instruments with effective
areas that are different to RXTE’s PCA. The first idea towards tackling
this issue is to train a classification model for each instrument using
their data. The problem that may arise while trying to do this is that
there may not be enough data to train an ML algorithm for each
instrument, which was one of the main reasons why we chose to
work with data from RXTE even though it is now decommissioned.
However, the concept of transfer learning could be employed to train
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Figure 9. Bivariate density plots of hard colour and predicted probability of correct identification for NS and BH LMXB observations in different SNR ranges.
The colour bar shows the number of observations in each region. We have 1518, 3650, and 813 observations in the SNR less than 100, between 100 and 1000,
and greater than 1000 ranges, respectively, for BH LMXBs. Similarly, for NS LMXBs we have 1188, 6698, and 1018 observations in the SNR less than 100,
between 100 and 1000, and greater than 1000 ranges, respectively. The light-coloured regions of the plots have the most number of observations. The individual
univariate histogram plots for hard colour and predicted probability are also shown on their respective axes. As can be observed, all the plots indicate that it is
easier to classify observations with low hard colour values and high SNR values.

Table 5. Classification results for sources in the prediction set. A class was
assigned to a source if the majority of its observations were predicted to
belong to that class. In cases where the ratio was 50–50 (XTE J1719-291), it
is indicated that the source can belong to either class.

Source name Total obs. Class
Prediction (per

cent) Avg. SNR
(predicted)

4U 1822–371 97 BH 55.67 67
4U 1957+11 121 BH 72.73 22.38
IGR J17285–2922 5 BH 60 10.03
IGR J17494–3030 97 NS 54.64 25.84
SAX J1711.6–3808 34 NS 94.12 34.35
SLX 1746–331 65 BH 87.69 26.82
Swift J1842.5–1124 49 BH 51.02 25.71
XTE J1637–498 76 BH 65.79 8.41
XTE J1719–291 2 NS/BH 50 2.82
XTE J1727–476 4 BH 100 6.3
XTE J1752–223 210 BH 67.14 56
XTE J1856+053 5 BH 100 10.75
XTE J1901+014 1 BH 100 1.1

an algorithm for another instrument with limited data using our pre-
trained classification model for the RXTE data. More details on the
idea behind transfer learning can be found in Pan & Yang (2009).

Another alternative approach could be to use some sort of
transformation to convert the data from a different instrument into
the RXTE/PCA format. The transformed data can then be directly
plugged into the pre-trained model. It is important, however, to realize
that such a transformation is only possible for data obtained from
instruments that have overlapping operational energy range (i.e. at
least 5–25 keV). This rules out data obtained from instruments that
operate specifically at lower energy ranges (e.g. the Swift’s X-Ray
Telescope) as we do not use data below 5 keV to avoid any effect of
interstellar absorption.

Adding more information as input to the algorithm can also be
explored as a means of improving the current level of accuracy
reached for all the sources in our data set. One way of doing
that would be to combine the energy spectra with the power
spectra of all observations for each source. There are many more
potential directions that can be explored in the future for solving
the problem of LMXB spectral classification. We believe that our
experiment can serve as a starting point for the application of ML
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Figure 10. Feature importance plot for the input features. The y-axis shows
approximate energy values corresponding to each element in the input to the
algorithm. The energy values increase from top to bottom. The x-axis has the
feature importance of each element in the input vector to the algorithm. The
sum of all importance values is equal to 1.

methods to solve this and other problems in the domain of X-ray
astronomy.
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Table A1. Source-wise performance of algorithm in method 2 (source-wise train–test split).

Source names Class Total test obs. Correctly classified Misclassified Accuracy percentage

XTE J1118+480 BH 80 11 69 13.75
XTE J1748–288 BH 91 31 60 34.07
XTE J1652–453 BH 55 35 20 63.64
XTE J1759–220 NS 45 29 16 64.44
Swift J1756.9–2508 NS 47 33 14 70.21
MAXI J1836–194 BH 74 52 22 70.27
Swift J1713.4–4219 BH 31 24 7 77.42
SLX 1735–269 NS 83 65 18 78.31
GRS 1737–31 BH 14 11 3 78.57
NGC 6440 NS 87 74 13 85.06
4U 1543–47 BH 67 57 10 85.07
SAX J1819.3–2525 BH 9 8 1 88.89
4U 1746–371 NS 61 55 6 90.16
Swift J1357.2–0933 BH 23 21 2 91.3
SAX J1810.8–2609 NS 36 33 3 91.67
SAX J1806.5–2215 NS 50 46 4 92
IGR J17497–2821 NS 13 12 1 92.31
KS 1731–260 NS 75 72 3 96
MXB 1658–298 NS 73 71 2 97.26
1A 1744–361 NS 49 48 1 97.96
XTE J1755–324 BH 10 10 0 100
XTE J2012+381 BH 26 26 0 100
4U 1254–690 NS 100 100 0 100
GS 1354–64 BH 11 11 0 100
GRS 1739–278 BH 11 11 0 100
V4641 SGR BH 7 7 0 100
XTE J1818–245 BH 56 56 0 100
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Table A2. Source-wise performance of algorithm in method 3 (leave-one source out).

Source names Class Total test obs. Correctly classified Misclassified Accuracy percentage

XTE J1118+480 BH 80 6 74 7.5
IGR J00291+5934 NS 180 14 166 7.78
1A 1246–588 NS 166 36 130 21.69
XTE J1748–288 BH 91 27 64 29.67
IGR J17379–3747 BH 784 415 369 52.93
XTE J1812–182 NS 233 129 104 55.36
XTE J1908+094 BH 213 121 92 56.81
4U 1728–34 NS 423 264 159 62.41
XTE J1652–453 BH 55 35 20 63.64
H1743–32 BH 558 361 197 64.7
XTE J1759–220 NS 45 30 15 66.67
SAX J1808.4–3658 NS 295 206 89 69.83
Swift J1756.9–2508 NS 47 33 14 70.21
MAXI J1836–194 BH 74 52 22 70.27
Swift J1539.2–6227 BH 145 103 42 71.03
Swift J1713.4–4219 BH 31 24 7 77.42
GRS 1737–31 BH 14 11 3 78.57
GRS 1747–312 NS 215 170 45 79.07
TERZAN5 NS 125 99 26 79.2
LMC X−2 NS 141 112 29 79.43
4U 1630–47 BH 1102 877 225 79.58
XTE J1720–318 BH 101 82 19 81.19
MAXI J10556–332 NS 262 217 45 82.82
4U 1608–52 NS 1041 876 165 84.15
4U 1543–47 BH 67 58 9 86.57
SLX 1735–269 NS 83 72 11 86.75
CYG X−2 NS 583 514 69 88.16
NGC 6440 NS 87 77 10 88.51
SAX J1819.3–2525 BH 9 8 1 88.89
4U 1746–371 NS 61 55 6 90.16
GX 339–4 BH 1163 1055 108 90.71
XTE J1650–500 BH 121 110 11 90.91
XTE J1550–564 BH 368 335 33 91.03
Swift J1357.2–0933 BH 23 21 2 91.3
AQL X1 NS 555 507 48 91.35
MAXI J1543–564 BH 268 245 23 91.42
SAX J1806.5–2215 NS 50 46 4 92
XTE J1859+226 BH 125 115 10 92
IGR J17497–2821 NS 13 12 1 92.31
4U 0614+091 NS 498 464 34 93.17
SAX J1810.8–2609 NS 36 34 2 94.44
XTE J1817–330 BH 157 149 8 94.9
HETE J1900.1–2455 NS 351 336 15 95.73
GRO J1655–40 BH 546 524 22 95.97
4U 1705–44 NS 512 492 20 96.09
MXB 1658–298 NS 73 71 2 97.26
1A 1744–361 NS 49 48 1 97.96
4U 1724–307 NS 127 125 2 98.43
SAX J1750.8–2900 NS 131 129 2 98.47
KS 1731–260 NS 75 74 1 98.67
4U 1636–53 NS 1563 1555 8 99.49
4U 1254–690 NS 100 100 0 100
V4641 SGR BH 7 7 0 100
XTE J1755–324 BH 10 10 0 100
XTE J2012+381 BH 26 26 0 100
GS 1354–64 BH 11 11 0 100
XTE J1818–245 BH 56 56 0 100
SERX−1 NS 102 102 0 100
4U 1702–429 NS 225 225 0 100
GRS 1739–278 BH 11 11 0 100
4U 1735–44 NS 222 222 0 100
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