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Corrigendum

Original article: van Ravenzwaaij, D., & Etz, A. (2021). Simulation studies as a tool to understand Bayes factors. 
Advances in Methods and Practices in Psychological Science, 4(1). https://doi.org/10.1177/2515245920972624

Two typographical errors appeared in the code block at 
the bottom of the left column and the top of the right 
column on page 8 of this article. In two lines, a less-than 
symbol (<) appeared where there should have been a 
greater-than symbol (>). These errors have now been 
corrected. The original code block read as follows:

# Set the limits of our bin that is .5 wide
Bin = c(0, 0.5)

# Proportion of null-generated sample
# effect sizes within the bin limits
Nulls = mean (Sample0<Bin[1] & Sample0<
Bin[2])

# Proportion of alternative-generated
# sample effect sizes in bin limits
Alts = mean (SampleA<Bin[1] & SampleA<
Bin[2])

# Approximate BF given by ratio of the
# two proportions
BF0A = Nulls / Alts

The code block has been revised to read as follows:

# Set the limits of our bin that is .5 wide
Bin = c(0, 0.5)

# Proportion of null-generated sample
# effect sizes within the bin limits
Nulls = mean (Sample0>Bin[1] & Sample0<
Bin[2])

# Proportion of alternative-generated
# sample effect sizes in bin limits
Alts = mean (SampleA>Bin[1] & SampleA<
Bin[2])

# Approximate BF given by ratio of the
# two proportions
BF0A = Nulls / Alts
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Special Section: Using Simulation to Convey Statistical Concepts
Tutorial

Research in the social sciences hinges on the existence 
of tools for conducting statistical testing. For the last 100 
years or so, arguably the golden standard has been the 
null-hypothesis significance test, or NHST. This method 
has not gone without protests though, and the last 20 
years in particular have seen an enormous number of 
publications either questioning or seeking to improve 
upon the typical way statistical testing is (or was) con-
ducted (Benjamin et al., 2018; Cumming, 2014; Gigerenzer, 
2004; Harlow et al., 1997; Johnson, 2013; van Ravenzwaaij 
& Ioannidis, 2017, 2019; Wagenmakers, 2007).

Suggested alternatives to traditional ways of conduct-
ing statistical testing are not infrequently various forms 
of Bayesian hypothesis testing (see, e.g., Dienes, 2011; 
Kruschke, 2014; Lee & Wagenmakers, 2013; Rouder et al., 
2009; van Ravenzwaaij et al., 2019; van Ravenzwaaij & 
Wagenmakers, 2021; see van de Schoot et al., 2017, for 
a general review of the use of Bayesian statistics in psy-
chology). Perhaps the most popular method of the 
Bayesian hypothesis test quantifies statistical evidence 
through a vehicle known as the Bayes factor. The Bayes 

factor is a flexible tool for model comparison, allowing 
one to evaluate the evidence for and against any theory 
one cares to specify through clever specification of the 
prior distribution, or prior (Etz et al., 2018). In practice, 
however, it is perhaps most common for some sort of 
convenient default specification to be used for priors in 
Bayesian analyses (Gelman et al., 2008; Kass & Wasserman, 
1996). In scenarios calling for one of the most basic and 
often-used statistical tests, the t test, a popular default 
specification uses the Jeffreys-Zellner-Siow ( JZS) class 
of priors. Bayes factors using these priors, often referred 
to as default Bayes factors, are inspired by the work of 
Jeffreys (1961) and Zellner and Siow (1980).

The goal of this Tutorial is not to rehash statistical 
debates about p values and Bayes factors. Nor do we 
give an exhaustive introduction to default Bayes factors. 
Many technical expositions on default Bayes factors 
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(e.g., Gönen et al., 2005; Morey & Rouder, 2011; Rouder 
et al., 2009) and their extensions (Gronau et al., 2018) 
already exist, but these publications are not always easily 
accessible to those researchers who are not statistical 
experts. This is unfortunate because the existence of 
easy-to-use tools for calculating default Bayes factors, 
such as the point-and-click program JASP (The JASP 
Team, 2018) and the script-based BayesFactor package 
in R (Morey et al., 2018), makes it imperative that research-
ers understand what these tools do.

This Tutorial is aimed at researchers who lack the 
time or confidence to delve into the advanced mathemat-
ics necessary to understand what is being calculated 
when software produces a default Bayes factor. Specifi-
cally, this Tutorial contains the bare minimum of equa-
tions and focuses instead on a conceptual and intuitive 
understanding of the specific choices that underlie the 
default-Bayes-factor approach to the t test.

The way to facilitate this improvement in intuition 
regarding Bayes factors is through the lens of simulation. 
We find that a useful analogue to simulation is experi-
mentation. In an experiment, samples can be drawn to 
learn about a population of interest. In a simulation, 
samples can be drawn to learn about a complex numeri-
cal phenomenon. The “population” of interest in a simu-
lation can be anything from a known distribution to a 
quantity for which no analytic expression exists. Just as 
in an experiment, one draws a representative sample of 
this population. A visual display or numerical summary 
of the results can be used to learn something about this 
population. Throughout this Tutorial, we use simple 
simulations with annotated code to show how these can 
be used to learn about priors, Bayes factors, and poste-
rior distributions (posteriors).

Although it is not strictly necessary to understanding 
this Tutorial, you may benefit from some conceptual 
knowledge of Bayesian statistical inference and Markov 
Chain–Monte Carlo (MCMC) sampling. For those readers 
who would like to brush up on these topics, we recom-
mend our recent introductions in Etz and Vandekerckhove 
(2018; at least the first half) and van Ravenzwaaij et al. 
(2018). Both of these articles are geared toward being 
accessible to researchers who are not statistical experts.

This Tutorial is organized as follows: In the first part, 
we introduce simulation studies and use them to explore 
a prior. In the second part, we provide a brief introduc-
tion on the model specifications that are used to calcu-
late default Bayes factors in the context of a one-sample 
t test. After this introduction, we use the simulation 
approach to generate data from the prior under the null 
hypothesis and from the prior under the alternative 
hypothesis to approximate the Bayes factor for hypo-
thetical data that have not yet been observed. In the 
third part, we provide sample code in JAGS (an acronym 
for the software program Just Another Gibbs Sampler; 

Plummer, 2003) to approximate posterior distributions 
based on the default-Bayes-factor approach. This code 
allows readers to obtain for themselves the output pro-
vided by either the BayesFactor package or the JASP 
software while seeing exactly what choices are made for 
the priors and likelihood functions. In the fourth part of 
this Tutorial, we progress from posterior distributions to 
a second way to represent the Bayes factor: the Savage-
Dickey method (see, e.g., Wagenmakers et  al., 2010). 
Using the basic JAGS code provided in the previous 
section, we show the intuition behind the method and 
a way to approximate the default Bayes factor by using 
the samples from JAGS. In the fifth part of this Tutorial, 
we use simulations to explore the effect of using differ-
ent priors on the resulting Bayes factor. The aim is to 
show how priors that are progressively more extreme 
than the priors employed by the default-Bayes-factor 
approach change the conclusions reached.

Disclosures

The R Markdown document underlying this manuscript, 
which includes all code, is available at https://osf.io/ 
9kwz4/.

Why Do a Simulation Study?

Social scientists typically use observation to learn about 
a certain population of interest (often, the population 
consists of humans). It is usually not possible to study 
the entire population, so social scientists draw a repre-
sentative sample from this population. For instance, 
researchers who wish to learn if the consumption of 
alcohol affects perceptual discrimination may set up an 
experiment in which a group of people randomly drawn 
from the population perform a perceptual discrimination 
task after having consumed different doses of alcohol 
(van Ravenzwaaij et  al., 2012). The researchers might 
look at the data obtained in this random sample to learn 
something about the original question and consider this 
procedure of random sampling pretty straightforward.

Yet, those same social scientists may be daunted when 
they read a technical exposition on Bayes factors.1 It can 
be hard to intuitively grasp how a statistical method 
works from looking at a complicated equation. Perhaps 
surprisingly, these scientists have at their disposal a tool 
that is similar to the experimental procedure that is so 
helpful for empirical questions. This tool is the simula-
tion study. In this section and the following one, we 
illustrate with examples how one can use simulations to 
learn about two key concepts in Bayesian inference: the 
prior and the Bayes factor. The goal of the first example 
is to show how one can explore aspects of a prior and 
the information it represents. The goal of the second 
example is to demonstrate how priors can be used to 

https://osf.io/9kwz4/
https://osf.io/9kwz4/
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generate predictions about an experiment and how these 
predictions form a key component for computation of 
the Bayes factor.

Exploring a Prior Distribution

One of the earliest roadblocks for researchers who want 
to adopt Bayesian methods in their research is the choice 
of a prior for their analysis. There are many methods to 
elicit priors from subject-matter experts (who are often 
the researchers themselves), but often a default prior is 
chosen for convenience. Regardless of how the prior is 
chosen, it remains an abstract mathematical object that 
can be nebulous to even experienced Bayesian analysts. 
Fortunately, one can use simulation studies to gain some 
intuition about the prior distribution and what it implies 
about one’s knowledge of the parameter of interest.

A common choice for the prior in Bayesian analyses 
is the normal distribution. The normal distribution is 
typically one of the first things that is taught to social 
scientists in their introductory methodology or statistics 
undergraduate course. Students are typically taught that 
a standard normal distribution (with a mean of 0 and a 
standard deviation of 1) has a distinctive bell shape 
similar to that depicted in Figure 1. Although most stu-
dents learn to recognize these bell-shaped curves as 
being normal distributions, we hazard that fewer students 
(or, indeed, graduated social scientists) would know 
much about their properties beyond the 68-95-99.7 rule 
or the fact that the mean, median, and mode are equal.

Now consider the case of a one-sample t test, in 
which the parameter of interest is the standardized effect 
size, δ = µ/σ. If we choose N(0,1) as the prior distribu-
tion for δ, we hazard that few readers would know off 
the top of their head what the probability is that the 
value for δ lies between −0.5 and 0.5 (i.e., smaller in 
magnitude than a “medium” effect). We certainly do not. 
We could try writing out the equation for the standard 
normal distribution,

 
1

2 2

2

π
exp – ,

x







  (1)

but, frankly, this may do more to intimidate than illumi-
nate. Here is where we can turn to simulation. We 
encourage you to perform these operations alongside 
with us. At this stage, all that is required is a working 
copy of the freely available program R (R Development 
Core Team, 2020).

We can sample a value of δ from the prior many 
times—say, a thousand times—and draw a histogram of 
the sampled values using the following line of code:

# Sets seed that creates same pseudo-random  
# sequence every time

# this code is run
set.seed (8675309)

# Create a vector of 1000 random numbers  
# drawn from standard normal
# distribution (mean = 0, sd = 1)
delta = rnorm (1000)

# Plots a histogram of the sampled values
hist (delta, freq = F, breaks = 30)

The set.seed() command sets the starting number 
used to generate a sequence of pseudorandom numbers. 
It ensures that even if you do not save your output, you 
will obtain the exact same results next time you run your 
script. The histogram of the sampled values is shown in 
Figure 1 and gives a sense of how the standard normal 
distribution is built up, without the need to decompose 
the equation.2 Note the histogram’s close correspon-
dence with the analytic distribution overlaid as a red 
line. We can now answer our question about the prob-
ability that the value of δ lies between −0.5 and 0.5 by 
computing the proportion of simulated values of δ that 
fall within those limits. To do this, we use the following 
code:

# Label the samples as 1 if they fall  
# in the limits, 0 otherwise
deltasInTheLimits = (delta > -.5) & 
(delta < .5)

δ

De
ns

ity

−3 −2 −1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Fig. 1. The simulated prior distribution for δ. The distribution is 
specified as a normal distribution with a mean of 0 and a standard 
deviation of 1. Note the close correspondence between the histogram 
of the samples and the analytic distribution overlaid as a red line.
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# Compute the proportion of samples of  
# delta that are in the limits
proportionInTheLimits = mean 
(deltasInTheLimits)

# What is the proportion of delta  
# samples in the limits?
# (Approximates the probability that  
# delta is between those limits)
print (proportionInTheLimits)

# [1] .385

Thus, with this simple simulation, we have found that, 
for the given prior, the probability that the value of δ lies 
between −0.5 and 0.5 is approximately .385.3 With the tool 
of simulation at our disposal, we can estimate the prob-
ability of parameter values lying between any two values 
we care to specify. For instance, the probability that the 
value of δ lies between 0.5 and 0.8, that is, that there is a 
medium to large positive effect, is found by changing  
the logical check in the first line in the above code to  
deltasInTheLimits = (delta > .5) & (delta < .8);  
the resulting probability is approximately .089.

We have used simulation to explore our prior distribu-
tion for δ and have so far come away with two insights. 
First, this prior distribution corresponds to the a priori 
expectation that the true effect size is probably not smaller 
than medium in magnitude; the probability that |δ| is 
less than 0.5 is approximately .385, which means that the 
probability that |δ| is greater than 0.5 is approximately 
1 − .385, or .615. Second, according to this prior distribu-
tion, it is unlikely a priori that the effect size is both posi-
tive and between medium and large in magnitude.

In the next two sections, we use simulation to approxi-
mate Bayes factors. In the upcoming section, we first 
introduce some theory behind Bayes factors. Next, we 
use simulation to generate data using samples from two 
priors, each belonging to a different hypothesis. These 
predictions from the prior can be used to approximate 
Bayes factors for different values of the data, should they 
be observed. In other words, one can examine what the 
Bayes factor would be for data that are not yet observed. 
In the section after that, we take the opposite approach 
and use simulation to approximate the posterior and cal-
culate a Bayes factor for data that were actually observed.

Exploring the Bayes Factor

Theory of Bayes factors

Before we go into the specifics of the default-Bayes-
factor approach, it is worthwhile to provide a brief 
reminder of Bayes rule in the context of two contrasting 
hypotheses:

 
P H

P H

P H

P HA A

( | )

( | )
=

( )

( )
0 0data

data
Posterior Odds Pr

1 24444 34444
iior Odds Bayes Factor
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×
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( | )
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0

444

.
 (2)

The quantity on the left is the posterior odds, or the prob-
ability of the null hypothesis, H0, given the data relative 
to the probability of the alternative hypothesis, HA, given 
the data. The quantity in the middle is the prior odds, or 
the probability of the null hypothesis before one has seen 
the data relative to the probability of the alternative 
hypothesis before one has seen the data. The quantity 
to the right is the Bayes factor, or the probability of the 
data given the null hypothesis relative to the probability 
of the data given the alternative hypothesis.

If one wants to use statistical inference to test hypoth-
eses, one must first make some choices regardless of 
whether one employs the traditional NHST method or 
Bayesian testing. First, one must decide on the form of 
the null hypothesis and the alternative hypothesis. A 
convenient way to specify these hypotheses is to relate 
them to an effect-size parameter, δ. In this context, the 
null hypothesis usually specifies that the effect size is 
exactly zero, whereas the alternative hypothesis can be 
one-sided (i.e., directional; e.g., the effect size is larger 
than zero), or two-sided (i.e., nondirectional; e.g., the 
effect size is different from zero).

Furthermore, both NHST and Bayesian testing require 
making an assumption about the way the data are dis-
tributed, as that will affect the choice of the likelihood 
functions (Etz, 2018). For example, in the case of a t test, 
both NHST and Bayesian testing assume that data are 
normally distributed. When conducting Bayesian infer-
ence, one might choose a normal distribution for the 
likelihood function to reflect this assumption.

For Bayesian statistical inference, two more choices 
need to be made. The first choice is about the prior odds, 
or the ratio of prior model probabilities. Does one 
believe the null and alternative hypotheses to be equally 
plausible before having seen any data? This degree of 
belief can be informed by prior study results or by one’s 
intuition, but will likely contain a certain degree of sub-
jectivity. Fortunately, the prior odds have no effect on 
the Bayes factor, so readers of a study are welcome to 
combine the reported Bayes factor with their own prior 
odds to arrive at their own posterior odds. In the context 
of hypothesis testing, textbooks often follow a conven-
tion set by Jeffreys (1961) and assume a priori that the 
two hypotheses are equally likely, by setting the prior 
odds to 1 (but see Kruschke & Liddell, 2018, for a dis-
cussion of scenarios in which you have more specific 
information on prior odds). When this is the case, the 
Bayes factor and posterior odds are equal.

The second choice a Bayesian needs to make con-
cerns the prior distribution of the effect-size parameter 
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under each hypothesis. Contrary to the prior odds, the 
prior distributions of the effect-size parameter do affect 
the resulting Bayes factor, as we show in the section 
titled The Prior’s Influence on the Bayes Factor. The prior 
distribution is quite simple for a null hypothesis that 
specifies the effect size is exactly zero (there is only one 
permissible value for the effect size, so the distribution 
consists of a spike at zero; see the right side of Fig. 2), 
but for an alternative hypothesis that specifies the effect 
size is different from zero, a probability distribution is 
needed to specify which values of the effect size are 
more likely than others.

So far, nothing of the above is specific to the default-
Bayes-factor approach. What distinguishes this approach 
from any other approach to Bayesian hypothesis testing 
is the choice of the prior distribution for the effect-size 
parameter δ under the alternative hypothesis (i.e., the 
left side of Fig. 2). The chosen distribution for the prior 
given the alternative hypothesis is a Cauchy distribution 
centered on zero, usually with a scale parameter of 

2 2/  (Morey et al., 2018). One may think of this prior 
as a standard normal distribution with fatter tails. The 
scale parameter is the upper and lower bound that 
encompasses 50% of the distribution. So, a Cauchy 

distribution centered on zero with a scale parameter of 
2 2/  has 50% of the distribution between – /2 2 and 
2 2/  (or approximately −0.71 to 0.71).
The Cauchy prior has some desirable mathematical 

properties (see, e.g., Bayarri et al., 2012; Consonni et al., 
2018), such as model-selection consistency (for data gen-
erated under a model, the corresponding Bayes factor 
should go to infinity as sample size goes to infinity), 
predictive matching (there should be a minimum sample 
size for which the Bayes factor is 1, such that models 
are indistinguishable), and information consistency 
(there should be a minimum sample size for which data 
that result in test statistics that go to infinity should have 
corresponding Bayes factors that also go to infinity). 
Other priors may share some of these desirable proper-
ties, but the Cauchy prior has caught on as the go-to 
choice because it satisfies them all and is relatively easy 
to specify and interpret.

As a perhaps more intuitive way to grasp why such 
a prior makes sense, we consider why the prior density 
should be relatively high for values closer to zero and 
why the distribution should be symmetrical. For most 
studies, it should be the case that an effect size of, say, 
δ = 10 is substantially less likely to be found than an 

Prior

Prior Model
Probabilities

50% 50%

H A H 0

0.3
∞

0.2

0.1

−3 −2 −1 0

Cauchy Prior

1 2 3−3 −2 −1 0 1 2 3

De
ns

ity

De
ns

ity

Point Prior

Fig. 2. Prior distributions for the null hypothesis, H0, that the effect size is exactly zero (i.e., a point prior) and an alter-
native hypothesis, HA, that the effect size is distributed as a Cauchy distribution centered on zero with a scale parameter 
of 2 2/ .
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effect size of, say, δ = 5. Similarly, δ = 5 should be less 
likely than δ = 2, which in turn should be less likely than 
δ = 0.8. Moreover, in the specific context of testing the 
null hypothesis that δ is zero, “the mere fact that we are 
seriously considering the possibility that it is zero may 
be associated with a presumption that if it is not zero it 
is probably small” ( Jeffreys, 1961, p. 332). This accounts 
for the fact that the distribution is peaked instead of flat.

The second thing to bear in mind is that in the context 
of two-sided testing, negative effect sizes should be just 
as plausible as positive effect sizes, as every parameter 
can be flipped around such that the sign of the effect 
size switches (e.g., happiness can be relabeled unhap-
piness, Group 1 can be relabeled Group 2). This accounts 
for the fact that the distribution is symmetrical around 
zero.

You might wonder if it would not make more sense 
to have a distribution with two peaks, say, one at δ = 
0.2 and one at δ = −0.2. Such a distribution would still 
be nonflat and symmetrical, but would incorporate the 
fact that the researchers probably have some intuition 
about the phenomena they want to investigate, such that 
small effects are more likely to be studied than null 
effects. The beauty of the Bayesian approach is that 
everyone is at liberty to pick their own prior distribution, 
the one they think best reflects the a priori knowledge 
of the field. The Cauchy prior described above is con-
sidered by many researchers to be a sensible default 
prior. It is relatively diffuse, reflecting the fact that the 
researcher is not willing to commit to very specific val-
ues of the effect-size parameter a priori. Such a prior 
will have a comparatively small influence on the poste-
rior distribution, such that most of the diagnosticity 
comes from the likelihood of the data. We provide exam-
ples of the effect of choosing different kinds of priors 
in the section titled The Prior’s Influence on the Bayes 
Factor.

In the next subsection, we use simulation to generate 
data from the priors illustrated in Figure 2 under the null 
and alternative hypotheses to gain insight into the 
mechanics of the Bayes factor.

Simulation of Bayes factors

In the previous section, we explained that the Bayes 
factor is computed by taking the ratio of two probabili-
ties: the probability of the data given the null hypothesis, 
P(data|H0), and the probability of the data given the 
alternative hypothesis, P(data|HA). In the section before 
that, we used simulation to draw samples from a prior 
distribution. In this section we combine these two ideas 
to obtain Bayes factors for data that have not yet been 
observed (see also Etz et al., 2018; Rouder, 2014). We 
illustrate this idea using a running example of Kim, an 
educational psychologist.

Kim is interested in examining whether a new pro-
gram focused on more systematic rehearsal of learned 
topics leads to lasting increases in IQ scores among 
high-school students. She randomly selects 50 students 
from high schools in The Netherlands and has them 
enroll in her program (with permission from their teach-
ers and parents, of course). Kim administers an IQ test 
to the 50 students directly before the program and half 
a year after the program. She is interested in whether 
there is a gain in the IQ score that lasts until half a year 
after the program.

Kim does not have any data yet, but we are going to 
use simulation to examine what data she might observe 
if the null hypothesis is true and what data she might 
observe if the alternative hypothesis is true. The first 
component of the Bayes factor that we focus on is 
P(data|H0), the probability of the data given the null 
hypothesis. As indicated in the right side of Figure 2, the 
null hypothesis is a point null. This means that under 
the null hypothesis, the population effect size, δ, can 
only be zero. Using simulation, we can examine the 
sampling distribution of the sample effect size, Cohen’s 
d, when the null hypothesis is true and the sample size 
is 50. We use the following code to generate 10,000 
sample effect sizes under the null hypothesis:

# Our sample size for each experiment
n = 50

# Number of simulated experiments to  
# generate
nSims = 10000

# Create an empty (for now) vector in  
# which to store sample effect sizes
Sample0 = c()

# Repeat nSims times: create data set ->  
# compute effect size
for (i in 1:nSims)
{
# Generate data set from N(0,1)
data = rnorm (n, 0, 1)

# Compute one sample effect size and  
# store in position i of the vector
Sample0[i] = mean(data) / sd(data)

}

The resulting sample effect sizes are represented by the 
green histograms and density function in Figure 3. All four 
panels show the same data but with different granularity.

Simulating data for the second component of the 
Bayes factor, P(data|HA), is a little more involved. The 
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complication comes from the fact that for the alternative 
hypothesis, we do not merely set δ to some fixed value. 
We instead specify a prior distribution for δ reflecting the 
fact that we do not yet know its true value. As indicated 
in the previous section, for this prior we use a Cauchy 
distribution centered on zero with scale of 2 2/ .

The way to incorporate the fact that we do not know 
the true value for δ is to add an additional step to the 
simulation. First, we sample a population effect size from 
the distribution of potential population effect sizes. In 

this case, the distribution of potential population effect 
sizes is dictated by the Cauchy prior. This extra step is 
implicit in the previous simulation for the null hypoth-
esis because the population effect size is always the 
same (i.e., zero). Once we have generated this popula-
tion effect size, we draw a data set of size 50 from this 
population effect size, just as in the simulation for the 
null hypothesis presented previously. We use the follow-
ing code to generate 10,000 sample effect sizes under 
the alternative hypothesis:
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Fig. 3. Sample effect sizes simulated from the prior distribution under the null hypothesis, H0, and from the prior distribution under 
the alternative hypothesis, HA. The arrows point to the bins that are the focus of the Bayes factor calculations discussed in the text. 
Note that we have plotted the negative of the frequency and density for the alternative hypothesis, which results in a reflection across 
the x-axis, for easier comparison. The same data are displayed in each of the panels, with increasingly more narrow bin widths from 
the top left to the bottom right. BF0A = probability of the data under H0 relative to the probability of the data under HA.
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# Create an empty (for now) vector to  
# store sample effect sizes
SampleA = c()

# Repeat nSims times: sample a parameter ->  
# create data set ->
# compute effect size
for (i in 1:nSims)
{
# Generate a delta parameter (true  
# effect size) from the Cauchy dist.
delta = rcauchy (1,0,scale=sqrt(2)/2)

# Generate data set from N(delta, 1)
data = rnorm (n, delta, 1)

# Compute one sample effect size and  
# store in position i of the vector
SampleA[i] = mean (data) / sd (data)

}

The resulting sample effect sizes are represented by 
the blue histograms and density function in Figure 3. The 
distributions of sample effect sizes under both hypoth-
eses are called prior predictives (Ntzoufras, 2009). Now 
that we have distributions of hypothetical data under the 
null hypothesis and under the alternative hypothesis, the 
next step is to turn these into Bayes factors. Recall that 
a Bayes factor is nothing more than the ratio of the prob-
ability of the data under one hypothesis over the prob-
ability of the data under the other hypothesis. In other 
words, we can compare the green histograms with the 
blue histograms for a specific portion of the data, and 
the ratio of these two will be our Bayes factor.

Kim has not collected any data yet, but let us consider 
the scenario in which Kim has collected some data with 
a sample effect size, d, of 0.25. Under which hypothesis 
is this Cohen’s d more likely? In our simulated data, an 
exact value of 0.25 will not have occurred (at least not 
prior to rounding), but we can approximate the Bayes 
factor by binning the data. For instance, the top left 
panel of Figure 3 shows the data binned with a bin width 
of 0.5. We can get a very rough approximation of the 
Bayes factor for a sample d of 0.25 by dividing the num-
ber of times a d between 0 and 0.5 occurred under the 
null hypothesis and under the alternative hypothesis:

# Set the limits of our bin that is .5 wide
Bin = c(0, 0.5)

# Proportion of null-generated sample  
# effect sizes within the bin limits
Nulls = mean (Sample0>Bin[1] & Sample0< 
Bin[2])

# Proportion of alternative-generated  
# sample effect sizes in bin limits
Alts = mean (SampleA>Bin[1] & SampleA< 
Bin[2])

# Approximate BF given by ratio of the  
# two proportions
BF0A = Nulls / Alts

Essentially, what we are doing here is dividing the 
height of the green bar marked with an arrow by the 
height of the blue bar marked with an arrow. Running 
this script, we obtain a Bayes factor of 2.62. This means 
that if Kim will observe a sample effect size somewhere 
between 0 and 0.5, that data will have been slightly more 
likely under the null hypothesis than under the alterna-
tive hypothesis. Put differently, the null hypothesis pre-
dicts a sample d in the range of 0 and 0.5 more strongly 
than the alternative hypothesis does.

What happens if we make the bins more narrow? You 
can experiment by changing the values of the bin. The 
bottom left panel in Figure 3 examines the approximate 
Bayes factor for the bin from 0.2 to 0.4, and the top right 
panel examines the approximate Bayes factor for the bin 
from 0.2 to 0.3. For these bins in our specific samples, 
the approximate resulting Bayes factors are 1.03 and 
1.55, respectively. For reference, the exact Bayes factor 
corresponding to a sample effect size of 0.25 and n = 
50 is 1.54 (see the bottom right panel in Fig. 3).4 We see 
that even a bin with a width of 0.1 comes pretty close 
already.

What if Kim had collected data with a sample d of 
0.75 instead of 0.25? Inspection of the histograms shows 
us that around value 0.75 on the x-axis, the blue bars 
are actually much larger than the green bars, indicating 
that this data are (much) more likely to occur under the 
alternative hypothesis than under the null hypothesis: 
The corresponding Bayes factor is over 6,000.

In the next two sections, we turn our attention to 
using simulation to approximate Bayes factors for data 
that are actually observed. In doing so, we substantially 
change the nature of our simulations. Before we gener-
ated many instances of data that were consistent with 
two different priors. In what follows, we zoom in on 
one specific data set that was actually observed and 
use simulation to draw samples from the posterior dis-
tribution. The samples from the prior and posterior 
distributions, in turn, can be used to obtain a Bayes 
factor.

Simulation of a Posterior Distribution

In the previous section, we simulated a wide range of 
data from the prior. We used the resulting simulated data 
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sets to approximate Bayes factors for specific hypotheti-
cal data, should it have been observed. In this section, 
we assume that one specific data set has actually been 
observed, and we use simulation to explore the relation-
ships among the posterior, the prior, and the Bayes factor 
(see Section 8.1 of Lee & Wagenmakers, 2013, for a 
similar demonstration). In other words, in the previous 
section we used simulation to generate multiple data 
sets that could be observed for a true parameter value. 
In the next two sections, we instead use simulation to 
explore how likely it is for a range of parameter values 
to have generated a single data set. So, in essence, we 
turn things around: Before, we looked at data that could 
have been observed given specific parameter values, and 
now we look at parameters that could have generated 
a specific data set.

Before we get to our example, a quick refresher of 
Bayes rule for estimation may be useful. Bayes rule states 
that the posterior density for an individual parameter 
value θ after the data have been seen is given by

 
P H P H( | , ) = ( | )θ θdata

Posterior Density Prior Densit
1 24444 34444

yy
Updating Factor

data

data1 244 344

1 24444 34444

× P H

P H

( | , )

( | )

θ
,
 (3)

where P(θ|H) is the prior density of θ, P(data|θ,H) is 
the likelihood for the data given the specific value for 
θ, and P(data|H) is the likelihood for the data that is a 
weighted average across each possible value of θ. The 
latter term is typically called marginal likelihood, as it 
is a likelihood in which one variable is collapsed over, 
or marginalized out. For example, say the probability 
of rain on any given day in January in The Netherlands 
is 30%: P(rain|January,Netherlands) = .3. Furthermore, 
say that the probability of rain on any given day in July 
in The Netherlands is 40%: P(rain|July,Netherlands) = 
.4. Assuming, for this simple example, that these are the 
only two months of the year, the marginal likelihood 
P(rain|Netherlands), in which the month variable is mar-
ginalized out, becomes (.3 + .4)/2, or .35; the number 
of days is identical in the two months, so that the 
weighted average of the probabilities is simply the mean. 
The likelihood we work with in the rest of these sections 
is P(data|δ,H), or the probability of the data given a 
specified population effect size, δ, as dictated by the 
t-test model. The marginal likelihood we work with in 
the rest of these sections is P(data|H), or the probability 
of the data given any population effect size, which is 
obtained by marginalization over the possible values of 
δ (weighted by the prior distribution).

The grouping of terms in Equation 3 makes it clear 
that the posterior density for a given parameter value θ 
is merely the prior density for that point multiplied by 
an updating factor. As we showed through simulation 

in the previous section, the likelihood and marginal 
likelihood (the terms making up the updating factor) 
are given by the heights of the prior predictive dis-
tributions at the point corresponding to the data, for 
a given parameter value θ (in our previous example, 
the null hypothesis, with value zero) and a weighted 
average over all θ values (in our previous example, 
the alternative hypothesis), respectively. Essentially, 
Bayes rule says that values of θ whose predictive 
distributions assign relatively high probability to the 
observed data get a bump in density, and those that 
assign relatively low probability to the data decrease 
in density.

In the following example, we use an overly simplistic 
data set. Our fictional data set consists of seven values: 
−2, −1, 0, 1, 2, 3, and 4. We are interested in testing if 
the population mean differs from zero. We can run this 
analysis simply in JASP by creating a .csv file with a 
column of these seven values and running a Bayesian 
one-sample t test (see Wagenmakers et  al., 2018, for 
some JASP examples). The output is shown in the top 
panel of Figure 4.

In the remainder of this section, we approximate what 
JASP computes directly (and, as a result, somewhat 
obscurely) with what a sampler can do more intuitively. 
For this to work, we need a working copy of JAGS 
(Plummer, 2003) in addition to R. We also need to install 
two R packages, R2jags (Su & Yajima, 2020) and (for 
later) polspline (Kooperberg et al., 2020). The following 
lines of code approximate the posterior distribution that 
JASP produced (the JAGS model itself is contained in 
the object JZSfulldata):

# Load the package R2jags, and  
# interface between R and JAGS
library (R2jags)

# The data used for our sample
dat = -2:4

# Number of data points in the sample
n = length (dat)

# The following JZSfulldata object is  
# a JAGS model string
# It will subsequently be used to  
# specify the model in the jags()  
# function below
JZSfulldata <- "model{
# This for loop specifies the  
# likelihood for the data
# ("How were the data from the sample  
# generated?")
for (i in 1:n)
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{
# Data point i is normally  
# distributed with mean mu and  
# precision invsigma2
dat[i] ~ dnorm (mu, invsigma2)

}

# Next come prior distributions for  
# delta and invsigma2 parameters

# Cauchy prior on delta (using the  
# t-dist. with 1 df)
delta ~ dt (0, 2, 1)

# Improper prior for sigma2  
# (approximating the Jeffreys′s prior)
invsigma2 ~ dgamma (.00001, .00001)

# Finally, transform back to the  
# variables mu and sigma
sigma <- sqrt (1/invsigma2)
mu <- delta * sigma

}"

# List of variables to be passed to  
# JAGS (data and sample size)
Fulldata = list (dat = dat, n = n)

# This tells JAGS which parameters′  
# samples we want to see when it  
# finishes
JAGSparam = c("mu", "sigma", "delta")

# Finally, the jags() function calls  
# JAGS to run the simulations as we  
# specified
FitFulldata = jags (data = Fulldata, 
parameters.to.save = JAGSparam,
n.thin = 1, n.iter = 20000, n.burnin = 
10000, n.chains = 1,

model.file = 
textConnection(JZSfulldata))

The posterior distribution is ultimately obtained via 
compromise between the prior distribution and the 
information provided by the data through the likeli-
hood (for an illustration, see Example 3 of Etz & Vande-
kerckhove, 2018). So now we need to provide prior 
distributions and a likelihood for the data. Starting with 
the likelihood, we assume that each data point comes 
from a normal distribution with unknown population 
mean µ and variance σ2 (as we would with a traditional 
t test). Note that JAGS is a bit unorthodox when it comes 
to statistical software because it works with mean and 

precision parameters, the latter being the inverse of the 
variance. So rather than specifying a model using µ and 
σ or σ2, we instead need to specify the model using µ 
and 1/σ2. Thus, we specify a normal distribution with 
mean mu and precision invsigma2 in the code.

To complete our model, we need prior distributions 
for the parameters that are specified in our likelihood 
function. However, in the default Bayesian t test, one 
tests hypotheses using the standardized effect δ, calcu-
lated as µ/σ, so instead of specifying a prior for µ 
directly, we specify priors for δ and 1/σ2 and then con-
vert these to µ using µ = δ × σ (conversions take place 
in the last two lines of the model section of the code). 
Recall that the prior for δ is a Cauchy distribution cen-
tered on zero with a scale parameter of 2 2/  (equiva-
lent to a t distribution with a scale of 2 2/  and 1 degree 
of freedom; see the left side of Fig. 2). The parameters 
required by JAGS for the t distribution are mean, preci-
sion (inverse of scale, squared), and degrees of freedom. 
Thus, the precision parameter of the δ prior we need to 
provide is the squared inverse of the scale: 2.

Finally, we need a prior for the precision, 1/σ2. The 
formal prior used in the default Bayesian t test is known 
as the Jeffreys prior (Rouder et al., 2009), an improper 
prior because the area under the curve does not add up 
to 1.5 Unfortunately, improper priors are not allowed in 
JAGS. For our purposes, this prior is approximated nearly 
perfectly by an inverse gamma distribution with shape 
and scale parameters of 0.00001 (which is equivalent to 
a gamma distribution on σ2 with shape and scale param-
eters of 0.00001). A visualization of a gamma distribution 
with shape and scale parameters of 0.00001 is provided 
in Figure 5.
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Fig. 5. Gamma distribution with shape and scale parameters of 
0.00001.
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The remaining bit of code specifies the data and runs 
the JAGS sampler. Specifically, we draw 10,000 values 
from the posterior distribution (i.e., the difference between 
n.iter and n.burnin in the JAGS code). More would 
be possible, either by increasing the number of iterations 
or by running the simulation multiple times (i.e., increas-
ing the number of chains), but for purposes of this exam-
ple, 10,000 values offer more than enough precision to 
approximate the posterior distribution. We have chosen 
to run a large number of samples because that will allow 
us to approximate the Bayes factor that analytic methods 
provide more accurately. To plot the output of the sam-
pler, we can use the following lines of code:

# Extract the mcmc samples JAGS  
# generated
Fulldatamcmc = as.mcmc (FitFulldata)

# Pull out the mcmc samples for the  
# delta parameter specifically
Fulldelta = Fulldatamcmc[[1]][,"delta"]

# Create a density plot of the posterior  
# samples of delta
plot (density (Fulldelta, n = 4096), 
xlim = c(-2,2), bty = ′n′, axes = F,
xlab = "Effect Size", ylab = "Density", 
main = "")

# Create the axes
axis (1); axis (2, las = 1)

# Add the prior distribution of delta  
# for comparison
curve (dcauchy (x, 0, sqrt(2)/2),  
from = -2, to = 2, lty = 2, add = T)

The resulting output is shown in the bottom left 
panel of Figure 4. The posterior shows us the probabil-
ity density of different values of unknown population 
parameter δ, given the observed data set of {−2, −1, 0, 
1, 2, 3, 4} under the alternative hypothesis. At first 
glance, the posterior distribution looks very similar to 
the one produced by JASP in the top panel. In the next 
section, we explore whether the Bayes factors for the 
analytic JASP approach and the approximate JAGS 
approach agree.

In the example, we specified a likelihood for each data 
point separately. It is entirely possible to summarize all 
the relevant characteristics of the data set using the sam-
ple test statistic t and put our likelihood on that instead. 
Such a specification is provided in the appendix.

With an approximation of the posterior distribution 
for our effect-size parameter δ under the alternative 
hypothesis in hand, we use this information in the next 
section to obtain the default Bayes factor.

Bayes Factor Visualization: The  
Savage-Dickey Method

We have used JAGS to great effect to obtain the posterior 
distribution for the effect-size parameter δ. We can now 
calculate a Bayes factor by taking the ratio of the prior 
and posterior densities of δ evaluated at zero, a tech-
nique known as the Savage-Dickey method (see, e.g., 
Wagenmakers et al., 2010). Conveniently, the Bayes fac-
tor is nothing more than an updating factor (see Equa-
tion 3), as it quantifies whether a parameter or hypothesis 
is more plausible after the data have been seen (quanti-
fied by the posterior) than before the data have been 
seen (quantified by the prior).

Although it can be shown mathematically why the 
Bayes factor can be represented as the ratio of the prior 
and posterior densities (see Box 1), in our opinion, 
understanding why the Savage-Dickey method works is 
not intuitive. In what follows, we use the simulation 
results from the previous section to explain the rationale 
behind the Savage-Dickey method.

In order to gain some intuition with respect to the 
Savage-Dickey method, which is typically used to visual-
ize the Bayes factor, we briefly move away from our 
original null hypothesis and alternative hypothesis. Spe-
cifically, we change our point null hypothesis (δ = 0) 
into an interval null hypothesis (and change our alterna-
tive hypothesis to all values outside the null interval). 
Say, for instance, that our null hypothesis is given by 
−0.5 < δ < 0.5, and our alternative hypothesis is given 
by |δ| > 0.5 (i.e., the remaining possible values of δ). 
This scenario is visualized in the top panel of Figure 6, 
in which the null hypothesis corresponds to the area 
between the vertical dashed lines.

Recall that we can use Equation 2 to obtain the Bayes 
factor. Practically speaking, we need the areas of the pos-
terior between the vertical lines and outside the vertical 
lines, and the areas of the prior between the vertical lines 
and outside of the vertical lines. With our JAGS samples 
in hand, we approximate the area of the posterior within 
the vertical lines by calculating the proportion of samples 
that fell within the vertical lines. The area outside the 
dashed lines is approximated by subtracting that propor-
tion from 1 (recall that probability distributions sum to 1).

Because our prior distribution is an exact distribution, 
we can calculate the area of the prior within the vertical 
lines exactly. Code to calculate the four quantities 
needed is as follows:

# The max absolute value of delta  
# under the null hypothesis
Margin = .5

# Area under the posterior for the  
# null hypothesis
PostH0 = mean (Fulldelta>-Margin & 
Fulldelta<Margin)
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# Area under the posterior for the  
# alternative hypothesis
PostHA = 1 - PostH0

# Area under the prior for the null  
# hypothesis
PriorH0 = pcauchy (Margin, 0, 
sqrt(2)/2) - pcauchy (-Margin, 0, 
sqrt(2)/2)

# Area under the prior for the  
# alternative hypothesis
PriorHA = 1 - PriorH0

# Dividing the posterior odds by the  
# prior odds gives the Bayes factor
BF0A = (PostH0/PostHA) / (PriorH0/
PriorHA)

For our samples, we get a posterior area between the 
vertical lines of .67, but because the area was calculated 
using samples, you might get slightly different results. 
The area of the prior between the vertical lines is 
approximately .39. The resulting Bayes factor, BF0A (the 
probability of the data under the null hypothesis relative 

to the probability of the data under the alternative 

hypothesis), would be calculated as .

.
/

.

.

67

1 67

39

1 39− −
, or 

approximately 3.20, so the relative support for the null 
hypothesis provided by the data is approximately 3.

Let us repeat this procedure, but now choosing a 
more narrow band around δ = 0 as our null hypothesis: 
−0.25 < δ < 0.25 (see the middle panel of Fig. 6). You 
can perform the calculation with us; all that is required 
is to change the Margin variable in the previous bit of 
code to reflect our new band of {−0.25, 0.25}. For our 
samples, we get a posterior area between the dashed 
lines of .36. The area of the prior between the dashed 
lines is approximately .22. Note that both areas are 
smaller than for the previous band, as they should be. 

The resulting Bayes factor is 
.

.
/

.

.

36

1 36

22

1 22− −
, or approxi-

mately 2.04.
We repeat this procedure one last time, now choosing 

a very narrow band around δ = 0 as our null hypothesis: 
−0.01 < δ < 0.01 (see the bottom panel of Fig. 6). For 
our samples, we get a posterior area between the dashed 
lines of .015. The area of the prior between the dashed 
lines is approximately .009. Note that the areas of both 
the prior and the posterior for the null hypothesis are 

Box 1. The Savage-Dickey Density Ratio

The Savage-Dickey density ratio (often shortened to the Savage-Dickey ratio or Savage-Dickey method) is the 
ratio of posterior density to prior density for a parameter value (Dickey, 1971; Dickey & Lientz, 1970). The Savage-
Dickey method is useful because it connects Bayes rule for hypothesis testing (Equation 2) with Bayes rule for 
estimation (Equation 3) and provides a way to “see” how large the Bayes factor is.

Consider the hypothesis-testing case when the null hypothesis, H0, is nested within the alternative hypothesis, 
HA, which means H0 sets a parameter present in HA to equal some predetermined value. The t test is one such 
example; H0 restricts δ to take the value zero. In this scenario, P(data|δ = 0, HA) will equal P(data|H0) because 
H0 is just HA with the restriction δ = 0. Moreover, the same P(data|HA) shows up in both the Bayes factor and 
the estimation updating factor. Thus, the Bayes factor testing whether δ = 0 equals the estimation updating factor 
at δ = 0. If we divide each side of Equation 3 by the prior density, we see the following result:

 

P H

P H
A

A

( = 0| , )

( = 0| )
=

δ
δ

data

Savage-Dickey Ratio
1 2444444 3444444

PP H

P H

PA

A

( | = 0, )

( | )
=

(data

data
Updating Factor

δ

1 2444444 3444444

ddata

data
Bayes Factor

| )

( | )
.0H

P HA1 24444 34444  (4)

Hence, the Savage-Dickey ratio, the updating factor, and the Bayes factor are all equal, and we can conveniently 
visualize the Bayes factor as a comparison of the prior and posterior densities. When the posterior density is 
larger than the prior density, the Bayes factor will show evidence in favor of H0, and when the posterior density 
is smaller than the prior density, the Bayes factor will show evidence against H0.

However, it is important to note that this simple relationship between the Bayes factor and the Savage-Dickey 
density ratio can become more complicated in hypothesis-testing scenarios involving models with many inter-
dependent parameters. In such cases, it is possible that the Savage-Dickey ratio and Bayes factor diverge by a 
positive scalar factor; that is, the ratio of posterior to prior density equals k, but the Bayes factor equals αk for 
some positive α. For technical explanations and examples of this phenomenon, see Heck (2019), Verdinelli and 
Wasserman (1995), and Wagenmakers et al. (in press, Section 6).
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now very small. The consequence of this is that the areas 
of both the prior and the posterior for the alternative 
hypothesis are close to 1.

We can exploit this to simplify our expression for the 

Bayes factor as follows: BF0

015

1 015

009

1 009

015

009A 1 64= ≈ ≈
.

.
/

.

.

.
.

− −
BF0

015

1 015

009

1 009

015

009A 1 64= ≈ ≈
.

.
/

.

.

.
.

− −
. That is, we can approximate the Bayes factor by 

dividing the area of the posterior for the null hypothesis 
by the area of the prior for the null hypothesis. We do 
not need to explicitly take into account the areas outside 
the vertical lines anymore! This approximation becomes 
better and better the more narrow our chosen band 
around δ = 0, providing we draw enough samples. In 
the limit, where we use the point null hypothesis δ = 0, 
dividing the height of the posterior for δ = 0 by the 
height of the prior for δ = 0 provides the exact Bayes 

factor. This method of obtaining the Bayes factor is 
called the Savage-Dickey method (see, e.g., Wagenmakers 
et al., 2010). We can calculate the Bayes factor using the 
Savage-Dickey method for our samples using the follow-
ing bit of code:

# An R package that ′guestimates′ smooth  
# densities based on data 
library (polspline)

# Posterior density for null value  
# under alt hypothesis
Post0underHA = dlogspline (0, logspline 
(Fulldelta))

# Prior density for null value under  
# alt hypothesis
Prior0underHA = dcauchy (0, 0, sqrt(2)/2)

# The Savage Dickey ratio gives the  
# Bayes factor
BF0A = Post0underHA / Prior0underHA

The logspline function essentially treats the sam-
pled posterior distribution as if it were a proper density 
function and evaluates the density at δ = 0 as if the curve 
were smooth. Now that we are no longer working with 
interval hypotheses, the prior and posterior for the null 
hypothesis are no longer smooth continuations of the 
prior and posterior for the alternative hypothesis. Thus, 
our notation now refers to the prior and posterior den-
sity for the null value under the alternative hypothesis 
(i.e., the value above zero in the left side of Fig. 2). The 
resulting Bayes factor is 1.64 for our sample, which cor-
responds fairly well with the JASP output (see the top 
panel of Fig. 4, value of BF01).

In this section and the previous one, we have 
attempted to visualize a way of obtaining Bayes factors 
that is an alternative to what happens behind the scenes 
when JASP calculates Bayes factors for a simple one-
sample t-test design. One advantage of such a hands-on 
approximation is that it becomes quite simple to exam-
ine how strongly the choice of prior employed in the 
default-Bayes-factor approach influences the results 
obtained. We provide a few basic examples of how 
such an examination might be conducted in the next 
section.

The Prior’s Influence on the Bayes Factor

In the previous sections, we have seen the distinguishing 
feature of the JZS Bayes factor: the Cauchy prior. We 
have also seen how the Bayes factor can be calculated 
by (a) generating prior predictives under the null hypoth-
esis and under the alternative hypothesis or (b) evaluating 
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Fig. 6. Three different interval null hypotheses, indicated by the 
dashed vertical lines: −0.5 < δ < 0.5 (top panel), −0.25 < δ < 0.25 
(middle panel), and −0.01 < δ < 0.01 (bottom panel). The interval null 
hypotheses are superimposed on the posterior and prior distributions 
obtained from JAGS in the previous section.
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the prior and posterior distributions under the alter-
native hypothesis, evaluated at δ = 0, for an observed 
data set.

One reasonable question to ask is, how much does 
the choice of prior affect the Bayes factor? After all, 
sometimes multiple defensible nondefault priors can be 
specified in addition to or instead of a default prior (e.g., 
Dienes, 2019; Gronau et  al., 2020; Jones & Johnson, 
2014; Saunders et  al., 2018). The sensitivity of Bayes 
factors to priors has been discussed previously by Liu 
and Aitkin (2008) and Vanpaemel (2010). In what fol-
lows, we demonstrate how to examine this sensitivity 
by calculating the Bayes factor for three alternative 
choices of prior that differ in increasing degrees from 
the Cauchy prior. The three other priors we examine are

•• A normal prior with a mean of 0 and variance of 1
•• A uniform prior with a range from −2 to 2
•• A bimodal normal prior, essentially a mixture of 

two normal priors with means of −2 and 2, respec-
tively, and standard deviations of 1

The Cauchy, normal, uniform, and bimodal priors are 
visualized in the four columns of Figure 7.

We run the sampler for our original data set {−2, −1, 
0, 1, 2, 3, 4} and for a second, more substantial data set 
in which we drew 40 random samples from a normal 
distribution with a mean of 1 and standard deviation of 
1. Code for running these models is provided below. Note 
that to keep the length of the code block manageable, 
we use the coding for the sample test statistic alluded to 
at the end of the section titled Simulation of a Posterior 
Distribution and explained in the appendix.

# Loads a module in JAGS that can deal  
# with a mixture of distributions
load.module("mix")

# We create four different JAGS models
JZS <- list ("model{
# The same likelihood is used for  
# each of the four models. We chose
# a more efficient specification of  
# the likelihood (see appendix)
tstat ~ dnt(delta * sqrt(n), 1, n-1)
# Prior 1, the Cauchy prior
delta ~ dt (0, 2, 1)

}",
"model{
tstat ~ dnt(delta * sqrt(n), 1, n-1)
# Prior 2, the Normal prior
delta ~ dnorm (0, 1)

}",
"model{
tstat ~ dnt(delta * sqrt(n), 1, n-1)
# Prior 3, the Uniform prior

delta ~ dunif (-2, 2)
}",
"model{
tstat ~ dnt(delta * sqrt(n), 1, n-1)
# Prior 4, the bi-modal Normal prior
delta ~ dnormmix (c(-2,2), c(1,1), 
c(1,1))

}")

# The two data sets used for our  
# sample, put into a list
Dum = list (-2:4, rnorm (40, 1, 1))

# We create a list for our four  
# models, each of which will
# be applied to two data sets
FitTstat = list ()

# A counter to put each result in a  
# consecutive slot in the list
Count = 0

# Repeating variable specification for  
# both data sets
for (i in 1:length(Dum))
{
dat = Dum[[i]]
# Sample mean
m = mean (dat)
#  Number of data points
n = length (dat)
#  Sample sd
s = sd (dat)
#  t statistic
tstat = (m/s)*sqrt(n)
# JAGS variables
Tstatdata = list (tstat = tstat, n = n)
 #  JAGS parameter to be returned
JAGStparam = c("delta")

# Repeating running the jags() 
# function call for each model  
for (j in 1:length(JZS))
{
Count = Count + 1

# Runs the simulations for each  
# data set and each model
FitTstat[[Count]] = jags (data = 
Tstatdata,
parameters.to.save = JAGStparam, 
n.thin = 1, n.iter = 20000,

n.burnin = 10000, n.chains = 1,
model.file = 
textConnection(JZS[[j]]))

}
}
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The resulting eight posterior distributions for the four 
different priors and two different data sets are shown in 
Figure 7.

For the remainder of this section, we discuss Bayes 
factors, indicating the probability of the data under the 
alternative hypothesis relative to the null hypothesis, 
that is, BFA0 rather than BF0A. BFA0 can be converted to 
BF0A by calculating 1/BFA0. Looking first at the smaller, 
overly simplistic data set, we see that the difference in 
the Bayes factor between the Cauchy and normal priors 
is negligible (0.62 vs. 0.69). When we substantially 
change the prior to a uniform distribution, the Bayes 
factor decreases a bit, to 0.52. Finally, when we radically 

change the prior to a bimodal distribution, we get a 
completely different Bayes factor (about 0.17).

For the larger data set, we see that the choice of prior 
has less of an effect on the qualitative conclusions. The 
difference in the Bayes factor between the Cauchy and 
normal priors is small in relative terms (about 18,000 vs. 
about 15,000). When we substantially change the prior 
to a uniform distribution, the Bayes factor decreases a 
bit further, to about 13,000. Finally, when we radically 
change the prior to a bimodal distribution, our Bayes 
factor is about 17,000.

This small demonstration is not meant to be an 
exhaustive simulation, but it should provide the insight 
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that prior distributions that are fairly diffuse (in the sense 
that they are spread over a wide range of values) and 
have somewhat similar shapes provide robust outcomes, 
even for small and strangely distributed data sets. As 
priors get more extreme, their effect on the Bayes factor 
becomes more pronounced, especially when data are 
sparse. Specifically, when priors are highly concentrated 
in regions of the parameter space that are largely incon-
sistent with the data, Bayes factors with extreme values 
can be expected. We recommend against using such 
extreme priors unless one has especially strong reasons 
to do so, such as copious and reliable previous data on 
the topic.

Conclusion

In this Tutorial, we have attempted to show in an intui-
tive manner how simulation studies can be employed 
to learn about statistical or mathematical concepts. We 
started out by providing code to simulate a normal 
prior distribution by sampling random values from this 
distribution.

Next, we transitioned to a description of Bayes factors 
for quantifying evidence in Bayesian testing. Our exposi-
tion was mainly conceptual, eschewing equations for 
intuition. We discussed a popular implementation, the 
JZS Bayes factor, which is the Bayes factor used in the 
BayesFactor package in R and the statistical freeware 
package JASP. We then used the idea of simulating from 
a prior distribution to show how generating data from 
priors under two hypotheses can be used to approximate 
Bayes factors for hypothetical, unobserved, data sets.

In the subsequent section, we took a different 
approach to approximating Bayes factors through simu-
lation. It is not always easy to see for social scientists 
what happens in the black box of programs like the 
BayesFactor R package and the JASP software program. 
We approximated their operations by using simulations 
to approximate areas under posterior distributions. By 
effectively replacing the point null with a small interval 
around the null, we used simulations to approximate the 
exact Bayes factor provided by the Savage-Dickey 
method.

Finally, we harnessed the power of simulation to 
assess the effect of the choice of prior distribution on 
the Bayes factor for a modest selection of priors and two 
specific data sets. Such an approach can be implemented 
by researchers for their specific data set, but we caution 
against the use of extreme priors without proper a priori 
justification.

It is worth pointing out that the JZS Bayes factor is 
not the only popular implementation of the Bayes factor 
available. Other notable candidates include versions by 
Gönen et al. (2005), the online tool by Dienes (2008; 
see Singh, n.d.), and the minimum Bayes factor available 
in the pCalibrate R package (Ott & Held, 2017).

Note that we do not advocate using simulations for 
the calculation of Bayes factors to be reported in scien-
tific articles. Whenever direct computation can be done, 
it should be preferred over approximating methods, such 
as simulations, much as experiments on a representative 
sample are unnecessary when the relevant information 
about the population is known.

With all of this said, in a world where the use of 
programs like R is increasingly common among research-
ers and students, we hope that viewing the JZS Bayes 
factor through the lens of a simulation approach 
increases understanding of this ever-more-popular vehi-
cle for reporting the results of statistical testing.

Appendix: Simulation of a Posterior 
Distribution Using the t-Test Statistic

Code for obtaining the posterior using the t-test statistic 
is provided below:

library (R2jags)

JZStstat <- “model{
# Likelihood based on test stat
tstat ~ dnt(delta * sqrt(n), 1, n-1)
 # Cauchy prior on delta
delta ~ dt (0, 2, 1)
}”

# The data
dat = -2:4
# Mean of data
m = mean (dat)
 #  Number of data points
n = length (dat)
# Sd of data
s = sd (dat)
 #  Test statistic of data
tstat = (m/s)*sqrt(n)
 #  Variables to be passed to JAGS
Tstatdata = list (tstat = tstat, n = n)
#  JAGS parameters to be returned
JAGStparam = c(“delta”)

FitTstat = jags (data = Tstatdata,  
parameters.to.save = JAGStparam,
n.thin = 1, n.iter = 20000, n.burnin = 
10000, n.chains = 1,

model.file = textConnection(JZStstat))

The main changes compared with the example in the 
section titled Simulation of a Posterior Distribution are 
the following:

•• We provide JAGS with the sample test statistic 
instead of the raw data. For the one-sample case, 
the test statistic is calculated as the sample mean 
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divided by the sample standard deviation times 
the square root of the sample size, or the sample 
mean divided by the standard error.

•• We need a likelihood for the sample test statistic. 
In other words, we need a distribution that char-
acterizes the probability of obtaining specific 
sample test statistics given an underlying popula-
tion effect size δ and sample size n. This likelihood 
is given by a noncentral t distribution with noncentral-
ity parameter δ × √n, precision of 1, and n − 1 degrees 
of freedom (see Fig. A1 for a visualization).

•• We no longer explicitly specify a prior distribution 
for σ2. However, this setup implicitly uses the same 
improper prior for σ2 as before (see Gronau et al., 
2018).

The noncentral t distribution may sound fancy, but in 
practice it boils down to the same thing as the likelihood 
on each individual data point, because the procedure 
behind computing a t-test statistic is based on the 
assumption that the data are normally distributed, which 
is made explicit in the likelihood for individual data 
points in the first JAGS model. Researchers can use this 
fact to their advantage when they wish to reanalyze 
published study results with a default-Bayes-factor 
approach and have access to the sample test statistics, 
but not the raw data. The procedure for a two-samples 
t test is very similar; in the JAGS model, the reader need 
only modify the likelihood to factor in the new noncen-
trality parameter δ × √(n1 × n2/(n1 + n2)) and degrees of 
freedom n1 + n2 − 2.

The code for plotting the output of the sampler is 
similar to the code for our example that used the raw 
data:

Tstatmcmc = as.mcmc (FitTstat)
Tstatdelta = Tstatmcmc[[1]][,”delta”]
plot (density (Tstatdelta, n = 4096), 
xlim = c(-2,2), bty = ′n′, axes = F,
xlab = “Effect Size”, ylab =  
“Density”, main = “”)

axis (1); axis (2, las = 1)
curve (dcauchy (x, 0, sqrt(2)/2), from = 
-2, to = 2, lty = 2, add = T)

The output is presented in the bottom right panel of 
Figure 4.
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3. The exact probability is found using the pnorm command as 
follows: pnorm(.5) - pnorm(-.5). The result is .383.
4. This result can, for instance, be obtained from the BayesFactor 
R package using 1/exp(ttest.tstat(t = .25*sqrt(50), 
n1 = 50, rscale = sqrt(2)/2)[[′bf′]]).
5. This statistical nomenclature can be somewhat misleading. 
Improper here refers only to the technical aspect of the area not 
adding up to 1; it does not refer to the validity of this type of 
prior for modeling purposes. Improper priors are quite suitable 
for many modeling endeavors.
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