

 University of Groningen

Benchmarking UAQ solvers
Armando, Alessandro; Gazzarata, Giorgia; Turkmen, Fatih

Published in:
Proceedings of ACM Symposium on Access Control Models and Technologies, SACMAT

DOI:
10.1145/3381991.3395616

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Armando, A., Gazzarata, G., & Turkmen, F. (2020). Benchmarking UAQ solvers. In Proceedings of ACM
Symposium on Access Control Models and Technologies, SACMAT (pp. 145-152). Association for
Computing Machinery. https://doi.org/10.1145/3381991.3395616

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-06-2022

https://doi.org/10.1145/3381991.3395616
https://research.rug.nl/en/publications/0c2f0e94-e702-4e87-9e90-626a17695c5d
https://doi.org/10.1145/3381991.3395616

Benchmarking UAQ Solvers
Alessandro Armando

alessandro.armando@unige.it
DIBRIS, Università di Genova

Genova, Italia

Giorgia Gazzarata
giorgia.gazzarata@dibris.unige.it
DIBRIS, Università di Genova

Genova, Italia

Fatih Turkmen
f.turkmen@rug.nl

University of Groningen
Groningen, Netherlands

ABSTRACT
The User Authorization Query (UAQ) Problem is key for RBAC
systems that aim to offer permission level user-system interaction,
where the system automatically determines the roles to activate in
order to enable the requested permissions. Finding a solution to
a UAQ problem amounts to determining an optimum set of roles
to activate in a given session so to obtain some permissions while
satisfying a collection of authorization constraints, most notably
Dynamic Mutually-Exclusive Roles (DMER) constraints. Although
the UAQ Problem is NP-hard, a number of techniques to solve the
UAQ problem have been put forward along with encouraging, albeit
inconclusive, experimental results. We propose a methodology for
designing parametric benchmarks for the UAQ problem and make a
novel suite of parametric benchmarks publicly available that allows
for the systematic assessment of UAQ solvers over a number of
relevant dimensions. By running three prominent UAQ solvers
against our benchmarks, we provide a very comprehensive analysis
showing (i) the shortcomings of currently available benchmarks,
(ii) the adequacy of the proposed methodology and (iii) that the
reduction to PMaxSAT is currently the most effective approach to
tackling the UAQ problem.

CCS CONCEPTS
• Security and privacy → Access control; Authorization.

KEYWORDS
Role-based Access Control; User Authorization Query Problem;
Boolean Satisfiability

ACM Reference Format:
Alessandro Armando, Giorgia Gazzarata, and Fatih Turkmen. 2020. Bench-
marking UAQ Solvers. In Proceedings of the 25th ACM Symposium on Access
Control Models and Technologies (SACMAT ’20), June 10–12, 2020, Barcelona,
Spain. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3381991.
3395616

1 INTRODUCTION
The User Authorization Query (UAQ) Problem [5] amounts to de-
termining an optimum set of roles to activate in a given session in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT ’20, June 10–12, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7568-9/20/06. . . $15.00
https://doi.org/10.1145/3381991.3395616

order to obtain some permissions while satisfying a collection of au-
thorization constraints, most notably Dynamic Mutually-Exclusive
Roles (DMER) constraints.

The UAQ problem is key to support permission level user-system
interaction (where the system automatically determines the roles
that need to be activated in order to enable the requested permis-
sions), as opposed to role level interaction (where it is the user
who explicitly determines and tells the system which roles must
be activated). UAQ solvers can thus help to improve the usabil-
ity of most advanced access management and enforcement sys-
tems (e.g. Apache Fortress1) offering full support to the RBAC
standard [12] by relieving the user from the burden of dynamically
choosing the roles to activate for the task at hand. This choice could
indeed be complex as the set of roles to activate must (i) enable
the execution of desired functionalities, (ii) comply with the au-
thorization constraints prescribed by the security policy and, e.g.,
(iii) minimize the activation of unnecessary permissions (which
represent a risk). UAQ solvers can also play an important role by
offering improved support to the enforcement of RBAC policies in
microservices architectures.2 In this context, determining what is
the most appropriate set of roles to activate for a given service is
not only difficult but must be done very quickly.

In a UAQ problem the permissions requested by the user come
in two sets: a lower bound Plb and an upper bound Pub such that
Plb ⊆ Pub ⊆ P , where P is the complete set of permissions. The
permissions in Plb are those thatmust be granted, whereas those in
Pub \ Plb are additional permissions that can be granted. It is then
possible to either minimize or maximize the number of permissions
in Pub \ Plb to be granted depending on which objective (safety
or availability, respectively) has priority. If safety (availability) is
chosen, then the number of permissions from Pub \ Plb needs to
be minimized (maximized, resp.). Notice that a certain degree of
safety is achieved even if availability is preferred over safety, since
no permission in P \ Pub can be granted. DMER constraints are
of the form DMER({r1, . . . , rm }, t). They constrain activation of
roles by requiring that no user can activate t or more roles in
{r1, r2, . . . , rm }.

Although the UAQ Problem is NP-hard [4, 5], a number of tech-
niques to solve the UAQ problem have been put forward along with
encouraging experimental results. These approaches can be broadly
classified in two classes: search-based techniques [11, 15], whereby
the problem is solved by systematically exploring a suitably defined
search space, and SAT-based techniques [2, 10, 11, 15], i.e. techniques
that leverage an encoding of the problem into either (i) a sequence
of propositional satisfiability problems (SAT) [10, 11, 15] or (ii) a
partial maximum propositional satisfiability problem (PMaxSAT) [2,
15] and then use SAT solvers and PMaxSAT solvers respectively as
1https://directory.apache.org/fortress
2https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

145

https://doi.org/10.1145/3381991.3395616
https://doi.org/10.1145/3381991.3395616
https://doi.org/10.1145/3381991.3395616

workhorses to find a solution to the problem (if any). SAT-based ap-
proaches leverages the fast paced advancements achieved by lively
and dedicated research communities that organize competitions3
and evaluations4 of state-of-the-art solvers on a yearly basis.

Most of the techniques proposed in the literature have been
experimentally evaluated by running them against different bench-
mark problems. These benchmarks are usually parametric in some
relevant dimension of the problem (e.g. number of roles, number of
DMER constraints, number of requested permissions) and aim at
evaluating the scalability of the proposed techniques along them.
The current state of affairs is nevertheless unsatisfactory for a num-
ber of reasons. The available benchmarks do not cover (and thus do
not test the solvers against) all the relevant aspects of the problem.
For instance, the problems used in [11] do not consider the case
where the number of roles to activate is maximized (i.e. obj = max)
and therefore do not allow the evaluation of UAQ solvers in case
of obj = max. Furthermore, solvers are often evaluated against
problems proposed by the same authors and this does not permit
to assess the relative merits of the proposed techniques.

By leveraging the asymptotic complexity analysis results given
in [11], in this paper we propose a methodology for designing
parametric benchmarks for the UAQ problem. As we will see, our
methodology leads to benchmarks capable to (i) stress test solvers
along dimensions of the problem for which no polynomial-time
technique is known but also (ii) to check their effectiveness, by
determiningwhether they efficiently solve problems that are known
to be solvable in polynomial time.

By using our methodology we introduce and make publicly avail-
able a novel suite of parametric benchmarks that allows for the
systematic assessment of UAQ solvers over a number of relevant
dimensions. These include problems for which no polynomial-time
algorithm is known as well as problems for which polynomial-time
algorithms do exist. For each benchmark we indicate its purpose
and the expected behavior of solvers. The suite consists of 23 para-
metric benchmarks grouped in 14 families: 11 benchmarks (from
7 families) have the safety objective and 12 (from 7 families) have
the availability objective. For each benchmark and each considered
value of the parameter the suite includes 10 different problem in-
stances. This contribution is particularly important. In fact, the lack
of adequate benchmarks makes it difficult to assess the efficiency
of the different techniques used to tackle the UAQ problem. Even
more so, it makes it difficult to compare their performance. By pro-
viding a complete and adequate suite of benchmarks, we are de
facto offering the possibility to both assess the performance of a sin-
gle solver, and compare the performance of the different solutions.
[7] provided a similar contribution for the famous Symmetric and
Asymmetric Traveling Salesperson Problems. This work helped to
(i) reduce the publication of relatively weak TSP heuristics and (ii)
motivate development of new TSP approaches.

We have used the new suite of benchmark problems as well as
the benchmarks introduced in [11] to experimentally evaluate three
state-of-the-art solvers: 2D-Opt-Search [11] a search-based solver,
2D-Opt-CNF [11] that combines the reduction of the UAQ Decision
Problem to SAT, a state-of-the-art SAT solver and a binary search,

3http://www.satcompetition.org
4https://maxsat-evaluations.github.io/

and AQUA [2], a SAT-based solver that implements a reduction
of the UAQ Problem to PMaxSAT and uses any state-of-the-art
PMaxSAT solver to tackle the problem. The experiments provide a
comprehensive and comparative analysis of unprecedented breadth
from which it is possible to draw a number observations:

• 2D-Opt-CNF and AQUA quickly solve all benchmark prob-
lems taken from [11]. This result indicates that this suite of
benchmarks does not represent adequately the complexity
of the problem and it is therefore of limited use to assess the
effectiveness of the solvers.

• 2D-Opt-CNF and 2D-Opt-Search scale poorly for (most)
benchmarks in our suite for which polynomial-time algo-
rithms exist. This results is in stark contrast with the experi-
mental results given in [11] from which one could be led to
believe that these two solvers scale well in practice.

• For most benchmarks (22 out of 23), the behavior of AQUA
meets the expectations that can be drawn from the known as-
ymptotic complexity analysis results; this results is a strong
indication of the validity of the methodology we propose in
this paper, but it also indicates that there is still room for
further investigation.

• AQUA outperforms both 2D-Opt-Search and 2D-Opt-CNF in
the vast majority of the benchmark considered. This is hardly
surprising since PMaxSAT solver implements sophisticated
search algorithms specifically tailored to tackle optimization
problems; in contrast, 2D-Opt-CNF tackles the optimization
problem through a fairly naive binary search strategy and
2D-Opt-Search simply enumerates the solutions in order to
find an optimum. Yet, prior to our experimental analysis,
there was little empirical evidence (if any) to support this
conclusion.

• We single out a benchmark, namely Pub, which can be solved
efficiently but that all solvers we considered in our experi-
ments find it difficult to tackle. We believe that further anal-
ysis on this family of problems could lead to improvements
of existing solvers.

For resons of space, in this paper we present the specifications
and the experimental results of a subset of the benchmarks we
generated. The interested reader can find more details [6?].
Structure of the paper. In the next section we introduce the UAQ
problem. In Section 3 we provide an overview of the techniques for
solving the problem. In Section 4 we present our methodology for
the generation of parametric benchmark problems and introduce
the new suite of benchmarks. In Section 5 we present and discuss
the experimental results. In Section 6 we discuss the related work
and in Section 7 we conclude the paper with some final remarks.

2 THE UAQ PROBLEM
An RBAC policy is a tuple RP = (U ,R, P,UA, PA, ⪰,C), where U is
a set of users, R a set of roles, and P a set of permissions; users are
associated to roles by the user-assignment relation UA ⊆ U × R
and roles are associated to permissions by permission-assignment
relation PA ⊆ R × P ; ⪰ is a partial order on R, modeling the hi-
erarchy between roles, i.e. r1 ⪰ r2 means that r1 is more senior
than (has all permissions of) r2 for r1, r2 ∈ R; and C is a set of
dynamic mutually exclusive role (DMER) constraints of the form

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

146

http://www.satcompetition.org
https://maxsat-evaluations.github.io/

DMER({r1, . . . , rm }, t), with t ≤ m, stating that no user can simul-
taneously activate t or more roles in the set {r1, . . . , rm }.

Let u ∈ U , we define Ru = {r ′ ∈ R : r ⪰ r ′ for some r ∈

R such that (u, r) ∈ UA}. A useru has permission p iff (r ,p) ∈ PA for
some r ∈ Ru . We assume that RBAC policies considered are finite, i.e.
U , R, and P have finite cardinality. Moreover, we treat permissions
as if they are opaque (i.e. we do not consider the internal structure
of permissions) and mutually independent, i.e. the possession of
one or more permissions does not imply the possession of another
permission. Let p ∈ P , we define Rp = {r ′ ∈ R : r ′ ⪰ r for some r ∈

R such that (r ,p) ∈ PA} and RP ′ =
⋃
p∈P ′ Rp for any P ′ ⊆ P .

Similarly, if r ∈ R then Pr = {p ∈ P : (r ′,p) ∈ PA for some r ′ ∈
R such that r ⪰ r ′} and PR′ =

⋃
r ∈R′ Pr for any R′ ⊆ R. Let ϱ ⊆ R,

thenwe say that ϱ satisfiesDMER({r1, . . . , rm },n) iff |{r1, . . . , rm }∩

ϱ | < n and that ϱ satisfies C iff ϱ satisfies c for all c ∈ C .
Let S be a set of sessions and user : S → U a function that

associates each session s ∈ S with the corresponding user.
A User Authorization Query (UAQ) is a tuple q = (s, Plb , Pub ,obj),

where s ∈ S , Plb ⊆ Pub ⊆ P , and obj ∈ {any,min, max}.

Definition 2.1 (UAQ Problem). The UAQ Problem for q = (s, Plb ,
Pub ,obj) in RP is the problem of determining a set of roles ϱ ⊆

Ruser(s) such that (i) ϱ satisfies C , (ii) Plb ⊆ Pϱ ⊆ Pub , and (iii) any
other ϱ ′ ⊆ Ruser(s) that satisfiesC and Plb ⊆ Pϱ′ ⊆ Pub is such that
Pϱ ⊆ Pϱ′ if obj = min, or Pϱ′ ⊆ Pϱ if obj = max. In case obj = any,
any ϱ satisfying the (i) and (ii) is a valid solution.

Definition 2.2 (UAQ Decision Problem). Letw = (s, Plb , Pub ,kp)
where kp ∈ {≤, ≥}×[0, |Pub \Plb |]. The UAQDecision Problem forw
in RP is the problem of determining a set of roles ϱ ⊆ Ruser(s) such
that (i) ϱ satisfies C , (ii) Plb ⊆ Pϱ ⊆ Pub , and (iii.a) |Pϱ \ Plb | ≤ n
if kp = (≤,n), or (iii.b) |Pϱ \ Plb | ≥ n if kp = (≥,n).

For the sake of simplicity but without loss of generality, in our
work we assume that no role in R is assigned permissions that are
not contained in Pub , and that Pub = P . In fact, all the permissions
in P \ Pub must not be granted; therefore all the roles that activate
these permissions cannot be included in a solution. These roles and
the permissions in P \ Pub can thus be safely removed from the
policy (in polynomial time). By doing that, we simply exclude UAQ
problems that are de facto equivalent to UAQ problems that meet
our assumptions.

3 SOLVING THE UAQ PROBLEM
In this section, we provide a systematic overview of search-based
and SAT-based techniques for solving the UAQ problem. This will
also give insights into the complexity of the problem.
3.1 Search-based Techniques
A first approach to obtain a set of roles covering the desired permis-
sions minimally and satisfying the constraints is proposed in [16]
and improved in [15]. The approach amounts to

Algorithm SearchR

(1) enumerating all possible role activations for the user,
(2) checking (in polynomial time as shown in [11]) whether

the selected roles grant the requested permissions (i.e. fall
between Plb and Pub), and satisfy the DMER constraints,
and

(3) keeping the best (according to the security objective consid-
ered) solution encountered, if any.

The algorithm is clearly in O(2 |R |). However, if the objective is
min or any, then it is sufficient to activate at most one role per
permission and this leads to the following, more efficient version
of the algorithm:

Algorithm SearchRPlb
(1) enumerate all roles rp ∈ Rp for each p ∈ Plb ,
(2) check in polynomial time whether S = {rp ∈ Rp : p ∈ Plb }

is such that PS ⊆ Pub and S satisfies the DMER constraints,
and

(3) keep the best (according to the security objective considered)
solution encountered, if any.

If the objective is min or any, it is in fact possible to consider
the activation of individual roles granting the permissions in Plb
and the algorithm is in O(|R̂P |

|Plb |) [11]. Instead, an alternative
approach to tackling the problem for the max case is put forward
in [11]:

Algorithm SearchRDMER

(1) enumerate all sets of possible role activations Ra = R1∪· · ·∪
Rn ∪ Rfree , where Ri ⊆ rsi and |Ri | < ti , for all constraints
DMER(rsi , ti) in C and i = 1, . . . , |C |, and Rfree ⊆ R is the
set roles that do not occur in the DMER constraints (and can
thus be freely activated),

(2) check in polynomial time whether Plb ⊆ PRa ⊆ Pub and Ra
satisfies the DMER constraints.

(3) keep the maximum sized |PRa | solution encountered, if any.

We now note that for each constraint DMER(rsi , ti) in C there are∑t
k=1

(|r si |
k

)
subsets Ri of rsi such that |Ri | < ti . The number of

sets R1 ∪ · · · ∪ Rn is
(∑t

k=1
(|r si |
k

)) |C |
, from which it easily follows

that the enumeration of the set of roles Ra = R1 ∪ · · · ∪ Rn ∪

Rf r ee grows as O(r̂s |C |t̂
), where r̂s = maxDMER(r s ,t)∈C |rs | and

t̂ = maxDMER(r s ,t)∈C t . This improves the upper boundO(|R | |C |t̂)

given in [11]. As shown in [11], the role hierarchy, ⪰, does not
contribute to the computational complexity of the problem.

3.2 SAT-based Techniques
Let RP = (U ,R, P,UA, PA, ⪰,C) be an RBAC policy with constraints
and q = (s, Plb , Pub ,obj) a UAQ query for RP . Since RP is finite (i.e.
the set U of users, R of roles, and P of permissions are all finite),
the UAQ problem can be tackled by leveraging SAT solvers. This
can be done in a variety of ways. A first approach [11] amounts
to reducing the UAQ Decision Problem to SAT and solving the
optimization problem through binary search that leverage the SAT
solver as an oracle for the decision problem. The second approach
([2, 14, 15]) eliminates the need for the binary search by directly
encoding UAQ problems into PMaxSAT.

3.2.1 Reducing the UAQ Decision Problem to SAT. Letw = (s, Plb ,
Pub ,kp) where kp ∈ {≤, ≥} × [0, |Pub \ Plb |]. The reduction of the
UAQ Decision Problem forw in RP to SAT amounts to generating
a set of clauses CwRP = CRP ∪ Cq , where CRP and Cw are defined

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

147

below. We assume the existence of a propositional variable r for
each r ∈ R and a propositional variable p for each p ∈ P .

CRP is the smallest set of propositional clauses satisfying the
following conditions.

Core RBAC.
(1) for all r ∈ R if (user(s), r) < UA then ¬r ∈ CRP ;
(2) for all p ∈ P and r ∈ R such that (p, r ′) ∈ PA with r ⪰ r ′,

(¬r ∨ p) ∈ CRP ;
(3) for all p ∈ P , (¬p ∨

∨
{r : exists r ′ ∈ R, r ⪰ r ′,

(p, r ′) ∈ PA}) ∈ CRP .
It is easy to see that the number of clauses above is inO(|R | |P |) and
the number of propositional variables in O(|R | + |P |).

DMER Constraints. For allDMER(rs,n) ∈ C , a CNF of the formula∑
r ∈r s r ≤ n−1 is in CRP . As shown in [13], inequalities of the form∑
x ∈X x ≤ n can be succinctly encoded into CNF with 7|X | clauses

and 2|X | additional propositional variables. Thus, any DMER in C
can be encoded with a number of variables and clauses in O(|R |).

Cw is the smallest set of propositional clauses satisfying the
following conditions.

Query.
• a unit clause p ∈ CRP for each p ∈ Plb ;
• a unit clause ¬p ∈ CRP for each p ∈ P \ Pub ;
• A CNF of the formula

∑
p∈Pub \Plb p ▷◁ n in CRP , where ▷◁ is

≤ or ≥.
It can be shown that any solution to CwRP corresponds to a solu-

tion of the corresponding UAQ Decision Problem and vice versa.

3.2.2 Reducing the UAQ Problem to PMaxSAT. A PMaxSAT prob-
lem is given by a pair ⟨H ,S⟩, whereH and S are two finite sets
of clauses, called “hard” and “soft” respectively. A solution to a
PMaxSAT problem ⟨H ,S⟩ is any truth-value assignment to the
variables inH and S that satisfies all clauses inH and the maxi-
mum number of clauses in S.

A UAQ Problem for q = (s, Plb , Pub ,obj) can be reduced to a
PMaxSAT problem ⟨H

q
RP ,S

q⟩, where (i) Hq
RP is obtained from CRP

(as defined in Section 3.2.1) by adding a unit clausep for eachp ∈ Plb
and a unit clause ¬p for each p ∈ P \ Pub ; and (ii) Sq comprises
a unit clause ¬p if obj = min and a unit clause p if obj = max for
each p ∈ Pub \ Plb . No soft clauses are included if obj = any.

It can be shown that any solution to CwRP (Cq
RP) corresponds

to a solution of the corresponding UAQ Decision Problem (UAQ
Problem, resp.) and vice versa. It can be readily seen that for both
reductions the number of clauses is in O(|R | |P |) and the number of
propositional variables is in O(|R | + |P |).

4 BENCHMARKS
Designing benchmarks suitable for the systematic assessment of
UAQ solvers is not easy. A common approach [2, 8, 11, 15] is to focus
on families of problems that are parametric on some aspects of the
problem that may contribute to its complexity. All other aspects are
either set to a predefined, constant value or are randomly chosen
in a given interval or according to some criterion. By running a
solver against the instances corresponding to increasing values of
the parameter, it is thus possible to obtain an estimation of how
the solver scales along the dimension represented by the parameter.

Unfortunately, the adequacy of the benchmarks proposed in the
literature is seldom discussed. For instance, as we will see, some
benchmarks have been reported to be solved efficiently by the
proposed solvers, e.g., in linear time along some parameter for
which no polynomial-time algorithm is known. When this is the
case, the likely explanation is that the benchmarks do not represent
the complexity of the problem. (The alternative being that the
solver used in the experiments improves over the known complexity
results.)

The sheer number of elements that contribute to the definition
of the UAQ problem complicates the selection of the parameters.
The elements characterizing the RBAC policy include the number
of roles |R |, the number of permissions |P |, the number of DMER
constraints |C | as well as their specific features (e.g. r̂s and t̂). One
may even consider features of the PA relation, such as the maximum
number of roles that contain any given permission (referred as
R̂P = maxp∈P |Rp | in Section 3). The components of the query
also contribute to the complexity of the problem. These include
the security objective (any, min, max), the number of requested
permissions that must be granted, i.e. |Plb |, and the number of
requested permissions that can be granted, i.e. |Pub |.

In previous work (see, e.g., [2, 8, 11, 15]), various benchmark
problems parametric in any of these aspects have been put forward.
To the best of our knowledge, the most extensive collection of
parametric benchmarks so far is presented in [11] 5. The suite con-
sists of the benchmarks roles , d , rolesPerConstr , t , and plb, which
are parametric in |R |, |C |, r̂s , t̂ , and |Plb | respectively. While the
benchmarks in [11] are a first attempt to provide a comprehen-
sive evaluation along a number of significant dimensions, they still
suffer from the following shortcomings:

(1) it is not always clear if and how these benchmarks represent
the complexity of the UAQ problem;

(2) only the optimization objective min is considered, and they
are therefore not suitable for evaluating the performance
of the solvers when different optimization objectives, most
notably max, are considered.

In order to overcome these limitations, we introduce a methodology
that can be used both to evaluate existing benchmarks and to guide
the design of new ones. The complexity results introduced in
Section 3 can be used to both validate and guide the design of
benchmarks by leveraging the following observations:

• If a family of UAQ problems is known to be solvable in
polynomial time, then by running a solver against this family
of problems we can check how the performance of the solver
compares with that of the known algorithms: if the time
spent by the solver grows, e.g., exponentially as the size of
the problem increases, than the solver is clearly inefficient
against this family of problems.

• Dually, if a family of UAQ problems is known to be NP-hard,
but the time spent by any solver has a polynomial growth
as the size of the problem increases, then, assuming that
P , NP , this means that the family of the problems (i.e. the
benchmark) considered does not represent adequately the
complexity of the problem.

5Available at https://ece.uwaterloo.ca/~tripunit/uaq/Tested-Code.tgz.

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

148

https://ece.uwaterloo.ca/~tripunit/uaq/Tested-Code.tgz

Table 1: Benchmark specifications for obj = min

Name |R | |Pub | R̂P |Plb |

Plb_bigR 200 400 5 5..50
Plb_smallR 10 400 5 5..50
R_bigPlb 10..100 400 5 100
R_smallPlb 10..100 400 5 2
RPhat_bigPlb 200 400 2..12 10
RPhat_medPlb 200 400 2..12 4
RPhat_smallPlb 200 400 2..12 1

The algorithms introduced in Section 3.1 play a key role in the
proposed methodology. In fact, they provide upper bounds on the
asymptotic growth rate for UAQ solvers which, to the best of our
knowledge, are the best upper bounds currently available in the
literature. Yet, it must be noted that the proposed methodology will
yield different, improved results as soon as new complexity results
will become available. Thus the benchmarks proposed and used in
this paper could be improved consequently.

The methodology described above can be used to understand and
validate the benchmarks presented in [11]. Comparing the com-
plexity of Algorithm SearchR (O(2 |R |)) and Algorithm SearchRPlb
(O(R̂P

|Plb |
)), it appears that Algorithm SearchRPlb (asymptotically)

outperforms Algorithm SearchR over all benchmarks. We then
observe that the value of |Plb | is fixed in all benchmarks except plb.
Algorithm SearchRPlb is therefore insensitive to the value of the
respective parameter (R for roles, |C | for d, etc.) and so should be
any reasonably efficient solver when applied to these problems. All
benchmark problems but plb can thus be used to check whether
UAQ solvers are as effective as Algorithm SearchRPlb as the value
of the respective parameter increases. Benchmark plb is instead
parametric in |Plb | and we therefore expect the solving time of
Algorithm SearchRPlb (and of any other solver) to increase expo-
nentially as |Plb | increases.

Driven by the our methodology, we propose two new families
of parametric UAQ problems, one with obj = min and one with
obj = max. The benchmarks with obj = min are summarized in
Table 1:

• Plb_bigR and Plb_smallR are both parametric in |Plb |. Plb_bigR
is designed to stress test solvers for increasing values of
|Plb |: for large values of |R | (here set to 200), the best known
algorithm (Algorithm SearchRPlb) is exponential in |Plb |
and thus we expect any solver to exhibit the same behavior.
Plb_smallR is instead designed to check the effectiveness of
solvers: Algorithm SearchR is in O(2 |R |) and thus we know
that the problem can be solved efficiently for sufficiently
small values of |R | (here set to 10).

• R_bigPlb and R_smallPlb are both parametric in |R | and are
dual to Plb_bigR and Plb_smallR respectively. R_bigPlb is
designed to be used to stress test solvers for increasing val-
ues of |R |: for large values of |Plb | (here set to 100), the best
known algorithm (i.e. Algorithm SearchR) is exponential in
|R | and thus we expect any solver to exhibit the same behav-
ior. R_smallPlb can be used to check the efficiency of solvers:

Table 2: Benchmark specifications for obj = max

Name |R | |Pub | R̂P |C | r̂s t̂ |Plb |

R_bigCt 10..100 400 5 50 8 3 10
R_smallCt 10..100 400 5 5 3 2 10
C_bigR 200 400 5 10..100 8 3 10
C_smallR 10 400 5 10..100 8 3 10
that_bigR 1000 1000 1 50 20 2..12 10
that_smallR 20 400 5 10 12 2..12 10
rshat_bigCt 200 400 5 10 5..50 3 10
rshat_medCt 200 400 5 3 5..50 3 10
rshat_smallCt 200 400 5 1 5..50 3 10

Algorithm SearchRPlb is in O(R̂P
|Plb |

) and thus we know
that the problem can be solved efficiently for sufficiently
small values of |Plb | (here set to 2).

• RPhat_bigPlb, RPhat_medPlb, RPhat_smallPlb are parametric
in R̂P and can be used to check the effectiveness of solvers:
for big values of |R | (here set to 200) the best algorithm is
Algorithm SearchRPlb which is inO(R̂P

|Plb |
). We thus know

that the problem can be solved efficiently for sufficiently
small values of |Plb | (here set to 10, 4 and 1 respectively).
Note that |Plb | is the degree of the polynomial and therefore
the time spent by the solver may differ significantly (for the
values of |Plb | considered) as R̂P increases.

All the instances presented in the benchmarks above have no DMER
constraints. The latter, in fact, do not contribute to the UAQ problem
complexity when obj = min [10].

The benchmarks with obj = max are summarized in Table 2:
• R_bigCt and R_smallCt are parametric in |R |. R_bigCt is
designed to stress test solvers for increasing values of |R |:
when |C | and t̂ are such that |C |̂t is sufficiently large (here
set to 150), the best algorithm (Algorithm SearchR) is expo-
nential in |R | and thus we expect any solver to exhibit the
same behavior. R_smallCt is instead designed to check the
effectiveness of solvers: when |C | and t̂ are such that |C |̂t is
sufficiently small (here set to 10), Algorithm SearchRDMER
can efficiently solve the problems independently from the
size of |R | and any efficient solver should do the same.

• C_bigR and C_smallR are parametric in |C |. C_bigR can be
used to stress-test solvers for increasing values of |C |: for
large values of |R | (here set to 200), Algorithm SearchRDMER
is to be preferred to Algorithm SearchR. Since Algorithm
SearchRDMER is exponential in |C |, we expect solvers to
exhibit the same behavior. C_smallR can be used to check
the efficiency of solvers: Algorithm SearchR is inO(2 |R |) and
thus the problem can be solved efficiently for sufficiently
small values of |R | (here set to 10).

• that_bigR and that_smallR, parametric in t̂ , are analogous
to the previous case. We then expect that solvers exhibit
exponential growth over that_bigR, while that_smallR can
be solved efficiently.

• rshat_smallCt, rshat_medCt and rshat_bigCt are paramet-
ric in r̂s . For big values of |R | (here set to 200), Algorithm4
outperforms Algorithm SearchR. Algorithm SearchRDMER

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

149

is in O(r̂s |C |t̂
) and these problems can thus be solved effi-

ciently for sufficiently small values of |C |̂t (here set to 3).
rshat_smallCt can then be used to check the efficiency of
solvers. rshat_medCt and rshat_bigCt can be used to see how
the values of |C |̂t (here set to 9 and 30) affect the complexity
of the problem.

Notice that we do not include benchmarks parametric in the
“size” of the role hierarchy since, as already pointed out in Section 3,
it does not contribute to the complexity of the UAQ problem. The
benchmarks in Table 1 and in Table 2 are obtained by randomly
generating a RBAC policy with the specified number of roles and
permissions (ensuring that each permission is assigned to exactly
R̂P roles), the specified number of DMER constraints of the form
DMER({r1, . . . , rm }, t) withm = r̂s , t = t̂ and a query with with
Plb with |Plb | randomly selected permissions and Pub = P .

5 EXPERIMENTAL RESULTS
In Section 4, we presented an overview of the existing benchmarks
and introduced a methodology to evaluate and even guide the
design of benchmarks parametric with the relevant aspects of the
UAQ problem. In this section, we first discuss the benchmarks
presented in [11] and then experimentally compare the performance
of the following solvers against those benchmarks and the ones
presented in Table 1:

• 2D-Opt-Search [11]: a search-based solver leveraging the
FPP result;

• 2D-Opt-CNF [11]: a SAT-based solver that leverages the re-
duction of the UAQ Decision Problem to SAT, zChaff [1] as
SAT solver a state-of-the-art SAT solver and a two-dimensional
binary search to solve UAQ problems;

• AQUA [2]: a SAT-based solver that employs a reduction
of the UAQ Problem to PMaxSAT and employs any state-
of-the-art PMaxSAT solver to tackle the problem. In the
experiments presented in this paper we used the Loandra
PMaxSAT solver [3].

All the solvers mentioned above support joint optimization of per-
missions and roles. However, since we focus on problems where the
optimization objective is limited to permissions only, we disabled
the role optimization in 2D-Opt-Search and 2D-Opt-CNF.

In the second set of experiments, we focus our attention to
obj =max case and evaluate the performance of AQUA against the
benchmarks in Table 2.

For each benchmark problem we generated 10 instances and ran
the solvers against them. All data points in our plots represent the
median value of the time spent by the corresponding solver. The
experiments have been conducted on a PC with 2 64-bit Intel Xeon
CPU X7350 (8 core) @ 2.93GHz and 47 GB RAM running Linux
(Ubuntu 16.04.5 LTS).

For all the benchmarks we set the timeout to 600 seconds, after
which the solver execution is interrupted and the problem is labeled
as “skipped”. We omitted the timed-out solvers from the plots.

5.1 Benchmarks from [11]
In the first experiment, we evaluate the benchmarks provided by
[11] by running AQUA over them. Comparing the complexities of
the algorithms presented in Section 3.1, it appears that Algorithm

SearchRPlb should outperform the other algorithms over all the
benchmarks. Since Algorithm SearchRPlb is in O(R̂P

Plb
) and the

value of |Plb | is fixed in roles , d , rolesPerConstr , and t , we expect
that AQUA is insensitive to the variation of the respective param-
eters. This expectation is confirmed by the experimental results:
in particular, AQUA solved all the instances contained in roles , d ,
rolesPerConstr , and t in less than 20 milliseconds. Instead, since
plb is parametric in |Plb |, AQUA should exhibit an exponential
growth over it. Contrary to our expectation, AQUA could solve all
the problems contained in the benchmark in a fraction of a second
(at most 4 milliseconds) even for very large values of |Plb |. This
result means that the benchmark plb does not represent the com-
plexity of the UAQ problem on varying numbers of |Plb |. From
the experiment, it follows that the benchmarks provided by [11]
cannot be used to stress test solvers. They can nevertheless be used
to evaluate their efficiency.

We then ran 2D-Opt-Search and 2D-Opt-Search over the bench-
marks. AQUA ouperformed them over all the benchmarks. In partic-
ular, 2D-Opt-CNF exhibited a behavior similar to AQUA, however
there is always a distance of two orders of magnitude between the
median solving time of the two solvers. Also 2D-Opt-Search over
roles , d , t , and rolesPerConstr behaved like AQUA, always outper-
dorming 2D-Opt-CNF. Instead, the time spent by 2D-Opt-Search
over plb is exponential.

5.2 Our benchmarks with obj =min
We now turn our attention to our benchmark proposals where obj =
min (cf. Table 1). Figure 1 depicts the results of their experimental
evaluation:

• The time spent by AQUA to solve Plb_bigR and Plb_smallR
benchmarks meets the expectations. For Plb_bigR, the plot
has a clear exponential growth, whereas for Plb_smallR,
AQUA grows very slowly and even (slowly) decreases for
Plb > 20.

• Similar considerations hold for R_bigPlb and R_smallPlb.
• The results for RPhat_bigPlb, RPhat_medPlb, RPhat_smallPlb
are of particular interest. As pointed out in Section 3, Algo-
rithm SearchRPlb is in O(R̂P

|Plb |
) and if |Plb | is bounded,

then it can solve the problem in time which grows as a poly-
nomial of degree |Plb |. It can be noted that AQUA quickly
solves all problems in RPhat_smallPlb (for which |Plb | = 1),
while the plot is considerably more steep for RPhat_bigPlb
(for which |Plb | = 12). This is consistent with the growth
of polynomials of degree 1 and 12 respectively. The plot for
RPhat_smallPlb (for which |Plb | = 4) represents an interme-
diate situation.

The presented experimental results confirm that the benchmarks
of Table 1 for problems with obj = min is complete and satisfac-
tory. It consists of hard benchmarks (Plb_bigR and R_bigPlb) which
represent the complexity of the UAQ problem and can be used to
stress test the solvers, and easy benchmarks (Plb_smallR, R_smallPlb,
RPhat_bigPlb, RPhat_medPlb, and RPhat_smallPlb), which can be
used to evaluate the solvers’ performance . Figure 1 then also shows
the results of the solvers’ performance evaluation:

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

150

(a) Benchmarks parametric in |Plb | (b) Benchmarks parametric in |R | (c) Benchmarks parametric in R̂P

Figure 1: Performance of 2D-Opt-Search, 2D-Opt-CNF and AQUA on the benchmarks of Table 1

• The behavior of 2D-Opt-CNF on Plb_smallR is similar to that
of AQUA, but when applied to Plb_bigR it reaches the timeout
even for the smallest value of |Plb | (i.e. 5). 2D-Opt-Search can
solve Plb_smallR and Plb_bigR only for the smallest value of
|Plb |.

• Similar considerations hold for R_bigR and R_smallR. Notice
that 2D-Opt-Search performs remarkably well for R_smallR,
but it reaches the timeout even for the smallest instance of
R_bigR (i.e. 10).

• The behavior of 2D-Opt-Search on RPhat_smallPlb and
RPhat_medPlb is similar to that of AQUA, but it reaches the
timeout for Plb_bigR for a small value of R̂P (i.e. 2). Instead,
2D-Opt-CNF reaches the timeout for all the instances con-
tained in the three benchmarks.

We can then conclude that the approach used by AQUA seems
to allow an important reduction of the solving time compared to
2D-Opt-Search and 2D-Opt-CNF over almost all the benchmarks
of Table 1.

5.3 Our benchmarks with obj =max
Figure 2 presents the experimental evaluation of the benchmarks
with the optimization objective set to max (cf. Table 2) obtained by
running AQUA against them. From the experimental results we
can draw the following observations:

• The time spent by AQUA to solve R_bigCt and R_smallCt
meets the expectations. For R_bigCt the plot has a clear ex-
ponential growth behaving like Algorithm SearchR, whereas
for R_smallCt the plot is almost constant, behaving like Al-
gorithm SearchRDMER, whose complexity does not depend
on |R |.

• The time spent byAQUA to solveC_bigR andC_smallRmeets
the expectations. For C_bigR the plot has a clear exponential
growth, whereas for C_smallR the solving time is around
100 ms independently from |C |.

• As expected, themedian solving time of AQUAover that_bigR
grows exponentially like Algorithm SearchRDMER, while
AQUA quickly solves the instances contained in that_smallR,
behaving like Algorithm SearchR.

• The plot for rshat_smallCt show that the problems can be
solved quickly as r̂s increases as long as the value of |C |̂t is
sufficiently small (3 in this case). The plots for rshat_medCt
and rshat_bigCt show the effect of larger values of |C |̂t which
is consistent with the growth of polynomials of degree 9 and
30 respectively.

From the evaluation, we then conclude that the benchmarks of
Table 2 is complete and satisfactory for obj = max . In particular,
R_bigCt, C_bigR, that_bigR, and rshat_bigCt are hard benchmarks
representing the complexity of the UAQ problem and then can be
used to stress test the solvers; on the contrary, R_smallCt, C_smallR,
that_smallR, rshat_medCt, and rshat_smallCt are easy benchmarks
and can be used to evaluate the solvers’ performance.

We do not show the results of the evaluation of the efficiency
of 2D-Opt-Search and 2D-Opt-CNF: 2D-Opt-Search may lead to
sub-optimal results, thus the comparison with AQUA would not
be fair6; instead, it is not clear if 2D-Opt-CNF can tackle problems
with obj = max . In fact, we have evidence of many inconclusive
solutions (neither satisfiable nor unsatisfiable).

6 RELATEDWORK
As UAQ is a central problem in RBAC systems, significant effort [8–
10, 14] has been put to develop techniques for tackling it efficiently
and to understand its underlying complexity. To our knowledge,
[5] is the first paper that discusses UAQ where authors show that
the complexity of finding minimal set of roles to be activated in a
session that covers the permissions requested by the user is NP-
complete. While they analyze UAQ in the presence of complex role
hierarchies, they do not consider the constraint types (e.g. mutual
exclusion of roles) available in RBAC. The more generic form
for the UAQ problem where there are lower (Plb) and upper (Pub)
bound permissions has been first proposed in [15].

The formal complexity analysis of different UAQ problem classes
is also a point of strong scientific interest. For instance, [4] shows
the complexities of UAQ problem by reducing it to a special case of
set covering problem namely, container optimization. The reduction
shows that the UAQ problem is NP-hard when obj = min, while it
is in P when obj = max. However, the paper does not consider UAQ

6For more details, see [?].

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

151

(a) Benchmarks parametric in |R | (b) Benchmarks parametric in |C |

(c) Benchmarks parametric in t̂ (d) Benchmarks parametric in r̂ s

Figure 2: Performance of AQUA on the benchmarks of Table 2

problems with dynamic constraints as we do in this paper. More-
over, these works did not either conduct any experimental analysis
or employed extremely simple RBAC instances to evaluate their
proposals. Then, [11] shows that the complexity result presented
in [4] for the case obj = max is different when there are constraints
in the UAQ instance. More specifically, the authors show that there
is an upper bound (NP) for the general UAQ problem and the case
obj = max is intractable if the UAQ instances have constraints.

7 CONCLUSIONS
In this paper, we presented a systematic overview of the computa-
tional complexity, existing algorithms and available benchmarks
pertinent to the UAQ problem. Our analysis of the currently avail-
able benchmarks revealed that they are inadequate to analyze the
inherent complexity of different UAQ problem classes. We then
proposed a methodology to generate UAQ benchmarks starting
from the known complexity results and used them to evaluate the
state-of-the-art UAQ solvers. Our experimental results do not only
show the effectiveness of the solvers over various UAQ problem
classes but also the impact of the chosen parameter in the overall
performance. As future work we would like to investigate the
generation for benchmarks of joint optimization.

REFERENCES
[1] [n.d.]. zChaff. http://www.princeton.edu/~chaff/zchaff.html
[] F. Turkmen A. Armando, G. Gazzarata. [n.d.]. Benchmarking UAQ Solvers.

https://github.com/GioGazza/uaq_prolem/tree/master/publications. Extension
of paper accepted at SACMAT 2020.

[2] Alessandro Armando, Silvio Ranise, Fatih Turkmen, and Bruno Crispo. 2012.
Efficient run-time solving of RBAC user authorization queries: pushing the
envelope. In Second ACM Conference on Data and Application Security and Privacy
(CODASPY). 241–248.

[3] Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. 2019. Core-Boosted Linear
Search for Incomplete MaxSAT. In Integration of Constraint Programming, Artifi-
cial Intelligence, and Operations Research - 16th International Conference, CPAIOR
2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings. 39–56.

[4] Liang Chen and Jason Crampton. 2009. Set covering problems in role-based
access control. In Proceedings of the 14th European conference on Research in
computer security (ESORICS’09). 689–704.

[5] S. Du and J. B. D. Joshi. 2006. Supporting authorization query and inter-domain
role mapping in presence of hybrid role hierarchy. In SACMAT. 228–236.

[6] Giorgia Gazzarata. 2020. Extensions and Experimental Evaluation of SAT-based
solvers for the UAQ problem. Ph.D. Dissertation. University of Genova (Italy).
https://github.com/GioGazza/uaq_prolem/tree/master/publications

[7] John Larusic and Abraham P. Punnen. 2014. The asymmetric bottleneck traveling
salesman problem: Algorithms, complexity and empirical analysis. Comput. Oper.
Res. 43 (2014), 20–35.

[8] Jianfeng Lu, James B. D. Joshi, Lei Jin, and Yiding Liu. 2015. Towards complexity
analysis of User Authorization Query problem in RBAC. Computers & Security
48 (2015), 116–130.

[9] Jianfeng Lu, Yun Xin, Zhao Zhang, Hao Peng, and Jianmin Han. 2018. Supporting
user authorization queries in RBAC systems by role-permission reassignment.
Future Generation Comp. Syst. 88 (2018), 707–717.

[10] Nima Mousavi. 2014. Algorithmic Problems in Access Control. Ph.D. Dissertation.
University of Waterloo, Canada.

[11] Nima Mousavi and Mahesh V. Tripunitara. 2012. Mitigating the Intractability of
the User Authorization Query Problem in Role-Based Access Control (RBAC). In
NSS. 516–529.

[12] National Institute of Standards and Technology (NIST). 2004. Role-Based Access
Control. American National Standards Institute, Inc. (2004).

[13] C. Sinz. 2005. Towards an Optimal CNF Encoding of Boolean Cardinality Con-
straints. In Principles and Practice of Constraint Programming (CP). 827–831.

[14] Fatih Turkmen. 2012. Exploring Dynamic Constraint Enforcement and Efficiency
in Access Control. Ph.D. Dissertation. University of Trento, Italy.

[15] G. T. Wickramaarachchi, W. H. Qardaji, and N. Li. 2009. An efficient framework
for user authorization queries in RBAC systems. In SACMAT. 23–32.

[16] Y. Zhang and J. B. D. Joshi. 2008. UAQ: a framework for user authorization query
processing in RBAC extended with hybrid hierarchy and constraints. In SACMAT.
83–92.

Session 6: RBAC and ABAC SACMAT ’20, June 10–12, 2020, Barcelona, Spain

152

http://www.princeton.edu/~chaff/zchaff.html
https://github.com/GioGazza/uaq_prolem/tree/master/publications
https://github.com/GioGazza/uaq_prolem/tree/master/publications

	Abstract
	1 Introduction
	2 The UAQ Problem
	3 Solving the UAQ Problem
	3.1 Search-based Techniques
	3.2 SAT-based Techniques

	4 Benchmarks
	5 Experimental Results
	5.1 Benchmarks from Mousavi12
	5.2 Our benchmarks with obj=min
	5.3 Our benchmarks with obj=max

	6 Related Work
	7 Conclusions
	References

