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Abstract 
 

Context: Use cases (UCs) are widely used to specify the functionality of a SW system. 

A UC is usually worked out in a Main Success Scenario and several other (Alternative) 

Scenarios. To make the overall structure of the UC clear and to prepare for the software 

implementing the UC, these scenarios must be integrated into one structure per UC.  

Question/problem: How to integrate the different scenarios of a UC into one structure?  

Our solution: We propose so-called (textual) System Sequence Descriptions (SSDs). 

We introduce a suitable (context-free) grammar for our SSDs. We can express all usual 

constructs with our SSDs, such as primary and secondary actors, basic steps, the internal 

responsibilities of the system, sequential composition, arbitrary order, loops/repetition, 

conditionals, alternatives, options, choices, definitions, and calls/‘Includes’.  

To support validation of the resulting SSDs (with integrated scenarios) and check it 

with the users (Requirements quality assessment), we give (inductive) translation rules 

to translate the SSDs to natural language (Natural Language Generation for RE).  

Additionally, we give (inductive) rules to generate graphical SSDs (like the more 

familiar UML-diagrams) from our textual SSDs. This might support validation too.  

Results: With this new artefact design we can easily integrate the different scenarios of 

a UC into one clear SSD and also check the result with the users. That integrated SSD 

clarifies the overall structure of the UC and forms a suitable basis for implementation. 

With a nontrivial example we illustrate that the proposed grammar is very practical and 

that the approach scales up easily.  

Main contribution: The paper describes novel technical solutions for the application 

of NL-technologies to RE-relevant artefacts. The paper includes additional solutions to 

the RE-problem of validation. 

 

Keywords: System Sequence Description, Use Case, User Story, Linguistic Structure, 

Grammar, Natural Language Generation, Diagram 

1 Introduction 

An NL-based development path for functional requirements (via ‘stepwise clarification’) was sketched in [Bro19], 

starting with an initial user wish (UW) and then going from a user story (US) via a use case (UC) and its system 

sequence description (SSD) to an information machine (IM) and finally to a realization in an information system 

(IS), e.g., by a method in an OO-system or a (stored) procedure in a relational system. In a simple picture (where 

‘A => B’ means ‘use A for producing B’): 

 
 

UW => US => UC => SSD => IM => IS 

 

 

A UC is typically worked out into a Main Success Scenario (MSS) and zero or more Alternative Scenarios (AS) 

[Coc01, Lar05]. To integrate the different scenarios of a UC into one structure, we introduce and use textual 

System Sequence Descriptions (SSDs). This integration is illustrated in Example 1. Where MSSs and ASs might 

typically be written by people from the user organization, SSDs might typically be written by a business/ 

requirements analyst. SSDs can form the bridge between the users’ world and the developers’ world.  
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To support validation of the resulting SSDs and check the result with the users (Requirements quality assessment), 

we also give (inductive) translation rules to translate a textual SSD (tSSD) to natural language (Natural Language 

Generation for RE, NLG4RE). Additionally, we give (inductive) rules to generate a graphical SSD (gSSD, like 

the more familiar UML-diagram) from a textual SSD. In a simple, additional picture: 

 
 

 UC  =  MSS + AS*  =>  tSSD  

 ⇙ ⇘ 
 NL-text gSSD 

 

 

No such approach is mentioned in the recent systematic literature review of use case specifications research 

[Tiw15], where 119 papers in this area were thoroughly examined.  

The paper is organized as follows: Section 2 explains some basic concepts and Section 3 recalls the general 

linguistic structures for development paths from [Bro19]. In Section 4 we introduce a grammar for textual system 

sequence descriptions (SSDs). Section 5 looks at the nature of the atomic instructions in SSDs and their relation 

with the system under development (which is considered as an information machine). To support validation of 

SSDs and check it with the users, Section 6 contains rules to translate the SSDs to natural language. Section 7 

contains (inductive) rules to generate graphical SSDs (UML-like sequence diagrams) from textual SSDs. Sections 

4, 5, 6, and 7 clearly extend [Bro19]. 

2 Basic concepts 

Informally, a user wish (UW) is a ‘wish’, expressed in NL, of a (future) user which the system should be able to 

fulfil, e.g., ‘Register a student’ or ‘Process a sale’. 

For us, a parameterized user story (US) is a user wish extended with the role of the intended user and the 

relevant parameters, e.g., the wish of an administrator to ‘Register a student with a given name, address, and 

phone number’. A user story can have an optional benefit-part. According to [Luc16] user stories are popular as 

a method for representing requirements, especially in agile development environments. We could write: 
 

US = UW + user role + relevant parameters [+ benefit] 
 

A use case (UC) is a text in NL (natural language) that describes the sequence of steps in a typical usage of the 

system [Jac11, UC20]. A UC corresponds roughly to an elementary business process [Lar05]. 

UWs, USs, and UCs are all expressed in the natural language of the user (say English or Dutch). On the other 

hand, a system sequence description (SSD) of a use case schematically depicts the interactions between the 

primary actor (user), the system (as a black box), and other actors (if any), including the messages between them 

[Lar05]: An SSD is a kind of stylised UC and makes the prospective inputs, state changes, and outputs of the 

system more explicit. SSDs are usually drawn as UML-diagrams, see [Lar05, SSD20], but we use textual SSDs. 

We can formalise the informal requirements using the formal notion of an information machine (IM):  

An information machine is a 5-tuple (I, O, S, G, T) consisting of 

o a set I (of inputs), a set O (of outputs), and a set S (of states) 

o a function G: S x I → O, mapping pairs of a state and an input to the corresponding output 

o a function T:  S x I → S, mapping pairs of a state and an input to the corresponding next state 
 

An IM is equivalent to the notion of data machine in [Pie89] and to a (not necessarily finite) Mealy machine 

without a special start state [Mea55]. The working of an IM can be illustrated in a picture (with i  I and s  S): 
 

 i  
 

s ⟼ T(i,s) 
 

 G(i,s) 

 

In words: Upon an input i, an IM in state s produces output G(i,s) and changes its internal state from s to T(i,s). 

3 Some relevant linguistic structures 

[Bro19] presents some general linguistic structures for the development path of a functional requirement (FR), 

which often starts from a user wish or user story [Coh04]. A general linguistic structure for a user wish (UW) is  
 

UW: <(action) verb>  a  <noun (phrase)> 
 

https://en.wikipedia.org/wiki/Finite_set


Table 1 summarizes the related subsequent grammatical forms for the US, 1st step of the UC, 1st step of the SSD, 

input for the IM, and IS-method (where  denotes the action verb and  the noun phrase in the original user wish). 

Each pattern clearly helps in producing the next one: 

Table 1: Summary of the relationship between the subsequent grammatical forms 

UW  a  

US As a <role>, I want to  a  with a given <parameter list> 

UC First step:  The <role> (user) asks the system to  a  with a given <par. list> 

SSD First step:  User → System: (<parameter list>) where User is a <role> 

IM Inputs:  (<parameter list>) for all possible value combinations of <par. list> 

IS Method/procedure  with <parameter list> (plus maybe an output parameter), 

e.g., a method in an OO-system or a (stored) procedure in a relational system 

 

 

We note that the suggested naming policy provides bi-directional traceability [GF94, Cle12]: from the original 

user wish to the final software code and back. It also enhances transparency during the development of an FR. 

Note that the first step in the UC/SSD gives a clue for the heading of the IS-method/procedure. The next steps 

in the SSD give a clue for the body of that method/procedure. E.g., if the SSD contains a lot of calls to (or Includes 

of) other SSDs (see Section 4) then that method/procedure might use a lot of calls to sub-methods/sub-programs. 

However, [Bro19] did not discuss how the steps within an SSD could look like. That is what we will do now. 

4 A grammar for textual SSDs 

We propose a grammar for textual SSDs. The terminals are written in bold. The nonterminal A stands for ‘atomic 

instruction’ (step), P for ‘actor’ (or ‘participant’), M for ‘message’, S for ‘instruction’ (or SSD), C for ‘condition’, 

B for ‘basic condition’, N for ‘instruction name’, and D for ‘definition’: 
 

A  ::= P  P: M /* where ‘X  Y: M’ means: ‘X sends M to Y’; see Section 5 

P  ::= System│… 

S  ::= A│S ; S│begin S end│if C then S [else S] end│while C do S end│repeat S until C 

  │S , S│maybe S end│either S or S end│do N /* the first 3 introduce non-determinism 

C ::= B│true│false│not C│(C and C)│(C or C) 

D ::= define N as S end 
 

Informally, the construct ‘s1, s2’ indicates that the order is irrelevant (‘do s1 and s2 in any order’), ‘maybe s end’ 

means ‘do s or do nothing’, and ‘either s1 or s2 end’ means ‘choose between doing s1 and doing s2’.  

The construct ‘do N’ is known as an Include or a Call. [Bro20] gives a formal semantics for all the constructs 

mentioned here.  

In order to avoid ambiguity, we use the binding rule that ‘,’ binds stronger than ‘;’. So we must read ‘A, B; C’ 

as ‘(A, B); C’, which means: do B and do A in arbitrary order, and then do C. To get the reading ‘A, (B; C)’ we 

can write ‘A, begin B; C end’. 

We note that the values (terminals) for the nonterminals B, P, M, and N are application dependent (‘domain 

specific’), apart from System for P. They will appear during the development of the specific application. 

The terminal System represents the system under consideration. 

5 The nature of atomic instructions 

For atomic instructions where at least one actor/participant is System, we can distinguish the following situations: 
 

(1) Actor  System: i Elucidates the input messages the system can expect /* input step 

(2) System  System: y Elucidates the transitions (and/or checks) the system should make /* internal step 

(3) System  Actor: o Elucidates the output messages the system should produce /* output step 
 

where Actor  System. An atomic instruction in which System is not involved, is called an external step.  

The pattern input step followed by an internal step followed by an output step is quite common. 

  



The relation between the first three types of atomic instructions and the system, considered as an information 

machine and shown as a ‘black box’, can be depicted as follows: 
 

 System 
 

      i  
 

s ⟼ T(i,s) 
 

 G(i,s) = o 

 (1) (2)   (3) 
 

Figure 1: The relation between atomic instructions and the system 
 

Further explanation of Figure 1: 

(1) i is an input message for the information machine    

(2) y describes a state change (from state s to state T(i,s) ) 

(3) o is an output message of the information machine (which depends on the input message i and the state s). 

 
 

Example 1: A textual SSD 
 

As an illustration we made an excerpt from Larman’s well-known use case Process Sale [Lar05] such that 

almost all our constructs appear. The excerpt integrates the Main Success Scenario and several Alternative 

Scenarios. The underlined names below constitute clickable links to their definition. 

 

define processSale as  

Cashier  System: makeNewSale;  /* input step 

System  System: create Sale;  /* internal step 

while customer has more items do  

do handleItem;  

System  Cashier: description and running total /* output step 

end;  
Cashier  System: endSale;  /* input step 

System  System: compute and register total with taxes;  /* internal step 

System  Cashier: total with taxes;  /* output step 

maybe do handleDiscount end; 

do handlePayment; 

System  System: log completed sale,  /* internal step 

System  InvSys: sale and payment info;  /* output to Inventory system 

if printer is out of paper then do handlePaperShortage end;  

System  Cashier: receipt;  /* output step 

maybe do handleGiftReceipt end 

end  

 

define handleItem as  

if item is normal  

then Cashier  System: enterItem(itemID, quantity) /* input step 

else  Cashier  System: enterPricedItem(category, price) /* input step 

end; 

System  System: log item sale /* internal step  

end 

 

define handlePayment as  

either Cashier  System: makeCashPayment(amount) /* input step 

or Customer  System: makeCreditPayment(credit card, pin code)  /* input step 

end; 

System  System: register payment /* internal step  

end  
 

define handlePaperShortage as  

System  Cashier: “Out of paper”;  /* output step 

Cashier  Cashier: replace paper;  /* external step 

Cashier  System: printReceipt /* input step 

end 



 

define  handleDiscount as … end 

define  handleGiftReceipt as … end 

 

For reasons of space, we did not work out the definitions of handleDiscount and handleGiftReceipt.  
 

6 Generating natural language texts 

A use case is described via an MSS plus several separate ASs. In the SSD these separate parts are integrated. To 

support validation of the resulting SSD and check it with the users, we translate the SSD to natural language (NL). 

The main purpose of the translation of the SSD back to NL is to validate the integration with the user organization.  

Function F below inductively translates SSDs to English, by assigning to each SSD an expression in English, 

in terms of the direct constituents of that SSD (compositionality principle [SEP17]): 

 

1. F(Actor  System: γ)  ≝  the F(actor) asks the System to F(γ)   /* For Actor  System 

2. F(System  Actor: γ)  ≝  the System sends F(γ) to F(actor)   /* For Actor  System 

3. F(Actor  Actor: γ)  ≝  the F(actor) does F(γ)   /* If the same actor is mentioned twice  
 

4. F(e1; e2)  ≝  F(e1). <newline> F(e2)    /* Sequential order is indicated by a dot 

5. F(e1, e2)  ≝  F(e1) and <newline> F(e2)    /* Arbitrary order is indicated by and 

6. F(begin e end)  ≝  begin F(e) end    

7. F(if c1 then e1 [else e2] end)  ≝  if F(c1) then F(e1) [else F(e2)] end   

8. F(while c do e end)  ≝  while F(c) do F(e) end    

9. F(repeat e until c)  ≝  repeat F(e) until F(c)     

10. F(maybe e end)  ≝  maybe F(e) end    

11. F(either e1 or e2 end)  ≝  either F(e1) or F(e2) end    

12. F(do n)  ≝  do F(n)*    /* The star indicates a follow-up: 
 

13. * where F(n) means: F(e) end   /* if n was introduced by ‘define n as e end’ 

 

Ad 1-2: F(actor) often is the user but it could be an external system as well 

Ad 3: If the same actor is mentioned twice, the step indicates what that actor has to do. Often Actor = System 

Ad 6-11: These translations are straightforward 

Ad 8: Instead of while we could use, e.g., as long as 

Ad 12: The star is part of the translation  

Ad 13: The follow-up can be put after the complete translation of the main text 

 

Section 5 explains the nature of the message γ in the basic steps. For an actor, message or instruction name x, 

when it was well-chosen, F(x) could simply be x itself (as in Example 2). 

As a finishing touch, some translations should start with a capital letter: The occurrence of F(e2) after the dot 

in Rule 4, the occurrence of F(e) after ‘means:’ in Rule 13, and the first sentence of the complete translation. 

Essentially, it all boils down to replacing the basic steps by the sentences indicated, replacing ‘;’ by ‘.’, 

replacing ‘,’ by ‘and’, add a star after a Call (a.k.a. Include), and replacing ‘define n as’ by ‘* where F(n) means:’.  

The end result of translating the SSD back to natural language might be more structured and maybe even be 

clearer than the original description. 

 
 

Example 2: The textual SSD for Process Sale translated to English 

 

We apply our translation rules to the textual SSD from Example 1 (keeping the originally bold texts in bold).  

The underlined names below constitute clickable links to their description. 

 

* where processSale means: 

The Cashier asks the System to makeNewSale.  

The System does create Sale. 

While customer has more items do  

do handleItem*.  



The System sends description and running total to Cashier  

end.  
The Cashier asks the System to endSale.  

The System does compute and register total with taxes. 
The System sends total with taxes to Cashier.  

Maybe do handleDiscount* end. 

Do handlePayment*. 

The System does log completed sale and  

the System sends sale and payment info to InvSys.  

If printer is out of paper then do handlePaperShortage* end.  

The System sends receipt to Cashier.  

Maybe do handleGiftReceipt* end 

end  

 

* where handleItem means: 

If item is normal  

then the Cashier asks the System to enterItem(itemID, quantity)  

else  the Cashier asks the System to enterPricedItem(category, price)  

end. 

The System does log item sale 

end 

 

* where handlePayment means: 

Either the Cashier asks the System to makeCashPayment(amount)  

or the Customer asks the System to makeCreditPayment(credit card, pin code)  

end. 

The System does register payment 

end  
 

* where handlePaperShortage means:  

The System sends “Out of paper” to Cashier.  

The Cashier does replace paper.  

The Cashier asks the System to printReceipt  

end 

 

* where handleDiscount means: … end 

* where handleGiftReceipt means: … end 

 

For reasons of space, we did not work out the descriptions of handleDiscount and handleGiftReceipt. 
 

7 Generating graphical SSDs 

In this section we give (inductive) translation rules from textual SSDs to graphical SSDs (sequence diagrams). 

For each textual SSD X we define its diagram 𝐷(X) inductively in terms of the diagrams of its direct constituents, 

indicated by yellow rectangles. (We note that inductive rules to generate graphical representations are rare.) 

For each actor involved, including System, a graphical SSD contains a vertical dotted line below the actor. A 

message is displayed above a horizontal arrow from the line of the sending actor to the line of the receiving actor. 

Below, Ai is the first mentioned (leftmost) actor of SSD S and Aj its last mentioned (rightmost) actor, Ai1 is 

the leftmost actor of S1 and Aj1 its rightmost actor, and Ai2 is the leftmost actor of S2 and Aj2 its rightmost actor. 

We happily (mis)use the software tool PlantUML [Pla20], which turns textual representations into graphical 

representations, since its textual specification language closely resembles our textual specification language.  

We start with 13 diagram structures for SSDs, followed by the diagram structure for a definition. 

  

https://plantuml.com/


 The diagram structures for SSDs 
 

If actor Ai occurred earlier than Aj: 
𝐷( Ai  Aj: Message ) ≝ 

 

 

If actor Ai occurred later than Aj: 
𝐷( Ai  Aj: Message ) ≝ 

 

 

   If Ai = Aj: 
   𝐷( Ai  Ai: Message ) ≝ 

 

 
𝐷( S1; S2 ) ≝ 

 

 

𝐷( if C then S end ) ≝ 

 

 

𝐷( if C then S1 else S2 end ) ≝ 

 

 
𝐷( while C do S end ) ≝ 

 

 

𝐷( repeat S until C) ≝ 

 

 

𝐷( S1, S2 ) ≝ 

 

 
𝐷( begin S end ) ≝ 

 

 

𝐷( maybe S end ) ≝ 

 

 

𝐷( either S1 or S2 end ) ≝ 

 

 
 

  



 

An Include/Call: 

 

𝐷( do N ) ≝ 

 

 

 

 

 

 The diagram structure  

 for a definition 
 

𝐷( define N as S end ) ≝ 
 

 
   

 

 

Example 3: Corresponding graphical SSD for Process Sale  
 

Applying our translation rules to each of the 4 definitions worked out in Example 1, we get the next 4 diagrams 

(where for reasons of space, we start with the small ones): 

 

 

 

 

 

 
 



 
 

  



Results and conclusion 

The paper defines a formal grammar for textual SSDs. In the SSD, the Main Success Scenario plus the separate 

Alternative Scenarios of a Use Case are integrated. A clear advantage of textual SSDs is their alignment towards 

(textual) computer programs. To support validation of the integrated SSD and check it with the user organization, 

the paper also provides inductive rules to translate SSDs to natural language and to graphical representations. 

(Inductive rules to generate graphical representations are quite rare.)  

The paper describes novel technical solutions for the application of NLG technologies to RE-relevant artefacts 

and contributes to its theory. The paper includes additional solutions to the RE-problem of validation. 
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