
 

 

 University of Groningen

UDapter
Üstün, Ahmet; Bisazza, Arianna; Bouma, Gosse; Noord, van, Gertjan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Üstün, A., Bisazza, A., Bouma, G., & Noord, van, G. (2020). UDapter: Language Adaptation for Truly
Universal Dependency Parsing. 2302-2315. Paper presented at The 2020 Conference on Empirical
Methods in Natural Language Processing.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-06-2022

https://research.rug.nl/en/publications/cc19a77c-30ac-455f-b86e-429b40741a8d


Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2302–2315,
November 16–20, 2020. c©2020 Association for Computational Linguistics

2302

UDapter: Language Adaptation for Truly Universal Dependency Parsing

Ahmet Üstün Arianna Bisazza Gosse Bouma Gertjan van Noord

University of Groningen
{a.ustun, a.bisazza, g.bouma, g.j.m.van.noord}@rug.nl

Abstract
Recent advances in multilingual dependency
parsing have brought the idea of a truly uni-
versal parser closer to reality. However, cross-
language interference and restrained model ca-
pacity remain major obstacles. To address this,
we propose a novel multilingual task adap-
tation approach based on contextual parame-
ter generation and adapter modules. This ap-
proach enables to learn adapters via language
embeddings while sharing model parameters
across languages. It also allows for an easy
but effective integration of existing linguis-
tic typology features into the parsing network.
The resulting parser, UDapter, outperforms
strong monolingual and multilingual baselines
on the majority of both high-resource and low-
resource (zero-shot) languages, showing the
success of the proposed adaptation approach.
Our in-depth analyses show that soft parame-
ter sharing via typological features is key to
this success.1

1 Introduction

Monolingual training of a dependency parser has
been successful when relatively large treebanks
are available (Kiperwasser and Goldberg, 2016;
Dozat and Manning, 2017). However, for many
languages, treebanks are either too small or unavail-
able. Therefore, multilingual models leveraging
Universal Dependency annotations (Nivre et al.,
2018) have drawn serious attention (Zhang and
Barzilay, 2015; Ammar et al., 2016; de Lhoneux
et al., 2018; Kondratyuk and Straka, 2019). Mul-
tilingual approaches learn generalizations across
languages and share information between them,
making it possible to parse a target language with-
out supervision in that language. Moreover, multi-
lingual models can be faster to train and easier to
maintain than a large set of monolingual models.

1Our code for UDapter is publicly available at
https://github.com/ahmetustun/udapter

However, scaling a multilingual model over a
high number of languages can lead to sub-optimal
results, especially if the training languages are typo-
logically diverse. Often, multilingual neural mod-
els have been found to outperform their monolin-
gual counterparts on low- and zero-resource lan-
guages due to positive transfer effects, but un-
derperform for high-resource languages (Johnson
et al., 2017; Arivazhagan et al., 2019; Conneau
et al., 2020), a problem also known as “the curse
of multilinguality”. Generally speaking, a multi-
lingual model without language-specific supervi-
sion is likely to suffer from over-generalization and
perform poorly on high-resource languages due to
limited capacity compared to the monolingual base-
lines, as verified by our experiments on parsing.

In this paper, we strike a good balance between
maximum sharing and language-specific capacity
in multilingual dependency parsing. Inspired by
recently introduced parameter sharing techniques
(Platanios et al., 2018; Houlsby et al., 2019), we
propose a new multilingual parser, UDapter, that
learns to modify its language-specific parameters
including the adapter modules, as a function of
language embeddings. This allows the model to
share parameters across languages, ensuring gen-
eralization and transfer ability, but also enables
language-specific parameterization in a single mul-
tilingual model. Furthermore, we propose not to
learn language embeddings from scratch, but to
leverage a mix of linguistically curated and pre-
dicted typological features as obtained from the
URIEL language typology database (Littell et al.,
2017) which supports 3718 languages including
all languages represented in UD. While the impor-
tance of typological features for cross-lingual pars-
ing is known for both non-neural (Naseem et al.,
2012; Täckström et al., 2013; Zhang and Barzilay,
2015) and neural approaches (Ammar et al., 2016;
Scholivet et al., 2019), we are the first to use them

https://github.com/ahmetustun/udapter


2303

effectively as direct input to a neural parser, without
manual selection, over a large number of languages
in the context of zero-shot parsing where gold POS
labels are not given at test time. In our model, typo-
logical features are crucial, leading to a substantial
LAS increase on zero-shot languages and no loss
on high-resource languages when compared to the
language embeddings learned from scratch.

We train and test our model on the 13 syntac-
tically diverse high-resource languages that were
used by Kulmizev et al. (2019), and also evaluate it
on 30 genuinely low-resource languages. Results
show that UDapter significantly outperforms state-
of-the-art monolingual (Straka, 2018) and multi-
lingual (Kondratyuk and Straka, 2019) parsers on
most high-resource languages and achieves overall
promising improvements on zero-shot languages.

Contributions We conduct several experiments
on a large set of languages and perform thorough
analyses of our model. Accordingly, we make the
following contributions: 1) We apply the idea of
adapter tuning (Rebuffi et al., 2018; Houlsby et al.,
2019) to the task of universal dependency parsing.
2) We combine adapters with the idea of contex-
tual parameter generation (Platanios et al., 2018),
leading to a novel language adaptation approach
with state-of-the art UD parsing results. 3) We pro-
vide a simple but effective method for condition-
ing the language adaptation on existing typological
language features, which we show is crucial for
zero-shot performance.

2 Previous Work

This section presents the background of our ap-
proach.

Multilingual Neural Networks Early models in
multilingual neural machine translation (NMT) de-
signed dedicated architectures (Dong et al., 2015;
Firat et al., 2016) whilst subsequent models, from
Johnson et al. (2017) onward, added a simple lan-
guage identifier to the models with the same archi-
tecture as their monolingual counterparts. More
recently, multilingual NMT models have focused
on maximizing transfer accuracy for low-resource
language pairs, while preserving high-resource lan-
guage accuracy (Platanios et al., 2018; Neubig and
Hu, 2018; Aharoni et al., 2019; Arivazhagan et al.,
2019), known as the (positive) transfer - (negative)
interference trade-off. Another line of work builds
massively multilingual pre-trained language mod-

els to produce contextual representation to be used
in downstream tasks (Devlin et al., 2019; Conneau
et al., 2020). As the leading model, multilingual
BERT (mBERT)2 (Devlin et al., 2019) which is
a deep self-attention network, was trained with-
out language-specific signals on the 104 languages
with the largest Wikipedias. It uses a shared vocab-
ulary of 110K WordPieces (Wu et al., 2016), and
has been shown to facilitate cross-lingual transfer
in several applications (Pires et al., 2019; Wu and
Dredze, 2019). Concurrently to our work, Pfeiffer
et al. (2020) have proposed to combine language
and task adapters, small bottleneck layers (Rebuffi
et al., 2018; Houlsby et al., 2019), to address the
capacity issue which limits multilingual pre-trained
models for cross-lingual transfer.

Cross-Lingual Dependency Parsing The avail-
ability of consistent dependency treebanks in many
languages (McDonald et al., 2013; Nivre et al.,
2018) has provided an opportunity for the study of
cross-lingual parsing. Early studies trained a delex-
icalized parser (Zeman and Resnik, 2008; McDon-
ald et al., 2013) on one or more source languages
by using either gold or predicted POS labels (Tiede-
mann, 2015) and applied it to target languages.
Building on this, later work used additional features
such as typological language properties (Naseem
et al., 2012), syntactic embeddings (Duong et al.,
2015), and cross-lingual word clusters (Täckström
et al., 2012). Among lexicalized approaches, Vi-
lares et al. (2016) learns a bilingual parser on a cor-
pora obtained by merging harmonized treebanks.
Ammar et al. (2016) trains a multilingual parser
using multilingual word embeddings, token-level
language information, language typology features
and fine-grained POS tags. More recently, based
on mBERT (Devlin et al., 2019), zero-shot transfer
in dependency parsing was investigated (Wu and
Dredze, 2019; Tran and Bisazza, 2019). Finally
Kondratyuk and Straka (2019) trained a multilin-
gual parser on the concatenation of all available
UD treebanks.

Language Embeddings and Typology Condi-
tioning a multilingual model on the input language
is studied in NMT (Ha et al., 2016; Johnson et al.,
2017), syntactic parsing (Ammar et al., 2016) and
language modeling (Östling and Tiedemann, 2017).
The goal is to embed language information in real-

2https://github.com/google-research/
bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


2304

valued vectors in order to enrich internal representa-
tions with input language for multilingual models.
In dependency parsing, several previous studies
(Naseem et al., 2012; Täckström et al., 2013; Zhang
and Barzilay, 2015; Ammar et al., 2016; Scholivet
et al., 2019) have suggested that typological fea-
tures are useful for the selective sharing of transfer
information. Results, however, are mixed and often
limited to a handful of manually selected features
(Fisch et al., 2019; Ponti et al., 2019). As the most
similar work to ours, Ammar et al. (2016) uses ty-
pological features to learn language embeddings as
part of training, by augmenting each input token
and parsing action representation. Unfortunately
though, this technique is found to underperform the
simple use of randomly initialized language em-
beddings (‘language IDs’). Authors also reported
that language embeddings hurt the performance of
the parser in zero-shot experiments (Ammar et al.,
2016, footnote 30). Our work instead demonstrates
that typological features can be very effective if
used with the right adaptation strategy in both su-
pervised and zero-shot settings. Finally, Lin et al.
(2019) use typological features, along with proper-
ties of the training data, to choose optimal transfer
languages for various tasks, including UD parsing,
in a hard manner. By contrast, we focus on a soft
parameter sharing approach to maximize general-
izations within a single universal model.

3 Proposed Model

In this section, we present our truly universal de-
pendency parser, UDapter. UDapter consists of a
biaffine attention layer stacked on top of the pre-
trained Transformer encoder (mBERT). This is sim-
ilar to (Wu and Dredze, 2019; Kondratyuk and
Straka, 2019), except that our mBERT layers are
interleaved with special adapter layers inspired by
Houlsby et al. (2019). While mBERT weights are
frozen, biaffine attention and adapter layer weights
are generated by a contextual parameter generator
(Platanios et al., 2018) that takes a language em-
bedding as input and is updated while training on
the treebanks.

Note that the proposed adaptation approach is
not restricted to dependency parsing and is in prin-
ciple applicable to a range of multilingual NLP
tasks. We will now describe the components of our
model.

3.1 Biaffine Attention Parser

The top layer of UDapter is a graph-based biaffine
attention parser proposed by Dozat and Manning
(2017). In this model, an encoder generates an in-
ternal representation ri for each word; the decoder
takes ri and passes it through separate feedforward
layers (MLP), and finally uses deep biaffine atten-
tion to score arcs connecting a head and a tail:

h(head)
i = MLP(head)(ri) (1)

h(tail)
i = MLP(tail)(ri) (2)

s(arc) = Biaffine(H(head),H(tail)) (3)

Similarly, label scores are calculated by using a
biaffine classifier over two separate feedforward
layers. Finally, the Chu-Liu/Edmonds algorithm
(Chu, 1965; Edmonds, 1967) is used to find the
highest scoring valid dependency tree.

3.2 Transformer Encoder with Adapters

To obtain contextualized word representations,
UDapter uses mBERT. For a token i in sentence S,
BERT builds an input representation wi composed
by summing a WordPiece embedding xi (Wu et al.,
2016) and a position embedding fi. Each wi ∈ S is
then passed to a stacked self-attention layers (SA)
to generate the final encoder representation ri:

wi = xi + fi (4)

ri = SA (wi ; Θ(ad)) (5)

where Θ(ad) denotes the adapter modules. During
training, instead of fine-tuning the whole encoder
network together with the task-specific top layer,
we use adapter modules (Rebuffi et al., 2018; Stick-
land and Murray, 2019; Houlsby et al., 2019), or
simply adapters, to capture both task-specific and
language-specific information. Adapters are small
modules added between layers of a pre-trained net-
work. In adapter tuning, the weights of the orig-
inal network are kept frozen, whilst the adapters
are trained for a downstream task. Tuning with
adapters was mainly suggested for parameter effi-
ciency but they also act as an information module
for the task or the language to be adapted (Pfeif-
fer et al., 2020). In this way, the original network
serves as a memory for the language(s). In UDapter,
following Houlsby et al. (2019), two bottleneck
adapters with two feedforward projections and a
GELU nonlinearity (Hendrycks and Gimpel, 2016)
are inserted into each transformer layer as shown in



2305

F  1 1 0 0 1 0 0 1 1 0 1 0 1 1

Biaffine	Attention	(for	Dependency	Parsing)

BERT	Encoder		

		I				have			a			banana		in				my				ear<eng>

Feed-forward Layer

Multi-headed
Self Attention Layer

Layer Norm

2x Feed-forward
layer

Adapter Layer

Layer Norm

Adapter Layer

P

Parameter	Generator	with	Language	Embeddings

P

L

Trainable	Layers

Frozen	Layers

Trainable	variables

Parameter	Tensor

Language	Feature	Vector

Language	Embedding

P

L
F

Computed	Values	(Tensor)

Parameters are generated by
using language embedding (L)
with dot product (.) as simple

linear transform

Language features (F) are transformed
to language embeddings (L) by a MLP

network   

Transformer	Layer	
with	Adapters

Feedforward 
down-project

Feedforward 
up-project

Nonlinearity

Adapter	Layer

Figure 1: UDapter architec-
ture with contextual param-
eter generator (CPG) and
adapter layers. CPG takes
languages embeddings pro-
jected from typological fea-
tures as input and generates
parameters of adapter layers
and biaffine attention.

Figure 1. We apply adapter tuning for two reasons:
1) Each adapter module consists of only few param-
eters and allows to use contextual parameter gen-
eration (CPG; see § 3.3) with a reasonable number
of trainable parameters.3 2) Adapters enable task-
specific as well as language-specific adaptation via
CPG since it keeps backbone multilingual represen-
tations as memory for all languages in pre-training,
which is important for multilingual transfer.

3.3 Contextual Parameter Generator

To control the amount of sharing across languages,
we generate trainable parameters of the model us-
ing a contextual parameter generator (CPG) func-
tion inspired by Platanios et al. (2018). CPG en-
ables UDapter to retain high multilingual quality
without losing performance on a single language,
during multi-language training. We define CPG
as a function of language embeddings. Since we
only train adapters and the biaffine attention (i.e.
adapter tuning), the parameter generator is formal-
ized as {θ(ad), θ(bf)} , g(m)(le) where g(m) de-
notes the parameter generator with language em-
bedding le, and θ(ad) and θ(bf) denote the parame-
ters of adapters and biaffine attention respectively.
We implement CPG as a simple linear transform
of a language embedding, similar to Platanios et al.
(2018), so that weights of adapters in the encoder
and biaffine attention are generated by the dot prod-
uct of language embeddings:

g(m)(le) = (W(ad),W(bf)) · le (6)

3Due to CPG, the number of adapter parameters is multi-
plied by language embedding size, resulting in a larger model
compared to the baseline (more details in Appendix A.1).

where le ∈ RM, W(ad) ∈ RP (ad)×M, W(bf) ∈
RP (bf)×M, M is the language embedding size,
P (ad) and P (bf) are the number of parameters for
adapters and biaffine attention respectively.4 An
important advantage of CPG is the easy integration
of existing task or language features.

3.4 Typology-Based Language Embeddings

Soft sharing via CPG enables our model to mod-
ify its parsing decisions depending on a language
embedding. While this allows UDapter to perform
well on the languages in training, even if they are
typologically diverse, information sharing is still
a problem for languages not seen during training
(zero-shot learning) as a language embedding is
not available. Inspired by Naseem et al. (2012) and
Ammar et al. (2016), we address this problem by
defining language embeddings as a function of a
large set of language typological features, includ-
ing syntactic and phonological features. We use
a multi-layer perceptron MLP(lang) with two feed-
forward layers and a ReLU nonlinear activation to
compute a language embedding le:

le = MLP(lang)(lt) (7)

where lt is a typological feature vector for a lan-
guage consisting of all 103 syntactic, 28 phonolog-
ical and 158 phonetic inventory features from the
URIEL language typology database (Littell et al.,
2017). URIEL is a collection of binary features

4Platanios et al. (2018) also suggest to apply parameter
grouping. We have not tried that yet, but one may learn sep-
arate low-rank projections of language embeddings for the
adapter parameters group and the biaffine parameters group.



2306

ar en eu fi he hi it ja ko ru sv tr zh HR-AVG LR-AVG

Previous work:

uuparser-bert [1] 81.8 87.6 79.8 83.9 85.9 90.8 91.7 92.1 84.2 91.0 86.9 64.9 83.4 84.9 -
udpipe [2] 82.9 87.0 82.9 87.5 86.9 91.8 91.5 93.7 84.2 92.3 86.6 67.6 80.5 85.8 -
udify [3] 82.9 88.5 81.0 82.1 88.1 91.5 93.7 92.1 74.3 93.1 89.1 67.4 83.8 85.2 34.1

Monolingually trained (one model per language):

mono-udify 83.5 89.4 81.3 87.3 87.9 91.1 93.1 92.5 84.2 91.9 88.0 66.0 82.4 86.0 -

Multilingually trained (one model for all languages):

multi-udify 80.1 88.5 76.4 85.1 84.4 89.3 92.0 90.0 78.0 89.0 86.2 62.9 77.8 83.0 35.3
adapter-only 82.8 88.3 80.2 86.9 86.2 90.6 93.1 91.6 81.3 90.8 88.4 66.0 79.4 85.0 32.9
udapter 84.4 89.7 83.3 89.0 88.8 92.0 93.5 92.8 85.9 92.2 90.3 69.6 83.2 87.3 36.5

Table 1: Labelled attachment scores (LAS) on high-resource languages for baselines and UDapter. Last two
columns show average LAS of 13 high-resource (HR-AVG) and 30 low-resource (LR-AVG) languages respectively.
Previous work results are reported from (Kulmizev et al., 2019) [1] and (Kondratyuk and Straka, 2019) [2,3].

be br* bxr* cy fo* gsw* hsb* kk koi* krl* mdf* mr olo* pcm* sa* tl yo* yue* AVG

multi-udify 80.1 60.5 26.1 53.6 68.6 43.6 53.2 61.9 20.8 49.2 24.8 46.4 42.1 36.1 19.4 62.7 41.2 30.5 45.2
udapter-proxy 69.9 - - - 64.1 23.7 44.4 45.1 - 45.6 - 29.6 41.1 - 15.1 - - 24.5 -
udapter 79.3 58.5 28.9 54.4 69.2 45.5 54.2 60.7 23.1 48.4 26.6 44.4 43.3 36.7 22.2 69.5 42.7 32.8 46.2

Table 2: Labelled attachment scores (LAS) on a subset of 30 low-resource languages. Languages with ‘*’ are not
included in mBERT training corpus. (Results for all low-resource languages, together with the chosen proxy, are
given in Appendix A.2.)

extracted from multiple typological and phyloge-
netic databases such as WALS (World Atlas of Lan-
guage Structures) (Dryer and Haspelmath, 2013),
PHOIBLE (Moran and McCloy, 2019), Ethnologue
(Lewis et al., 2015) and Glottolog (Hammarström
et al., 2020). As many feature values are not avail-
able for each language, we use the values predicted
by Littell et al. (2017) using a k-nearest neighbors
approach based on average of genetic, geographical
and feature distances between languages.

4 Experiments

Data and Training Details For our training lan-
guages, we follow Kulmizev et al. (2019), who
selected from UD 2.3 (Nivre et al., 2018) 13 tree-
banks “from different language families, with dif-
ferent morphological complexity, scripts, character
set sizes, training sizes, domains, and with good
annotation quality” (see codes in Table 1).5 Dur-
ing training, a language identifier is added to each
sentence, and gold word segmentation is provided.
We test our models on the training languages (high-
resource set), and on 30 languages that have no
or very little training data (low-resource set) in a

5To reduce training time we cap the very large Russian
Syntagrus treebank (48K sentences) to a random 15K sample.

zero-shot setup, i.e, without any training data.6 The
detailed treebank list is provided in Appendix A.3.
For evaluation, the official CoNLL 2018 Shared
Task script7 is used to obtain LAS scores on the
test set of each treebank.

For the encoder, we use BERT-multilingual-
cased together with its WordPiece tokenizer. Since
dependency annotations are between words, we
pass the BERT output corresponding to the first
wordpiece per word to the biaffine parser. We apply
the same hyper-parameter settings as Kondratyuk
and Straka (2019). Additionally, we use 256 and
32 for adapter size and language embedding size
respectively. In our approach, pre-trained BERT
weights are frozen, and only adapters and biaffine
attention are trained, thus we use the same learning
rate for the whole network by applying an inverse
square root learning rate decay with linear warm-
up (Howard and Ruder, 2018). Appendix A.1 gives
the hyper-parameter details.

Baselines We compare UDapter to the current
state of the art in UD parsing: [1] UUparser+BERT
(Kulmizev et al., 2019), a graph-based BLSTM

6For this reason, the terms ‘zero-shot’ and ‘low-resource’
are used interchangeably in this paper.

7https://universaldependencies.org/
conll18/evaluation.html

https://universaldependencies.org/ conll18/evaluation.html
https://universaldependencies.org/ conll18/evaluation.html


2307

parser (de Lhoneux et al., 2017; Smith et al., 2018)
using mBERT embeddings as additional features.
[2] UDpipe (Straka, 2018), a monolingually trained
multi-task parser that uses pretrained word em-
beddings and character representations. [3] UD-
ify (Kondratyuk and Straka, 2019), the mBERT-
based multi-task UD parser on which our UDapter
is based, but originally trained on all language tree-
banks from UD. UDPipe scores are taken from
Kondratyuk and Straka (2019).

To enable a direct comparison, we also re-train
UDify on our set of 13 high-resource languages
both monolingually (one treebank at a time; mono-
udify) and multilingually (on the concatenation of
languages; multi-udify). Finally, we evaluate two
variants of our model: 1) Adapter-only has only
task-specific adapter modules and no language-
specific adaptation, i.e. no contextual parameter
generator; and 2) UDapter-proxy is trained without
typology features: a separate language embedding
is learnt from scratch for each in-training language,
and for low-resource languages we use one from
the same language family, if available, as proxy
representation.

Importantly, all baselines are either trained
for a single language, or multilingually without
any language-specific adaptation. By comparing
UDapter to these parsers, we highlight its unique
character that enables language specific parameteri-
zation by typological features within a multilingual
framework for both supervised and zero-shot learn-
ing setup.

4.1 Results

Overall, UDapter outperforms the monolingual and
multilingual baselines on both high-resource and
zero-shot languages. Below, we elaborate on the
detailed results.

High-resource Languages Labelled Attache-
ment Scores (LAS) on the high-resource set are
given in Table 1. UDapter consistently outperforms
both our monolingual and multilingual baselines in
all languages, and beats the previous work, setting a
new state of the art, in 9 out of 13 languages. Statis-
tical significance testing8 applied between UDapter
and multi/mono-udify confirms that UDapter’s per-
formance is significantly better than the baselines
in 11 out of 13 languages (all except en and it).

8We used paired bootstrap resampling to check whether
the difference between two models is significant (p < 0.05)
by using Udapi (Popel et al., 2017).

ko eu tr zh he ar sv fi ru ja hi it en
0

2

4

6

8

10
difference (udapter, multi-udify)

0

4

8

12

16

20
treebank size (K)

Figure 2: Difference in LAS between UDapter and
multi-udify in the high-resource setting. Diamonds in-
dicate the amount of sentences in the corresponding
treebank.

Among directly comparable baselines, multi-
udify gives the worst performance in the typologi-
cally diverse high-resource setting. This multilin-
gual model is clearly worse than its monolingually
trained counterparts mono-udify: 83.0 vs 86.0. This
result resounds with previous findings in multilin-
gual NMT (Arivazhagan et al., 2019) and high-
lights the importance of language adaptation even
when using high-quality sentence representations
like those produced by mBERT.

To understand the relevance of adapters, we also
evaluate a model which has almost the same ar-
chitecture as multi-udify except for the adapter
modules and the tuning choice (frozen mBERT
weights). Interestingly, this adapter-only model
considerably outperforms multi-udify (85.0 vs
83.0), indicating that adapter modules are also ef-
fective in multilingual scenarios.

Finally, UDapter achieves the overall best re-
sults, with consistent gains over both multi-udify
and adapter-only, showing the importance of lin-
guistically informed adaptation even for in-training
languages.

Low-Resource Languages Average LAS on the
30 low-resource languages are shown in column
lr-avg of Table 1. Overall, UDapter slightly out-
performs the multi-udify baseline (36.5 vs 36.3),
which shows the benefits of our approach on both
in-training and zero-shot languages. For a closer
look, Table 2 provides individual results for the
18 representative languages in our low-resource
set. Here we find a mixed picture: UDapter out-
performs multi-udify on 13 out of 18 languages9.
Achieving improvements in the zero-shot parsing

9LAS scores for all 30 languages are given in Appendix
A.2. By significance testing, UDapter is significantly better
than multi-udify on 16/30 low-resource languages, which is
shown in Table 4



2308

HR LR

30

40

50

60

70

80

90
multi-udify
adapter-only
(1024)
adapter-only
(2048)
udapter

(a)

high-resource low-resource (zero-shot)

30

40

50

60

70

80

90
adapter-only
(1024)
cpg
(adapters)
cpg
(adap.+biaf.)*

(b)

Figure 3: Impact of different UDapter components on
parsing performance (LAS): (a) adapters and adapter
layer size, (b) application of contextual parameter gen-
eration to different portions of the network. In (b) the
model named ‘cpg (adap.+biaf.)’ coincides with the
full UDapter.

setup is very difficult, thus we believe this result is
an important step towards overcoming the problem
of positive/negative transfer trade-off.

Indeed, UDapter-proxy results show that choos-
ing a proxy language embedding from the same lan-
guage family underperforms UDapter, apart from
not being available for many languages. This indi-
cates the importance of typological features in our
approach (see § 5.2 for further analysis).

5 Analysis

In this section, we further analyse UDapter to un-
derstand its impact on different languages, and the
importance of its various components.

5.1 Which languages improve most?

Figure 2 presents the LAS gain of UDapter over
the multi-udify baseline for each high-resource lan-
guage along with the respective treebank training
size. To summarize, the gains are higher for lan-
guages with less training data. This suggests that
in UDapter, useful knowledge is shared among in-
training languages, which benefits low resource
languages without hurting high resource ones.

For zero-shot languages, the difference between
the two models is small compared to high-resource
languages (+1.2 LAS). While it is harder to find a
trend here, we notice that UDapter is typically ben-
eficial for the languages not present in the mBERT
training corpus: it outperforms multi-udify in 13
out of 22 (non-mBERT) languages. This suggests
that typological feature-based adaptation leads to
improved sentence representations when the pre-
trained encoder has not been exposed to a language.

high-resource low-resource (zero-shot)
0

10

20

30

40

50

60

70

80

90
From scratch
& Centroid
Typological
features

(a)

syntax phonology inventory
0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58
Language-Typology Features

(b)

Figure 4: (a) Impact of language typology features on
parsing performance (LAS). (b) Average of normalized
feature weights obtained from linear projection layer of
the language embedding network.

5.2 How much gain from typology?

UDapter learns language embeddings from syntac-
tic, phonological and phonetic inventory features.
A natural alternative to this choice is to learn lan-
guage embeddings from scratch. For a comparison,
we train a model where, for each in-training lan-
guage, a separate language embedding (of the same
size: 32) is initialized randomly and learned end-to-
end. For the zero-shot languages we use the aver-
age, or centroid, of all in-training language embed-
dings. As shown in Figure 4a, on the high-resource
set, the models with and without typological fea-
tures achieve very similar average LAS (87.3 and
87.1 respectively). On zero-shot languages, how-
ever, the use of centroid embedding performs very
poorly: 9.0 vs 36.5 average LAS score over 30 lan-
guages. As already discussed in § 4.1 (Table 2),
using a proxy language embedding belonging to the
same family as the test language, when available,
also clearly underperforms UDapter.

These results confirm our expectation that a
model can learn reliable language embeddings for
in-training languages, however typological signals
are required to obtain a robust parsing quality on
zero-shot languages.

5.3 How does UDapter represent languages?

We start by analyzing the projection weights as-
signed to different typological features by the first
layer of the language embedding network (see
eq. 7). Figure 4b shows the averages of normalized
syntactic, phonological and phonetic inventory fea-
ture weights. Although dependency parsing is a
syntactic task, the network does not only utilize
syntactic features, as also observed by Lin et al.
(2019), but exploits all available typological fea-
tures to learn its representations.



2309

A B C

Figure 5: Vector spaces for (A) language-typology feature vectors taken from URIEL, (B) language embeddings
learned from typological features by UDapter, and (C) language embeddings learned without typological features.
High- and low-resource languages are indicated by red and blue dots respectively. Highlighted clusters in A and B
denote sets of genetically related languages.

Next, we plot the language representations
learned in UDapter by using t-SNE (van der Maaten
and Hinton, 2008), which is similar to the analysis
carried out by Ponti et al. (2019, figure 8) using the
language vectors learned by Malaviya et al. (2017).
Figure 5 illustrates 2D vector spaces generated for
the typological feature vectors lt (A) and the lan-
guage embeddings le learned by UDapter with or
without typological features (B and C respectively).
The benefits of using typological features can be
understood by comparing A and B: During train-
ing, UDapter learns to project URIEL features to
language embeddings in a way that is optimal for
in-training language parsing quality. This leads to a
different placement of the high-resource languages
(red points) in the space, where many linguistic
similarities are preserved (e.g. Hebrew and Ara-
bic; European languages except Basque) but others
are overruled (Japanese drifting away from Ko-
rean). Looking at the low-resource languages (blue
points) we find that typologically similar languages
tend to have similar embeddings to the closest high-
resource language in both A and B. In fact, most
groupings of genetically related languages, such as
the Indian languages (hi-cluster) or the Uralic ones
(fi-cluster) are largely preserved across these two
spaces.

Comparing B and C where language embed-
dings are learned from scratch, the absence of ty-
pological features leads to a seemingly random
space with no linguistic similarities (e.g. Arabic far
away from Hebrew, Korean closer to English than
to Japanese, etc.) and, therefore, no principled way

to represent additional languages.
Taken together with the parsing results of § 4.1,

these plots suggest that UDapter embeddings strike
a good balance between a linguistically motivated
representation space and one solely optimized for
in-training language accuracy.

5.4 Is CPG really essential?

In section 4.1 we observed that adapter tuning alone
(that is, without CPG) improved the multilingual
baseline in the high-resource languages, but wors-
ened it considerably in the zero-shot setup. By
contrast, the addition of CPG with typological fea-
tures led to the best results over all languages. But
could we have obtained similar results by simply
increasing the adapter size? For instance, in mul-
tilingual MT, increasing overall model capacity of
an already very large and deep architecture can be
a powerful alternative to more sophisticated param-
eter sharing approaches (Arivazhagan et al., 2019).
To answer this question we train another adapter-
only model with doubled size (2048 instead of the
1024 used in the main experiments).

As seen in 3a, increase in model size brings a
slight gain to the high-resource languages, but ac-
tually leads to a small loss in the zero-shot setup.
This shows that adapters enlarge the per-language
capacity for in-training languages, but at the same
time they hurt generalization and zero-shot trans-
fer. By contrast, UDapter including CPG which
increases the model size by language embeddings
(see Appendix A.1 for details), outperforms both
adapter-only models, confirming once more the



2310

importance of this component.
For our last analysis (Fig. 3b), we study soft

parameter sharing via CPG on different portions
of the network, namely: only on the adapter mod-
ules ‘cpg (adapters)’ versus on both adapters and
biaffine attention ‘cpg (adap.+biaf.)’ correspond-
ing to the full UDapter. Results show that most of
the gain in the high-resource languages is obtained
by only applying CPG on the multilingual encoder.
On the other hand, for the low-resource languages,
typological feature based parameter sharing is most
important in the biaffine attention layer. We leave
further investigation of this result to future work.

6 Conclusion

We have presented UDapter, a multilingual depen-
dency parsing model that learns to adapt language-
specific parameters on the basis of adapter mod-
ules (Rebuffi et al., 2018; Houlsby et al., 2019)
and the contextual parameter generation (CPG)
method (Platanios et al., 2018) which is in prin-
ciple applicable to a range of multilingual NLP
tasks. While adapters provide a more general task-
level adaptation, CPG enables language-specific
adaptation, defined as a function of language em-
beddings projected from linguistically curated ty-
pological features. In this way, the model retains
high per-language performance in the training data
and achieves better zero-shot transfer.

UDapter, trained on a concatenation of typolog-
ically diverse languages (Kulmizev et al., 2019),
outperforms strong monolingual and multilingual
baselines on the majority of both high-resource and
low-resource (zero-shot) languages, which reflects
its strong balance between per-language capacity
and maximum sharing. Finally, the analyses we
performed on the underlying characteristics of our
model show that typological features are crucial for
zero-shot languages.

Acknowledgements

Arianna Bisazza was partly funded by the Nether-
lands Organization for Scientific Research (NWO)
under project number 639.021.646. We would like
to thank the Center for Information Technology of
the University of Groningen for providing access
to the Peregrine HPC cluster and the anonymous
reviewers for their helpful comments.

References
Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019.

Massively multilingual neural machine translation.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3874–
3884.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, Wolfgang Macherey, Zhifeng Chen, and
Yonghui Wu. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. CoRR, abs/1907.05019.

Yoeng-Jin Chu. 1965. On the shortest arborescence of
a directed graph. Scientia Sinica, 14:1396–1400.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1723–1732.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Rep-
resentations.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. A neural network model for low-resource Uni-
versal Dependency parsing. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 339–348.

https://doi.org/10.18653/v1/N19-1388
https://doi.org/10.1162/tacl_a_00109
https://doi.org/10.1162/tacl_a_00109
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
http://arxiv.org/abs/1907.05019
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/v1/P15-1166
https://doi.org/10.3115/v1/P15-1166
https://arxiv.org/abs/1611.01734
https://arxiv.org/abs/1611.01734
https://wals.info/
https://doi.org/10.18653/v1/D15-1040
https://doi.org/10.18653/v1/D15-1040


2311

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233–240.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
866–875.

Adam Fisch, Jiang Guo, and Regina Barzilay. 2019.
Working hard or hardly working: Challenges of inte-
grating typology into neural dependency parsers. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5714–
5720.

Thanh-Le Ha, Jan Niehues, and Alex Waibel. 2016. To-
ward multilingual neural machine translation with
universal encoder and decoder. ArXiv preprint.

Harald Hammarström, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. 2020. Glottolog 4.3.
Max Planck Institute for the Science of Human His-
tory, Jena.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. International Conference on
Learning Representations.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning,
pages 2790–2799.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing Universal Dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre. 2019.
Deep contextualized word embeddings in transition-
based and graph-based dependency parsing - a tale
of two parsers revisited. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2755–2768.

M Paul Lewis, Gary F Simons, and CD Fennig. 2015.
Ethnologue: Languages of the world [eighteenth.
Dallas, Texas: SIL International.

Miryam de Lhoneux, Johannes Bjerva, Isabelle Augen-
stein, and Anders Søgaard. 2018. Parameter sharing
between dependency parsers for related languages.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4992–4997.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017. From raw text to Universal
Dependencies - look, no tags! In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
207–217.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani,
Junxian He, Zhisong Zhang, Xuezhe Ma, Antonios
Anastasopoulos, Patrick Littell, and Graham Neubig.
2019. Choosing transfer languages for cross-lingual
learning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3125–3135.

Patrick Littell, David R. Mortensen, Ke Lin, Kather-
ine Kairis, Carlisle Turner, and Lori Levin. 2017.
URIEL and lang2vec: Representing languages as
typological, geographical, and phylogenetic vectors.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 8–14.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9:2579–2605.

Chaitanya Malaviya, Graham Neubig, and Patrick Lit-
tell. 2017. Learning language representations for ty-
pology prediction. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2529–2535.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Univer-
sal Dependency annotation for multilingual parsing.

https://doi.org/10.18653/v1/N16-1101
https://doi.org/10.18653/v1/N16-1101
https://doi.org/10.18653/v1/D19-1574
https://doi.org/10.18653/v1/D19-1574
https://arxiv.org/abs/1611.04798
https://arxiv.org/abs/1611.04798
https://arxiv.org/abs/1611.04798
https://doi.org/10.5281/zenodo.4061162
https://openreview.net/forum?id=Bk0MRI5lg
https://openreview.net/forum?id=Bk0MRI5lg
https://openreview.net/forum?id=Bk0MRI5lg
https://openreview.net/forum?id=H1NjknZO-H
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D18-1543
https://doi.org/10.18653/v1/D18-1543
https://doi.org/10.18653/v1/K17-3022
https://doi.org/10.18653/v1/K17-3022
https://doi.org/10.18653/v1/P19-1301
https://doi.org/10.18653/v1/P19-1301
https://www.aclweb.org/anthology/E17-2002
https://www.aclweb.org/anthology/E17-2002
http://www.cs.toronto.edu/~hinton/absps/tsnefinal.pdf
https://doi.org/10.18653/v1/D17-1268
https://doi.org/10.18653/v1/D17-1268
https://www.aclweb.org/anthology/P13-2017
https://www.aclweb.org/anthology/P13-2017


2312

In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 92–97.

Steven Moran and Daniel McCloy, editors. 2019.
PHOIBLE 2.0. Max Planck Institute for the Science
of Human History, Jena.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 629–637.

Graham Neubig and Junjie Hu. 2018. Rapid adapta-
tion of neural machine translation to new languages.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
875–880.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Bad-
maeva, Miguel Ballesteros, Esha Banerjee, Se-
bastian Bank, Verginica Barbu Mititelu, Victo-
ria Basmov, John Bauer, Sandra Bellato, Kepa
Bengoetxea, Yevgeni Berzak, Irshad Ahmad Bhat,
Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick,
Rogier Blokland, Victoria Bobicev, Carl Börstell,
Cristina Bosco, Gosse Bouma, Sam Bowman,
Adriane Boyd, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Gülşen
Cebiroğlu Eryiğit, Flavio Massimiliano Cecchini,
Giuseppe G. A. Celano, Slavomı́r Čéplö, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho,
Jayeol Chun, Silvie Cinková, Aurélie Collomb,
Çağrı Çöltekin, Miriam Connor, Marine Courtin,
Elizabeth Davidson, Marie-Catherine de Marneffe,
Valeria de Paiva, Arantza Diaz de Ilarraza, Carly
Dickerson, Peter Dirix, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž
Erjavec, Aline Etienne, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Moa Gärdenfors, Sebastian Garza,
Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo
Gojenola, Memduh Gökırmak, Yoav Goldberg,
Xavier Gómez Guinovart, Berta Gonzáles Saave-
dra, Matias Grioni, Normunds Grūzı̄tis, Bruno
Guillaume, Céline Guillot-Barbance, Nizar Habash,
Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Na-Rae
Han, Kim Harris, Dag Haug, Barbora Hladká,
Jaroslava Hlaváčová, Florinel Hociung, Petter
Hohle, Jena Hwang, Radu Ion, Elena Irimia, O. lájı́dé
Ishola, Tomáš Jelı́nek, Anders Johannsen, Fredrik
Jørgensen, Hüner Kaşıkara, Sylvain Kahane, Hi-
roshi Kanayama, Jenna Kanerva, Boris Katz, Tolga
Kayadelen, Jessica Kenney, Václava Kettnerová,
Jesse Kirchner, Kamil Kopacewicz, Natalia Kot-
syba, Simon Krek, Sookyoung Kwak, Veronika
Laippala, Lorenzo Lambertino, Lucia Lam, Ta-

tiana Lando, Septina Dian Larasati, Alexei Lavren-
tiev, John Lee, Phôêng Lê H`ông, Alessandro
Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying
Li, Josie Li, Keying Li, KyungTae Lim, Nikola
Ljubešić, Olga Loginova, Olga Lyashevskaya,
Teresa Lynn, Vivien Macketanz, Aibek Makazhanov,
Michael Mandl, Christopher Manning, Ruli Ma-
nurung, Cătălina Mărănduc, David Mareček, Ka-
trin Marheinecke, Héctor Martı́nez Alonso, André
Martins, Jan Mašek, Yuji Matsumoto, Ryan Mc-
Donald, Gustavo Mendonça, Niko Miekka, Mar-
garita Misirpashayeva, Anna Missilä, Cătălin Mi-
titelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Keiko So-
phie Mori, Shinsuke Mori, Bjartur Mortensen, Bo-
hdan Moskalevskyi, Kadri Muischnek, Yugo Mu-
rawaki, Kaili Müürisep, Pinkey Nainwani, Juan Ig-
nacio Navarro Horñiacek, Anna Nedoluzhko, Gunta
Nešpore-Bērzkalne, Lôêng Nguy˜ên Thi., Huy`ên
Nguy˜ên Thi. Minh, Vitaly Nikolaev, Rattima Nitis-
aroj, Hanna Nurmi, Stina Ojala, Adédayo. ò Olúòkun,
Mai Omura, Petya Osenova, Robert Östling, Lilja
Øvrelid, Niko Partanen, Elena Pascual, Marco
Passarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Siyao Peng, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Emily Pitler,
Barbara Plank, Thierry Poibeau, Martin Popel,
Lauma Pretkalniņa, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepiórkowski, Tiina Puolakainen,
Sampo Pyysalo, Andriela Rääbis, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama, Car-
los Ramisch, Vinit Ravishankar, Livy Real, Siva
Reddy, Georg Rehm, Michael Rießler, Larissa Ri-
naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro-
manenko, Rudolf Rosa, Davide Rovati, Valentin
Ros, ca, Olga Rudina, Jack Rueter, Shoval Sadde,
Benoı̂t Sagot, Shadi Saleh, Tanja Samardžić,
Stephanie Samson, Manuela Sanguinetti, Baiba
Saulı̄te, Yanin Sawanakunanon, Nathan Schnei-
der, Sebastian Schuster, Djamé Seddah, Wolfgang
Seeker, Mojgan Seraji, Mo Shen, Atsuko Shi-
mada, Muh Shohibussirri, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Kiril Simov, Aaron Smith,
Isabela Soares-Bastos, Carolyn Spadine, Antonio
Stella, Milan Straka, Jana Strnadová, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Yuta
Takahashi, Takaaki Tanaka, Isabelle Tellier, Trond
Trosterud, Anna Trukhina, Reut Tsarfaty, Francis
Tyers, Sumire Uematsu, Zdeňka Urešová, Larraitz
Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van
Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars
Wallin, Jing Xian Wang, Jonathan North Washing-
ton, Seyi Williams, Mats Wirén, Tsegay Wolde-
mariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
Zeldes, Daniel Zeman, Manying Zhang, and
Hanzhi Zhu. 2018. Universal dependencies 2.3.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity.

https://phoible.org/
https://www.aclweb.org/anthology/P12-1066
https://www.aclweb.org/anthology/P12-1066
https://doi.org/10.18653/v1/D18-1103
https://doi.org/10.18653/v1/D18-1103
http://hdl.handle.net/11234/1-2895


2313

Robert Östling and Jörg Tiedemann. 2017. Continuous
multilinguality with language vectors. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 644–649.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebas-
tian Ruder. 2020. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001.

Emmanouil Antonios Platanios, Mrinmaya Sachan,
Graham Neubig, and Tom Mitchell. 2018. Contex-
tual parameter generation for universal neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 425–435.

Edoardo Maria Ponti, Helen O’Horan, Yevgeni Berzak,
Ivan Vulić, Roi Reichart, Thierry Poibeau, Ekaterina
Shutova, and Anna Korhonen. 2019. Modeling lan-
guage variation and universals: A survey on typo-
logical linguistics for natural language processing.
Computational Linguistics, 45(3):559–601.

Martin Popel, Zdeněk Žabokrtský, and Martin Vojtek.
2017. Udapi: Universal API for Universal Depen-
dencies. In Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017),
pages 96–101.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2018. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 8119–8127.

Manon Scholivet, Franck Dary, Alexis Nasr, Benoit
Favre, and Carlos Ramisch. 2019. Typological fea-
tures for multilingual delexicalised dependency pars-
ing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3919–3930.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82
treebanks, 34 models: Universal Dependency pars-
ing with multi-treebank models. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
113–123.

Asa Cooper Stickland and Iain Murray. 2019. Bert and
pals: Projected attention layers for efficient adapta-
tion in multi-task learning. In International Confer-
ence on Machine Learning, pages 5986–5995.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207.

Oscar Täckström, Ryan McDonald, and Joakim Nivre.
2013. Target language adaptation of discriminative
transfer parsers. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1061–1071.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 477–487.

Jörg Tiedemann. 2015. Cross-lingual dependency pars-
ing with Universal Dependencies and predicted PoS
labels. In Proceedings of the Third International
Conference on Dependency Linguistics (Depling
2015), pages 340–349.

Ke Tran and Arianna Bisazza. 2019. Zero-shot de-
pendency parsing with pre-trained multilingual sen-
tence representations. In Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pages 281–288.

David Vilares, Carlos Gómez-Rodrı́guez, and
Miguel A. Alonso. 2016. One model, two lan-
guages: training bilingual parsers with harmonized
treebanks. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 425–431.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. ArXiv preprint.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Proceedings of the IJCNLP-08 Workshop
on NLP for Less Privileged Languages.

Yuan Zhang and Regina Barzilay. 2015. Hierarchical
low-rank tensors for multilingual transfer parsing.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1857–1867.

https://www.aclweb.org/anthology/E17-2102
https://www.aclweb.org/anthology/E17-2102
https://arxiv.org/abs/2005.00052
https://arxiv.org/abs/2005.00052
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.18653/v1/D18-1039
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.1162/coli_a_00357
https://www.aclweb.org/anthology/W17-0412
https://www.aclweb.org/anthology/W17-0412
http://openaccess.thecvf.com/content_cvpr_2018/html/Rebuffi_Efficient_Parametrization_of_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Rebuffi_Efficient_Parametrization_of_CVPR_2018_paper.html
https://doi.org/10.18653/v1/N19-1393
https://doi.org/10.18653/v1/N19-1393
https://doi.org/10.18653/v1/N19-1393
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.18653/v1/K18-2011
https://doi.org/10.18653/v1/K18-2011
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
https://doi.org/10.18653/v1/K18-2020
https://doi.org/10.18653/v1/K18-2020
https://www.aclweb.org/anthology/N13-1126
https://www.aclweb.org/anthology/N13-1126
https://www.aclweb.org/anthology/N12-1052
https://www.aclweb.org/anthology/N12-1052
https://www.aclweb.org/anthology/W15-2137
https://www.aclweb.org/anthology/W15-2137
https://www.aclweb.org/anthology/W15-2137
https://doi.org/10.18653/v1/D19-6132
https://doi.org/10.18653/v1/D19-6132
https://doi.org/10.18653/v1/D19-6132
https://doi.org/10.18653/v1/P16-2069
https://doi.org/10.18653/v1/P16-2069
https://doi.org/10.18653/v1/P16-2069
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://www.aclweb.org/anthology/I08-3008
https://www.aclweb.org/anthology/I08-3008
https://www.aclweb.org/anthology/I08-3008
https://doi.org/10.18653/v1/D15-1213
https://doi.org/10.18653/v1/D15-1213


2314

Hyper-Parameter Value

Dependency tag dimension 256
Dependency arc dimension 768
Optimizer Adam
β1, β2 0.9, 0.99
Weight decay 0.01
Label smoothing 0.03
Dropout 0.5
BERT dropout 0.2
Mask probability 0.2
Batch size 32
Epochs 80
Base learning rate 1e−3

BERT learning rate 5e−5

LR warm up ratio 1/80

Adapter size 256
Language embedding size 32

Table 3: Hyper-parameter setting

A Appendix

A.1 Experimental Details

Implementation UDapter’s implementation is
based on UDify (Kondratyuk and Straka, 2019).
We use the same hyper-parameters setting opti-
mized in UDify without applying a new hyper-
parameter search. Together with the additional
adapter size and language embedding size that
are picked manually by parsing accuracy, hyper-
parameters are given in Table 3. Note that, to give
a fair chance to the adapter-only baseline (see §4),
we used 1024 as adapter size unlike that of the final
UDapter (256). For fair comparison, mono-udify
and multi-udify are re-trained on the concatenation
of 13 high-resource languages for only dependency
parsing. Besides, we did not use a layer attention
for both our model and the baselines.

Training Time and Model size Comparing to
UDify, UDapter has a similar training time. An
epoch over the full training set takes approximately
27 and 30 minutes in UDify and UDapter respec-
tively on a Tesla V100 GPU. In terms of number of
trainable parameters, UDify has 191M total num-
ber of parameters whereas UDapter uses 550M pa-
rameters in total, 302M for adapters (32x9.4M) and
248M for biaffine attention (32x7.8M), since the
parameter generator network (CPG) multiplies the
tensors with language embedding size (32). Note
that for multilingual training, UDapter’s parameter
cost depends only on language embedding size re-
gardless of number of languages, therefore it highly
scalable with an increasing number of languages
for larger experiments. Finally, monolingual UDify

orig.udify multi-udify udapter udap.-proxy

aii* 9.1 8.4 14.3 8.2 (ar)
akk* 4.4 4.5 8.2 9.1 (ar)
am* 2.6 2.8 5.9 1.1 (ar)
be 81.8 80.1 79.3 69.9 (ru)
bho*(†) 35.9 37.2 37.3 35.9 (hi)
bm* 7.9 8.9 8.1 3.1 (CTR)
br* 39.0 60.5 58.5 14.3 (CTR)
bxr* 26.7 26.1 28.9 9.1 (CTR)
cy 42.7 53.6 54.4 9.8 (CTR)
fo* 59.0 68.6 69.2 64.1 (sv)
gsw* 39.7 43.6 45.5 23.7 (en)
gun*(†) 6.0 8.5 8.4 2.1 (CTR)
hsb* 62.7 53.2 54.2 44.4 (ru)
kk 63.6 61.9 60.7 45.1 (tr)
kmr*(†) 20.2 11.2 12.1 4.7 (CTR)
koi* 22.6 20.8 23.1 6.5 (CTR)
kpv*(†) 12.9 12.4 12.5 4.7 (CTR)
krl* 41.7 49.2 48.4 45.6 (fi)
mdf* 19.4 24.7 26.6 8.7 (CTR)
mr 67.0 46.4 44.4 29.6 (hi)
myv*(†) 16.6 19.1 19.2 6.3 (CTR)
olo* 33.9 42.1 43.3 41.1 (fi)
pcm*(†) 31.5 36.1 36.7 5.6 (CTR)
sa* 19.4 19.4 22.2 15.1 (hi)
ta (†) 71.4 46.0 46.1 12.3 (CTR)
te (†) 83.4 71.2 71.1 23.1 (CTR)
tl 41.4 62.7 69.5 14.1 (CTR)
wbp* 6.7 9.6 12.1 4.8 (CTR)
yo 22.0 41.2 42.7 10.5 (CTR)
yue* 31.0 30.5 32.8 24.5 (zh)

avg 34.1 35.3 36.5 20.4

Table 4: LAS results of UDapter and UDify models
(Kondratyuk and Straka, 2019) for all low-resource lan-
guages. ‘*’ shows languages not present in mBERT
training data. Additionally, (†) indicates languages
where no significant difference between UDapter and
multi-udify by significance testing. For udapter-proxy,
chosen proxy language is given between brackets. CTR
means centroid language embedding.

models are trained separately so the total number
of parameters for 13 languages is 2.5B (13x191M).

A.2 Zero-Shot Results
Table 4 shows LAS scores on all 30 low-resouce
languages for UDapter, original UDify (Kon-
dratyuk and Straka, 2019), and re-trained ‘multi-
udify’. Languages with ‘*’ are not included in
mBERT training data. Note that original UDify is
trained on all available UD treebanks from 75 lan-
guages. For the zero-shot languages, we obtained
original UDify scores by running the pre-trained
model.

A.3 Language Details
Details of training and zero-shot languages such
as language code, data size (number of sentences),
and family are given in Table 5 and Table 6.



2315

Language Code Treebank Family Word Order Train Test

Arabic ar PADT Afro-Asiatic, Semitic VSO 6.1k 680
Basque eu BDT Basque SOV 5.4k 1799
Chinese zh GSD Sino-Tibetan SVO 4.0k 500
English en EWT IE, Germanic SVO 12.5k 2077
Finnish fi TDT Uralic, Finnic SVO 12.2k 1555
Hebrew he HTB Afro-Asiatic, Semitic SVO 5.2k 491
Hindi hi HDTB IE, Indic SOV 13.3k 1684
Italian it ISDT IE, Romance SVO 13.1k 482
Japanese ja GSD Japanese SOV 7.1k 551
Korean ko GSD Korean SOV 4.4k 989
Russian ru SynTagRus IE, Slavic SVO 15k* 6491
Swedish sv Talbanken IE, Germanic SVO 4.3k 1219
Turkish tr IMST Turkic, Southwestern SOV 3.7k 975

Table 5: Training languages that are from UD 2.3 (Nivre et al., 2018) with the details including treebank name,
family, word order and data size of training and test sets.

Language Code Treebank(s) Family Test

Akkadian akk PISANDUB Afro-Asiatic, Semitic 1074
Amharic am ATT Afro-Asiatic, Semitic 101
Assyrian aii AS Afro-Asiatic, Semitic 57
Bambara bm CRB Mande 1026
Belarusian be HSE IE, Slavic 253
Bhojpuri bho BHTB IE, Indic 254
Breton br KEB IE, Celtic 888
Buryat bxr BDT Mongolic 908
Cantonese yue HK Sino-Tibetan 1004
Erzya myv JR Uralic, Mordvin 1550
Faroese fo OFT IE, Germanic 1207
Karelian krl KKPP Uralic, Finnic 228
Kazakh kk KTB Turkic, Northwestern 1047
Komi Permyak koi UH Uralic, Permic 49
Komi Zyrian kpv LATTICE, IKDP Uralic, Permic 210
Kurmanji kmr MG IE, Iranian 734
Livvi olo KKPP Uralic, Finnic 106
Marathi mr UFAL IE, Indic 47
Mbya Guarani gun THOMAS, DOOLEY Tupian 98
Moksha mdf JR Uralic, Mordvin 21
Naija pcm NSC Creole 948
Sanskrit sa UFAL IE, Indic 230
Swiss G. gsw UZH IE, Germanic 100
Tagalog tl TRG Austronesian, Central Philippine 55
Tamil ta TTB Dravidian, Southern 120
Telugu te MTG Dravidian, South Central 146
Upper Sorbian hsb UFAL IE, Slavic 623
Warlpiri wbp UFAL Pama-Nyungan 54
Welsh cy CCG IE, Celtic 956
Yoruba yo YTB Niger-Congo, Defoid 100

Table 6: Zero-shot languages are selected from UD 2.5 to increase the number of languages in the experiments.
Language details include treebank name, family and test size for zero-shot experiments.


