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1 Introduction

1.1 Background

Collective behavior of groups of individuals, for example animals, is ubiquitous
in nature [80]. Examples are schooling of fish, flocking of birds, swarming of
insects and pack hunting of wolves. These examples of collective animal behavior
are believed to have many benefits. For instance, from a protection-from-predator
perspective, one hypothesis states that fish schools or bird flocks may thwart
predators [64]. This is because the many moving preys create a sensory overload
on the visual channel of the predators and, consequently, it becomes difficult for
the predators to pick out individual prey from the groups. Another hypothesis
is that the collective behavior of animals (e.g. fish or birds) may save energy
when swimming or flying together [6, 20]. These interesting phenomena have
attracted much attention from researchers in many scientific disciplines, ranging
from biological science [80] to physics [110], computer science [89] and control
engineering [14, 34, 82].

In addition to the fact that we humans desire to understand this beautiful
and fascinating collective behavior in nature, there also exist broad practical
applications that are urgently calling for investigation in the area of control of
interconnected systems. As examples, we mention satellite formation flying
[79, 101], intelligent transportation systems [4, 5], distributed sensor networks
[81] and power grids [17]. Due to the physical constraints on the interaction
between these interconnected systems such as limited computational resources,
local communication and local sensing capabilities, control problems in these
application areas are very challenging.

Motivated by the above observations, in the past two decades, researchers
in the systems and control community have put much effort into studying the
problem of distributed control of multi-agent systems, see e.g. [11, 34, 54, 60, 85, 87, 94,
103, 111]. In this problem framework, a multi-agent system is a system that consists
of a number of local systems, called the agents. Each agent exchanges information
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with the other agents according to a given communication topology. In this way,
these agents together form a network. Consequently, the overall behavior of a
network is determined not only by the behavior of the agents, but also by the
communication between these agents, see e.g. [71, 85, 111]. Such communication
topologies are represented by graphs. In general, a graph contains nodes being
connected by edges, where each node represents an agent, and the edges represent
the communication between these agents. It turns out that tools from algebraic
graph theory are useful for tackling problems in the area of multi-agent systems
[21, 63].

The essential idea of distributed control for multi-agent systems is that, while
each agent makes use of only information obtained from local interactions accord-
ing to the communication graph, the agents together will still achieve a common
goal. Two typical examples are consensus and synchronization. Within the problem
of consensus, the dynamics of the agents is often described by single or double in-
tegrators, and by proposing distributed control laws, the agents agree on a certain
(possibly nonzero) constant value [29, 54, 85, 87, 111]. On the other hand, in the
context of synchronization, the dynamics of the agents is typically characterized
by a general higher dimensional linear or nonlinear system, and the proposed
distributed protocols guarantee that the states or the outputs of the agents all
converge to a common time-varying trajectory [28, 54, 94, 99, 103, 122]. If relative
state information of the agents is available, it is often possible to design distributed
protocols using static state feedback [10, 85, 87, 111]. However, if the models of the
agents are described by higher dimensional dynamics, very often only relative
output information is available instead of relative state information. In this case,
the controlled multi-agent network may want to achieve synchronization by using
dynamic output feedback based distributed protocols, see e.g. [54, 94, 103, 115].

In the literature on consensus and synchronization, based on whether all
agents take equally important roles, multi-agent systems can be categorized into
two types, namely, leaderless multi-agent systems and leader-follower multi-agent
systems. In the leaderless case, all agents are equally important in the sense that
they reach an agreement which depends on the dynamics of all agents, see e.g.
[37, 54, 85, 87, 94, 103, 104]. On the other hand, in the leader-follower case there is
(in most cases) one agent that takes the dominant position, called the leader, and
the other agents are called the followers. The leaders are often taken as autonomous
systems [35, 75, 122], or systems with unknown inputs [29, 56, 61]. Problems of
consensus or synchronization for leader-follower systems are often referred to
as distributed tracking control problems. The goal of a distributed tracking control
problem is then to design distributed protocols for the followers such that their
dynamics tracks that of the leader [29, 78].

For multi-agent systems, the models of the agents are not necessarily required
to be identical. Depending on whether the agents have the same dynamics, multi-
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agent systems can also be classified into the following two subclasses, called
homogeneous multi-agent systems and heterogeneous multi-agent systems. For
homogeneous systems, the system models of the agents are identical, and here
most existing work in the literature deals with state consensus or synchronization
[54, 85, 103]. However, for heterogeneous systems, due to their very nature that
the system models of the agents are allowed to be distinct, in particular their state
space dimensions may even be different. For these systems it is therefore more
natural and interesting to consider the collective output behavior [22, 46, 59, 99,
115].

While designing distributed control laws for a multi-agent system, one may
not only want the controlled multi-agent network to achieve consensus or synchro-
nization, but also would like the overall network to minimize a certain optimality
criterion [7, 10, 23, 31, 41, 122]. Such problems are referred to as distributed optimal
control problems. Within this framework, one of the important problems is the
distributed linear quadratic optimal control problem. In the context of distributed
linear quadratic optimal control, a global linear quadratic cost functional is in-
troduced for a multi-agent system with given initial states. The objective is to
design distributed control laws such that the given linear quadratic cost functional
is minimized while the agents reach consensus or synchronization. Due to the
particular form of distributed control laws, which capture the structure of the com-
munication between the agents, the distributed linear quadratic optimal control
problem is non-convex and very difficult to solve. It is also unclear whether in
general a closed form solution exists.

As a consequence, the existing work in the literature on distributed linear
quadratic optimal control either deals with suboptimality versions of this problem
[7, 74, 76, 97, 98], or considers special cases, such as single integrator agent dynamics
[10] and inverse optimality [75, 77, 123]. In Chapter 2 of this thesis, we investigate
a suboptimality version of this problem. Given a leaderless multi-agent system
and an associated global linear quadratic cost functional, we establish a design
method for computing distributed control laws that guarantee the associated
cost to be smaller than a given upper bound and achieve synchronization for
the controlled network. In Chapter 3, we extend the results in Chapter 2 on
distributed linear quadratic control for leaderless multi-agent systems to the case
of distributed linear quadratic tracking control for leader-follower multi-agent
systems. Both in the above distributed linear quadratic control problem and the
distributed linear quadratic tracking problem, our computation of the proposed
distributed control laws uses so-called global information, in the sense that, in order
to compute the distributed control laws, knowledge of the entire network graph is
required. To remove the dependence on this global information, in Chapter 4, for
leaderless multi-agent systems with single integrator agent dynamics, we provide
a decentralized method for computing distributed suboptimal control laws that do
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not involve global information.
Another important problem within the framework of distributed optimal

control is the distributedH2 optimal control problem. In the context of distributed
H2 optimal control, the dynamical model of a multi-agent system contains external
disturbance inputs. An H2 cost functional is then introduced to quantify the
influence of the disturbance inputs on the performance output of the overall
network. The distributedH2 optimal control problem is the problem of finding a
distributed protocol that minimizes the associated H2 cost while the controlled
network achieves consensus or synchronization, see e.g. [36, 39, 53, 55, 112]. As
before, due to the fact that the proposed distributed protocols have a particular
structure imposed by the network graph, the problem of distributedH2 optimal
control is a non-convex optimization problem. Again, it is unclear whether in
general a closed form solution exists. Therefore, in Chapter 5 of this thesis, instead
of considering the actual distributed H2 optimal control problem, we study a
version of this problem that requires only suboptimality. Given a homogeneous multi-
agent system and an associatedH2 cost functional, we provide a design method for
obtaining distributed protocols using static relative state information such that the
associatedH2 cost is smaller than an a priori given upper bound and the controlled
network achieves state synchronization. In Chapter 6, we generalize the results in
Chapter 5 on static relative state feedback to the general case of dynamic relative
output feedback. The results in Chapters 5 and 6 on distributed H2 suboptimal
control of homogeneous multi-agent systems are then further generalized in Chapter
7 to the case of heterogeneous multi-agent systems.

In parallel to the development of control design for consensus and synchro-
nization of multi-agent systems, recent years have also witnessed an increasing
interest in problems of distributed state estimation for spatially constrained large-
scale systems. Applications can be found in power grids [32], industrial plants
[107] and wireless sensor networks [86]. Due to physical constraints on the mon-
itored systems, the measured output of a system is often not available to one
single sensor. Consequently, standard estimation methods do not directly apply
anymore. It might however be possible to monitor the state of a system by means
of a sensor network. Such a sensor network consists a number of local sensors, where
each of these has access to a certain portion of the measured output of the system.
Each sensor then makes use of its obtained output portion to generate an estimate,
and communicates this local estimate to the other local sensors according to a
given communication graph. In this way, the states of all local sensors will reach
synchronization to a common trajectory, which is then an estimate of the state of
the measured system. Problems of monitoring the state of a spatially constrained
system by a sensor network are often referred to as distributed state estimation
problems.

The distributed state estimation problem has been studied mainly in two
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research directions, namely, distributed observer design [26, 27, 49, 65, 88, 113, 114]
and distributed filtering [40, 47, 81, 83, 84, 105, 106]. In the distributed observer
design problem, the system is noise/disturbance free and is monitored by a
number of local sensors, called local observers. Each local observer makes use of its
measured output portion of the monitored system and then communicates with
the other local observers according to the given communication graph. In this
way, the local observers together form a distributed observer. The aim is to design a
distributed observer such that all local observers reconstruct the state of the system.
On the other hand, in the context of distributed filtering, the dynamic model of the
monitored system contains noise/disturbance inputs and its output is observed by
a number of local sensors, which are referred to as local filters. Similarly, each local
filter makes use of its measured output portion and then exchanges information
with the other local filters according to the given communication graph. In this
way, these local filters together form a distributed filter. The goal of the distributed
filtering problem is to design a distributed filter such that the states of all local
filters track that of the system and, in addition, this distributed filter is optimal
with respect to a certain cost functional. A typical problem appearing in this
research direction is the distributed Kalman filtering problem, see e.g. [81, 83, 84].

In the literature on distributed filtering, most of the existing work deals with
stochastic versions of this problem. In Chapter 8 of this thesis, however, we
consider two deterministic versions of the distributed optimal filtering problem
for linear systems, more specifically, the distributedH2 andH∞ optimal filtering
problems. The distributedH2 andH∞ optimal filtering problems are the problems
of designing local filter gains such that theH2 orH∞ norm of the transfer matrix
from the disturbance input to the output estimation error is minimized while
all local filters reconstruct the full system state asymptotically. Again, due to
their non-convex nature, these problems are in general very challenging and it
is not clear whether solutions exist. Therefore, instead in Chapter 8 we address
suboptimality versions of these problems. In particular, we provide conceptual
algorithms for obtainingH2 andH∞ suboptimal distributed filters, respectively.
The resulting distributed filters guarantee that theH2 orH∞ norm of the transfer
matrix from the disturbance input to the output estimation error is smaller than
an a priori given upper bound, while all local filters reconstruct the full system
state asymptotically.

1.2 Outline of this thesis

The organization of this thesis is as follows. Chapters 2 - 4 are concerned with the
distributed linear quadratic optimal control problem. In Chapter 2, we study a
suboptimality version of the distributed linear quadratic optimal control problem for
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leaderless homogeneous multi-agent systems. In Chapter 3, we extend the results
in Chapter 2 on distributed linear quadratic suboptimal control for leaderless
multi-agent systems to the case of distributed linear quadratic suboptimal tracking
control for leader-follower multi-agent systems. The computation of the local control
gains in Chapters 2 and 3 requires complete knowledge of the eigenvalues of
the Laplacian matrix or of a given positive definite matrix associated with the
communication graph interconnecting the agents, often called global information. In
Chapter 4, we aim at removing this dependence on global information. For multi-
agent systems with single integrator agent dynamics, we establish a decentralized
computation method for computing suboptimal local control gains. Chapters 5 - 7
deal with the distributedH2 suboptimal control problem. In Chapter 5, we study
this problem for homogeneous multi-agent systems by static relative state feedback,
and the results are then generalized in Chapter 6 to the case of dynamic relative
output feedback. In Chapter 7, we further generalize the results in Chapters 5 and 6,
and investigate the distributedH2 suboptimal control problem for heterogeneous
multi-agent systems. In Chapter 8, we studyH2 andH∞ suboptimal distributed
filtering problems for linear systems. In Chapter 9, we formulate the conclusions
of this thesis, and discuss directions for possible future research.

1.3 Publications during the PhD project

Journal papers

• J. Jiao, H. L. Trentelman and M. K. Camlibel, “A suboptimality approach to
distributed linear quadratic optimal control”, IEEE Transactions on Automatic
Control, Volume: 65, Issue: 3, 2020. (Chapter 2)

• J. Jiao, H. L. Trentelman and M. K. Camlibel, “Distributed linear quadratic
optimal control: compute locally and act globally”, IEEE Control Systems
Letters, Volume: 4, Issue: 1, 2020. (Chapter 4)

• J. Jiao, H. L. Trentelman and M. K. Camlibel, “A suboptimality approach to
distributedH2 control by dynamic output feedback”, Automatica, Volume
121, 109164, 2020. (Chapter 6)

• J. Jiao, H. L. Trentelman and M. K. Camlibel, “H2 suboptimal output synchro-
nization of heterogeneous multi-agent systems”, submitted for publication
in Systems and Control Letters, 2020. (Chapter 7)

• J. Jiao, H. L. Trentelman and M. K. Camlibel, “H2 and H∞ suboptimal
distributed filter design for linear systems”, submitted for publication in
IEEE Transactions on Automatic Control, 2020. (Chapter 8)
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Conference papers

• J. Jiao, H. L. Trentelman and M. K. Camlibel, “Distributed linear quadratic
tracking control for leader-follower multi-agent systems: a suboptimality
approach”, 21st IFAC World Congress, 2020. (Chapter 3)

• J. Jiao, H. L. Trentelman and M. K. Camlibel, “A suboptimality approach to
distributedH2 optimal control”, 7th IFAC Workshop on Distributed Estimation
and Control in Networked Systems (NecSys18), 2018. (Chapter 5)

1.4 Notation

In this section, we will introduce some basic notation that will be used throughout
this thesis.

We denote by R the field of real numbers and by Rn the space of n dimensional
vectors over R. For x ∈ Rn, its Euclidean norm is defined by ‖x‖ :=

√
x>x. For

a given r > 0, we denote by B(r) := {x ∈ Rn | ‖x‖ 6 r} the closed ball of radius
r. We write 1N for the n dimensional column vector with all its entries equal to 1.
We denote by Rn×m the space of real n ×m matrices. For a given matrix A, we
write A> to denote its transpose and A−1 its inverse (if exists). For a symmetric
matrix P , we denote P > 0 (P > 0) if it is positive (semi-)definite and P < 0 if
its negative definite. We denote the identity matrix of dimension n× n by In. A
matrix is called Hurwitz if all its eigenvalues have negative real parts. The trace of
a square matrix A is denoted by tr(A). We denote by diag(d1, d2, . . . , dn) the n× n
diagonal matrix with d1, d2, . . . , dn on the diagonal. Given matrices Ri ∈ Rm×m,
i = 1, 2, . . . , n, we denote by blockdiag(Ri) the nm × nm block diagonal matrix
with R1, R2, . . . , Rn on the diagonal and we denote by col(Ri) the nm×m column
block matrix

(
R>1 , R

>
2 , . . . , R

>
n

)>. The Kronecker product of two matrices A and
B is denoted by A⊗B. For a linear map A : X → Y , the kernel and image of A are
denoted by ker(A) := {x ∈ X | Ax = 0} and im(A) := {Ax | x ∈ X}, respectively.

1.5 Graph theory

We will now review some basic concepts and elementary results on graph theory
that will be used.

A directed weighted graph is denoted by G = (V, E ,A) with node set V =

{1, 2, . . . , N} and edge set E = {e1, e2, . . . , eM} satisfying E ⊂ V × V , and where
A = [aij ] is the adjacency matrix with nonnegative elements aij , called the edge
weights. If (i, j) ∈ E we have aji > 0. If (i, j) 6∈ E we have aji = 0. Given a
graph G, a directed path from node 1 to node p is a sequence of edges (k, k + 1),
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k = 1, 2, . . . , p− 1. A directed weighted graph is called strongly connected if for any
pair of distinct nodes i and j, there exists a directed path from i to j. A graph is
called undirected if (i, j) ∈ E implies (j, i) ∈ E . It is called simple if aii = 0 for all
i. A simple undirected graph is called connected if for each pair of nodes i and j

there exists a directed path from i to j.
Given a graph G, the degree matrix of G is the diagonal matrix, given by

D = diag(d1,d2, . . . ,dN ) with di =
∑N
j=1 aij . The Laplacian matrix is defined as

L := D − A. If G is a directed weighted graph, the associated Laplacian matrix
L has a zero eigenvalue corresponding to the eigenvector 1N . If moreover G
is strongly connected, then the eigenvalue 0 has multiplicity one, and all the
other eigenvalues lie in the open right half-plane. The Laplacian matrix of an
undirected graph is symmetric and has only real nonnegative eigenvalues. A
simple undirected weighted graph is connected if and only if its Laplacian matrix
L has eigenvalue 0 with multiplicity one. In that case, there exists an orthogonal
matrix U such that

U>LU = Λ = diag(0, λ2, . . . , λN ) (1.1)

with 0 < λ2 6 · · · 6 λN . Moreover, we can take U =
(

1√
N
1N U2

)
with U2U

>
2 =

IN − 1
N 1N1>N .

A simple undirected weighted graph obviously has an even number of edges
M . Define K := 1

2M . For such graph, an associated incidence matrix R ∈ RN×K

is defined as a matrix R = (r1, r2, . . . , rK) with columns rk ∈ RN . Each column
rk corresponds to exactly one pair of edges ek = {(i, j), (j, i)}, and the ith and
jth entry of rk are equal to 1 or −1, while they do not take the same value. The
remaining entries of rk are equal to 0. We also define the matrix

W = diag(w1,w2, . . . ,wK) (1.2)

as the K ×K diagonal matrix, where wk is the weight on each of the edges in ek
for k = 1, 2, . . . ,K. The relation between the Laplacian matrix and the incidence
matrix is captured by

L = RWR>.

For connected simple undirected graphs, we review the following result [29]:

Lemma 1.1. Let G be a connected simple undirected graph with Laplacian matrix L.
Let g1, g2, . . . , gN be non-negative real numbers with at least one gi > 0. Define G =

diag(g1, g2, . . . , gN ). Then the matrix L+G is positive definite.

For strongly connected weighted directed graphs, we review the following
result [8, 62]:

Lemma 1.2. Let G be a strongly connected weighted directed graph with Laplacian matrix
L. Then there exists a unique row vector θ = (θ1, θ2, . . . , θN ), where θ1, θ2, . . . , θN are all
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positive real numbers, such that θL = 0 and θ1N = N . Define Θ := diag(θ1, θ2, . . . , θN ),

then the matrix L := ΘL+ L>Θ is a positive semi-definite matrix.

Note that ΘL is the Laplacian matrix of the balanced directed graph obtained
by adjusting the weights in the original graph. The matrix L is the Laplacian
matrix of the undirected graph obtained by taking the union of the edges and their
reversed edges in this balanced directed graph.





2
A suboptimality approach to

distributed linear quadratic optimal
control

This chapter is concerned with a suboptimality version of the distributed linear
quadratic optimal control problem for multi-agent systems. Given a multi-agent
system with identical agent dynamics and an associated global quadratic cost
functional, our objective is to design distributed control laws that achieve syn-
chronization and whose cost is smaller than an a priori given upper bound, for
all initial states of the network that are bounded in norm by a given radius. A
centralized design method is provided to compute such suboptimal controllers,
involving the solution of a single Riccati inequality of dimension equal to the
dimension of the agent dynamics, and the smallest nonzero and the largest eigen-
value of the Laplacian matrix. Furthermore, we relax the requirement of exact
knowledge of the smallest nonzero and largest eigenvalue of the Laplacian matrix
by using only lower and upper bounds on these eigenvalues. Finally, a simulation
example is provided to illustrate our design method.

2.1 Introduction

In this chapter, we study the distributed linear quadratic optimal control problem
for multi-agent networks. This problem deals with a number of identical agents
represented by a finite dimensional linear input-state system, and an undirected
graph representing the communication between these agents. Given is also a
quadratic cost functional that penalizes the differences between the states of
neighboring agents and the size of the local control inputs. The distributed linear
quadratic control problem is the problem of finding a distributed diffusive control
law that minimizes this cost functional, while achieving synchronization for the
controlled network. This problem is non-convex and difficult to solve, and a closed
form solution has not been provided in the literature up to now. It is also unknown
under what conditions a distributed diffusive optimal control law exists in general
[74]. Therefore, instead of addressing the problem formulated above, in the present
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chapter we will study a suboptimality version of this optimal control problem. In
other words, our aim will be to design distributed diffusive suboptimal control
laws that guarantee the controlled network to reach synchronization.

The distributed linear quadratic control problem has attracted extensive at-
tention in the last decade, and has been studied from many different angles. For
example, in [70, 109, 119] it was shown that if the quadratic cost functional in-
volves the differences of states of neighboring agents, then, necessarily, the optimal
control laws must be distributed and diffusive. However, these references do not
address the problem of designing the optimal control laws. In [7], a design method
was introduced for computing distributed suboptimal stabilizing controllers for
decoupled linear systems. In this reference, the authors consider a global linear
quadratic cost functional which contains terms that penalize the states and inputs
of each agent and also the relative states between each agent and its neighboring
agents. In [104, 122], methods were established for designing distributed syn-
chronizing control laws for linear multi-agent systems, where the control laws are
derived from the solution of an algebraic Riccati equation of dimension equal
to the state space dimension of the agents. However, in these references, cost
functionals were not taken explicitly into consideration.

The distributed linear quadratic optimal control problem was also addressed
in [10] for multi-agent systems with single integrator agent dynamics. The authors
obtained an expression for the optimal control law, with the optimal feedback
gain given in terms of the initial conditions of all agents. In addition, in [98]
a distributed optimal control problem was considered from the perspective of
cooperative game theory. In that paper, the problem being studied was solved by
transforming it into a maximization problem for linear matrix inequalities, taking
into consideration the structure of the Laplacian matrix. For related work we also
mention [15, 19, 73, 117], to name a few.

Also, in [76], a hierarchical control approach was introduced for linear leader-
follower multi-agent systems. For the case that the weighting matrices in the
cost functional are chosen to be of a special form, two suboptimal controller
design methods were given in this reference. In addition, in [75], an inverse
optimal control problem was addressed both for leader-follower and leaderless
multi-agent systems. For a particular class of digraphs, the authors showed that
distributed optimal controllers exist, and can be obtained if the weighting matrices
are assumed to be of a special form, capturing the graph information. For other
work related to distributed inverse optimal control, we refer to [77, 123].

In this chapter, our objective is to design distributed diffusive control laws that
guarantee the controlled network to reach synchronization while the associated
cost is smaller than an a priori given upper bound. The main contributions of this
chapter are the following:
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1. We present a design method for computing distributed diffusive suboptimal
control laws, based on computing a positive definite solution of a single
Riccati inequality of dimension equal to the dimension of the agent dynamics.
In the computation of the local control gain, the smallest nonzero eigenvalue
and the largest eigenvalue of the Laplacian matrix are involved.

2. For the case that exact information on the smallest nonzero eigenvalue and
the largest eigenvalue of the Laplacian matrix is not available, we establish
a design method using only lower and upper bounds on these Laplacian
eigenvalues.

The remainder of this chapter is organized as follows. In Section 2.2, we
formulate the distributed linear quadratic suboptimal control problem. Section 2.3
presents the analysis and design of linear quadratic suboptimal control for linear
systems, collecting preliminary classical results for treating the actual distributed
suboptimal control problem for multi-agent systems. Then, in Section 2.4, we
study the distributed suboptimal control problem for linear multi-agent systems.
To illustrate our results, a simulation example is provided in Section 2.5. Finally,
in Section 2.6 we formulate some conclusions.

2.2 Problem formulation

In this chapter, we consider a multi-agent system consisting of N identical agents.
It will be a standing assumption that the underlying graph is simple, undirected
and connected. The corresponding Laplacian matrix is denoted by L. The dy-
namics of the identical agents is represented by the continuous-time linear time-
invariant (LTI) system given by

ẋi(t) = Axi(t) +Bui(t), xi(0) = xi0, i = 1, 2, . . . , N, (2.1)

where A ∈ Rn×n, B ∈ Rn×m, and xi ∈ Rn, ui ∈ Rm are the state and input of
the agent i, respectively, and xi0 is its initial state. Throughout this chapter, we
assume that the pair (A,B) is stabilizable.

We consider the infinite horizon distributed linear quadratic optimal control
problem for multi-agent system (2.1), where the global cost functional integrates
the weighted quadratic difference of states between every agent and its neighbors,
and also penalizes the inputs in a quadratic form. Thus, the cost functional
considered in this chapter is given by

J(u1, u2, . . . , uN ) =

∫ ∞
0

1

2

N∑
i=1

∑
j∈Ni

(xi − xj)>Q(xi − xj) +

N∑
i=1

u>i Rui dt, (2.2)
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where Q > 0 and R > 0 are given real weighting matrices.
We can rewrite multi-agent system (2.1) in compact form as

ẋ = (IN ⊗A)x + (IN ⊗B)u, x(0) = x0 (2.3)

with x =
(
x>1 , x

>
2 , . . . , x

>
N

)>, u =
(
u>1 , u

>
2 , . . . , u

>
N

)>, where x ∈ RnN , u ∈ RmN

contain the states and inputs of all agents, respectively. Note that, although
the agents have identical dynamics, we allow the initial states of the individual
agents to differ. These initial states are collected in the joint vector of initial states
x0 =

(
x>10, x

>
20, . . . , x

>
N0

)>. Moreover, we can also write the cost functional (2.2) in
compact form as

J(u) =

∫ ∞
0

x>(L⊗Q)x + u>(IN ⊗R)u dt. (2.4)

The distributed linear quadratic optimal control problem is the problem of
minimizing for all initial states x0 the cost functional (2.4) over all distributed
diffusive control laws that achieve synchronization. By a distributed diffusive
control law we mean a control law of the form

u = (L⊗K)x, (2.5)

where K ∈ Rm×n is an identical feedback gain for all agents. The adjective
diffusive refers to the fact that the input of each agent depends on the relative state
variables with respect to its neighbors. The control law (2.5) is distributed in the
sense that the local gains for all agents are identical.

By interconnecting the agents using this control law, we obtain the overall
network dynamics

ẋ = (IN ⊗A+ L⊗BK)x. (2.6)

Foremost, we want the control law to achieve synchronization:

Definition 2.1. We say the network reaches synchronization using control law (2.5) if
for all i, j = 1, 2, . . . , N and for all initial states xi0 and xj0, we have

xi(t)− xj(t)→ 0 as t→∞.

As a function of the to-be-designed local feedback gain K, the cost functional
(2.4) can be rewritten as

J(K) =

∫ ∞
0

x>
(
L⊗Q+ L2 ⊗K>RK

)
x dt. (2.7)

In other words, the distributed linear quadratic optimal control problem is the
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problem of minimizing the cost functional (2.7) over all K ∈ Rm×n such that the
controlled network (2.6) reaches synchronization.

Due to the distributed nature of the control law (2.5) as imposed by the network
topology, the distributed linear quadratic optimal control problem is a non-convex
optimization problem. It is therefore difficult, if not impossible, to find a closed form
solution for an optimal controller, or such optimal controller may not even exist.
Therefore, as announced in the introduction, in this chapter we will study and
resolve a version of this problem involving the design of distributed suboptimal
control laws.

More specifically, let B(r) = {x ∈ RnN | ‖x‖ 6 r} be the closed ball of radius
r in the joint state space RnN of the network (2.3). Then, for system (2.3) with
initial states in such a closed ball of a given radius, we want to design a distributed
diffusive controller such that synchronization is achieved and, for all initial states
in the given ball, the associated cost is smaller than an a priori given upper bound.
Thus, we will consider the following problem:

Problem 2.1. Consider the multi-agent system (2.3) and associated cost functional given
by (2.7). Let r > 0 be a given radius and let γ > 0 be an a priori given upper bound for
the cost. The problem is to find a distributed diffusive controller of the form (2.5) such that
the controlled network (2.6) reaches synchronization, and for all x0 ∈ B(r) the associated
cost (2.7) is smaller than the given upper bound, i.e., J(K) < γ.

Remark 2.1. Note that we could also have formulated the alternative problem of
finding a suboptimal controller for a single, given, initial state x0. In fact, this would
be closer to the classical linear quadratic optimal control problem, which is usually
formulated as the problem of minimizing the cost functional for a given initial state
x0. In that context, however, the optimal controller is a state feedback that turns
out to be optimal for all initial states. In order to capture in our problem formulation
this property of being optimal for all initial states, we have formulated Problem
2.1 in terms of initial states contained in a ball of a given radius.

Before we address Problem 2.1, we will first briefly discuss the linear quadratic
suboptimal control problem for a single linear system. This will be the subject of
the next section.

2.3 Linear quadratic suboptimal control for linear sys-
tems

In this section, we consider a linear quadratic suboptimal control problem for
single linear systems. The results presented in this section are standard and can
be found scattered over the literature, see e.g. [33, 100, 102]. Exact references are
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however hard to give and therefore, in order to make this chapter self-contained,
we will collect the required results here and provide their proofs.

We will first analyze the quadratic performance of a given autonomous system.
Subsequently, we will discuss how to design suboptimal control laws for a linear
system with inputs.

2.3.1 Quadratic performance analysis for autonomous linear sys-
tems

Consider the autonomous linear system

ẋ(t) = Āx(t), x(0) = x0, (2.8)

where Ā ∈ Rn×n and x ∈ Rn is the state. We consider the quadratic performance
of system (2.8), given by

J =

∫ ∞
0

x>Q̄x dt, (2.9)

where Q̄ > 0 is a given real weighting matrix. Note that the performance J is finite
if system (2.8) is stable, i.e., Ā is Hurwitz.

We are interested in finding conditions such that the performance (2.9) of
system (2.8) is smaller than a given upper bound. For this, we have the following
lemma:

Lemma 2.2. Consider system (2.8) with the corresponding quadratic performance (2.9).
The performance (2.9) is finite if system (2.8) is stable, i.e., Ā is Hurwitz. In this case, it is
given by

J = x>0 Y x0, (2.10)

where Y is the unique positive semi-definite solution of

Ā>Y + Y Ā+ Q̄ = 0. (2.11)

Alternatively,

J = inf{x>0 Px0 | P > 0 and Ā>P + PĀ+ Q̄ < 0}. (2.12)

Proof. The fact that the quadratic performance (2.9) is given by the quadratic
expression (2.10) involving the Lyapunov equation (2.11) is well-known.

We will now prove (2.12). Let Y be the solution to Lyapunov equation (2.11)
and let P be a positive definite solution to the Lyapunov inequality in (2.12).
Define X := P − Y . Then we have

Ā>(X + Y ) + (X + Y )Ā+ Q̄ < 0.
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So consequently,
Ā>X +XĀ < 0.

Since Ā is Hurwitz, it follows that X > 0. Thus, we have P > Y and hence
J 6 x>0 Px0 for any positive definite solution P to the Lyapunov inequality.

Next we will show that for any ε > 0 there exists a positive definite matrix
Pε satisfying the Lyapunov inequality such that Pε < Y + εI , and consequently
x>0 Pεx0 6 J + ε‖x0‖2. Indeed, for given ε, take Pε equal to the unique positive
definite solution of

Ā>P + PĀ+ Q̄+ εI = 0.

Clearly then, Pε =
∫∞

0
eĀ

>t(Q̄ + εI)eĀt dt, so Pε ↓ Y as ε ↓ 0. This proves our
claim.

The following theorem now yields necessary and sufficient conditions such that,
for a given upper bound γ > 0, the quadratic performance (2.9) satisfies J < γ.

Theorem 2.3. Consider system (2.8) with the associated quadratic performance (2.9). For
given γ > 0, we have that Ā is Hurwitz and J < γ if and only if there exists a positive
definite matrix P satisfying

Ā>P + PĀ+ Q̄ < 0, (2.13)

x>0 Px0 < γ. (2.14)

Proof. (if) Since there exists a positive definite solution to the Lyapunov inequality
(2.13), it follows that Ā is Hurwitz. Take a positive definite matrix P satisfying
the inequalities (2.13) and (2.14). By Lemma 2.2, we then immediately have
J 6 x>0 Px0 < γ.

(only if) If Ā is Hurwitz and J < γ, then, again by Lemma 2.2, there exists
a positive definite solution P to the Lyapunov inequality (2.13) such that J 6
x>0 Px0 < γ.

In the next subsection, we will discuss the suboptimal control problem for a
linear system with inputs.

2.3.2 Linear quadratic suboptimal control for linear systems

In this section, we consider the linear time-invariant system given by

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (2.15)

where A ∈ Rn×n, B ∈ Rn×m, and x ∈ Rn, u ∈ Rm are the state and the input, re-
spectively, and x0 is a given initial state. Assume that the pair (A,B) is stabilizable.
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The associated cost functional is given by

J(u) =

∫ ∞
0

x>Qx+ u>Ru dt, (2.16)

where Q > 0 and R > 0 are given weighting matrices that penalize the state and
input, respectively.

Given γ > 0 and initial state x0, we want to find a state feedback control law
u = Kx such that the closed system

ẋ(t) = (A+BK)x(t) (2.17)

is stable and the corresponding cost

J(K) =

∫ ∞
0

x>(Q+K>RK)x dt (2.18)

satisfies J(K) < γ.
The following theorem gives a sufficient condition for the existence of such

control law.

Theorem 2.4. Consider the system (2.15) with initial state x0 and associated cost func-
tional (2.16). Let γ > 0. Suppose that there exists a positive definite P satisfying

A>P + PA− PBR−1B>P +Q < 0, (2.19)

x>0 Px0 < γ. (2.20)

Let K := −R−1B>P . Then the controlled system (2.17) is stable and the control law
u = Kx is suboptimal, i.e., J(K) < γ.

Proof. Substituting K := −R−1B>P into (2.17) yields

ẋ(t) = (A−BR−1B>P )x(t), x(0) = x0. (2.21)

Since P satisfies (2.19), it should also satisfy

(A−BR−1B>P )>P + P (A−BR−1B>P ) +Q+ PBR−1B>P < 0,

which implies that A − BR−1B>P is Hurwitz, i.e., the closed system (2.21) is
stable. Consequently, the corresponding cost is finite and equal to

J(K) =

∫ ∞
0

x>(Q+ PBR−1B>P )x dt.

Since (2.20) holds, by taking Ā = A − BR−1B>P and Q̄ = Q + PBR−1B>P in
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Theorem 2.3, we immediately have J(K) < γ.

In the next section we will apply the above results to tackle the distributed
linear quadratic suboptimal control problem as formulated in Problem 2.1.

2.4 Distributed linear quadratic suboptimal control
for multi-agent systems

Again consider the multi-agent system with the dynamics of the identical agents
represented by

ẋi(t) = Axi(t) +Bui(t), xi(0) = xi0, i = 1, 2, . . . , N, (2.22)

where A ∈ Rn×n, B ∈ Rn×m, and xi ∈ Rn, ui ∈ Rm are the state and input of the
i-th agent, respectively, and xi0 its initial state. We assume that the pair (A,B) is
stabilizable.

Denoting x =
(
x>1 , x

>
2 , . . . , x

>
N

)>, u =
(
u>1 , u

>
2 , . . . , u

>
N

)>, we can rewrite the
multi-agent system in compact form as

ẋ = (IN ⊗A)x + (IN ⊗B)u, x(0) = x0. (2.23)

The cost functional we consider was already introduced in (2.4). We repeat it
here for convenience:

J(u) =

∫ ∞
0

x>(L⊗Q)x + u>(IN ⊗R)u dt, (2.24)

where Q > 0 and R > 0 are given real weighting matrices.
As formulated in Problem 2.1, given a desired upper bound γ > 0, for multi-

agent system (2.23) with initial states contained in the closed ball B(r) of given
radius r we want to design a control law of the form

u = (L⊗K)x (2.25)

such that the controlled network

ẋ = (IN ⊗A+ L⊗BK)x (2.26)

reaches synchronization and, moreover, for all x0 ∈ B(r) the associated cost

J(K) =

∫ ∞
0

x>
(
L⊗Q+ L2 ⊗K>RK

)
x dt (2.27)
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is smaller than the given upper bound, i.e., J(K) < γ.
Let the matrix U ∈ RN×N be an orthogonal matrix that diagonalizes the

Laplacian L. Define Λ := U>LU = diag(0, λ2, . . . , λN ). To simplify the problem
given above, by applying the state and input transformations x̄ = (U> ⊗ In)x
and ū = (U> ⊗ Im)u with x̄ =

(
x̄>1 , x̄

>
2 , . . . , x̄

>
N

)>, ū =
(
ū>1 , ū

>
2 , . . . , ū

>
N

)>, system
(2.23) becomes

˙̄x = (IN ⊗A)x̄ + (IN ⊗B)ū, x̄(0) = x̄0 (2.28)

with x̄0 = (U> ⊗ In)x0. Clearly, (2.25) is transformed to

ū = (Λ⊗K)x̄, (2.29)

and the controlled network (2.26) transforms to

˙̄x = (IN ⊗A+ Λ⊗BK) x̄. (2.30)

In terms of the transformed variables, the cost (2.27) is given by

J(K) =

∫ ∞
0

N∑
i=1

x̄>i (λiQ+ λ2
iK
>RK)x̄i dt. (2.31)

Note that the transformed states x̄i and inputs ūi, i = 2, 3, . . . , N appearing in
system (2.30) and cost (2.31) are decoupled from each other, so that we can write
system (2.30) and cost (2.31) as

˙̄x1 = Ax̄1, (2.32)
˙̄xi = (A+ λiBK)x̄i, i = 2, 3, . . . , N, (2.33)

and

J(K) =

N∑
i=2

Ji(K) (2.34)

with
Ji(K) =

∫ ∞
0

x̄>i (λiQ+ λ2
iK
>RK)x̄i dt, i = 2, 3, . . . , N. (2.35)

Note that λ1 = 0, and that therefore (2.32) does not contribute to the cost J(K).
We first record a well-known fact (see [54, 103]) that we will use later:

Lemma 2.5. Consider the multi-agent system (2.23). Then the controlled network reaches
synchronization with control law (2.25) if and only if, for i = 2, 3, . . . , N , the systems
(2.33) are stable.

Thus we have transformed the problem of distributed suboptimal control for
system (2.23) into the problem of finding a feedback gain K ∈ Rm×n such that
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the systems (2.33) are stable and J(K) < γ. Moreover, since the pair (A,B) is
stabilizable, there exists such a feedback gain K [103].

The following lemma gives a necessary and sufficient condition for a given
feedback gain K to make all systems (2.33) stable and such that J(K) < γ is
satisfied for given initial states.

Lemma 2.6. Let K be a feedback gain. Consider the systems (2.33) with given initial
states x̄20, x̄30, . . . , x̄N0 and associated cost functionals (2.34) and (2.35). Let γ > 0.
Then all systems (2.33) are stable and J(K) < γ if and only if there exist positive definite
matrices Pi satisfying

(A+ λiBK)>Pi + Pi(A+ λiBK) + λiQ+ λ2
iK
>RK < 0, (2.36)

N∑
i=2

x̄>i0Pix̄i0 < γ, (2.37)

for i = 2, 3, . . . , N , respectively.

Proof. (if) Since (2.37) holds, there exist sufficiently small εi > 0, i = 2, 3, . . . , N

such that
∑N
i=2 γi < γ where γi := x̄>i0Pix̄i0 + εi. Because there exists Pi such that

(2.36) and x̄>i0Pix̄i0 < γi holds for all i = 2, 3, . . . , N , by taking Ā = A+ λiBK and
Q̄ = λiQ+ λ2

iK
>RK, it follows from Theorem 2.3 that all systems (2.33) are stable

and Ji(K) < γi for i = 2, 3, . . . , N . Since J(K) =
∑N
i=2 Ji(K), this implies that

J(K) <
∑N
i=2 γi < γ.

(only if) Since J(K) < γ and J(K) =
∑N
i=2 Ji(K), there exist sufficiently small

εi > 0, i = 2, 3, . . . , N such that
∑N
i=2 γi < γ where γi := Ji(K) + εi. Because

all systems (2.33) are stable and Ji(K) < γi for i = 2, 3, . . . , N , by taking Ā =

A+ λiBK and Q̄ = λiQ+ λ2
iK
>RK, it follows from Theorem 2.3 that there exist

positive definite Pi such that (2.36) and x̄>i0Pix̄i0 < γi hold for all i = 2, 3, . . . , N .
Since

∑N
i=2 γi < γ, this implies that

∑N
i=2 x̄

>
i0Pix̄i0 <

∑N
i=2 γi < γ.

Lemma 2.6 establishes a necessary and sufficient condition for a given feedback
gain K to stabilize all systems (2.33) and to satisfy, for given initial states of these
systems, J(K) < γ. However, Lemma 2.6 does not yet provide a method to
compute such K. In the following we present a method to find such K.

Lemma 2.7. Consider the multi-agent system (2.23) with associated cost functional
(2.27). Let x0 be a given initial state for the multi-agent system. Let γ > 0. Let c be any
real number such that 0 < c < 2

λN
. We distinguish two cases:

(i) if
2

λ2 + λN
6 c <

2

λN
, (2.38)
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then there exists P > 0 satisfying the Riccati inequality

A>P + PA+ (c2λ2
N − 2cλN )PBR−1B>P + λNQ < 0. (2.39)

(ii) if

0 < c <
2

λ2 + λN
, (2.40)

then there exists P > 0 satisfying

A>P + PA+ (c2λ2
2 − 2cλ2)PBR−1B>P + λNQ < 0. (2.41)

In both cases, if in addition P satisfies

x>0

(
(IN −

1

N
1N1>N )⊗ P

)
x0 < γ, (2.42)

then the controlled network (2.26) with K := −cR−1B>P reaches synchronization and
with the initial state x0 we have J(K) < γ.

Proof. We will only give the proof for case (i) above. Using the upper and lower
bounds on c given by (2.38), it can be verified that c2λ2

i − 2cλi 6 c2λ2
N − 2cλN < 0

for i = 2, 3, . . . , N . It is then easily seen that (2.39) has many positive definite
solutions. Since also λi 6 λN , any such solution P is a solution to the N −1 Riccati
inequalities

A>P + PA+ (c2λ2
i − 2cλi)PBR

−1B>P + λiQ < 0, i = 2, 3, . . . , N. (2.43)

Equivalently, P also satisfies the Lyapunov inequalities

(A− cλiBR−1B>P )>P + P (A− cλiBR−1B>P )

+λiQ+ c2λ2
iPBR

−1B>P < 0, i = 2, 3, . . . , N.
(2.44)

Next, recall that x̄ = (U> ⊗ In)x with U =
(

1√
N
1N U2

)
. From this it is easily

seen that (x̄>20, x̄
>
30, · · · , x̄>N0)> = (U>2 ⊗ In)x0. Also, U2U

>
2 = IN − 1

N 1N1>N . Since
(2.42) holds, we have

x>0
(
U2U

>
2 ⊗ P

)
x0 < γ ⇔

((U>2 ⊗ In)x0)> (IN−1 ⊗ P ) ((U>2 ⊗ In)x0) < γ ⇔
(x̄>20, x̄

>
30, · · · , x̄>N0) (IN−1 ⊗ P ) (x̄>20, x̄

>
30, · · · , x̄>N0)> < γ,
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which is equivalent to
N∑
i=2

x̄>i0Px̄i0 < γ. (2.45)

Taking Pi = P for i = 2, 3, . . . , N and K := −cR−1B>P in inequalities (2.36)
and (2.37) immediately gives us inequalities (2.44) and (2.45). Then it follows from
Lemma 2.6 that all systems (2.33) are stable and J(K) < γ. Furthermore, it follows
from Lemma 2.5 that the controlled network (2.26) reaches synchronization.

We will now apply Lemma 2.7 to establish a solution to Problem 2.1. Indeed,
the next main theorem gives a condition under which, for given radius r and
upper bound γ, distributed diffusive suboptimal control laws exist, and explains
how these can be computed.

Theorem 2.8. Consider the multi-agent system (2.23) with associated cost functional
(2.27). Let r > 0 be a given radius and let γ > 0 be an a priori given upper bound for the
cost. Let c be any real number such that 0 < c < 2

λN
. We distinguish two cases:

(i) if
2

λ2 + λN
6 c <

2

λN
, (2.46)

then there exists P > 0 satisfying the Riccati inequality

A>P + PA+ (c2λ2
N − 2cλN )PBR−1B>P + λNQ < 0. (2.47)

(ii) if

0 < c <
2

λ2 + λN
, (2.48)

then there exists P > 0 satisfying

A>P + PA+ (c2λ2
2 − 2cλ2)PBR−1B>P + λNQ < 0. (2.49)

In both cases, if in addition P satisfies

P <
γ

r2
I, (2.50)

then the controlled network (2.26) with K := −cR−1B>P reaches synchronization and
J(K) < γ for all x0 ∈ B(r).

Proof. Again, we only give the proof for case (i) above. Let P > 0 satisfy (2.47)
and (2.50) holds. Our aim is to prove that (2.42) is satisfied for all x0 ∈ B(r). First
note that

1

N
1N1>N ⊗ P =

1

N
(1N ⊗ P

1
2 )(1N ⊗ P

1
2 )>,
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which is therefore positive semi-definite. Now, for all x0 ∈ B(r) we have

x>0

(
(IN −

1

N
1N1>N )⊗ P

)
x0

6x>0 (IN ⊗ P ) x0 <
γ

r2
x>0 x0 6 γ.

By Lemma 2.7 then, the controlled network (2.26) with the given K reaches syn-
chronization and J(K) < γ for all x0 ∈ B(r).

Remark 2.9. Theorem 2.8 states that after choosing c satisfying the inequality
(2.46) for case (i) and finding a positive definite P satisfying (2.47) and (2.50), the
distributed control law with local gain K = −cR−1B>P is γ-suboptimal for all
initial states of the network in the closed ball with radius r. By (2.50), the smaller
the solution P of (2.47), the smaller the quotient γ

r2 is allowed to be, leading to a
smaller upper bound and a larger radius. The question then arises: how should
we choose the parameter c in (2.46) so that the Riccati inequality (2.47) allows a
positive definite solution that is as small as possible. In fact, one can find a positive
definite solution P (c, ε) to (2.47) by solving the Riccati equation

A>P + PA− PBR̄(c)−1B>P + Q̄(ε) = 0 (2.51)

with R̄(c) = 1
−c2λ2

N+2cλN
R and Q̄(ε) = λNQ + εIn where c is chosen as in (2.46)

and ε > 0. If c1 and c2 as in (2.46) satisfy c1 6 c2, then we have R̄(c1) 6 R̄(c2),
so, clearly, P (c1, ε) 6 P (c2, ε). Similarly, if 0 < ε1 6 ε2, we immediately have
Q̄(ε1) 6 Q̄(ε2). Again, it follows that P (c, ε1) 6 P (c, ε2). Therefore, if we choose
ε > 0 very close to 0 and c = 2

λ2+λN
, we find the ‘best’ solution to the Riccati

inequality (2.47) in the sense explained above.
Likewise, if c satisfies (2.48) corresponding to case (ii), it can be shown that if

we choose ε > 0 very close to 0 and c > 0 very close to 2
λ2+λN

, we find the ‘best’
solution to the Riccati inequality (2.49) in the sense explained above.

In Theorem 2.8, in order to compute a suitable feedback gain K, one needs
to know λ2 and λN , the smallest nonzero eigenvalue (the algebraic connectivity)
and the largest eigenvalue of the Laplacian matrix, exactly. This requires so-called
global information on the network graph which might not always be available.
There exist algorithms to estimate λ2 in a distributed way, yielding lower and
upper bounds, see e.g. [2]. Moreover, also an upper bound for λN can be obtained
in terms of the maximal node degree of the graph, see [1]. Then the question
arises: can we still find a suboptimal controller reaching synchronization, using as
information only a lower bound for λ2 and an upper bound for λN? The answer to
this question is affirmative, as shown in the following theorem.
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Theorem 2.10. Let a lower bound for λ2 be given by l2 > 0 and an upper bound for λN
be given by LN . Let r > 0 be a given radius and let γ > 0 be an a priori given upper
bound for the cost. Choose c such that

2

l2 + LN
6 c <

2

LN
. (2.52)

Then there exists P > 0 such that

A>P + PA+ (c2L2
N − 2cLN )PBR−1B>P + LNQ < 0. (2.53)

If, in addition, P satisfies
P <

γ

r2
I, (2.54)

then the controlled network with local gain K = −cR−1B>P reaches synchronization
and J(K) < γ for all initial states x0 ∈ B(r).

Furthermore, if we choose c such that

0 < c <
2

l2 + LN
, (2.55)

then there exists P > 0 such that

A>P + PA+ (c2l22 − 2cl2)PBR−1B>P + LNQ < 0. (2.56)

If, in addition, P satisfies (2.54), then the controlled network with K := −cR−1B>P

reaches synchronization and J(K) < γ for all x0 ∈ B(r).

Proof. A proof can be given along the lines of the proof of Theorem 2.8.

Remark 2.11. Note that also in Theorem 2.10 the question arises how to choose
c > 0 such that the Riccati inequalities (2.53) and (2.56) admit a positive definite
solution that is as small as possible. Following the same ideas as in Remark 2.9,
if we choose ε > 0 very close to 0 and c > 0 equal to 2

l2+LN
in (2.53) (respectively

very close to 2
l2+LN

in (2.56)), we find the ‘best’ solution to the Riccati inequalities
(2.53) and (2.56).

Moreover, one may also ask the question: can we compare, with the same
choice for c, solutions to (2.53) with solutions to (2.47), and also solutions to (2.56)
with solutions to (2.49)? The answer is affirmative. Choose c that satisfies both
conditions (2.46) and (2.52). One can then check that the computed positive definite
solution to (2.53) is indeed ‘larger’ than that to (2.47) as explained in Remark 2.9. A
similar remark holds for the positive definite solutions to (2.56) and corresponding
solutions to (2.49) if c satisfies both (2.48) and (2.55). We conclude that if, instead of
using the exact values λ2 and λN , we use a lower bound, respectively upper bound
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for these eigenvalues, then the computed distributed control law is suboptimal for
‘less’ initial states of the agents.

Remark 2.12. As a final remark, we note that the theory developed in this chapter
carries over unchanged to the case of undirected weighted graphs. In that case the
expression for cost functional (2.2) should be changed to

J(u1, u2, . . . , uN ) =

∫ ∞
0

1

2

N∑
i=1

N∑
j=1

aij(xi − xj)>Q(xi − xj) +

N∑
i=1

u>i Rui dt,

in which A = [aij ] is the weighted adjacency matrix. Denoting the corresponding
weighted Laplacian matrix by L, also this cost functional can be represented in
compact form by (2.4), and the subsequent development will remain the same.

2.5 Simulation example

In this section, we will use a simulation example borrowed from [76] to illustrate
the proposed design method for distributed suboptimal controllers. Consider a
group of 8 linear oscillators with identical dynamics

ẋi = Axi +Bui, xi(0) = xi0, i = 1, 2, . . . , 8 (2.57)

with

A =

(
0 1

−1 0

)
, B =

(
0

1

)
.

Assume the underlying graph is the undirected line graph with Laplacian matrix

L =



1 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 1


.

We consider the cost functional

J(u) =

∫ ∞
0

x>(L⊗Q)x + u>(I8 ⊗R)u dt (2.58)
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Figure 2.1: Plots of the state vector x1 = (x1,1, x2,1, . . . , x8,1) (upper plot) and
x2 = (x1,2, x2,2, . . . , x8,2) (lower plot) of the 8 decoupled oscillators without control

where the matrices Q and R are chosen to be

Q =

(
2 0

0 1

)
, R = 1.

Let the desired upper bound for the cost functional (2.58) be given as γ = 3. Our
goal is to design a control law u = (L ⊗ K)x such that the controlled network
reaches synchronization and the associated cost is less than γ for all initial states
x0 in a closed ball B(r) with radius r. The radius r will be specified later on in this
example.

In this example, we adopt the control design method given in case (i) of
Theorem 2.8. The smallest nonzero and largest eigenvalue of L are λ2 = 0.0979

and λ8 = 3.8478. First, we compute a positive definite solution P to (2.47) by
solving the Riccati equation

A>P + PA+ (c2λ2
8 − 2cλ8)PBR−1B>P + λ8Q+ εI2 = 0

with ε > 0 chosen small as mentioned in Remark 2.9. Here we choose ε = 0.001.
Moreover, we choose c = 2

λ2+λ8
= 0.5, which is the ‘best’ choice as mentioned in
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Figure 2.2: Plots of the state vector x1 = (x1,1, x2,1, . . . , x8,1) (upper plot) and
x2 = (x1,2, x2,2, . . . , x8,2) (lower plot) of the controlled oscillator network

Remark 2.9. Then, by solving (2.5) in Matlab, we obtain

P =

(
12.1168 3.1303

3.1303 8.3081

)
.

Correspondingly, the local feedback gain is then equal to

K =
(
−1.5652 −4.1541

)
.

We now compute the radius r of a ball B(r) of initial states for which the dis-
tributed control law u = (L ⊗ K)x is suboptimal, i.e. J(K) < 3. We compute
that the largest eigenvalue of P is equal to 13.8765. Hence for every radius r such
that 3

r2 > 13.8765 the inequality (2.54) holds. Thus, the distributed controller with
local gain K is suboptimal for all x0 with ‖x0‖ 6 r with r < 0.4650.

As an example, the following initial states of the agents satisfy this norm
bound: x>10 =

(
−0.08 0.11

)
, x>20 =

(
0.12 −0.08

)
, x>30 =

(
0.09 −0.14

)
, x>40 =(

−0.12 0.04
)
, x>50 =

(
0.07 −0.16

)
, x>60 =

(
−0.11 0.12

)
, x>70 =

(
0.15 −0.16

)
,

x>80 =
(
−0.05 −0.14

)
. The plots of the eight decoupled oscillators without control

are shown in Figure 2.1. Figure 2.2 shows that the controlled network of oscillators
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reaches synchronization.

2.6 Conclusions

In this chapter, we have studied a distributed linear quadratic suboptimal con-
trol problem for undirected linear multi-agent networks. We have considered a
multi-agent system with identical linear agent dynamics and an associated global
quadratic cost functional. For these, we have provided a design method to com-
pute distributed diffusive control laws whose cost is bounded by a given upper
bound for all initial states in a closed ball of a given radius, and such that the
controlled network reaches synchronization. The computation of the local control
gain involves finding solutions of a single Riccati inequality, whose dimension
is equal to the dimension of the agent dynamics, and also involves the smallest
nonzero and largest eigenvalue of the Laplacian matrix. As an extension, we have
removed the requirement of having exact knowledge on the smallest nonzero and
largest eigenvalue of the Laplacian matrix by, instead, using only lower and upper
bounds for these eigenvalues.





3 Distributed linear quadratic tracking
control: a suboptimality approach

In this chapter, we extend the results in Chapter 2 on distributed linear quadratic
control for leaderless multi-agent systems to the case of distributed linear quadratic
tracking control for leader-follower multi-agent systems. Given one autonomous
leader and a number of homogeneous followers, we introduce an associated global
quadratic cost functional. We assume that the leader shares its state information
with at least one of the followers and the communication between the followers is
represented by a connected simple undirected graph. Our objective is to design
distributed control laws such that the controlled network reaches tracking con-
sensus and, moreover, the associated cost is smaller than a given tolerance for all
initial states bounded in norm by a given radius. We establish a centralized design
method for computing such suboptimal control laws, involving the solution of a
single Riccati inequality of dimension equal to the dimension of the local agent
dynamics, and the smallest and the largest eigenvalue of a given positive definite
matrix involving the underlying graph. The proposed design method is illustrated
by a simulation example.

3.1 Introduction

Distributed control for multi-agent systems has drawn much attention in the past
two decades due to its practical applications, e.g., formation control, intelligent
transportation systems and power grids. In the literature, basically two types of
multi-agent systems are considered, namely leaderless multi-agent systems and
leader-follower multi-agent systems. In the leaderless case, the local agents reach
agreement which depends on the dynamics of all agents [85, 103]. In the leader-
follower case, the states or the outputs of the followers track that of the leader
[29, 78]. One of the attractive directions in distributed control for multi-agent
systems is to design distributed control laws that minimize certain global or local
performances, while reaching an agreement for the controlled network.

In the past, quite some work has been devoted to distributed linear quadratic
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(LQ) optimal control for leaderless multi-agent systems. In [104], an LQR based
method was used to design distributed synchronizing control laws for a multi-
agent system, without taking any performance into consideration. In [7], subopti-
mal distributed stabilizing control laws were established for a multi-agent system
with general agent dynamics with respect to an associated global cost functional,
while in [10], the optimal synchronizing control gain was computed for leaderless
multi-agent systems with single integrator agent dynamics. In the meantime, the
distributed LQ control problem was also considered in [98] by utilizing a game
theoretic approach, in [75] by adopting an inverse optimal approach, and later
in [37] by employing a suboptimality approach. For other papers related to this
topic, see also [38].

On the other hand, distributed LQ tracking control for leader-follower multi-
agent systems has also attracted much attention. In [122], distributed synchroniz-
ing control laws were established using an LQR based approach without optimiz-
ing any performance. Later on, in [13], distributed suboptimal control laws were
proposed for achieving guaranteed cost. In [76], a hierarchical LQR based method
was presented to design suboptimal synchronizing control laws for leader-follower
systems, and an inverse optimal approach was introduced in [75], see also [123].

In the present chapter we extend the results from [37] on distributed LQ control
for leaderless multi-agent systems to the case of distributed LQ tracking control
for leader-follower multi-agent systems. Given a leader-follower system with one
autonomous leader and a number of followers, we introduce an associated global
quadratic cost functional. We assume that the leader shares its state information
with at least one of the followers, and the communication between the followers is
represented by a connected simple undirected graph. Our aim is then to design
distributed diffusive control laws such that the controlled network reaches track-
ing synchronization, i.e., the states of the followers track the state of the leader
asymptotically and the associated cost is smaller than an a priori given upper
bound.

The outline of this chapter is as follows. Section 3.2 provides some preliminaries
on quadratic performance analysis for autonomous linear systems. In Section
3.3, we formulate the distributed linear quadratic suboptimal tracking control
problem for leader-follower multi-agent systems. We then address this distributed
suboptimal tracking control problem in Section 3.4. A simulation example is
presented in Section 3.5 to illustrate our design method. Finally, Section 3.6
concludes this chapter.
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3.2 Quadratic performance analysis for autonomous
linear systems

In this subsection, we will analyze the quadratic performance of a linear au-
tonomous system. Consider the autonomous system

ẋ(t) = Āx(t), x(0) = x0 (3.1)

where Ā ∈ Rn×n and x ∈ Rn is the state. We consider the quadratic performance
of system (3.1), given by

J =

∫ ∞
0

x>(t)Q̄x(t) dt (3.2)

where Q̄ > 0 is a given real weighting matrix. Note that the performance J is finite
if system (3.1) is asymptotically stable, i.e., Ā is Hurwitz.

The following well-known result ([37, 100]) provides a necessary and sufficient
condition such that, for a given tolerance γ > 0, the performance (3.2) satisfies
J < γ.

Theorem 3.1. Consider system (3.1) with associated performance (3.2). For given γ > 0,
we have that Ā is Hurwitz and J < γ if and only if there exists P > 0 satisfying

Ā>P + PĀ+ Q̄ < 0, (3.3)

x>0 Px0 < γ. (3.4)

In the next section, we will formulate the problem that we will address in this
chapter.

3.3 Problem formulation

In this chapter, we consider a leader-follower multi-agent system, consisting of
one leader and N followers. The dynamics of the leader is represented by the
linear time-invariant autonomous system

ẋr(t) = Axr(t), xr(0) = xr0. (3.5)

where A ∈ Rn×n, xr ∈ Rn is the state of the leader and xr0 is its initial state.
The dynamics of the followers are identical and represented by the linear time-
invariant systems

ẋi(t) = Axi(t) +Bui(t), xi(0) = xi0, i = 1, 2, . . . , N (3.6)
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where A ∈ Rn×n, B ∈ Rn×m, and xi ∈ Rn, ui ∈ Rm are the state and input of
follower i, respectively, and xi0 is its initial state. Throughout this chapter, we
assume that the pair (A,B) is stabilizable. Moreover, we make the following two
standard assumptions regarding the communication between the leader and the
followers:

Assumption 3.1. We assume that at least one follower receives the state information of
the leader.

Assumption 3.2. We also assume that the underlying graph G of the communication
between the followers is a connected simple undirected graph.

We consider the infinite horizon distributed linear quadratic tracking control
problem for the leader-follower system (3.5) and (3.6), where the global cost
functional integrates the weighted quadratic difference of states between every
follower and its neighbors and the weighted quadratic difference of states between
the leader and the followers communicating with the leader, and where the cost
functional also penalizes the inputs in a quadratic form.

Note that, as mentioned in Assumption 3.1, at least one follower receives the
state information of the leader. Thus, the leader-follower system (3.5) and (3.6)
can be interconnected by a distributed diffusive control law of the form

ui(t) = K

N∑
j=1

aij(xi(t)− xj(t)) +Kgi(xi(t)− xr(t)) (3.7)

where aij is the ij-th entry of the adjacency matrix A of the underlying graph G,
K ∈ Rm×n is an identical feedback gain for all followers and we have gi > 0 for
at least one i = 1, 2, . . . , N . Accordingly, the cost functional considered in this
chapter is given by

J(u1, u2, . . . , uN ) =

∫ ∞
0

1

2

N∑
i=1

N∑
j=1

aij(xi − xj)>Q(xi − xj)

+

N∑
i=1

gi(xi − xr)>Q(xi − xr) +

N∑
i=1

u>i Rui dt

(3.8)

where Q > 0 and R > 0 are given real weighting matrices of suitable dimensions.
The distributed linear quadratic tracking problem is then the problem of mini-

mizing the cost functional (3.8) for all initial states xr0 and xi0, i = 1, 2, . . . , N over
all distributed diffusive control laws (3.7) such that the states of all followers track
the state of the leader asymptotically. In that case we say the network reaches
tracking synchronization:
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Definition 3.1. We say the control law (3.7) achieves tracking synchronization for the
leader-follower system (3.5) and (3.6) if for all i = 1, 2, . . . , N and for all initial states
xr0 and xi0, we have

xi(t)− xr(t)→ 0 as t→∞.

Due to the distributed nature of the control law (3.7) as imposed by the net-
work topology, the distributed linear quadratic tracking problem is a non-convex
optimization problem [74]. It is therefore difficult, if not impossible, to find a
closed form solution for an optimal controller, or such optimal controller may
not even exist. Therefore, in this chapter we will design distributed control laws
which solve a suboptimality version of this problem.

To proceed, for the ith follower we introduce the following error state

ei = xi − xr,

for i = 1, 2, . . . , N. Subsequently, the dynamics of ei is given by

ėi = Aei +Bui, i = 1, 2, . . . , N. (3.9)

Denoting x =
(
x>1 , . . . , x

>
N

)>, u =
(
u>1 , . . . , u

>
N

)>, and e =
(
e>1 , . . . , e

>
N

)>, we can
then rewrite the error system (3.9) in compact form as

ė = (IN ⊗A)e + (IN ⊗B)u, e(0) = e0. (3.10)

Note that
e = x− 1N ⊗ xr.

Correspondingly, by using the fact (L⊗K)(1⊗ xr) = 0, the control law (3.7) can
be given by

u(t) = (Γ⊗K)e (3.11)

where Γ = L+G and G = diag(g1, g2, . . . , gN ). Similarly, the cost functional (3.8)
can be written in terms of e and u as

J(u) =

∫ ∞
0

e>(Γ⊗Q)e + u>(IN ⊗R)u dt. (3.12)

Now, by substituting the control law (3.11) into the error dynamics (3.10), we
obtain the closed-loop error system

ė = (IN ⊗A+ Γ⊗BK)e, e(0) = e0. (3.13)
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and the associated cost is now given by

J(K) =

∫ ∞
0

e>
(

Γ⊗Q+ Γ2 ⊗K>RK
)

e dt (3.14)

Note that the controlled leader-follower system (3.5) and (3.6) reaches tracking
synchronization, i.e., the states of all followers track the state of the leader asymp-
totically, if and only if the error dynamics (3.13) is stable.

Let
B(r) = {e0 ∈ RnN | ‖e0‖ 6 r} (3.15)

be the closed ball of radius r in the state space RnN of the error system (3.13).
Then, for the leader-follower system (3.5) and (3.6) with initial states such that the
error initial state is contained in a closed ball of a given radius, we want to design
a distributed diffusive controller such that tracking synchronization is achieved
and, for all initial states satisfying (3.15), the associated cost is smaller than an a
priori given upper bound. Thus, the problem that we will address is the following:

Problem 3.1. Consider the leader-follower multi-agent system (3.5) and (3.6) and the
associated cost functional (3.8). Let r > 0 be a given radius and let γ > 0 be an a priori
given upper bound for the cost. The problem is to find a distributed diffusive control
law of the form (3.7) such that the controlled leader-follower system reaches tracking
synchronization and, for all initial conditions x0 and xr0 such that e0 = x0 − 1N ⊗ xr0
satisfies (3.15), the associated cost (3.8) is smaller than the given upper bound, i.e.,
J(K) < γ.

3.4 Distributed suboptimal tracking control for leader-
follower multi-agent systems

In this section, we will address Problem 3.1 and provide a suitable control design
method. As mentioned before, the distributed control law (3.7) achieves tracking
synchronization and suboptimal performance for the leader-follower system (3.5)
and (3.6) with respect to the given tolerance on the cost functional (3.8) if and only
if the error dynamics (3.13) is stable and J(K) < γ.

Now, let U ∈ RN×N be an orthogonal matrix that diagonalizes Γ = L + G.
Define

U>ΓU := Λ = diag(λ1, λ2, . . . , λN ).

It follows from Lemma 1.1 that λi > 0 for all i = 1, 2, . . . , N . To simplify the
problem formulated in the previous section, by applying the state transformation
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ē = (U> ⊗ In)e, system (3.13) becomes

˙̄e = (IN ⊗A+ Λ⊗BK) ē, ē(0) = ē0 (3.16)

where ē =
(
ē>1 , . . . , ē

>
N

)>. In terms of the transformed variable, the cost (3.14) is
then given by

J(K) =

∫ ∞
0

N∑
i=1

ē>i (λiQ+ λ2
iK
>RK)ēi dt. (3.17)

Note that the transformed states ēi, i = 1, 2, . . . , N appearing in system (3.16) and
cost (3.17) are decoupled from each other. Then we can write system (3.16) as

˙̄ei = (A+ λiBK)ēi, i = 1, 2, . . . , N. (3.18)

Also, the cost (3.17) equals

J(K) =

N∑
i=1

Ji(K) (3.19)

with
Ji(K) =

∫ ∞
0

ē>i (λiQ+ λ2
iK
>RK)ēi dt, i = 1, 2, . . . , N. (3.20)

Clearly, the controlled leader-follower system (3.5) and (3.6) reaches tracking
synchronization with control law (3.7) if and only if, for i = 1, 2, . . . , N , the systems
(3.18) are stable. In addition, the control law (3.7) is suboptimal if J(K) < γ.

So far, we have transformed the problem of distributed suboptimal control
for the leader-follower system (3.5) and (3.6) into the problem of finding one
single static feedback gain K ∈ Rm×n such that the systems (3.18) are stable for
i = 1, 2, . . . , N and J(K) < γ. Since the pair (A,B) is stabilizable, there exists
such a feedback gain K [54, 122].

The following lemma then provides a necessary and sufficient condition for
a given feedback gain K to stabilize all systems (3.18) and for given initial states
guarantee that J(K) < γ.

Lemma 3.2. Let K be a feedback gain. Consider the systems (3.18) with given initial
states ē10, ē20, . . . , ēN0 and associated cost functionals (3.19) and (3.20). Let γ > 0. Then
all systems (3.18) are stable and J(K) < γ if and only if there exist Pi > 0 satisfying

(A+ λiBK)>Pi + Pi(A+ λiBK) + λiQ+ λ2
iK
>RK < 0 (3.21)

and
N∑
i=1

ē>i0Piēi0 < γ, (3.22)
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for i = 1, 2, . . . , N , respectively.

Proof. (if) Since (3.22) holds, there exist γi := ē>i0Piēi0 + εi with sufficiently small
εi > 0, i = 1, 2, . . . , N such that

∑N
i=1 γi < γ. Because there exists Pi > 0 such that

(3.21) and ē>i0Piēi0 < γi holds for all i = 1, 2, . . . , N , by taking Ā = A+ λiBK and
Q̄ = λiQ+λ2

iK
>RK, it follows from Theorem 3.1 that all systems (3.18) are stable

and Ji(K) < γi for i = 1, 2, . . . , N . Since J(K) =
∑N
i=1 Ji(K), this implies that

J(K) <
∑N
i=1 γi < γ.

(only if) Since J(K) < γ and J(K) =
∑N
i=1 Ji(K), there exist γi := Ji(K) + εi

with sufficiently small εi > 0, i = 1, 2, . . . , N such that
∑N
i=1 γi < γ. Because

all systems (3.18) are stable and Ji(K) < γi for i = 1, 2, . . . , N , by taking Ā =

A+ λiBK and Q̄ = λiQ+ λ2
iK
>RK, it again follows from Theorem 3.1 that there

exist Pi > 0 such that (3.21) and x̄>i0Pix̄i0 < γi hold for all i = 1, 2, . . . , N . Since∑N
i=1 γi < γ, this implies that

∑N
i=1 x̄

>
i0Pix̄i0 <

∑N
i=1 γi < γ.

Lemma 3.2 establishes a necessary and sufficient condition for a given feedback
gain K to stabilize all systems (3.18) and to satisfy, for given initial states of these
systems, J(K) < γ. However, Lemma 3.2 does not yet provide a design method
for computing such K. Therefore, in the following we will provide a method to
find such K.

Lemma 3.3. Consider the leader-follower system (3.5) and (3.6) with associated cost
functional (3.8). Let xr0 be the given initial state of the leader and xi0, i = 1, 2 . . . , N be
the given initial states of the followers, respectively. Let γ > 0 be a given tolerance. Let c
be any real number such that 0 < c < 2

λN
. We distinguish two cases:

(i) if
2

λ1 + λN
6 c <

2

λN
, (3.23)

then there exists P > 0 satisfying

A>P + PA+ (c2λ2
N − 2cλN )PBR−1B>P + λNQ < 0. (3.24)

(ii) if

0 < c <
2

λ1 + λN
, (3.25)

then there exists P > 0 satisfying

A>P + PA+ (c2λ2
1 − 2cλ1)PBR−1B>P + λNQ < 0. (3.26)
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In both cases, if in addition P satisfies

N∑
i=1

(xi0 − xr0)>P (xi0 − xr0) < γ, (3.27)

then the distributed control law (3.7) with K := −cR−1B>P achieves tracking synchro-
nization for the controlled leader-follower system (3.5) and (3.6), and with the initial states
xr0 and xi0 we have J(K) < γ.

Proof. We will only give the proof for case (i) above. Using the upper and lower
bounds on c given by (3.23), it can be verified that c2λ2

i − 2cλi 6 c2λ2
N − 2cλN < 0

for i = 1, 2, . . . , N . It is then easily seen that (3.24) has many positive definite
solutions. Since also λi 6 λN , any such solution P is a solution to the N −1 Riccati
inequalities

A>P + PA+ (c2λ2
i − 2cλi)PBR

−1B>P + λiQ < 0, i = 1, 2, . . . , N. (3.28)

Equivalently, P also satisfies the Lyapunov inequalities

(A− cλiBR−1B>P )>P + P (A− cλiBR−1B>P )

+ λiQ+ c2λ2
iPBR

−1B>P < 0, i = 1, 2, . . . , N.
(3.29)

Next, by substituting ē = (U>⊗ In)e into (3.22) we have
∑N
i=1 e

>
i0Pei0 < γ, which

is equal to (3.27).
Next, taking Pi = P for i = 1, 2, . . . , N and K := −cR−1B>P in (3.21) and

(3.22) immediately gives us (3.29) and (3.27). Then it follows from Lemma 3.2
that all systems (3.18) are stable and J(K) < γ. Subsequently, the controlled
leader-follower system reaches tracking synchronization and J(K) < γ.

We will now apply Lemma 3.3 to establish a solution to Problem 3.1. The next
theorem provides a condition under which, for given radius r and upper bound γ,
distributed diffusive suboptimal control laws exist, and explains how these can be
computed.

Theorem 3.4. Consider the leader-follower system (3.5) and (3.6) with associated cost
functional (3.8). Let r > 0 be a given radius and let γ > 0 be an a priori given upper
bound for the cost. Let c be any real number such that 0 < c < 2

λN
. We distinguish two

cases:

(i) if
2

λ1 + λN
6 c <

2

λN
, (3.30)
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then there exists P > 0 satisfying

A>P + PA+ (c2λ2
N − 2cλN )PBR−1B>P + λNQ < 0. (3.31)

(ii) if

0 < c <
2

λ1 + λN
, (3.32)

then there exists P > 0 satisfying

A>P + PA+ (c2λ2
1 − 2cλ1)PBR−1B>P + λNQ < 0. (3.33)

In both cases, if in addition P satisfies

P <
γ

r2
I, (3.34)

then the distributed control law (3.7) with K := −cR−1B>P achieves tracking synchro-
nization for the controlled leader-follower system (3.5) and (3.6) and J(K) < γ for all
initial states xr0 and x0 satisfying

x0 − 1N ⊗ xr0 ∈ B(r). (3.35)

Proof. Again, we only give proof for case (i). Let P > 0 satisfy (3.31) and (3.34).
Next, we will show that if the initial states xr0 and x0 satisfy x0− 1N ⊗ xr0 ∈ B(r),
then (3.27) holds. Indeed, if ‖x0 − 1N ⊗ xr0‖ 6 r, then

N∑
i=1

(xi0 − xr0)>P (xi0 − xr0)

=(x0 − 1N ⊗ xr0)>(I ⊗ P )(x0 − 1N ⊗ xr0)

<
γ

r2
‖x0 − 1N ⊗ xr0‖2 6 γ.

It then follows from Lemma 3.3 that the controlled leader-follower system (3.5)
and (3.6) reaches tracking synchronization with the given K and J(K) < γ for all
initial states xr0 and x0 satisfying (3.35).

Remark 3.5. Theorem 3.4 states that after choosing c satisfying the inequality
(3.30) for case (i) and finding P > 0 satisfying (3.31) and (3.34), the distributed
control law with local gain K = −cR−1B>P is γ-suboptimal for all initial states
of the leader-follower system satisfying the condition (3.35). According to (3.34),
the smaller the solution P of (3.31), the smaller the quotient γ

r2 is allowed to be,
leading to a smaller upper bound and a larger radius. The question then arises:
how should we choose the parameter c in (3.30) so that the Riccati inequality (3.31)
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allows a positive definite solution that is as small as possible. In fact, one can find
a positive definite solution P (c, ε) to (3.31) by solving the Riccati equation

A>P + PA− PBR̄(c)−1B>P + Q̄(ε) = 0 (3.36)

with R̄(c) = 1
−c2λ2

N+2cλN
R and Q̄(ε) = λNQ + εIn where c is chosen as in (3.30)

and ε > 0. If c1 and c2 as in (3.30) satisfy c1 6 c2, then we have R̄(c1) 6 R̄(c2),
so, clearly, P (c1, ε) 6 P (c2, ε). Similarly, if 0 < ε1 6 ε2, we immediately have
Q̄(ε1) 6 Q̄(ε2). Again, it follows that P (c, ε1) 6 P (c, ε2). Therefore, if we choose
ε > 0 very close to 0 and c = 2

λ1+λN
, we find the ‘best’ solution to the Riccati

inequality (3.31) in the sense explained above.

Likewise, if c satisfies (3.32) corresponding to case (ii), it can be shown that if
we choose ε > 0 very close to 0 and c > 0 very close to 2

λ1+λN
, we find the ‘best’

solution to the Riccati inequality (3.33) in the sense explained above.

3.5 Simulation example

In this section, we will use a numerical example borrowed from [76] to illustrate
the design method for the distributed suboptimal control laws given in Theorem
3.4.

Consider a leader-follower multi-agent system, consisting of one leader and
five followers. The dynamics of the leader is given by

ẋr(t) = Axr(t), xr(0) = xr0,

and the dynamics of the followers are identical and represented by

ẋi(t) = Axi(t) +Bui(t), xi(0) = xi0, i = 1, 2, . . . , 5

where

A =

(
0 1

−1 0

)
, B =

(
0

1

)
.

The pair (A,B) is stabilizable. Assume the underlying graph representing the
communication between the leader and the followers is given as in Figure 3.1.
The graph representing the communication between the followers is then the
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r 2

3

4

5

1

Figure 3.1: The underlying graph of the communication between the leader and
the followers.

undirected cycle graph with the Laplacian matrix

L =


2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2

 .

Since the leader shares its state information only with follower 2, it follows
from Lemma 1.1 that the associated diagonal matrix G = diag(g1, g2, . . . , g5) =

diag(0, 1, 0, 0, 0). Furthermore, we consider the cost functional

J(u1, u2, . . . , u5) =

∫ ∞
0

1

2

5∑
i=1

5∑
j=1

aij(xi − xj)>Q(xi − xj)

+

5∑
i=1

gi(xi − xr)>Q(xi − xr) +

5∑
i=1

u>i Rui dt

with

Q =

(
2 0

0 1

)
, R = 1.

Let the desired tolerance for the cost functional be γ = 20. Our aim is then to
design a control law of the form

ui(t) = K

5∑
j=1

aij(xi(t)− xj(t)) +Kgi(xi(t)− xr(t)) (3.37)

such that the controlled leader-follower system reaches tracking synchronization
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Figure 3.2: Plots of the states xr1 and x1 = (x1,1, x2,1, . . . , x5,1) (upper plot) and
xr2 and x2 = (x1,2, x2,2, . . . , x5,2) (lower plot) of the six decoupled local agents
without control

and the associated cost satisfies J(K) < 20 for all initial states x0 and xr0 satisfying
the condition ‖x0 − 15 ⊗ xr0‖ 6 r with radius r to be specified later.

In this simulation example, we will use the design method of case (i) in Theo-
rem 3.4. For Γ = L+G the smallest and largest eigenvalues are λ1 = 0.1392 and
λ5 = 4.1149, respectively. We first compute a solution P > 0 to (3.31) by solving

A>P + PA+ (c2λ2
5 − 2cλ5)PBR−1B>P + λ5Q+ εI2 = 0 (3.38)

with ε sufficiently small as mentioned in Remark 3.5. Here we choose ε = 0.01. In
addition, we choose c = 2

λ1+λ5
= 0.4701, which is the ‘best’ choice as mentioned

in Remark 3.5. Then by solving (3.38) using Matlab, we compute

P =

(
13.2553 3.3886

3.3886 9.2760

)
.

Correspondingly, the control gain is equal to K =
(
1.5931 4.3610

)
. We now

compute the radius r of a ballB(r) of initial states for which the distributed control
law (3.37) is suboptimal, i.e. J(K) < 20. We compute that the largest eigenvalue
of P is equal to 15.1952. Hence for every radius r such that 20

r2 > 15.1952 the
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Figure 3.3: Plots of the states xr1 and x1 = (x1,1, x2,1, . . . , x5,1) (upper plot) and xr2
and x2 = (x1,2, x2,2, . . . , x5,2) (lower plot) of the controlled leader-follower system

inequality (3.34) holds. Thus, the distributed controller with local gain K is
suboptimal for all xr0 and x0 satisfying ‖x0 − 15 ⊗ xr0‖ 6 r with r < 1.1473.

As an example, the following initial states of the agents satisfy this norm bound:
x>r0 =

(
0.3 −0.5

)
, x>10 =

(
0.7 −0.2

)
, x>20 =

(
0.3 −0.6

)
, x>30 =

(
0.2 0.3

)
,

x>40 =
(
−0.1 −0.7

)
, x>50 =

(
0.2 −0.6

)
. The plots of the state of the six local

agents without control are shown in Figure 3.2. Figure 3.3 shows that the controlled
leader-follower system reaches tracking synchronization.

3.6 Conclusions

In this chapter, we have studied the distributed linear quadratic tracking control
problem for leader-follower multi-agent systems. We have considered leader-
follower systems consisting of one autonomous leader and N followers, together
with an associated global cost functional. We assume that the leader shares its
state information with at least one of the followers and the underlying graph
connecting the followers is a connected simple undirected graph. For this type
of leader-follower systems, we have provided a design method to compute dis-
tributed suboptimal control laws such that the controlled network reaches tracking
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synchronization and the associated cost is smaller than a given tolerance for all
initial states bounded in norm by a given radius. The computation of the local
gain involves the solution of a single Riccati inequality, whose dimension is equal
to the dimension of the agent dynamics, and also involves the largest and smallest
eigenvalue of a positive definite matrix capturing the underlying graph structure.





4 Distributed linear quadratic control:
compute locally and act globally

In this chapter we consider the distributed linear quadratic control problem for
networks of agents with single integrator dynamics. We first establish a general
formulation of the distributed LQ problem and show that the optimal control gain
depends on global information on the network. Thus, the optimal protocol can
only be computed in a centralized fashion. In order to overcome this drawback,
we propose the design of protocols that are computed in a decentralized way.
We will write the global cost functional as a sum of local cost functionals, each
associated with one of the agents. In order to achieve ‘good’ performance of the
controlled network, each agent then computes its own local gain, using sampled
information of its neighboring agents. This decentralized computation will only
lead to suboptimal global network behavior. However, we will show that the
resulting network will reach consensus.

4.1 Introduction

The distributed linear quadratic (LQ) optimal control problem is the problem of
interconnecting a finite number of identical agents according to a given network
graph to achieve consensus optimally. Each agent receives input only from its
neighbors, in the form of a linear feedback of the relative states amplified by a
certain constant gain. Such control law is called a distributed diffusive control law.
The problem of minimizing a given quadratic cost functional over all distributed
diffusive control laws that achieve consensus is then called the distributed LQ
problem corresponding to this cost functional.

In the case that the agent dynamics is given by a general state space system,
this optimal control problem is non-convex and difficult to solve, and it is un-
clear whether a solution exists in general, see [37]. In contrast, for the case of
single integrator dynamics it is fairly easy to find an explicit expression for the
distributed diffusive optimal control law, see, for example, [10]. Although a so-
lution to the problem is available, it turns out however that global information on
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the network is needed to compute this optimal control law. More specifically,
the distributed diffusive optimal control law can be computed only by a (virtual)
supervisor that knows the network graph and the initial states of all the agents.
Thus, although the resulting optimal control law operates in a distributed fashion,
its actual computation can only be performed in a centralized way.

Formulating the distributed LQ problem as a problem of minimizing a global
cost functional is therefore not practical. Indeed, the centralized computation
requires that the local optimal gains needs to be re-designed by the supervisor
in case that changes in the network occur. For example, by adding or removing
agents from the network, its graph will change, and new initial states will occur
while existing ones will disappear.

In this chapter we will address this drawback and present a decentralized design
method to compute a distributed controller: each agent will compute its own
local control law. For this computation, the agent will not need knowledge of the
network graph or the initial states of all other agents. This will then enable ‘plug-
and-play’ operations on the network, since each agent will be able to automatically
recompute its local gain whenever a new agent is added or removed.

In order to achieve this decentralized computation scheme we will write the
original global cost functional as the sum of local LQ tracking cost functionals,
each associated with one of the agents. The agents can not solve these optimal
tracking problems explicitly because the reference signals depend on the future
dynamics of the neighbors. However, using sampling, suboptimal local gains are
obtained. This decentralized computation will not necessarily result in optimality
of the global network behavior. We will however show that the resulting network
will reach consensus.

The distributed LQ control problem has attracted much attention in the past,
see e.g. [7, 10, 73, 74]. In [7], a distributed suboptimal controller for a global cost
functional was developed to stabilize a network with general agent dynamics.
A similar cost functional was also considered in [16] for designing distributed
controllers with guaranteed performance. The distributed LQ control problem
with general agent dynamics was also dealt with in [75] and [123] by adopting an
inverse optimal control approach. In [98] a game theoretic approach was consid-
ered to obtain a suboptimal solution. Also, [37] considers a suboptimal version of
this problem. In [76], a suboptimal consensus controller design was developed by
employing a hierarchical LQ control approach for an appropriately chosen global
performance index, and a similar idea for constructing a particular cost functional
was employed in [77] to design a reduced order distributed controller. In [90]
a distributed optimal control method was adopted to decouple a class of linear
multi-agent systems with state coupled nonlinear uncertainties.

The common feature of all work referred to above is that the computation of
the control gains needs global information on the network. This disadvantage can
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be avoided by adopting adaptive control methods [52] or by using reinforcement
learning [108], [68]. In [70] and [109], it was shown that diffusive couplings are
necessary for minimization of cost functionals of a particular form, involving the
weighted squared synchronization error.

Below we list the contributions of this chapter.

1. We show that for agents with single integrator dynamics, in any distributed
LQ cost functional, the state weighting matrix must be equal to a weighted
square of the Laplacian of the network graph.

2. We give a solution to this general distributed LQ problem, and show that
computation of the optimal protocol requires exact knowledge of the Lapla-
cian as well as the initial state of the entire network.

3. We represent the global cost functional as a sum of local LQ tracking cost
functionals, one for each agent. Using sampling, suboptimal local gains are
obtained. Computation of these gains is completely decentralized.

4. We show that these gains lead to a protocol that achieves consensus of the
network.

The outline of this chapter is as follows. In Section 4.2, we derive a general
formulation of the distributed LQ problem. In Section 4.3, we show that compu-
tation of the optimal control laws requires complete knowledge of the network
graph and the initial state of the entire network. In Section 4.4, we propose a
decentralized method to compute suboptimal (local) control laws. In order to do
this, we need to apply ideas from linear quadratic tracking, and these are reviewed
in Section 4.5. Then, in Section 4.6, we compute these local control laws, and
show that the network reaches consensus if all agents apply their own local gain.
To illustrate the designed control protocol, a simulation example is provided in
Section 4.7. Finally, in Section 4.8, we give some concluding remarks.

4.2 The general form of a distributed linear quadratic
cost functional

In this section we will show that in any distributed LQ cost functional, the state
weighting matrix must be a weighted square of the Laplacian of the network graph.
We will also give two important examples of distributed LQ cost functionals.

We consider a network of agents described by scalar single integrator dynamics

ẋi(t) = ui(t), xi(0) = xi0, i = 1, 2, . . . , N, (4.1)
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with xi0 ∈ R the initial state of agent i. By collecting the states and inputs of the
individual agents into the vectors x = (x1, x2, . . . , xN )> and u = (u1, u2, . . . , uN )>,
(4.1) can be written as

ẋ(t) = u(t), x(0) = x0. (4.2)

A general class of LQ cost functionals are those of the form

J(x0,u) =

∫ ∞
0

x>(t)Qx(t) + u>(t)Ru(t)dt, (4.3)

where Q ∈ RN×N , R ∈ RN×N and Q > 0 and R > 0.
In the context of distributed LQ control we only allow distributed diffusive

control laws that achieve consensus, i.e. the controlled trajectories converge to
im(1N ), the span of the vector of ones. Thus the class of control laws over which
we want to minimize (4.3) consists of those of the form u = −gLx, with L ∈ RN×N

the Laplacian of the network graph and where g > 0, see e.g. [85].
We will now show that for a cost functional (4.3) to make sense in this context,

the weighting matrix Q must be of the form Q = LWL for some positive semi-
definite matrix W .

Lemma 4.1. J(x0,u) < ∞ for all x0 ∈ RN and control laws of the form u = −gLx
with g > 0 only if there exists a positive semi-definite W ∈ RN×N such that Q = LWL.

Proof. Write Q = CTC for some C. Now, let x̄(t) denote any nonzero state trajec-
tory generated by the control law u = −gLx with g > 0 and let ū(t) = −gLx̄(t).
It is well known that this control law achieves consensus (see [85]) so we have
x̄(t) → c1N for some nonzero constant c. Now assume that the control law
u = −gLx gives finite cost, i.e. J(x0, ū) <∞. This implies∫ ∞

0

x̄>(t)C>Cx̄(t)dt <∞

and hence Cx̄(t)→ 0. Thus we obtain 1N ∈ ker(C), equivalently, ker(L) ⊂ ker(C).
We thus conclude that there exists a matrix V such that C = V L so the state
weighting matrix Q must be of the form Q = LV >V L for some matrix V . This
proves our claim.

We have thus shown that, for a general LQ cost functional to make sense in the
context of distributed diffusive control for multi-agent systems, it must necessarily
be of the form

J(x0,u) =

∫ ∞
0

x>(t)LWLx(t) + u>(t)Ru(t)dt, (4.4)

for some W > 0 and R > 0. The corresponding distributed LQ problem is to
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minimize, for the system (4.2) with initial state x0, the cost functional (4.4) over all
control laws of the form u = −gLx with g > 0.

As an illustration, we will now provide two important special cases of LQ cost
functionals. The first one was studied before in [37] and [10]:

J(x0,u) =

N∑
i=1

∫ ∞
0

∑
j∈Ni

q(xi(t)− xj(t))2 + ru2
i (t)dt, (4.5)

where q and r are positive real numbers. Clearly, (4.5) is equal to

J(x0,u) =

∫ ∞
0

x>(t)2qLx(t) + ru>(t)u(t)dt.

Note that 2qL = L(2qL†)L with L† the Moore-Penrose inverse of L (which is
indeed positive semi-definite). Thus this cost functional is of the form (4.4) with
W = 2qL† and R = rI .

As a second example, consider

J(x0,u) =

N∑
i=1

∫ ∞
0

q (xi(t)− ai(t))2
+ ru2

i (t)dt, (4.6)

with
ai(t) :=

1

di + 1

(
xi(t) +

∑
j∈Ni

xj(t)
)
. (4.7)

Here, q and r are positive weights, di denotes the node degree of agent i and Ni
its set of neighbors. The idea of the cost functional (4.6) is to minimize the sum
of the deviations between the state xi(t) and the average ai(t) of the states of its
neighbors (including itself) and the control energy. In order to put this in the form
(4.4), define

G := (D + IN )−1(A+ IN ) ∈ RN×N , (4.8)

where D ∈ RN×N is the degree matrix and A ∈ RN×N the adjacency matrix. Then
clearly

a(t) = Gx(t),

where x = (x1, x2, . . . , xN )> and a = (a1, a2, . . . , aN )>. It is then easily seen that

J(x0,u) =

∫ ∞
0

qx>(t)(IN −G)>(IN −G)x(t) + ru>(t)u(t)dt.

Since (IN −G)>(IN −G) = L(D+ IN )−2L, we conclude that (4.6) is a special case
of (4.4) with W = q(D + IN )−2 and R = rIN .
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4.3 Centralized computation of the optimal control
gain

In this section we will briefly give a solution to the general distributed LQ problem
with cost functional (4.4) as introduced in Section 4.2, thus generalizing the result
from [10] to general distributed LQ cost functionals. We will show that, indeed,
computation of the optimal protocol requires global information on the network
graph and the initial state of the entire network.

Consider the cost functional (4.4) together with the dynamics (4.2) with given
initial state x0. Since the admissible control laws are given by u = −gLx, the
associated state trajectory is x(t) = e−gLtx0 and u(t) = −gLx(t). Substituting this
into the cost functional yields

J(g) := x>0 (

∫ ∞
0

e−gLt
(
LWL+ g2LRL

)
e−gLtdt)x0 (4.9)

Clearly, we need to minimize J(g) over g > 0. Substituting gt = τ , we find

J(g) := x>0

∫ ∞
0

e−τL
(

1

g
LWL+ gLRL

)
e−τLdτ x0.

Define
X0 :=

∫ ∞
0

e−τLLWLe−τLdτ

and
Y0 :=

∫ ∞
0

e−τLLRLe−τLdτ.

It turns out that both integrals indeed exist, and can be computed as particular
solutions of the Lyapunov equations

−LX −XL+ LWL = 0, (4.10a)

−LY − Y L+ LRL = 0. (4.10b)

Indeed, although L is not Hurwitz, these equations do have positive semi-definite
solutions X and Y and, in fact, X0 is the unique positive semi-definite solution
X to (4.10a) with the property that im(1N ) ⊂ ker(X). Likewise Y0 is the unique
positive semi-definite solution Y of (4.10b) with the property that im(1N ) ⊂ ker(Y )

(see Proposition 1 in [44]). It follows from (4.10b) that, in fact, ker(Y0) = im(1N ).
Thus we see that

J(g) =
1

g
x>0 X0x0 + gx>0 Y0x0.
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In order to minimize J(g) we distinguish three cases. (i) If x0 ∈ ker(Y0) =

im(1N ) then we must have x0 ∈ ker(X0) as well, so J(g) = 0 for all θ and every
g > 0 is optimal. (ii) If x>0 Y0x0 > 0 and x>0 X0x0 = 0 then no optimal g > 0 exists.
(iii) If x>0 Y0x0 > 0 and x>0 X0x0 > 0 then an optimal g > 0 exists and can be shown
to be equal to

g∗ =

(
x>0 X0x0

x>0 Y0x0

) 1
2

.

It is clear that the computation of the optimal gain g requires exact knowledge of
the network graph in the form of the Laplacian L. Also, the optimal gain clearly
depends on the global initial state of the network.

4.4 Towards decentralized computation

In this section we will propose a new approach to compute ‘good’ local gains that
can be computed in a decentralized way. Instead of doing this for the general LQ
cost functional (4.4), we will zoom in on the particular case given by (4.6) - (4.7).

In order to decentralize the computation, instead of minimizing the global cost
functional (4.6) for the multi-agent system (4.2), we write it as a sum of local cost
functionals, one for each agent in the network.

More specifically, the associated local cost functional for agent i is given by

Ji(ui) =

∫ ∞
0

q (xi(t)− ai(t))2
+ ru2

i (t) dt, (4.11)

where ai(t) is defined in (4.7), for i = 1, 2, . . . , N . This local cost functional
penalizes the squared difference between the state of the ith agent and the average
of the states of its neighboring agents (including itself), and the local control energy.
By minimizing (4.11), agent iwould make the difference between its own state and
the average of the states of its neighbors (including itself) small. Note, however,
that it is impossible for agent i to minimize this local cost functional since the
trajectory ai(t) for t ∈ [0,∞) associated with the neighboring agents is not known,
so also not available to the ith agent. Thus, because direct minimization of (4.11)
is impossible, as an alternative we will replace each of these local optimal control
problems by a sequence of linear quadratic tracking problems that do turn out to be
tractable.

More specifically, we choose a sampling period T > 0, and introduce the
following sampling procedure. For each nonnegative integer k, at time t = kT the
ith agent receives the sampled state value xj(kT ) of its neighboring agents and



54 4. Distributed linear quadratic control: compute locally and act globally

takes the average of these, which is given by

ai(kT ) =
1

di + 1

(
xi(kT ) +

∑
j∈Ni

xj(kT )
)
. (4.12)

Then, the ith agent minimizes the cost functional

Ji,k(u) =

∫ ∞
0

e−2αt
(
q (xi(t)− ai(kT ))

2
+ ru2

i (t)
)
dt. (4.13)

In fact, this is a discounted linear quadratic tracking problem with constant ref-
erence signal ai(kT ) and discount factor α > 0. By solving this linear quadratic
tracking problem, agent i obtains an optimal control law over an infinite time
interval. However, agent i applies this control law only on the time interval
[kT, (k + 1)T ).

Then, at time t = (k+ 1)T the above procedure is repeated, i.e. agent i receives
the updated average ai((k+1)T ), and subsequently solves the discounted tracking
problem with cost functional Ji,k+1(u) which involves the constant updated refer-
ence signal ai((k+ 1)T ). By performing this control design procedure sequentially
at each sampling time kT , we then obtain a single control law for agent i over the
entire interval [0,∞).

Based on this control design procedure for the individual agents, we will
obtain a distributed control protocol for the entire multi-agent system, simply by
letting all agents compute their own control law. In the sequel we will analyze this
protocol and show that it achieves consensus for the network:

Definition 4.1. A distributed control protocol is said to achieve consensus for the network
if xi(t) − xj(t) → 0 as t → ∞ for all initial states of agents i and j, for all i, j =

1, 2, . . . , N .

In order to obtain an explicit expression for the control protocol proposed
above, we will study the linear quadratic tracking problem for a single linear
system. This will be done in the next section.

4.5 The discounted linear quadratic tracking problem

In this section, we will deal with the discounted linear quadratic tracking problem
for a given linear system. The linear quadratic tracking problem has been studied
before, see e.g. [67]. Here, however, we will solve it by transforming it into a
standard linear quadratic control problem.

Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (4.14)
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with A ∈ Rn×n and B ∈ Rn×m, and where x(t) ∈ Rn, u(t) ∈ Rm denote the state
and the input, respectively. We assume that the pair (A,B) is stabilizable. Given
is also a constant reference signal rref(t) = r with r ∈ Rn. Next, we introduce a
discounted quadratic cost functional given by

J(u) =

∫ ∞
0

e−2αt[(x(t)− r)>Q (x(t)− r) + u>(t)Ru(t)]dt (4.15)

where Q ∈ Rn×n, R ∈ Rm×m and Q > 0 and R > 0 are given weight matrices
and α > 0 is a discount factor [67]. The linear quadratic tracking problem is to
determine for every initial state x0 a piecewise continuous input function u(t) that
minimizes the cost functional (4.15).

To solve this problem, we introduce the variables

z(t) = e−αtx(t), zr(t) = e−αtr, v(t) = e−αtu(t), (4.16)

and denote ξ(t) = (z>(t), z>r (t))>. Then we obtain an auxiliary system in terms of
ξ and v, given by

ξ̇(t) = Aeξ(t) +Bev(t), ξ0 = (x>0 , r
>)>,

where ξ0 ∈ R2n is the initial state and

Ae =

(
A− αIn 0

0 −αIn

)
, Be =

(
B

0

)
.

In terms of the new variables ξ and v, the cost functional (4.15) can be written as

J(v) =

∫ ∞
0

ξ>(t)Qeξ(t) + v>(t)Rv(t) dt,

where

Qe =

(
Q −Q
−Q Q

)
∈ R2n×2n.

The problem is now to find, for every initial state ξ0, a piecewise continuous
input function v(t) that minimizes this cost functional. This is a so-called a free
endpoint standard LQ control problem, see [102, pp. 218]. Since the pair (A,B) is
stabilizable, the pair (Ae, Be) is also stabilizable and hence the input function v(t)

that minimizes the cost functional J(v) is generated by the feedback law

v(t) = −R−1B>e P
−
e ξ(t), (4.17)

where P−e ∈ R2n×2n is the smallest positive semi-definite solution of the Riccati
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equation
A>e P

−
e + P−e Ae − P−e BeR−1B>e P

−
e +Qe = 0. (4.18)

Now, partition

P−e :=

(
P1 P12

P>12 P2

)
,

where all blocks have dimension n × n. Recalling (4.16) and (4.17), we then
immediately find an expression for the input function u(t) that minimizes the cost
functional (4.15) for the system (4.14) and reference signal rref(t) = r.

Theorem 4.2. The input function u(t) that minimizes the cost functional (4.15) is
generated by the control law

u(t) = K1x(t) +K2r, (4.19)

where K1 = −R−1B>P1 and K2 = −R−1B>P12.

The proof follows immediately from the above considerations. See also [67].

Remark 4.3. Let e(t) := x(t) − r denote the tracking error. Because Q > 0, the
control law (4.19) only guarantees that ē(t) := e−αte(t) tends to zero as t goes to
infinity. Thus, the feedback law that minimizes the LQ tracking cost functional
(4.15) only guarantees the actual tracking error e(t) to be exponentially bounded
with growth rate α > 0. Note that α > 0 can be taken arbitrarily small.

It will be shown however that, for the multi-agent system case, the control
design method established in this section will, nevertheless, lead to a protocol that
achieves consensus.

4.6 Consensus analysis

In this section, we will show that, by adopting the control design method for
the multi-agent system (4.2) as proposed in Section 4.4, the resulting distributed
control protocol achieves consensus for the entire network.

As already explained in Section 4.4, we choose a sampling period T > 0

and introduce a sampling procedure. For each nonnegative integer k, at time
t = kT the ith agent receives the sampled state value of its neighboring agents
(including itself) and minimizes the cost functional (4.13), which is a discounted
linear quadratic tracking problem with constant reference signal rref(t) = ai(kT )

and discount factor α > 0.
According to the theory on the discounted LQ tracking problem described in

Section 4.5, the local optimal control law for agent i at time t = kT over the whole
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time horizon [0,∞) is therefore of the form

ui,k(t) = gi,kxi(t) + g′i,kai(kT ), (4.20)

in which the control gains gi,k and g′i,k can be computed explicitly by solving the
Riccati equation (4.18) associated with the LQ tracking problem for agent i.

Lemma 4.4. Consider, at time t = kT , the ith agent of the multi-agent system (4.1) with
associated local cost functional (4.13). Denote

Ā =

(
−α 0

0 −α

)
, B̄ =

(
1

0

)
, Q̄ =

(
q −q
−q q

)
.

Let P̄ :=

(
p1 p12

p12 p2

)
be the smallest positive semi-definite solution of the Riccati equation

Ā>P̄ + P̄ Ā− r−1P̄ B̄B̄>P̄ + Q̄ = 0. (4.21)

Then the local control law (4.20) with gi,k := −r−1p1 and g′i,k := −r−1p12 minimizes
the cost (4.13) for agent i.

Proof. This follows immediately from Theorem 4.2.

Next, agent i applies the control law (4.20) only on the time interval [kT, (k +

1)T ). Then, at time t = (k + 1)T the above procedure is repeated.
Since, for all i = 1, 2, . . . , N and k = 0, 1, . . ., the matrices Ā, B̄ and Q̄ are

independent of i and k, the same holds for the gains gi,k and g′i,k. In the sequel,
we will therefore drop the subscripts in the control gains gi,k and g′i,k and denote
them by g and g′, respectively. Moreover, using (4.21), we compute g = r−1(α−√
α2 + rq) and g′ = −g.

By performing this procedure sequentially at each sampling time kT , we then
obtain a single control law for agent i over the entire interval [0,∞) as

ui,k(t) = gxi(t)− gai(kT ), t ∈ [kT, (k + 1)T ), (4.22)

where g = r−1(α−
√
α2 + rq) < 0.

Recall that a(t) = Gx(t), with G given by (4.8), and that a(kT ) = Gx(kT ).
Therefore, the local control laws for the individual agents lead to a distributed
control protocol

uk(t) = gx(t)− gGx(kT ), t ∈ [kT, (k + 1)T ). (4.23)

Now, by applying the protocol (4.23) to the multi-agent system (4.1), we find that
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the controlled network is represented by

ẋ(t) = gx(t)− gGx(kT ), t ∈ [kT, (k + 1)T ). (4.24)

In the remainder of this section, we will analyze this representation, and show that
consensus is achieved, i.e. for each initial state x(0) = x0 we have xi(t)−xj(t)→ 0

as t tends to infinity.
In order to do this, note that the solution of (4.24) with initial state x(0) = x0 is

given by

x(t) = eg(t−kT )x(kT )−
∫ t

kT

eg(t−τ)gG x(kT ) dτ, (4.25)

for t ∈ [kT, (k + 1)T ), k = 0, 1, 2, . . .. Obviously, for each initial state x0, the
corresponding solution x(t) is continuous. From (4.25) we see that the sequence
of network states x(kT ) evaluated at the discrete time instances kT , k = 0, 1, . . .

satisfies the difference equation

x((k + 1)T ) = Γx(kT ), (4.26)

Γ = egT IN − (egT − 1)G ∈ RN×N .
Clearly, the network reaches consensus if and only if for each x0, xi(kT ) −

xj(kT )→ 0 as t tends to infinity.
We proceed with analyzing the eigenvalues of G.

Lemma 4.5. The matrix G has an eigenvalue 1 with algebraic multiplicity equal to one
and associated eigenvector 1N . The remaining eigenvalues of G are all real and have
absolute value strictly less than 1.

Proof. Since L = D − A, we have G = IN − (D + IN )−1L. Hence we have
D̃

1
2GD̃−

1
2 = IN − D̃−

1
2LD̃−

1
2 where D̃ = D + IN . Note that the right hand

side is symmetric and hence has only real eigenvalues. Thus, by matrix similarity,
G also has only real eigenvalues.

Next, we show that G has a simple eigenvalue 1 with associated eigenvector
1N . First note that

G1N = (IN − (D + IN )−1L)1N = 1N . (4.27)

Hence, indeed, 1 is an eigenvalue of G with eigenvector 1N . Since G is similar
to a symmetric matrix, it is diagonalizable, so the algebraic multiplicity of its
eigenvalue 1 must be equal to its geometric multiplicity. Suppose now that 1 is
not a simple eigenvalue. Then there must exist a second eigenvector, say v, which
is linearly independent of 1N . This implies Gv = v. Then Lv = 0, so v must be
a multiple of 1N . This is a contradiction. We conclude that the eigenvalue 1 is
indeed simple.
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Finally, it follows from Gershgorin’s Theorem [30] that every eigenvalue λ of
G satisfies −1 < λ 6 1.

Before we give the main result of this chapter, we first review the following
proposition.

Proposition 4.6. Consider the discrete-time system

x(k + 1) = Ax(k), x(0) = x(0), y(k) = Cx(k)

with A ∈ Rn×n and C ∈ Rp×n, where x(k) ∈ Rn is the state, x0 is the initial state and
y(k) ∈ Rp is the output. Then, y(k)→ 0 as k →∞ for all initial states x0 if and only if
X+(A) ⊂ ker(C). Here, X+(A) is the unstable subspace, i.e., the sum of the generalized
eigenspaces of A associated with its eigenvalues in {λ ∈ C | |λ| > 1}.

Proof. A proof can be given by generalizing the results [102, pp. 99] to the discrete
time case.

We are now ready to present the main result of this chapter.

Theorem 4.7. Consider the multi-agent system (4.1). Let T > 0 be a sampling period,
α > 0 a discount factor, and let q, r > 0 be given weights. Let P̄ be the smallest positive

semi-definite solution of the Riccati equation (4.21) and partition P̄ :=

(
p1 p12

p12 p2

)
.

Then the distributed control protocol (4.23) with g = −r−1p1 and g′ = −r−1p12 achieves
consensus for the controlled network (4.24).

Proof. The network reaches consensus if and only if Lx(kT )→ 0 as k →∞. Since
ker(L) = im(1N ), it then follows from Proposition 4.6 that consensus is achieved if
and only if X+(Γ) ⊂ ker(L), equivalently, the sum of the generalized eigenspaces
of Γ corresponding to the eigenvalues λ with | λ |> 1 is equal to im(1N ).

Indeed, we will show that all eigenvalues λ of Γ are real and satisfy−1 < λ 6 1,
and λ = 1 is a simple eigenvalue with associated eigenvector 1N .

Recall that Γ = egT IN − (egT − 1)G. Hence, µ is an eigenvalue of Γ if and only
if µ = egT − λ(egT − 1) where λ is an eigenvalue of G. It was shown in Lemma 4.5
that all eigenvalues λ of G are real and satisfy −1 < λ 6 1 and, moreover, λ = 1 is
a simple eigenvalue. Using the fact that g < 0 we thus obtain that the eigenvalues
µ of Γ satisfy −1 < µ 6 1 and µ = 1 is a simple eigenvalue of Γ.

Finally, we will show µ = 1 has eigenvector 1N . Indeed, this follows from
Γ1N = (egT IN − (egT − 1)G)1N = 1N . This completes the proof.

Remark 4.8. By analyzing the eigenvalues µ of Γ satisfying −1 < µ < 1, it
can be seen that, for given α, the convergence rate of the difference equation
(4.26) increases with increasing sampling period T . The total time it takes to
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reach a disagreement smaller than a given tolerance is then the product of the
number of iterations in (4.26) and this sampling period. It might therefore be
more advantageous to use a smaller sampling period with a larger number of
required iterations, but yet leading to a smaller total time. In other words, the
choice of sampling period is a trade-off between the total time required to obtain
an acceptable disagreement, and the number of iterations in (4.26).

4.7 Simulation example

In this section, we provide a simple simulation example to illustrate the proposed
control design method.

Consider a network of six agents with single integrator dynamics

ẋi(t) = ui(t), i = 1, 2, . . . , 6,

where the initial states are x10 = 1, x20 = 2, x30 = −1, x40 = −2, x50 = 1 and
x60 = 3. We assume that the communication among these agents is represented
by an undirected cycle graph with six nodes. The associated Laplacian matrix is
given by

L =



2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2


. (4.28)

First, we take the sampling period to be equal T = 10. On the time interval
t ∈ [kT, (k + 1)T ), k = 0, 1, . . ., we consider the local cost functional (4.13) for
agent i. We choose the weights to be q = 2, r = 1 and the discount factor α = 0.01.
We adopt the control design proposed in Theorem 4.7 and compute the smallest
positive semi-definite of the Riccati equation

A>P + PA− r−1PBB>P +Q = 0

with

A =

(
−0.01 0

0 −0.01

)
, B =

(
1

0

)
, Q =

(
2 −2

−2 2

)
.

This Riccati equation has a unique positive semi-definite solution which is given
by

P =

(
1.4042 −1.4042

−1.4042 1.4042

)
.
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Figure 4.1: Plot of the states of the controlled network with T = 10
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Figure 4.2: Plot of the states of the controlled network with T = 0.1

Thus we find the control gains g = −1.4042 and g′ = 1.4042. Subsequently, the
local control law for agent i is given by ui,k(t) = −1.4042xi(t) + 1.4042ai(kT ) and
the dynamics of the controlled agents is given by

ẋi(t) = −1.4042xi(t) + 1.4042ai(kT )
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for t ∈ [kT, (k+ 1)T ) and i = 1, 2, 3 and k = 0, 1, . . .. In Figure 4.1 we have plotted
the controlled trajectories of the individual agents. It can be seen that the protocol
resulting from the local control laws indeed achieves consensus. Note that the
states of these agents achieves consensus at around T = 150. The results of a
second simulation, this time with sampling period T = 0.1, are plotted in Figure
4.2. By comparing Figure 4.1 and 4.2, it can be seen that the network reaches
consensus faster by taking a smaller sampling period.

4.8 Conclusions

We have studied the distributed linear quadratic control problem for a network of
agents with single integrator dynamics. We have shown that the computation of
control gains that minimize global cost functionals needs global information, in
particular knowledge of the initial states of all agents and the Laplacian matrix. We
have also shown that this drawback can be overcome by transforming the global
cost functional into discounted local cost functionals and assigning each of these
to an associated agent. In such a way, each agent computes its own control gain,
using sampled information of its neighboring agents. Finally, we have shown that
the resulting control protocol achieves consensus for the network.



5
A suboptimality approach to

distributedH2 optimal control by state
feedback

This chapter deals with the distributed H2 optimal control problem for linear
multi-agent systems by static relative state feedback. In particular, we consider
a suboptimality version of this problem. Given a linear multi-agent system with
identical agent dynamics, an associatedH2 cost functional, and a desired upper
bound for the cost, our aim is to design a distributed diffusive static protocol
such that the protocol achieves state synchronization while the associated cost
is smaller than the given upper bound. To that end, we first analyze the H2

performance of linear systems and then apply the results to linear multi-agent
systems. Based on these results, we provide a design method for computing such a
distributed suboptimal protocol. The expression for the local control gain involves
a solution to a single Riccati inequality of dimension equal to the dimension of the
individual agent dynamics, and the smallest nonzero and the largest eigenvalue
of the Laplacian matrix.

5.1 Introduction

The design of distributed protocols for multi-agent systems has received extensive
attention in the past decade [85]. This increase in attention is partly due to the
broad range of applications of multi-agent systems, e.g., formation control [79],
intelligent transportation systems [5], and smart grids [17]. One of the challenging
problems in the context of multi-agent systems is to develop distributed diffusive
protocols that minimize given cost criteria, while the agents of the network reach
a common goal, e.g., state synchronization. The difficulties of designing such
distributed diffusive optimal protocols are due to the structural constraints on
the communication among these agents, that is, each agent can only receive
information from certain other agents. Therefore, in general, distributed optimal
control problems are non-convex and difficult to solve.

To overcome this problem, much effort has been devoted to the design of
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distributed suboptimal protocols for multi-agent systems. In [7], the authors estab-
lished a design method to compute distributed suboptimal stabilizing controllers
with respect to a global linear quadratic cost functional, which contains terms that
penalize the states and inputs of each agent and also the relative states between
each agent and its neighboring agents. Later on, an inverse optimal control prob-
lem was addressed in [75]. In that paper, the authors showed that there exists
a global optimal synchronizing controller if the weighting matrices of the linear
quadratic cost functional are chosen to be of a certain special form. For other
papers related to distributed linear quadratic optimal control, see also [37, 74, 77].

On the other hand, there has been some work on the design of structured
stabilizing controllers for large-scale systems. In [91], the aim was to design
decentralized optimal controllers, subject to some constraints on the controller
structure, to minimize the closed-loop norm of a feedback system. The authors
showed that if the constraints on the controller structure have the property of
quadratic invariance, the solution of such problems can be computed efficiently via
convex programming. In more recent work, [19] studied the distributed optimal
problem for linear discrete-time systems. The authors showed that the problem can
be relaxed to a semidefinite program, and a globally optimal distributed controller
can be obtained if the semidefinite program relaxation has a rank one solution. In
[18], the authors derived a condition under which, given a centralized optimal
controller, there exists a distributed suboptimal controller whose state and input
trajectories are close to those of the closed-loop system by using this centralized
controller.

All the existing work mentioned above deals with finding distributed sub-
optimal protocols whose performance is very close to being optimal, or to find
distributed optimal protocols for certain special cost functionals. In this chapter,
however, we want to find a distributed diffusive suboptimal static protocol for
linear multi-agent networks such that the associated cost functional is smaller
than an, a priori given, desired tolerance (upper bound). We consider a group
of identical agents whose dynamics is represented by a finite dimensional linear
system. In addition, a connected, simple, undirected weighted graph is given, rep-
resenting the communication between these agents. Furthermore, we introduce an
H2 cost functional. Our aim is to design a distributed diffusive static protocol that
achieves state synchronization and guarantees the associated cost to be smaller
than a given upper bound.

The outline of this chapter is as follows. In Section 5.2, we formulate the
distributedH2 suboptimal control problem for linear multi-agent systems. We then
present the analysis and design ofH2 suboptimal control laws for general linear
systems in Section 5.3, providing necessary results for treating the distributed
H2 suboptimal control problem. In Section 5.4, we deal with the distributed H2

suboptimal control problem. Finally, Section 5.5 concludes this chapter.
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5.2 Problem formulation

In this chapter, we consider a multi-agent system consisting of N agents with
identical dynamics. The interconnection topology among the agents is assumed to
be represented by a connected, simple undirected weighted graph with associated
Laplacian matrix L. The dynamics of agent i is represented by the following
continuous-time linear-time-invariant (LTI) system

ẋi(t) = Axi(t) +Bui(t) + Edi(t),

zi(t) = Cxi(t) +Dui(t),
i = 1, 2, . . . , N, (5.1)

where xi ∈ Rn, ui ∈ Rm, zi ∈ Rp and di ∈ Rq are the state, the coupling input,
the output and the external disturbance input of the ith agent, respectively. The
matrices A, B, C, D and E have suitable dimensions. We assume that the pair
(A,B) is stabilizable. In this chapter, we consider the case that the agents (5.1) are
interconnected by means of a distributed diffusive static protocol of the form

ui = K

N∑
j=1

aij(xj − xi), i = 1, 2, . . . , N, (5.2)

where K ∈ Rm×n is a feedback gain to be designed. The coefficients aij are the
entries of the adjacency matrix A of the underlying graph.

Denote the aggregate vectors as

x = (x>1 , x
>
2 , . . . , x

>
N )> ∈ RnN , u = (u>1 , u

>
2 , . . . , u

>
N )> ∈ RmN ,

z = (z>1 , z
>
2 , . . . , z

>
N )> ∈ RpN , d = (d>1 , d

>
2 , . . . , d

>
N )> ∈ RqN .

We can then write system (5.1) in compact form as

ẋ = (IN ⊗A)x + (IN ⊗B)u + (IN ⊗ E)d,

z = (IN ⊗ C)x + (IN ⊗D)u,
(5.3)

the protocol (5.2) is now of the form

u = (L⊗K)x. (5.4)

Foremost, we want our protocol to achieve state synchronization for the overall
network. This is defined as follows.

Definition 5.1. The protocol (5.4) is said to achieve state synchronization if, whenever
the disturbance input is equal to zero, i.e. d = 0, then for all i, j = 1, 2, . . . , N we have
xi(t)− xj(t)→ 0 as t→∞.
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The distributed H2 optimal control problem is to minimize a given H2 cost
functional for multi-agent system (5.3) over all protocols (5.4) that achieve state
synchronization. Note that in the context of distributed control for multi-agent
systems, we are interested in the differences of the state and output values of the
agents in the controlled network. Observe also that the differences of the state and
output values of communicating agents are captured by the incidence matrix R of
the underlying graph. Therefore, we define a new output variable as

ζ = (W
1
2R> ⊗ Ip)z

with ζ = (ζ>1 , ζ
>
2 , . . . , ζ

>
M )> ∈ RpM , where W is the weight matrix given by (1.2).

Thus, the output ζ reflects the weighted disagreement between the outputs of
the agents in accordance with the weights of the edges connecting these agents.
Subsequently, we have the following input/state/output model

ẋ = (IN ⊗A)x + (IN ⊗B)u + (IN ⊗ E)d,

ζ = (W
1
2R> ⊗ C)x + (W

1
2R> ⊗D)u.

(5.5)

Next, by substituting protocol (5.4) into equations (5.5), we obtain the following
equations for the controlled network

ẋ = (IN ⊗A+ L⊗BK)x + (IN ⊗ E)d,

ζ = (W
1
2R> ⊗ C +W

1
2R>L⊗DK)x.

Denote Ã := IN ⊗A+L⊗BK, Ẽ := IN ⊗E, C̃ := W
1
2R> ⊗C +W

1
2R>L⊗DK.

The impulse response from the disturbance d to the output ζ is then given by

TK(t) = C̃eÃtẼ.

Subsequently, we define the associatedH2 cost functional as

J(K) :=

∫ ∞
0

tr
[
T>K (t)TK(t)

]
dt. (5.6)

Since the protocol (5.4) has a special form which contains the Kronecker prod-
uct of the to be designed feedback gain K with the given Laplacian matrix L, the
distributedH2 optimal control problem is non-convex, and therefore difficult to
solve in general. Therefore, instead of trying to solve the distributedH2 optimal
control problem itself, we will address a suboptimality version of this problem,
i.e., we want to design a state synchronizing, distributed diffusive, static protocol
such that the associated cost is smaller than an a priori given upper bound. More
concretely, the problem we want to address is the following:
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Problem 5.1. Consider multi-agent system (5.3), with interconnection topology among
the agents represented by a connected, simple undirected weighted graph with associated
Laplacian matrix L, together with cost functional J(K) given by (5.6). Let γ > 0 be
a given tolerance. Our aim is to design a matrix K ∈ Rn×m such that the distributed
diffusive static protocol u = (L⊗K)x achieves state synchronization and J(K) < γ.

Before we address Problem 5.1, we will first briefly discuss theH2 suboptimal
control problem for general linear systems, in that way collecting the required
preliminary results to treat the actual distributedH2 suboptimal control problem
for multi-agent systems. This will be the subject of the next section.

5.3 H2 suboptimal control for linear systems by static
state feedback

In this section, we consider theH2 suboptimal control problem for linear systems.
We will first analyze the H2 performance of a given system with disturbance
inputs. Subsequently, we will discuss how to design suboptimal protocols for a
linear system with control inputs and disturbance inputs.

5.3.1 H2 performance analysis for linear systems with disturbance
inputs

In this subsection, we will analyze the H2 performance for linear systems with
disturbance inputs. More specifically, we consider the following linear system

ẋ(t) = Āx(t) + Ēd(t),

z(t) = C̄x(t),
(5.7)

where x ∈ Rn represents the state, d ∈ Rq the disturbance input and z ∈ Rp the
output. The matrices Ā, C̄ and Ē have suitable dimensions. The impulse response
matrix of system (5.7) from the disturbance d to the output z is T (t) = C̄eĀtĒ. The
associatedH2 performance is given by

J =

∫ ∞
0

tr
[
T>(t)T (t)

]
dt, (5.8)

which measures the performance of system (5.7) as the square of the L2-norm of
its impulse response matrix. Note that performance (5.8) is finite if the system is
internally stable, i.e., Ā is Hurwitz. Our aim is to find conditions such that the
performance (5.8) is smaller than a given upper bound. For this, we have the
following lemma. See also [124] or [93].
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Lemma 5.1. Consider system (5.7) with associated performance (5.8). The performance
is finite if Ā is Hurwitz. In that case, we have

J = tr
(
Ē>Y Ē

)
, (5.9)

where Y is the unique positive semidefinite solution of

Ā>Y + Y Ā+ C̄>C̄ = 0. (5.10)

Alternatively,

J = inf{tr
(
Ē>PĒ

)
| P > 0 and Ā>P + PĀ+ C̄>C̄ < 0}. (5.11)

For a proof of Lemma 5.1, see the proof of Theorem 4.6.2 in [100].
The following lemma now establishes a necessary and sufficient condition [33],

such that the system (5.7) is stable and, for a given upper bound γ > 0, the
performance (5.8) satisfies J < γ.

Lemma 5.2. Consider system (5.7) with associated performance (5.8). Given γ > 0. Then
Ā is Hurwitz and J < γ if and only if there exists a positive definite matrix P satisfying

Ā>P + PĀ+ C̄>C̄ < 0, (5.12)

tr
(
Ē>PĒ

)
< γ. (5.13)

Proof. (if) Let P > 0 satisfy (5.12). Then Ā>P + PĀ < 0. Note also that P > 0,
which implies that Ā is Hurwitz. If P > 0 also satisfies (5.13), then it follows from
Lemma 5.1 that J 6 tr

(
Ē>PĒ

)
< γ.

(only if) If Ā is Hurwitz and J < γ, it follows again from Lemma 5.1 that there
exists a positive definite solution P to (5.12) and (5.13) such that J 6 tr

(
Ē>PĒ

)
<

γ.

5.3.2 H2 suboptimal control for linear systems with control and
disturbance inputs

In this subsection, we will discuss theH2 suboptimal control problem for linear
systems with control inputs and disturbance inputs. More specifically, we consider
the linear system

ẋ(t) = Ax(t) +Bu(t) + Ed(t),

z(t) = Cx(t) +Du(t),
(5.14)

where x ∈ Rn represents the state, u ∈ Rm the control input, z ∈ Rp the output,
and d ∈ Rq the external disturbance input. The matrices A, B, C, D and E have
suitable dimensions. We assume that the pair (A,B) is stabilizable. Using the
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static state feedback
u = Kx (5.15)

yields the closed-loop system

ẋ = (A+BK)x+ Ed,

z = (C +DK)x.
(5.16)

We measure the performance of system (5.16) by considering the square of the
L2-norm of its impulse response matrix. Therefore, we define the associatedH2

cost functional as
J(K) =

∫ ∞
0

tr
[
T>K (t)TK(t)

]
dt, (5.17)

where TK(t) = (C +DK)e(A+BK)tE is the closed-loop impulse response matrix
of system (5.16) from the disturbance input d to the output z. Let γ > 0 be a given
upper bound for the cost J(K). We are interested in finding a static state feedback
of the form (5.15) such that A+BK is Hurwitz and the associated cost is smaller
than the given upper bound γ, i.e. J(K) < γ.

The following lemma yields a sufficient condition for the existence of such a
static state feedback and how to compute one.

Lemma 5.3. Consider system (5.14) with associated cost functional (5.17). Let γ > 0.
Assume that the pair (A,B) is stabilizable. Assume that D>C = 0 and D>D = Im.
Suppose that there exists a positive definite matrix P satisfying

A>P + PA− PBB>P + C>C < 0, (5.18)

tr
(
E>PE

)
< γ. (5.19)

Let K = −B>P . Then A+BK is Hurwitz and J(K) < γ.

Proof. Substituting K = −B>P into system (5.16) gives us

ẋ = (A−BB>P )x+ Ed,

z = (C −DB>P )x.

Since D>C = 0 and D>D = Im, inequality (5.18) is equivalent to

(A−BB>P )>P + P (A−BB>P ) + (C −DB>P )>(C −DB>P ) < 0. (5.20)

Since P > 0 is a solution of (5.18), it also satisfies (5.20), which implies that
A − BB>P is Hurwitz. Since (5.19) also holds, by taking Ā = A − BB>P , C̄ =

C − DB>P and Ē = E, it immediately follows from Theorem 5.2 that J(K) <

γ.
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5.4 DistributedH2 suboptimal protocols by static state
feedback

In the previous section, we have dealt with the H2 suboptimal control problem
for linear systems, collecting the necessary results for treating the distributed
H2 suboptimal control problem. In the present section, we will deal with the
distributedH2 suboptimal control problem for multi-agent networks with identical
linear agent dynamics.

As has already been shown in Section 5.2, the dynamics of the multi-agent
network we consider is given by

ẋ = (IN ⊗A+ L⊗BK)x + (IN ⊗ E)d,

ζ = (W
1
2R> ⊗ C +W

1
2R>L⊗DK)x.

(5.21)

For convenience, we also repeat here the associatedH2 cost functional

J(K) =

∫ ∞
0

tr
[
T>K (t)TK(t)

]
dt, (5.22)

where TK(t) = C̃eÃtẼ is the impulse response matrix from the disturbance input
d to the output ζ with Ã := IN ⊗ A+ L⊗BK, Ẽ := IN ⊗ E and C̃ := W

1
2R> ⊗

C +W
1
2R>L⊗DK.

The distributedH2 suboptimal control problem is to find a distributed diffusive
static protocol (5.4) with gain matrix K that achieves state synchronization and
such that the associated cost (5.22) is smaller than a given upper bound γ > 0, i.e.
J(K) < γ. We further assume that D>C = 0 and D>D = Im, i.e. we assume that
the distributedH2 suboptimal control problem is in standard form.

Next, we will first apply the state transformation

x̄ = (U> ⊗ In)x

where the orthogonal matrix U is defined in (1.1). After this state transformation,
the equations of the controlled network become

˙̄x = (IN ⊗A+ Λ⊗BK)x̄ + (U> ⊗ E)d,

ζ = (W
1
2R>U ⊗ C +W

1
2R>LU ⊗DK)x̄,

and our cost functional is equal to

J(K) =

∫ ∞
0

tr
[
T>K (t)TK(t)

]
dt, (5.23)
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where
TK(t) = Coe

AotEo (5.24)

is the impulse response matrix from the disturbance input d to the output ζ

with Ao := IN ⊗ A + Λ ⊗ BK, Co := W
1
2R>U ⊗ C + W

1
2R>LU ⊗ DK and

Eo := U> ⊗ E. Note that, by applying the state transformation, only the system
model has changed while the impulse response and the associated cost remain the
same.

In order to proceed, we introduce the following N − 1 auxiliary linear systems

ξ̇i = Aξi + λiBvi + Eδi,

ηi =
√
λiCξi + λi

√
λiDvi,

i = 2, 3, . . . , N, (5.25)

where λi, i = 2, 3, . . . , N are the nonzero eigenvalues of the graph Laplacian L.
Using in all systems (5.25) the identical static state feedback

vi = Kξi, i = 2, 3, . . . , N (5.26)

yields the closed-loop systems

ξ̇i = (A+ λiBK)ξi + Eδi,

ηi = (
√
λiC + λi

√
λiDK)ξi,

i = 2, 3, . . . , N. (5.27)

We further introduce the associatedH2 cost functionals

Ji(K) =

∫ ∞
0

tr
[
T>i,K(t)Ti,K(t)

]
dt, i = 2, 3, . . . , N, (5.28)

where
Ti,K = (

√
λiC + λi

√
λiDK)e(A+λiBK)tE, (5.29)

for i = 2, 3, . . . , N , are the closed-loop impulse response matrices from the distur-
bance δi to the output ηi, respectively.

It turns out that our original cost functional can be expressed as the sum of the
cost functionals associated with the auxiliary systems (5.25). In fact, the following
theorem holds.

Theorem 5.4. Consider the network (5.21) with associated cost (5.22) and the systems
(5.27) with associated costs (5.28) for i = 2, 3, . . . , N , respectively. Then the protocol (5.4)
achieves state synchronization for the network (5.21) if and only if the static state feedback



72 5. A suboptimality approach to distributedH2 optimal control by state feedback

(5.26) internally stabilizes all systems (5.25). Moreover,

J(K) =

N∑
i=2

Ji(K). (5.30)

Proof. It is a standard result that the protocol (5.4) achieves state synchronization
for the network (5.21) if and only if the static state feedback (5.26) internally
stabilizes all systems (5.25). See e.g. [54] or [103].

We now prove (5.30). Let K be such that synchronization is achieved. Then we
have

J(K) =

∫ ∞
0

tr
(
Ē>e e

Ā>
e tC̄>e C̄ee

ĀetĒe

)
dt

with

Āe = IN ⊗A+Λ⊗BK, C̄e = W
1
2R>U ⊗C+W

1
2R>LU ⊗DK, Ēe = U>⊗E.

Since U>LU = Λ, L = RWR> and D>C = 0, we have C̄>e C̄e = C̃>e C̃e with

C̃e := Λ
1
2 ⊗ C + Λ

3
2 ⊗DK.

We also have ĒeĒ>e = ẼeẼ
>
e with Ẽe := IN ⊗ E. Thus we find that

tr
(
Ē>e e

Ā>
e tC̄>e C̄ee

ĀetĒe

)
= tr

(
Ẽ>e e

Ā>
e tC̃>e C̃ee

ĀetẼe

)
. (5.31)

We now analyze the matrix function C̃eeĀetẼe appearing in (5.31). It is straightfor-
ward to show that

C̃ee
ĀetẼe = blockdiag

(
0, C2e

A2tE, . . . , CNe
AN tE

)
,

where Ai = A+ λiBK and Ci =
√
λiC + λi

√
λiDK. Thus we find that

J(K) =

∫ ∞
0

N∑
i=2

tr
[
T>i,K(t)Ti,K(t)

]
dt.

The claim (5.30) then follows immediately.

Based on Theorem 5.4, we have transformed the problem of distributed H2

suboptimal control for the network (5.21) into H2 suboptimal control problems
for N − 1 linear systems (5.27) with the same feedback gain K. Next, we want to
establish conditions under which all N − 1 systems (5.27) are internally stable and
the state feedback (5.26) is suboptimal.

The following lemma yields a necessary and sufficient condition for a given
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gain matrix K ∈ Rm×n such that all systems (5.27) are internally stable and∑N
i=2 Ji(K) < γ.

Lemma 5.5. Consider the closed-loop systems (5.27) with the associated cost functionals
(5.28). Let γ > 0 be a given tolerance. The static state feedback (5.26) internally stabilizes
all systems and

∑N
i=2 Ji(K) < γ if and only if there exist positive definite matrices

Pi, i = 2, 3, . . . , N satisfying

(A+ λiBK)>Pi + Pi(A+ λiBK)

+(
√
λiC + λi

√
λiDK)>(

√
λiC + λi

√
λiDK) < 0, (5.32)

N∑
i=2

tr
(
E>PiE

)
< γ. (5.33)

Proof. (if) Since (5.33) holds, there exist sufficiently small εi > 0, i = 2, . . . , N such
that

∑N
i=2 γi < γ where γi := tr

(
E>PiE

)
+ εi. Because there exists Pi such that

(5.32) and tr
(
E>PiE

)
< γi hold for all i = 2, . . . , N , by taking Ā = A+ λiBK and

C̄ =
√
λiC + λi

√
λiDK, it follows from Theorem 5.2 that all systems (5.27) are

internally stable and Ji(K) < γi for i = 2, . . . , N . Therefore,
∑N
i=2 Ji(K) < γ.

(only if) Since
∑N
i=2 Ji(K) < γ, there exist sufficiently small εi > 0, i = 2, . . . , N

such that
∑N
i=2 γi < γ where γi := Ji(K) + εi. Because all systems (5.27) are

internally stable and Ji(K) < γi for i = 2, . . . , N , by taking Ā = A + λiBK and
C̄ =

√
λiC + λi

√
λiDK, it follows from Theorem 5.2 that there exist positive semi-

definite matrices Pi such that (5.32) and tr
(
E>PiE

)
< γi hold for all i = 2, . . . , N .

Since
∑N
i=2 γi < γ, this implies that

∑N
i=2 tr

(
E>PiE

)
< γ.

Lemma 5.5 establishes a necessary and sufficient condition for a given gain
matrix K to internally stabilize all closed-loop systems (5.27) and to achieve∑N
i=2 Ji(K) < γ. However, it does yet not provide a method to compute such

gain matrix K. To this end, in the following theorem, we will provide a design
method for computing such a gain matrix K and, correspondingly, a distributed
suboptimal protocol for multi-agent system (5.1) together with cost functional
(5.22).

Theorem 5.6. Consider multi-agent system (5.1) with the associated cost functional
(5.22). Let γ > 0 be a given tolerance. Let c be any real number such that 0 < c < 2

λ2
N

.
We distinguish two cases:

(i) if

0 < c 6
2

λ2
2 + λ2λN + λ2

N

, (5.34)



74 5. A suboptimality approach to distributedH2 optimal control by state feedback

then there exists a positive definite matrix P satisfying

A>P + PA+ (c2λ3
2 − 2cλ2)PBB>P + λNC

>C < 0. (5.35)

(ii) if
2

λ2
2 + λ2λN + λ2

N

< c <
2

λ2
N

, (5.36)

then there exists a positive definite matrix P satisfying

A>P + PA+ (c2λ3
N − 2cλN )PBB>P + λNC

>C < 0. (5.37)

In both cases, if in addition P satisfies

tr
(
E>PE

)
<

γ

N − 1
. (5.38)

Then protocol (5.4) with K := −cB>P achieves synchronization, and it is suboptimal,
i.e. J(K) < γ.

Proof. We will only provide the proof for case (i) above. Using the upper and lower
bound on c given by (5.34), it can be verified that c2λ3

i −2cλi 6 c2λ3
2−2cλ2 < 0 for

i = 2, 3, . . . , N . Since also λi 6 λN , one can see that the positive definite solution
P of (5.35) also satisfies the N − 1 Riccati inequalities

A>P + PA+ (c2λ3
i − 2cλi)PBB

>P + λiC
>C < 0 (5.39)

for i = 2, . . . , N . Equivalently, P also satisfies the Lyapunov inequalities

(A− cλiBB>P )>P + P (A− cλiBB>P ) + c2λ3
iPBB

>P + λiC
>C < 0,

for i = 2, . . . , N . Taking Pi = P for i = 2, 3, . . . , N and K := −cB>P in inequali-
ties (5.32) and (5.33) immediately gives us inequalities (5.39) and

N∑
i=2

tr
(
E>PE

)
< γ.

Then it follows from Lemma 5.5 that all systems (5.27) are internally stable and∑N
i=2 Ji(K) < γ. Furthermore, it follows from Theorem 5.4 that the protocol (5.4)

achieves state synchronization for the network (5.21) and J(K) < γ.

Remark 5.7. Theorem 5.6 states that by choosing c satisfying (5.34) for case (i) and
P > 0 satisfying (5.35), the distributed static protocol with local gain K = −cB>P
is suboptimal if P also satisfies (5.38). Then the question arises: how should we
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choose c and P such that the local gain of the suboptimal protocol is ‘best’ in the
sense that we have tr

(
E>PE

)
and, consequently, J(K) as small as possible? Since

smaller P leads to smaller tr
(
E>PE

)
and, consequently, smaller J(K), we should

therefore try to find P as small as possible. In fact, one can find a positive definite
solution P = P (c, ε) to (5.35) by solving

A>P + PA− PBR(c)−1B>P +Q(ε) = 0

with R(c) = 1
−c2λ3

2+2cλ2
In and Q(ε) = λNC

>C + εIn where c is chosen as in
(5.34) and ε > 0 arbitrary. If c1 and c2 as in (5.34) satisfy c1 6 c2, then we
have R(c1) 6 R(c2), so, clearly, P (c1, ε) 6 P (c2, ε). Similarly, if 0 < ε1 6 ε2,
we immediately have Q(ε1) 6 Q(ε2). Again, it follows that P (c, ε1) 6 P (c, ε2).
Therefore, if we choose ε > 0 very close to 0 and c = 2

λ2
2+λ2λN+λ2

N
, we find the

‘best’ solution to the Riccati inequality (5.37) in the sense explained above.
Likewise, if we choose c satisfying (5.36) corresponding to case (ii), it can be

shown that if we choose ε > 0 very close to 0 and c > 0 very close to 2
λ2
2+λ2λN+λ2

N
,

we find the ‘best’ solution to the Riccati inequality (5.37).

5.5 Conclusions

In this chapter, we have studied a distributedH2 suboptimal control problem for
linear multi-agent systems with connected, simple undirected weighted graph.
Given a multi-agent system with identical agent dynamics, an associated global
H2 cost functional and also a desired upper bound for the cost, we have provided
a design method for computing a distributed suboptimal protocol such that the
protocol achieves state synchronization and the associated cost is smaller than
the given upper bound. The expression for the local control gain is provided in
terms of solutions of a single Riccati inequality, whose dimension is equal to the
dimension of the individual agent dynamics, and also involves the largest and the
smallest nonzero eigenvalue of the Laplacian matrix.





6 DistributedH2 suboptimal control by
dynamic output feedback

This chapter deals with distributed H2 suboptimal control by dynamic relative
output feedback for homogeneous linear multi-agent systems. Given a linear
multi-agent system, together with an associatedH2 cost functional, the objective
is to design dynamic output feedback protocols that guarantee the associated
cost to be smaller than an a priori given upper bound while synchronizing the
controlled network. A design method is provided to compute such protocols.
The computation of the two local gains in these protocols involves two Riccati
inequalities, each of dimension equal to the dimension of the state space of the
agents. The largest and smallest nonzero eigenvalue of the Laplacian matrix of
the network graph are also used in the computation of one of the two local gains.
A simulation example is provided to illustrate the performance of the proposed
protocols.

6.1 Introduction

The design of distributed protocols for networked multi-agent systems has been
one of the most active research topics in the field of systems and control over the
last two decades, see e.g. [11, 85]. This is partly due to the broad range of appli-
cations of multi-agent systems, e.g. smart grids [17], formation control [79, 118],
and intelligent transportation systems [4]. One of the challenging problems in the
context of linear multi-agent systems is the problem of developing distributed pro-
tocols to minimize given quadratic cost criteria while the agents reach a common
goal, e.g., synchronization. Due to the structural constraints that are imposed on
the control laws by the communication topology, such optimal control problems
are difficult to solve. These structural constraints make distributed optimal control
problems non-convex, and it is unclear under what conditions solutions exist in
general.

In the existing literature, many efforts have been devoted to addressing dis-
tributed linear quadratic optimal control problems. In [7], distributed suboptimal
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stabilizing controllers were computed to stabilize multi-agent networks with iden-
tical agent dynamics subject to a global linear quadratic cost functional. For a
network of agents with single integrator dynamics, an explicit expression for the
optimal gain was given in [10], see also [38]. In [75] and [123], a distributed linear
quadratic control problem was dealt with using an inverse optimality approach.
This approach was further employed in [77] to design reduced order controllers.
Recently, also in [37], the distributed LQ suboptimal control problem was con-
sidered. In parallel to the above, much work has been put into the problem of
distributedH2 optimal control. Given a particular globalH2 cost functional, [55]
and [53] proposed distributed suboptimal stabilizing protocols involving static
state feedback for multi-agent systems with undirected graphs. Later on, in [112]
these results were generalized to directed graphs. For a given H2 cost criterion
that penalizes the weighted differences between the outputs of the communicating
agents, in [36] a distributed suboptimal synchronizing protocol based on static
relative state feedback was established.

In the past, also the design of structured controllers for large-scale systems has
attracted much attention. In [91], the notion of quadratic invariance was adopted
to develop decentralized controllers that minimize the performance of the feedback
system with constraints on the controller structure. In [57], the so called alternating
direction method of multipliers was adopted to design sparse feedback gains that
minimize anH2 performance. In [18], conditions were provided under which, for
a given optimal centralized controller, a distributed suboptimal controller exists
so that the resulting closed loop state and input trajectories are close in a certain
sense.

The distributed H2 optimal control problem for multi-agent systems by dy-
namic relative output feedback is to find an optimal distributed dynamic protocol
that achieves synchronization for the controlled network and that minimizes the
H2 cost functional. This problem, however, is a non-convex optimization problem,
and therefore it is unclear whether such optimal protocol exists, or whether a
closed form solution can be given. Therefore, in this chapter, we look at an alterna-
tive version of this problem that requires only suboptimality. More precisely, we
extend our preliminary results in Chapter 5 on static relative state feedback to the
general case of dynamic protocols using relative measurement outputs. The main
contributions of this chapter are the following.

1. We solve the open problem of finding, for a single continuous-time linear
system, a separation principle basedH2 suboptimal dynamic output feed-
back controller. This result extends the recent result in [25] on the separation
principle inH2 suboptimal control for discrete-time systems.

2. Based on the above result, we provide a method for computing distributed
H2 suboptimal dynamic output feedback protocols for linear multi-agent
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systems.

The outline of this chapter is as follows. In Section 6.2, we formulate the distributed
H2 suboptimal control problem by dynamic relative output feedback for linear
multi-agent systems. In order to solve this problem, in Section 6.3, we first study
H2 suboptimal control by dynamic output feedback for a single linear system.
In Section 6.4 we then treat the problem introduced in Section 6.2. To illustrate
our method, a simulation example is provided in Section 6.5. Finally, Section 6.6
concludes this chapter.

6.2 Problem formulation

In this chapter, we consider a homogeneous multi-agent system consisting of
N identical agents, where the underlying network graph is a connected, simple
undirected weighted graph with associated adjacency matrix A and Laplacian
matrix L. The dynamics of the ith agent is represented by a finite-dimensional
linear time-invariant system

ẋi = Axi +Bui + Edi,

yi = C1xi +D1di,

zi = C2xi +D2ui,

i = 1, 2, . . . , N, (6.1)

where xi ∈ Rn is the state, ui ∈ Rm is the coupling input, di ∈ Rq is an unknown
external disturbance, yi ∈ Rr is the measured output and zi ∈ Rp is the output
to be controlled. The matrices A, B, C1, D1, C2, D2 and E are of compatible
dimensions. Throughout this chapter we assume that the pair (A,B) is stabilizable
and the pair (C1, A) is detectable. The agents (6.1) are to be interconnected by
means of a dynamic output feedback protocol. Following [103] and [121], we
consider observer based dynamic protocols of the form

ẇi = Awi +B

N∑
j=1

aij(ui − uj) +G

 N∑
j=1

aij(yi − yj)− C1wi

 ,

ui = Fwi, i = 1, 2, . . . , N,

(6.2)

where G ∈ Rn×r and F ∈ Rm×n are local gains to be designed. The coefficients
aij are the entries of the adjacency matrix A of the underlying network graph. We
briefly explain the structure of this protocol. Each local controller of the protocol
(6.2) observes the weighted sum of the relative input signals

∑N
j=1 aij(ui − uj)

and the weighted sum of the disagreements between the measured output signals∑N
j=1 aij(yi − yj). The first equation in (6.2) in fact represents an asymptotic
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observer for the weighted sum of the relative states of agent i, and the state of
this observer is an estimate of this value. Note that, for the error ei := wi −∑N
j=1 aij(xi − xj), the error dynamics is ėi = (A − GC1)ei +

∑N
j=1 aij(GD1 −

E)(di − dj). If the disturbance inputs to all the agents are zero, i.e. di = 0 for
i = 1, 2, . . . , N , then the error dynamics is asymptotically stable if and only if
A − GC1 is Hurwitz. An estimate of the weighted sum of the relative states of
each agent is then fed back to this agent using a static gain.

Denote by x = (x>1 , x
>
2 , . . . , x

>
N )> the aggregate state vector and likewise define

u, y, z, d and w. The multi-agent system (6.1) can then be written in compact form
as

ẋ = (IN ⊗A)x + (IN ⊗B)u + (IN ⊗ E)d,

y = (IN ⊗ C1)x + (IN ⊗D1)d,

z = (IN ⊗ C2)x + (IN ⊗D2)u,

(6.3)

and the dynamic protocol (6.2) is represented by

ẇ = (IN ⊗ (A−GC1) + L⊗BF ) w + (L⊗G)y,

u = (IN ⊗ F )w.
(6.4)

By interconnecting the network (6.3) using the dynamic protocol (6.4), we obtain
the controlled network(

ẋ
ẇ

)
=

(
IN ⊗A IN ⊗BF
L⊗GC1 IN ⊗ (A−GC1) + L⊗BF

)(
x
w

)
+

(
IN ⊗ E
L⊗GD1

)
d,

z =
(
IN ⊗ C2 IN ⊗D2F

)( x
w

)
.

(6.5)

Foremost, we want the dynamic protocol (6.4) to achieve synchronization for the
network.

Definition 6.1. The protocol (6.4) is said to synchronize the network if, whenever the
external disturbances of all agents are equal to zero, i.e. d = 0, we have xi(t)− xj(t)→ 0

and wi(t)− wj(t)→ 0 as t→∞, for all i, j = 1, 2, . . . , N .

The distributed H2 optimal control problem by dynamic output feedback is
to minimize a given global H2 cost functional over all dynamic protocols of the
form (6.4) that achieve synchronization for the controlled network. In the context
of distributed control for multi-agent systems, we are interested in the differences
of the state and output values of the agents in the controlled network, see e.g. [45]
or [69]. Note that these differences are captured by the incidence matrix R of the
underlying graph. Therefore, we introduce a new output variable as

ζ = (W
1
2R> ⊗ Ip)z (6.6)
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with ζ = (ζ>1 , ζ
>
2 , . . . , ζ

>
M )> ∈ RpM , where W is the weight matrix of the under-

lying graph, as defined in (1.2). Thus, the output ζ is the vector of weighted
disagreements between the outputs of the agents, in which the weights are given
by the square roots of the edge weights connecting these agents. Subsequently, we
consider the network (6.5) with this new output:(

ẋ
ẇ

)
=

(
IN ⊗A IN ⊗BF
L⊗GC1 IN ⊗ (A−GC1) + L⊗BF

)(
x
w

)
+

(
IN ⊗ E
L⊗GD1

)
d,

ζ =
(
W

1
2R> ⊗ C2 W

1
2R> ⊗D2F

)( x
w

)
.

(6.7)

Denote

Ae =

(
IN ⊗A IN ⊗BF
L⊗GC1 IN ⊗ (A−GC1) + L⊗BF

)
,

Ce =
(
W

1
2R> ⊗ C2 W

1
2R> ⊗D2F

)
,

Ee =

(
IN ⊗ E
L⊗GD1

)
.

The impulse response matrix from the external disturbance d to the output ζ is
then equal to

TF,G(t) = Cee
AetEe. (6.8)

Next, the associated globalH2 cost functional is defined to be the squared L2-norm
of the closed loop impulse response, and is given by

J(F,G) :=

∫ ∞
0

tr
[
T>F,G(t)TF,G(t)

]
dt. (6.9)

The distributedH2 optimal control problem by dynamic output feedback is the
problem of minimizing (6.9) over all dynamic protocols of the form (6.4) that
achieve synchronization for the network. Unfortunately, due to the particular
form of the protocol (6.4), this optimization problem is, in general, non-convex and
difficult to solve, and a closed form solution has not been provided in the literature
up to now. Therefore, instead of trying to find an optimal solution, in this chapter
we will address a suboptimality version of the problem. More specifically, we
will design synchronizing dynamic protocols (6.4) that guarantee the associated
cost (6.9) to be smaller than an a priori given upper bound. More concretely, the
problem that we will address is the following:

Problem 6.1. Let γ > 0 be a given tolerance. Design local gains F ∈ Rm×n and
G ∈ Rn×r such that the dynamic protocol (6.4) achieves J(F,G) < γ and synchronizes
the network.
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Before we address Problem 6.1, we will first study theH2 suboptimal control
problem by dynamic output feedback for a single linear system. In that way,
we will collect the required preliminary results to treat the actual distributedH2

suboptimal control problem for multi-agent systems.

6.3 H2 suboptimal control for linear systems by dy-
namic output feedback

In this section, we will discuss the H2 suboptimal control problem by dynamic
output feedback for a single linear system. This problem has been dealt with
before, see e.g. [95], [96], [100] or [25]. In particular, in [25], the separation principle
forH2 suboptimal control for discrete-time linear systems was established. Here,
we will establish the analogue of that result for the continuous-time case.

Consider the linear system

ẋ = Āx+ B̄u+ Ēd,

y = C̄1x+ D̄1d,

z = C̄2x+ D̄2u,

(6.10)

where x ∈ Rn is the state, u ∈ Rm the control input, d ∈ Rq an unknown external
disturbance, y ∈ Rr the measured output, and z ∈ Rp the output to be controlled.
The matrices Ā, B̄, C̄1, D̄1, C̄2, D̄2 and Ē have compatible dimensions. In this
section, we assume that the pair (Ā, B̄) is stabilizable and that the pair (C̄1, Ā) is
detectable. Moreover, we consider dynamic output feedback controllers of the
form

ẇ = Āw + B̄u+G
(
y − C̄1w

)
,

u = Fw,
(6.11)

where w ∈ Rn is the state of the controller, and F ∈ Rm×n and G ∈ Rn×r are gain
matrices to be designed. By interconnecting the controller (6.11) and the system
(6.10), we obtain the controlled system(

ẋ

ẇ

)
=

(
Ā B̄F

GC̄1 Ā+ B̄F −GC̄1

)(
x

w

)
+

(
Ē

GD̄1

)
d,

z =
(
C̄2 D̄2F

)(x
w

)
.

(6.12)
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Denote

Aa =

(
Ā B̄F

GC̄1 Ā+ B̄F −GC̄1

)
, Ca =

(
C̄2 D̄2F

)
, Ea =

(
Ē

GD̄1

)
.

Then the impulse response matrix from the disturbance d to the output z is given
by TF,G(t) = Cae

AatEa. Next, we introduce the associated H2 cost functional,
given by

J(F,G) :=

∫ ∞
0

tr
[
T>F,G(t)TF,G(t)

]
dt. (6.13)

We are interested in the problem of finding a controller of the form (6.11) such that
the controlled system (6.12) is internally stable and the associated cost (6.13) is
smaller than an a priori given upper bound.

Before we proceed, we will first review a well-known result that provides
necessary and sufficient conditions such that a closed loop system isH2 suboptimal,
see e.g. [95, Proposition 3.13].

Proposition 6.1. Let γ > 0. Then the following statements are equivalent:

(i) the system (6.12) is internally stable and J(F,G) < γ.

(ii) there exists Xa > 0 such that

AaXa +XaA
>
a + EaE

>
a < 0,

tr
(
CaXaC

>
a

)
< γ.

(6.14)

(iii) there exists Ya > 0 such that

A>a Ya + YaAa + C>a Ca < 0,

tr
(
E>a YaEa

)
< γ.

(6.15)

The following lemma is an extension of Theorem 6 in [25]. It provides con-
ditions under which the controller (6.11) with gain matrices F and G = QC̄>1 is
suboptimal for the continuous-time system (6.10), where Q is a particular real
symmetric solution of a given Riccati inequality. The result shows that the sep-
aration principle is also applicable in the context of H2 suboptimal control for
continuous-time systems.

Lemma 6.2. Let γ > 0 be a given tolerance. Assume that D̄1Ē
> = 0, D̄>2 C̄2 = 0,

D̄1D̄
>
1 = Ir and D̄>2 D̄2 > 0. Let F ∈ Rm×n. Suppose that there exists P > 0 satisfying

(Ā+ B̄F )>P + P (Ā+ B̄F ) + (C̄2 + D̄2F )>(C̄2 + D̄2F ) < 0. (6.16)
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Let Q > 0 be a solution of the Riccati inequality

ĀQ+QĀ> −QC̄>1 C̄1Q+ ĒĒ> < 0. (6.17)

If, moreover, the inequality

tr
(
C̄1QPQC̄

>
1

)
+ tr

(
C̄2QC̄

>
2

)
< γ (6.18)

holds, then the controller (6.11) with the gains F and G = QC̄>1 yields an internally
stable closed loop system (6.12), and it is suboptimal, i.e. J(F,G) < γ.

Proof. Let Q > 0 satisfy (6.17) and gain matrix F be given. Note that (6.18) is
equivalent to

tr
(
C̄1QPQC̄

>
1

)
< γ − tr

(
C̄2QC̄

>
2

)
. (6.19)

According to cases (ii) and (iii) in Proposition 6.1, there exists P > 0 satisfying
(6.16) and (6.19) if and only if there exists ∆ > 0 satisfying

tr
(
(C̄2 + D̄2F )∆(C̄2 + D̄2F )>

)
< γ − tr

(
C̄2QC̄

>
2

)
(6.20)

and
(Ā+ B̄F )∆ + ∆(Ā+ B̄F )> +QC̄>1 C̄1Q < 0. (6.21)

On the other hand, by applying the state transformation(
w

e

)
=

(
0 In
−In In

)(
x

w

)
.

The system (6.12) then becomes(
ẇ

ė

)
=

(
Ā+ B̄F −GC̄1

0 Ā−GC̄1

)(
w

e

)
+

(
GD̄1

GD̄1 − Ē

)
d,

z =
(
C̄2 + D̄2F −C̄2

)(w
e

)
.

(6.22)

Clearly, the system (6.12) is internally stable if and only if Ā+ B̄F and Ā−GC̄1

are Hurwitz. Thus, what remains to show is that the controller (6.11) with the
gains F and G = QC̄>1 internally stabilizes the system (6.10) and that J(F,G) < γ.

Note that (6.17) is equivalent to

(Ā−QC̄>1 C̄1)Q+Q(Ā−QC̄>1 C̄1)> + (Ē +QC̄>1 D̄1)(Ē +QC̄>1 D̄1)> < 0,

(6.23)
where we use the fact that D̄1Ē

> = 0 and D̄1D̄
>
1 = Ir. Since G = QC̄>1 , it then

follows that Ā−GC̄1 is Hurwitz. Similarly, it follows from (6.16) that Ā+ B̄F is
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Hurwitz. Consequently, the system (6.12) is internally stable.
Next, we will show that J(F,G) < γ. Again consider (6.22) and denote

Āa =

(
Ā+ B̄F −GC̄1

0 Ā−GC̄1

)
, C̄a =

(
C̄2 + D̄2F −C̄2

)
, Ēa =

(
GD̄1

GD̄1 − Ē

)
.

According to Proposition 6.1, in particular the inequalities in (6.14), we have
J(F,G) < γ if and only if there exists Pa > 0 satisfying

ĀaPa + PaĀ
>
a + ĒaĒ

>
a < 0,

tr(C̄aPaC̄
>
a ) < γ.

(6.24)

We will show that the existence of solutions Q > 0 and ∆ > 0 to the inequalities
(6.17), (6.20) and (6.21) implies that (6.24) has a solution Pa > 0. Let

Pa =

(
∆ 0

0 Q

)
.

Clearly, Pa > 0. By substituting Pa , Āa, Ēa and C̄a into (6.24), we obtain(
R1 R12

R>12 R2

)
< 0, (6.25)

where

R1 = (Ā+ B̄F )∆ + ∆(Ā− B̄F )> +GG>,

R12 = −GC̄1Q+GG>,

R2 = (Ā−GC̄1)Q+Q(Ā−GC̄1)> + (GD̄1 − Ē)(GD̄1 − Ē)>,

and
tr
(
(C̄2 + D̄2F )∆(C̄2 + D̄2F )>

)
+ tr

(
C̄2QC̄

>
2

)
< γ. (6.26)

It then follows from G = QC̄>1 , (6.17) and (6.21) that R1 < 0, R12 = 0 and
R2 < 0. Subsequently, R < 0. Also, it follows from (6.20) that (6.26) holds. Hence,
J(F,G) < γ. This completes the proof.

Theorem 6.3. Let γ > 0. Assume that D̄1Ē
> = 0, D̄>2 C̄2 = 0 and D̄1D̄

>
1 = Ir,

D̄>2 D̄2 > 0. Suppose that there exist P > 0 and Q > 0 satisfying

Ā>P + PĀ− PB̄(D̄>2 D̄2)−1B̄>P + C̄>2 C̄2 < 0, (6.27)

ĀQ+QĀ> −QC̄>1 C̄1Q+ ĒĒ> < 0, (6.28)

tr
(
C̄1QPQC̄

>
1

)
+ tr

(
C̄2QC̄

>
2

)
< γ. (6.29)
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Let G = QC̄>1 and F = −(D̄>2 D̄2)−1B̄>P . Then the controller (6.11) internally
stabilizes the system (6.10), and it is suboptimal, i.e. J(F,G) < γ.

Proof. Substituting F = −(D̄>2 D̄2)−1B̄>P into (6.16) gives us the inequality (6.27).
The rest follows from Lemma 6.2.

We are now ready to deal with the distributedH2 suboptimal control problem
by dynamic output feedback for multi-agent systems.

6.4 Distributed H2 suboptimal protocols by dynamic
output feedback

In this section, we will address Problem 6.1. For the multi-agent system (6.1), we
will establish a design method for local gains F and G such that the protocol (6.2)
achieves J(F,G) < γ and synchronizes the network (6.7).

Let U be an orthogonal matrix such that U>LU = Λ = diag(0, λ2, . . . , λN )

with 0 = λ1 < λ2 6 · · · 6 λN the eigenvalues of the Laplacian matrix. We apply
the state transformation(

x̄
w̄

)
=

(
U> ⊗ In 0

0 U> ⊗ In

)(
x
w

)
. (6.30)

Then the controlled network (6.7) is also represented by(
˙̄x
˙̄w

)
=

(
IN ⊗A IN ⊗BF

Λ⊗GC1 IN ⊗ (A−GC1) + Λ⊗BF

)(
x̄
w̄

)
+

(
U> ⊗ E

U>L⊗GD1

)
d,

ζ =
(
W

1
2R>U ⊗ C2 W

1
2R>U ⊗D2F

)( x̄
w̄

)
. (6.31)

Denote

Āe =

(
IN ⊗A IN ⊗BF

Λ⊗GC1 IN ⊗ (A−GC1) + Λ⊗BF

)
,

C̄e =
(
W

1
2R>U ⊗ C2 W

1
2R>U ⊗D2F

)
,

Ēe =

(
U> ⊗ E

U>L⊗GD1

)
.

Obviously, the impulse response matrix TF,G(t) given by (6.8) is then equal to
C̄ee

ĀetĒe.
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In order to proceed, we now introduce the N − 1 auxiliary linear systems

ξ̇i = Aξi + λiBvi + Eδi,

ϑi = C1ξi +D1δi,

ηi =
√
λiC2ξi + λi

√
λiD2vi,

(6.32)

and associated dynamic output feedback controllers

ω̇i = Aωi + λiBvi +G(ϑi − C1ωi),

vi = Fωi, i = 2, 3, . . . , N
(6.33)

with gain matrices F and G. By interconnecting (6.33) and (6.32), we obtain the
N − 1 closed loop systems(

ξ̇i
ω̇i

)
=

(
A λiBF

GC1 A−GC1 + λiBF

)(
ξi
ωi

)
+

(
E

GD1

)
δi,

ηi =
(√
λiC2 λi

√
λiD2F

)(ξi
ωi

)
, (6.34)

for i = 2, 3, . . . , N . The impulse response matrix of (6.34) from the disturbance δi
to the output ηi is equal to

Ti,F,G(t) = C̄ie
ĀitĒi (6.35)

with

Āi =

(
A λiBF

GC1 A−GC1 + λiBF

)
, Ēi =

(
E

GD1

)
, C̄i =

(√
λiC2 λi

√
λiD2F

)
.

Furthermore, for each system (6.32) the associatedH2 cost functional is given by

Ji(F,G) :=

∫ ∞
0

tr
[
T>i,F,G(t)Ti,F,G(t)

]
dt, i = 2, 3, . . . , N. (6.36)

Then we have the following lemma:

Lemma 6.4. Let F ∈ Rm×n and G ∈ Rn×r. Then the dynamic protocol (6.2) with gain
matrices F and G achieves synchronization for the network (6.7) if and only if for each
i = 2, 3, . . . , N the controller (6.33) with gain matrices F and G internally stabilizes the
system (6.32). Moreover, we have

J(F,G) =

N∑
i=2

Ji(F,G). (6.37)
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Proof. It follows immediately from [103, Lemmas 3.2 and 3.3] that the dynamic
protocol (6.2) achieves synchronization for the network (6.7) if and only if for
i = 2, 3, . . . , N the system (6.32) is internally stabilized by the controller (6.33).

Next, we prove (6.37). Let F and G be such that synchronization is achieved.
Then we have

J(F,G) =

∫ ∞
0

tr
(
Ē>e e

Ā>
e tC̄>e C̄ee

ĀetĒe

)
dt.

Since U>LU = Λ, L = RWR>, we have C̄>e C̄e = C̃>e C̃e with

C̃e :=
(

Λ
1
2 ⊗ C2 Λ

1
2 ⊗D2F

)
.

We also have ĒeĒ>e = ẼeẼ
>
e with

Ẽe :=

(
IN ⊗ E

Λ⊗GD1

)
.

Thus we find that

tr
(
Ē>e e

Ā>
e tC̄>e C̄ee

ĀetĒe

)
= tr

(
Ẽ>e e

Ā>
e tC̃>e C̃ee

ĀetẼe

)
. (6.38)

We now analyze the matrix function C̃eeĀetẼe appearing in (6.38). By applying
suitable permutations of the blocks appearing in the matrices C̃e, Ẽe and Āe, it is
straightforward to show that

C̃ee
ĀetẼe = blockdiag

(
0, C2e

A2tE2, . . . , CNe
AN tEN

)
,

where

Ai :=

(
A BF

λiGC1 A−GC1 + λiBF

)
, Ci :=

(√
λiC2

√
λiD2F

)
, Ei :=

(
E

λiGD1

)
.

It is easily seen that for i = 2, 3, . . . , N the systems (Ai, Ei, Ci) and (Āi, Ēi, C̄i) are
isomorphic. Hence they have the same impulse response Ti,F,G(t), which is given
by (6.35), see e.g., [102, Theorem 3.10]. As a consequence we obtain that

C̃ee
ĀetẼe = blockdiag (0, T2,F,G(t), . . . , TN,F,G(t)) .

Thus we find that

J(F,G) =

∫ ∞
0

N∑
i=2

tr
[
T>i,F,G(t)Ti,F,G(t)

]
dt.
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The claim (6.37) then follows immediately.

By applying Lemma 6.4, we have transformed the distributedH2 suboptimal
control problem by dynamic output feedback for the multi-agent network (6.7)
intoH2 suboptimal control problems for the N − 1 linear systems (6.32) using con-
trollers (6.33) with the same gain matrices F and G. Next, we establish conditions
under which the N − 1 systems (6.32) are internally stabilized by their correspond-
ing controllers (6.33) for i = 2, 3, . . . , N , while achieving

∑N
i=2 Ji(F,G) < γ.

Lemma 6.5. Let γ > 0 be a given tolerance. Assume that D1E
> = 0, D>2 C2 = 0,

D1D
>
1 = Ir and D>2 D2 = Im. For i = 2, 3, . . . , N , let F , Pi > 0, and Q > 0 be such

that the inequalities

(A+ λiBF )>Pi + Pi(A+ λiBF )

+(
√
λiC2 + λi

√
λiD2F )>(

√
λiC2 + λi

√
λiD2F ) < 0, (6.39)

AQ+QA> −QC>1 C1Q+ EE> < 0, (6.40)
N∑
i=2

[
tr
(
C1QPiQC

>
1

)
+ λitr

(
C2QC

>
2

)]
< γ (6.41)

hold. Then for each i = 2, 3, . . . , N , the controller (6.33) with gain matrices F and
G = QC>1 internally stabilizes the system (6.32), and, moreover,

∑N
i=2 Ji(F,G) < γ.

Proof. By (6.41), for εi > 0 sufficiently small, we have
∑N
i=2 γi < γ, where γi :=

tr
(
C1QPiQC

>
1

)
+λitr

(
C2QC

>
2

)
+ εi. Since tr

(
C1QPiQC

>
1

)
+λitr

(
C2QC

>
2

)
< γi,

by taking Ā = A, B̄ = λiB, C̄1 = C1, D̄1 = D1, C̄2 =
√
λiC2, D̄2 = λi

√
λiD2,

C̄1 = C1 and Ē = E in Lemma 6.2, it follows that the controller (6.33) internally
stabilizes the system (6.32) and Ji(F,G) < γi. Thus, from

∑N
i=2 γi < γ it follows

that
∑N
i=2 Ji(F,G) < γ.

Again, we note that the four conditions D1E
> = 0, D>2 C2 = 0, D1D

>
1 = Ir

and D>2 D2 = Im are made here to simplify notation, and can be replaced by the
regularity conditions D1D

>
1 > 0 and D>2 D2 > 0 alone.

By combining Lemma 6.4 and Lemma 6.5 we have established sufficient condi-
tions for given gain matrices F and G to synchronize the network (6.7) and to be
suboptimal, i.e. J(F,G) < γ. In fact, G is taken to be equal to QC>1 , with Q > 0

a solution to the Riccati inequality (6.40). However, no design method has yet
been provided to compute a suitable matrix F . In the following theorem, we will
establish a design method for computing such gain matrix F . Together with G
given above, this will lead to a distributed suboptimal protocol for multi-agent
system (6.1) with associated cost functional (6.9).
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Theorem 6.6. Let γ > 0 be a given tolerance. Assume that D1E
> = 0, D>2 C2 = 0,

D1D
>
1 = Ir and D>2 D2 = Im. Let Q > 0 satisfy

AQ+QA> −QC>1 C1Q+ E>E < 0. (6.42)

Let c be any real number such that 0 < c < 2
λ2
N

. We distinguish two cases:

(i) if
2

λ2
2 + λ2λN + λ2

N

6 c <
2

λ2
N

, (6.43)

then there exists P > 0 satisfying

A>P + PA+ (c2λ3
N − 2cλN )PBB>P + λNC

>
2 C2 < 0. (6.44)

(ii) if

0 < c <
2

λ2
2 + λ2λN + λ2

N

, (6.45)

then there exists P > 0 satisfying

A>P + PA+ (c2λ3
2 − 2cλ2)PBB>P + λNC

>
2 C2 < 0. (6.46)

In both cases, if in addition P and Q satisfy

tr
(
C1QPQC

>
1

)
+ λN tr

(
C2QC

>
2

)
<

γ

N − 1
. (6.47)

Then the protocol (6.2) with F := −cB>P and G := QC>1 synchronizes the network
(6.7) and it is suboptimal, i.e. J(F,G) < γ.

Proof. We will only provide the proof for case (i) above. Using the upper and
lower bound on c given by (6.43), it can be verified that c2λ3

N − 2cλN < 0. Thus
the Riccati inequality (6.44) has positive definite solutions. Since c2λ3

i − 2cλi 6
c2λ3

N − 2cλN < 0 and λi 6 λN for i = 2, 3, . . . , N , any positive definite solution P
of (6.44) also satisfies the N − 1 Riccati inequalities

A>P + PA+ (c2λ3
i − 2cλi)PBB

>P + λiC
>
2 C2 < 0, (6.48)

equivalently,

(A− cλiBB>P )>P + P (A− cλiBB>P ) + c2λ3
iPBB

>P + λiC
>
2 C2 < 0,

(6.49)
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for i = 2, . . . , N . Using the conditions D>2 C2 = 0 and D>2 D2 = Im this yields

(A− cλiBB>P )>P + P (A− cλiBB>P )

+ (
√
λiC2 + λi

√
λiD2B

>P )>(
√
λiC2 + λi

√
λiD2B

>P ) < 0,
(6.50)

for i = 2, . . . , N . Taking Pi = P for i = 2, 3, . . . , N and F = −cB>P in (6.50)
immediately yields (6.39). Next, it follows from (6.47) that also (6.41) holds. By
Lemma 6.5 then, all systems (6.32) are internally stabilized and

∑N
i=2 Ji(F,G) < γ.

Subsequently, it follows from Lemma 6.4 that the protocol (6.2) achieves synchro-
nization for the network (6.7) and J(F,G) < γ.

Remark 6.7. In Theorem 6.6, in order to select γ, the following should be done:

(i) First compute a solution Q > 0 of the Riccati inequality (6.42) and a solution
P > 0 of the Riccati inequality (6.44) (or (6.46), depending on the choice of
parameter c). Note that these solutions exist.

(ii) Let S(P,Q) := tr(C1QPQC
>
1 ) + λN tr(C2QC

>
2 ).

(iii) Then choose γ > 0 such that (N − 1)S(P,Q) < γ.

Obviously, the smaller S(P,Q), the smaller the feasible upper bound γ. It can be
shown that, unfortunately, the problem of minimizing S(P,Q) over all P,Q > 0

that satisfy (6.42) and (6.44) is a nonconvex optimization problem. However, since
smaller Q leads to smaller tr

(
C2QC

>
2

)
and smaller P and Q leads to smaller

tr
(
C1QPQC

>
1

)
and, consequently, smaller feasible γ, we could therefore try to

find P and Q as small as possible. In fact, one can find Q = Q(ε) > 0 to (6.42) by
solving

AQ+QA> −QC>1 C1Q+ E>E + εIn = 0. (6.51)

with ε > 0 arbitrary. By using a standard argument, it can be shown that Q(ε)

decreases as ε decreases, so ε should be taken close to 0 in order to get small Q.
Similarly, one can find P = P (c, σ) > 0 satisfying (6.44) by solving

A>P + PA− PBR(c)−1B>P + λNC
>
2 C2 + σIn = 0 (6.52)

with R(c) = 1
−c2λ3

N+2cλN
In, where c is chosen as in (6.43) and σ > 0 arbitrary.

Again, it can be shown that P (c, σ) decreases with decreasing σ and c. Therefore,
small P is obtained by choosing σ > 0 close to 0 and c = 2

λ2
2+λ2λN+λ2

N
.

Similarly, if c satisfies (6.45) corresponding to case (ii), it can be shown that if
we choose ε > 0 and σ > 0 very close to 0 and c > 0 very close to 2

λ2
2+λ2λN+λ2

N
,

we find small solutions to the Riccati inequalities (6.42) and (6.46) in the sense as
explained above for case (i).
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Remark 6.8. In Theorem 6.6, exact knowledge of the largest and the smallest
nonzero eigenvalue of the Laplacian matrix is used to compute the local control
gains F and G. We want to remark that our results can be extended to the case that
only lower and upper bounds for these eigenvalues are known. In the literature,
algorithms are given to estimate λ2 in a distributed way, yielding lower and upper
bounds, see e.g. [2]. Also, an upper bound for λN can be obtained in terms of
the maximal node degree of the graph, see e.g. [1]. Using these lower and upper
bounds on the largest and the smallest nonzero eigenvalue of the Laplacian matrix,
results similar to Theorem 6.6 can be formulated, see e.g., [37] or [27].

6.5 Simulation example

In this section, we will give a simulation example to illustrate our design method.
Consider a network of N = 6 identical agents of the form

ẋi = Axi +Bui + Edi,

yi = C1xi +D1di,

zi = C2xi +D2ui,

i = 1, 2, . . . , 6,

where A =

(
−2 2

−1 1

)
, B =

(
0

1

)
, E =

(
0 0

0.5 0

)
, C1 =

(
1 0

)
, D1 =

(
0 1

)
,

C2 =

(
0 1

0 0

)
, D2 =

(
0

1

)
. The pair (A,B) is stabilizable and the pair (C1, A)

is detectable. We also have D1E
> =

(
0 0

)
, D>2 C2 =

(
0 0

)
and D1D

>
1 = 1,

D>2 D2 = 1. We assume that the communication among the six agents is repre-
sented by the undirected cycle graph. For this graph, the smallest non-zero and
largest eigenvalue of the Laplacian are λ2 = 1 and λ6 = 4. Our goal is to design
a distributed dynamic output feedback protocol of the form (6.2) that synchro-
nizes the controlled network and guarantees the associated cost (6.9) to satisfy
J(F,G) < γ. Let the desired upper bound for the cost be γ = 17.

We adopt the design method given in case (i) of Theorem 6.6. First we compute
a positive definite solution P to (6.44) by solving the Riccati equation

A>P + PA+ (c2λ3
6 − 2cλ6)PBB>P + λ6C

>
2 C2 + σI2 = 0 (6.53)

with σ = 0.001. Moreover, we choose c = 2
λ2
2+λ2λ6+λ2

6
= 0.0952, which is in fact

the ‘best’ choice for c as explained in Remark 6.7. Then, by solving (6.53) in Matlab,
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Figure 6.1: Plots of the state vector x1 = (x1,1, x2,1, . . . , x6,1)> and x2 =
(x1,2, x2,2, . . . , x6,2)> of the controlled network

we compute a positive definite solution

P =

(
0.9048 −2.2810

−2.2810 6.9779

)
.

Next, by solving the Riccati equation

AQ+QA> −QC>1 C1Q+ E>E + εI2 = 0

with ε = 0.001 in Matlab, we compute a positive definite solution

Q =

(
0.5000 0.5000

0.5000 0.6250

)
.

Accordingly, we compute the associated gain matrices

F =
(
0.2172 −0.6646

)
, G =

(
0.5000 0.5000

)>
.

As an example, we take the initial states of the agents to be x10 =
(
1 −2

)>
,

x20 =
(
2 −5

)>
, x30 =

(
3 1

)>
, x40 =

(
4 2

)>
, x50 =

(
−1 2

)>
and x60 =(

−3 1
)>

, and we take the initial states of the protocol to be zero. In Figure 6.1,
we have plotted the controlled state trajectories of the agents. It can be seen that
the designed protocol indeed synchronizes the network. The plots of the protocol
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Figure 6.2: Plots of the state vector w1 = (w1,1, w2,1, . . . , w6,1)> and w2 =
(w1,2, w2,2, . . . , w6,2)> of the dynamic protocol

states are shown in Figure 6.2. For each i, the state wi of the local controller is an
estimate of the weighted sum of the relative states of agent i, it is seen that the
protocol states converge to zero. Moreover, we compute

5
(
tr
(
C1QPQC

>
1

)
+ λ6tr

(
C2QC

>
2

))
= 16.6509,

which is indeed smaller than the desired tolerance γ = 17.

6.6 Conclusions

In this chapter, we have studied the distributedH2 suboptimal control problem
by dynamic output feedback for linear multi-agent systems. The interconnection
structure between the agents is given by a connected undirected graph. Given a
linear multi-agent system with identical agent dynamics and an associated global
H2 cost functional, we have provided a design method for computing distributed
protocols that guarantee the associated cost to be smaller than a given tolerance
while synchronizing the controlled network. The local gains are given in terms of
solutions of two Riccati inequalities, each of dimension equal to that of the agent
dynamics. One these Riccati inequalities involves the largest and smallest nonzero
eigenvalue of the Laplacian matrix of the network graph.



7 H2 suboptimal output synchronization
of heterogeneous multi-agent systems

This chapter deals with the H2 suboptimal output synchronization problem for
heterogeneous linear multi-agent systems. Given a multi-agent system with possi-
bly distinct agents and an associatedH2 cost functional, the aim is to design output
feedback based protocols that guarantee the associated cost to be smaller than a
given upper bound while the controlled network achieves output synchronization.
A design method is provided to compute such protocols. For each agent, the
computation of its two local control gains involves two Riccati inequalities, each
of dimension equal to the state space dimension of the agent. We also consider
the special case that full relative state information is available for each agent. A
simulation example is provided to illustrate the performance of the proposed
protocols.

7.1 Introduction

Over the last two decades, the problems of designing protocols that achieve con-
sensus or synchronization in multi-agent systems have attracted much attention
in the field of systems and control, see e.g. [85], [7], [54] and [11]. The essen-
tial feature of these problems is that, while each agent makes use of only local
state or output information to implement its own local controller, the resulting
global protocol will achieve consensus or synchronization for the global controlled
multi-agent network [94], [103]. One of the challenging problems in this context
is the problem of designing protocols that minimize given quadratic cost criteria
while achieving consensus or synchronization, see e.g. [37], [39], [10], [75] and [76].
Due to the structural constraints imposed on the protocols, such optimal control
problems are non-convex and very difficult to solve. It is also unclear whether in
general closed form solutions exist.

In the past, many efforts have been devoted to designing distributed proto-
cols for homogeneous multi-agent systems that guarantee suboptimal or optimal
performance and achieve state synchronization or consensus. In [10], this was



96 7.H2 suboptimal output synchronization of heterogeneous multi-agent systems

done for distributed linear quadratic control of multi-agent systems with single
integrator agent dynamics, see also [38]. In [76] and [37], multi-agent systems with
general agent dynamics and a global linear quadratic cost functional were consid-
ered. In [75] and [123], an inverse optimal approach was adopted to address the
distributed linear quadratic control problem, see also [77]. ForH2 cost functionals
of a particular form, [55] and [53] proposed distributed suboptimal protocols that
stabilize the controlled multi-agent network. In [36], a distributedH2 suboptimal
control problem was addressed using static state feedback. The results in [36] were
then generalized in [39] to the case of dynamic output feedback.

More recently, output synchronization problems for heterogeneous multi-agent
systems have also attracted much attention. In [115], it was shown that solvability
of certain regulator equations is a necessary condition for output synchronization
of heterogeneous multi-agent systems, and suitable protocols were proposed,
see also [22]. In [46], by embedding an internal model in the local controller of
each agent, dynamic output feedback based protocols were proposed for a class
of heterogeneous uncertain multi-agent systems. In [59], it was shown that the
outputs of the agents can be synchronized by a networked protocol if and only if
these agents have certain dynamics in common. Later on, in [72] a linear quadratic
control method was adopted for computing output synchronizing protocols. In
[42], an L2-gain output synchronization problem was addressed by casting this
problem into a number of L2-gain stabilization problems for certain linear systems,
where the state space dimensions of these systems are equal to that of the agents.
For related work, we also mention [51], [120] and [99], to name a few.

Up to now, little attention has been paid in the literature to problems of de-
signing output synchronizing protocols for heterogeneous multi-agent systems
that guarantee a certain performance. In the present chapter, we will deal with
the problem ofH2 optimal output synchronization for heterogeneous linear multi-
agent systems, i.e. the problem of minimizing a givenH2 cost functional over all
protocols that achieve output synchronization. Instead of addressing this optimal
control problem, we will address a version of this problem that requires subopti-
mality. More specifically, we will extend previous results in [39] for homogeneous
multi-agent systems to the case of heterogeneous multi-agent systems.

The outline of this chapter is as follows. In Section 7.2, we formulate the H2

suboptimal output synchronization problem. In order to solve this problem, in
Section 7.3 we review some basic material onH2 suboptimal control by dynamic
output feedback for linear systems, and some relevant results on output syn-
chronization of heterogeneous multi-agent systems. In Section 7.4, we solve the
problem introduced in Section 7.2 and provide a design method for obtainingH2

suboptimal protocols. In Section 7.5, we solve the special case of theH2 subopti-
mal output synchronization problem in which full state information of the agents
is available. To illustrate the performance of our proposed protocols, a simulation
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example is provided in Section 7.6. Finally, Section 7.7 concludes this chapter.

7.2 Problem formulation

In this chapter, we consider a heterogeneous linear multi-agent system consisting
of N possibly distinct agents. The dynamics of the ith agent is represented by the
linear time-invariant system

ẋi = Aixi +Biui + Eidi,

yi = C1ixi +D1idi,

zi = C2ixi +D2iui,

i = 1, 2, . . . , N, (7.1)

where xi ∈ Rni is the state, ui ∈ Rmi is the coupling input, di ∈ Rqi is an unknown
external disturbance input, yi ∈ Rri is the measured output and zi ∈ Rp is the
output to be synchronized. The matrices Ai, Bi, C1i, D1i, C2i, D2i and Ei are of
suitable dimensions. Throughout this chapter we assume that the pairs (Ai, Bi)

are stabilizable and the pairs (C1i, Ai) are detectable. Since in (7.1) the agents
may have non-identical dynamics, in particular the state space dimensions of the
agents may differ. Therefore, one can not expect to achieve state synchronization
for the network. Instead, in the context of heterogeneous networks it is natural to
consider output synchronization, see e.g. [115], [22] and [59].

It was shown in [115] that solvability of certain regulator equations is necessary
for output synchronization of heterogeneous linear multi-agent systems, see also
[22], [42], [99] and [3]. Following up on this, throughout this chapter we make the
standard standing assumption that there exists a positive integer r such that the
regulator equations

AiΠi +BiΓi = ΠiS,

C2iΠi +D2iΓi = R, i = 1, 2, . . . , N
(7.2)

have solutions Πi ∈ Rni×r, Γi ∈ Rmi×r, R ∈ Rp×r and S ∈ Rr×r, where the
eigenvalues of S lie on the imaginary axis and the pair (R,S) is observable.

Following [115], we assume that the agents (7.1) should be interconnected by a
protocol of the form

ẇi = Aiwi +Biui +Gi(yi − C1iwi),

v̇i = Svi +

N∑
i=1

aij(vj − vi),

ui = Fi(wi −Πivi) + Γivi, i = 1, 2, . . . , N,

(7.3)
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where vi ∈ Rr and wi ∈ Rni are the states of the ith local controller, the matrices S,
Πi and Γi are solutions of (7.2), and the matrices Fi ∈ Rmi×ni and Gi ∈ Rni×ri are
control gains to be designed. The coefficients aij are the entries of the adjacency
matrix A of the communication graph. Throughout this chapter it will be a
standing assumption that the communication between the agents of the network is
represented by a connected, simple undirected weighted graph. We briefly explain
the structure of this protocol. The first equation in (7.3) has the structure of an
asymptotic observer for the state of the ith agent. The second equation represents
an auxiliary system associated with the ith agent. Each auxiliary system receives
the relative state values with respect to its neighboring auxiliary systems. In this
way, the network of auxiliary systems will reach state synchronization. The third
equation in (7.3) is a static gain, it feeds back the value wi −Πivi and the state vi
of the associated auxiliary system to the ith agent. The idea of the protocol (7.3)
is that, as time goes to infinity, the state xi of the ith agent and its estimate wi
converge to Πivi due the first equation in (7.2). Subsequently, as a consequence of
the second equation in (7.2), the outputs zi of the agents will reach synchronization.

Denote by x = (x>1 , x
>
2 , . . . , x

>
N )> the aggregate state vector and likewise define

u, v, w, y, z and d. Denote by A the block diagonal matrix

A = blockdiag(A1, A2, . . . , AN ) (7.4)

and likewise define B, C1, C2, D1, D2 and E. The multi-agent system (7.1) can
then be written in compact form as

ẋ = Ax +Bu + Ed,

y = C1x +D1d,

z = C2x +D2u.

(7.5)

Similarly, denote
F = blockdiag(F1, F2, . . . , FN )

and likewise define G, Γ and Π. The protocol (7.3) can be written in compact form
as

ẇ = Aw +Bu +G(y− C1w),

v̇ = (IN ⊗ S − L⊗ Ir)v,

u = Fw + (Γ− FΠ)v.

(7.6)

Next, denote
xo = (x>,w>,v>)>.

By interconnecting the system (7.5) and the protocol (7.6), the controlled network
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is then represented in compact form by

ẋo = Aoxo + Eod,

z = Coxo,
(7.7)

where

Ao =

 A BF BΓ−BFΠ

GC1 A+BF −GC1 BΓ−BFΠ

0 0 IN ⊗ S − L⊗ Ir

 ,

Co =
(
C2 D2F D2Γ−D2FΠ

)
, Eo =

 E

GD1

0

 .

Foremost, we want the protocol (7.3) to achieve output synchronization for the
overall network:

Definition 7.1. The protocol (7.3) is said to achieve z-output synchronization for the
network (7.7) if, for all i, j = 1, 2, . . . , N , we have zi(t)− zj(t)→ 0, vi(t)− vj(t)→ 0

and wi(t)− wj(t)→ 0 as t→∞.

In the context of output synchronization, we are interested in the differences of
the output values of the agents in the controlled network. Since the differences of
the output values of communicating agents are captured by the incidence matrix
R of the communication graph [63], we define a performance output variable as

ζ = (W
1
2R> ⊗ Ip)z,

where W is the weight matrix defined in (1.2). The output ζ reflects the weighted
disagreement between the outputs of the agents in accordance with the weights of
the edges connecting these agents. Subsequently, we have the following equations
for the controlled network

ẋo = Aoxo + Eod,

z = Coxo,

ζ = Cpxo,

(7.8)

where
Cp = (W

1
2R> ⊗ Ip)Co.

The impulse response matrix of the disturbance d to the performance output ζ is
given by

Td(t) = Cpe
AotEo. (7.9)

The performance of the network is now quantified by theH2-norm of this impulse
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response. Thus we define the associatedH2 cost functional as

J :=

∫ ∞
0

tr
[
T>d (t)Td(t)

]
dt. (7.10)

Note that the cost functional (7.10) is a function of the gain matrices F1, F2, . . . , FN
and G1, G2, . . . , GN .

TheH2 optimal output synchronization problem is now defined as the problem
of minimizing the cost functional (7.10) over all protocols (7.3) that achieve output
synchronization. Since the protocol (7.3) has a particular structure imposed by the
communication topology, theH2 optimal output synchronization problem is a non-
convex optimization problem, and it is unclear whether a closed form solution
exists in general. Therefore, in this chapter we will address a version of this
problem that only requires suboptimality. The aim of this chapter is then to design
a protocol of the form (7.3) that guarantees the associated cost (7.10) to be smaller
than an a priori given upper bound while achieving z-output synchronization for
the network. More concretely, the problem we will address is the following:

Problem 7.1. Let γ > 0 be a given tolerance. Design gain matrices F1, F2, . . . , FN and
G1, G2, . . . , GN such that the resulting protocol (7.3) achieves z-output synchronization
and its associated cost (7.10) satisfies J < γ.

To solve Problem 7.1, in the next section we will first review some preliminary
results onH2 suboptimal control for linear systems and on output synchronization
of heterogeneous linear multi-agent systems. It will become clear later on that
these preliminary results are necessary ingredients to address Problem 7.1.

7.3 Preliminary results

7.3.1 H2 suboptimal control for linear systems by dynamic out-
put feedback

In this subsection, we will review theH2 suboptimal control problem by dynamic
output feedback for linear systems, see e.g. [95], [96], [100], [25] and [39]. In
particular, we will review the results from [39] on separation principle basedH2

suboptimal control for continuous-time linear systems.
Consider the system

ẋ = Āx+ B̄u+ Ēd,

y = C̄1x+ D̄1d,

z = C̄2x+ D̄2u,

(7.11)

where x ∈ Rn is the state, u ∈ Rm is the control input, d ∈ Rq is an unknown
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external disturbance input, y ∈ Rr is the measured output, and z ∈ Rp is the
output to be controlled. The matrices Ā, B̄, C̄1, C̄2, D̄1, D̄2 and Ē are of suitable
dimensions. We assume that the pair (Ā, B̄) is stabilizable and the pair (C̄1, Ā) is
detectable. We consider dynamic output feedback controllers of the form

ẇ = Āw + B̄u+G
(
y − C̄1w

)
,

u = Fw,
(7.12)

where w ∈ Rn is the state of the controller, F ∈ Rm×n and G ∈ Rn×r are gain
matrices to be designed. By interconnecting the controller (7.12) and the system
(7.11), we obtain the controlled system(

ẋ

ẇ

)
=

(
Ā B̄F

GC̄1 Ā+ B̄F −GC̄1

)(
x

w

)
+

(
Ē

GD̄1

)
d,

z =
(
C̄2 D̄2F

)(x
w

)
.

(7.13)

Denote

Ae =

(
Ā B̄F

GC̄1 Ā+ B̄F −GC̄1

)
, Ce =

(
C̄2 D̄2F

)
, Ee =

(
Ē

GD̄1

)
.

The impulse response matrix of the disturbance d to the output z is given by
TF,G(t) = Cee

AetEe. We define theH2 cost functional as

J(F,G) :=

∫ ∞
0

tr
[
T>F,G(t)TF,G(t)

]
dt. (7.14)

TheH2 suboptimal control problem by dynamic output feedback is the problem of
finding a controller of the form (7.12) such that the associated cost (7.14) is smaller
than an a priori given upper bound and the controlled system (7.13) is internally
stable. The following lemma provides a design method for computing such a
controller, see also [39, Theorem 4].

Lemma 7.1. Let γ > 0 be a given tolerance. Assume that D̄1Ē
> = 0, D̄>2 C̄2 = 0 and

D̄1D̄
>
1 = Ir, D̄>2 D̄2 = Im. Let P > 0 and Q > 0 satisfy the Riccati inequalities

Ā>P + PĀ− PB̄B̄>P + C̄>2 C̄2 < 0,

ĀQ+QĀ> −QC̄>1 C̄1Q+ ĒĒ> < 0.

If, in addition, such P and Q satisfy

tr
(
C̄1QPQC̄

>
1

)
+ tr

(
C̄2QC̄

>
2

)
< γ,
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then the controller (7.12) with F = −B̄>P and G = QC̄>1 internally stabilizes the
system (7.11) and is suboptimal, i.e. J(F,G) < γ.

For a proof of Lemma 7.1, we refer to [39, Theorem 4].

7.3.2 Output synchronization of heterogeneous linear multi-agent
systems

In this subsection, we will review some relevant results on output synchronization
of heterogeneous linear multi-agent systems, see also [115], [22], [46] and [59].

Consider a heterogeneous linear multi-agent system consisting of N possibly
distinct agents. The dynamics of the ith agent is represented by the linear time-
invariant system

ẋi = Aixi +Biui,

yi = C1ixi,

zi = C2ixi +D2iui,

i = 1, 2, . . . , N. (7.15)

The agents (7.15) will be interconnected by a protocol of the form (7.3), where the
matrices S, Γi and Πi are assumed to satisfy the regulator equations (7.2). The
multi-agent system (7.15) can be written in compact form as

ẋ = Ax +Bu,

y = C1x,

z = C2x +D2u,

(7.16)

and the protocol (7.3) can be written as (7.6). By interconnecting the system (7.16)
and the protocol (7.6), the controlled network is then given by

ẋo = Aoxo,

z = Coxo.
(7.17)

The following lemma yields conditions under which the controlled network
(7.17) achieves z-output synchronization.

Lemma 7.2. Consider the multi-agent system (7.15) and the protocol (7.3). Let gain
matrices Fi and Gi be such that the matrices Ai + BiFi and Ai − GiC1i are Hurwitz.
Then the associated protocol (7.3) achieves z-output synchronization for the network.

A proof of Lemma 7.2 can be given along the lines of the proof of [115, Theorem
5].

We are now ready to deal with the H2 suboptimal output synchronization
problem formulated in Problem 7.1.
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7.4 H2 suboptimal output synchronization protocols
by dynamic output feedback

In this section, we will resolve Problem 7.1. More specifically, we will establish
a design method for computing gain matrices F1, F2, . . . , FN and G1, G2, . . . , GN
such that the associated protocol (7.3) achieves z-output synchronization and
guarantees J < γ.

In the sequel, we will first show that this problem can be simplified by trans-
forming it into H2 suboptimal control problems for N auxiliary systems. The
suboptimal gains Fi and Gi for these N separate problems will turn out to also
yield a suboptimal protocol for the heterogeneous network.

To this end, we introduce the following N auxiliary systems

ξ̇i = Aiξi +Biνi + Eiδi,

ϑi = C1iξi +D1iδi,

ηi = C2iξi +D2iνi, i = 1, 2, . . . , N,

(7.18)

where ξi ∈ Rni is the state, νi ∈ Rmi is the coupling input, δi ∈ Rqi is an unknown
external disturbance input, ϑi ∈ Rri is the measured output and ηi ∈ Rp is the
output to be controlled. For given gain matrices Fi and Gi, consider the dynamic
output feedback controllers

ω̇i = Aiωi +Biνi +Gi(ϑi − C1iωi),

νi = Fiωi, i = 1, 2, . . . , N,
(7.19)

where ωi ∈ Rn is the state of the ith controller.

By interconnecting the systems (7.18) and the controllers (7.19), we obtain the
N controlled auxiliary systems(

ξ̇i
ω̇i

)
=

(
Ai BiFi

GiC1i Ai +BiFi −GiC1i

)(
ξi
ωi

)
+

(
Ei

GiD1i

)
δi,

ηi =
(
C2i D2iFi

)(ξi
ωi

)
, i = 1, 2, . . . , N.

(7.20)

For i = 1, 2, . . . , N , denote

Āi =

(
Ai BiFi

GiC1i Ai +BiFi −GiC1i

)
, C̄i =

(
C2i D2iFi

)
, Ēi =

(
Ei

GiD1i

)
.
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The impulse response matrix of the disturbance δi to the output ηi is equal to

Tδi(t) = C̄ie
ĀitĒi,

and an associatedH2 cost functional is defined as

Ji =

∫ ∞
0

tr[T>δi (t)Tδi(t)]dt. (7.21)

The following lemma holds.

Lemma 7.3. Let γ > 0 be a given tolerance. Assume, for i = 1, 2, . . . , N , the systems
(7.20) are internally stable and the costs (7.21) satisfy

N∑
i=1

Ji <
γ

λN
, (7.22)

where λN is the largest eigenvalue of the Laplacian matrix L. Then the protocol (7.3)
achieves z-output synchronization for the network (7.8) and the associated cost (7.10)
satisfies J < γ.

Proof. First, note that the systems (7.20) are internally stable if and only if the
matrices Ai + BiFi and Ai − GiC1i are Hurwitz, see e.g. [102, Section 3.12].
Hence, by Lemma 7.2, if the systems (7.20) are internally stable, then the network
controlled using the protocol (7.3) reaches z-output synchronization.

Next, we will show that if (7.22) holds, then J < γ. Note that (7.22) is equiva-
lent to

λN

N∑
i=1

∫ ∞
0

tr[T>δi (t)Tδi(t)]dt < γ. (7.23)

In turn, the inequality (7.23) holds if and only if

λN

∫ ∞
0

tr[T̄>d (t)T̄d(t)]dt < γ (7.24)

holds, where
T̄d = C̄oe

ĀotĒo

with

Āo =

(
A BF

GC1 A+BF −GC1

)
, C̄o =

(
C2 D2F

)
, Ēo =

(
E

GD1

)
.

Recall that the matrix A is the block diagonal matrix defined in (7.4), similarly for
the matricesB, C1, C2, D1, D2, E, F andG. Using the fact that λNIpN −L⊗Ip > 0,
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it can be shown that (7.24) implies∫ ∞
0

tr[T̄>d (t)(L⊗ Ip)T̄d(t)]dt < γ. (7.25)

On the other hand,∫ ∞
0

tr[T̄>d (t)(L⊗ Ip)T̄d(t)]dt =

∫ ∞
0

tr
[
T>d (t)Td(t)

]
dt (7.26)

with Td(t) given by (7.9). Note that the right hand side of (7.26) is exactly the cost
J given by (7.10) associated with the network (7.8). It follows that J < γ. This
completes the proof.

By the previous, if the gain matrices Fi and Gi are such that Ai + BiFi and
Ai − GiC1i are Hurwitz and (7.22) holds, then the protocol (7.3) using these Fi
and Gi yields z-output synchronization and J < γ. In the next theorem, we will
provide a method for computing gain matrices Fi and Gi such that the above
holds.

Theorem 7.4. Let γ > 0 be a given tolerance. For i = 1, 2, . . . , N , assume thatD1iE
>
i =

0, D>2iC2i = 0, D1iD
>
1i = Iri and D>2iD2i = Imi . Let Pi > 0 satisfy

A>i Pi + PiA
>
i − PiBiB>i Pi + C>2iC2i < 0. (7.27)

Let Qi > 0 satisfy

AiQi +QiA
>
i −QiC>1iC1iQi + EiE

>
i < 0. (7.28)

If, in addition, such Pi and Qi satisfy

tr(C1iQiPiQiC
>
1i) + tr(C2iQiC

>
2i) <

γ

NλN
, (7.29)

then the protocol (7.3) with Fi := −B>i Pi and Gi := QiC
>
1i achieves z-output synchro-

nization for the network (7.8) and guarantees J < γ.

Proof. Note that (7.27) is equivalent to

(Ai −BiB>i Pi)>Pi + (Ai −BiB>i Pi) + PiBiB
>
i Pi + C>2iC2i < 0 (7.30)

and (7.28) is equivalent to

(Ai −QiC>1iC1i)Qi +Qi(Ai −QiC>1iC1i)
> +QiC

>
1iC1iQi + EiE

>
i < 0. (7.31)
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Taking Fi := −B>i Pi andGi := QiC
>
1i, it then follows thatAi+BiFi andAi−GiC1i

are Hurwitz.
Next, by (7.29), it follows from Lemma 7.1 that

Ji <
γ

NλN
, i = 1, 2, . . . , N.

Thus we have (7.22), and the conclusion then follows from Lemma 7.3.

We note that the conditions D1iE
>
i = 0, D>2iC2i = 0, D1iD

>
1i = Iri and

D>2iD2i = Imi are made here to simplify notation, and can be relaxed to the
regularity conditions D1iD

>
1i > 0 and D>2iD2i > 0 alone.

Remark 7.5. In Theorem 7.4, in order to select γ, the following steps could be
taken. For i = 1, 2 . . . , N :

(i) Compute positive definite solutions Pi and Qi of the Riccati inequalities
(7.27) and (7.28). Such solutions exist.

(ii) Denote Si = tr(C1iQiPiQiC
>
1i) + tr(C2iQiC

>
2i).

(iii) Choose γ such that NλNSi < γ.

Note that the smaller Si or λN is, the smaller such feasible γ is allowed to be.
Unfortunately, the problem of minimizing Si over all Pi > 0 and Qi > 0 that
satisfy (7.27) and (7.28) is a non-convex optimization problem. However, since
smaller Qi leads to smaller tr(C2iQiC

>
2i) and smaller Pi and Qi lead to smaller

tr(C1iQiPiQiC
>
1i), and consequently smaller feasible γ, we could try to find Pi and

Qi as small as possible. In fact, one can find Pi = Pi(εi) > 0 to (7.27) by solving
the Riccati equation

A>i Pi + PiA
>
i − PiBiB>i Pi + C>2iC2i + εiIni

= 0

with εi > 0 arbitrary. Similarly, one can find Qi = Qi(σi) > 0 to (7.28) by solving
the dual Riccati equation

AiQi +QiA
>
i −QiC>1iC1iQi + EiE

>
i + σiIni

= 0

with σi > 0 arbitrary. By using a standard argument, it can be shown that Pi(εi)
and Qi(σi) decrease as εi and σi decrease, respectively. So εi and σi should be
taken close to 0 to get smaller Pi and Qi.
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7.5 H2 suboptimal output synchronization protocols
by state feedback

In this section, we consider a special case of Problem 7.1, namely, the case that
full state information of the agents is available. More specifically, we consider
theH2 suboptimal output synchronization problem by relative state feedback for
heterogeneous linear multi-agent systems.

Consider a heterogeneous multi-agent system consisting of N possibly distinct
agents. The dynamics of the ith agent is represented by

ẋi = Aixi +Biui + Eidi,

zi = Cixi +Diui,
i = 1, 2, . . . , N, (7.32)

where xi ∈ Rni is the state, ui ∈ Rmi the control input, di ∈ Rqi the external
disturbance and zi ∈ Rp the output to be synchronized. The matrices Ai, Bi,
Ci, Di and Ei are of suitable dimensions. We assume that the pairs (Ai, Bi) are
stabilizable. Also, as before, we assume that, for some positive integer r, the
regulator equations

AiΠi +BiΓi = ΠiS,

CiΠi +DiΓi = R, i = 1, 2, . . . , N
(7.33)

have solutions Πi ∈ Rni×r, Γi ∈ Rmi×r, S ∈ Rr×r and R ∈ Rp×r, where all
eigenvalues of S are on the imaginary axis and the pair (R,S) is observable.

Following [115] and [43], the agents will be interconnected by a protocol of the
form

v̇i = Svi +

N∑
i=1

aij(vj − vi),

ui = Ki(xi −Πivi) + Γivi, i = 1, 2, . . . , N,

(7.34)

where vi ∈ Rr is the state of the ith local controller, the matrices Πi and Γi are
solutions of (7.33) and the matrices Ki ∈ Rmi×ni are control gains to be designed.
The coefficients aij are the entries of the adjacency matrix A of the communication
graph.

Denote by x = (x>1 , x
>
2 , . . . , x

>
N )> the aggregate state vector and likewise define

u, z and d. As before, denote by A the block diagonal matrix

A = blockdiag(A1, A2, . . . , AN )

and likewise define B, C, D and E. The multi-agent system (7.32) can be written
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in compact form as
ẋ = Ax +Bu + Ed,

z = Cx +Du.
(7.35)

Denote
K = blockdiag(K1,K2, . . . ,KN )

and likewise define Γ and Π. The protocol (7.34) can be written in compact form
as

v̇ = (IN ⊗ S − L⊗ Ir)v,

u = Kx + (Γ−KΠ)v.
(7.36)

Denote
xs = (x>,v>)>.

By interconnecting the system (7.35) and the protocol (7.36), the controlled network
is given by

ẋs = Asxs + Esd,

z = Csxs,
(7.37)

where

As =

(
A+BK BΓ−BKΠ

0 I ⊗ S − L⊗ Ir

)
, Cs =

(
C +DK DΓ−DKΠ

)
, Es =

(
E

0

)
.

Similar to Definition 7.1, we have the following definition for output synchroniza-
tion by relative state feedback:

Definition 7.2. The protocol (7.34) is said to achieve z-output synchronization for the
network (7.37) if, whenever the disturbance is equal to zero, i.e., d = 0, then for all
i, j = 1, 2, . . . , N we have zi(t)− zj(t)→ 0 and vi(t)− vj(t)→ 0 as t→∞.

By introducing the performance output

ζs = (W
1
2R> ⊗ Ip)z,

we have the following equations for the controlled network

ẋs = Asxs + Esd,

z = Csxs,

ζs = Ccxs,

(7.38)

where
Cc = (W

1
2R> ⊗ Ip)Cs.

The impulse response from the disturbance d to the performance output ζ is
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then given by Ts(t) = Cce
AstEs. Subsequently, we define the associatedH2 cost

functional as
J :=

∫ ∞
0

tr
[
T>s (t)Ts(t)

]
dt. (7.39)

Note that the cost functional (7.39) is a function of the gain matricesK1,K2, . . . ,KN .
The problem we want to address in this section is the following:

Problem 7.2. Let γ > 0 be a given tolerance. Design gain matrices K1,K2, . . . ,KN

such that the associated protocol (7.34) achieves z-output synchronization and J(K) < γ.

In the following proposition, we provide a design method for computing a
protocol (7.34) such that the controlled network (7.38) achieves z-output synchro-
nization and the associated cost is smaller than an a priori given upper bound.

Proposition 7.6. Let γ > 0 be a given tolerance. For i = 1, 2 . . . , N , assume that
D>i Ci = 0 and D>i Di = Imi

. Let Pi > 0 satisfy

A>i Pi + PiA
>
i − PiBiB>i Pi + C>i Ci < 0. (7.40)

If, in addition, such Pi satisfy

tr(E>i PiEi) <
γ

NλN
, (7.41)

then the protocol (7.34) with Ki := −B>i Pi achieves z-output synchronization for the
network (7.38) and guarantees J < γ.

A proof of Proposition 7.6 can be given along the lines of the proof of Theorem
7.4, and is hence omitted here. The conditions D>i Di = Imi are made here to
simplify notation, and can be relaxed to the regularity conditions D>i Di > 0 alone.

7.6 Simulation example

In this section, we will give a simulation example based on the example in [115] to
illustrate the design method of Theorem 7.4.

Consider a network of N = 6 heterogeneous agents. The dynamics of the
agents are given by

ẋi = Aixi +Biui + Eidi,

yi = C1ixi +D1idi,

zi = C2ixi +D2iui,

i = 1, 2, . . . , 6,
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where Ai =

0 1 0

0 0 ci
0 −fi −ai

, Bi =

0

0

bi

 , Ei =

0 0.2

0 0

0 0.2

 , C1i =
(
1 0 0

)
,

D1i =
(
1 0

)
, C2i =

(
1 1 0

0 0 0

)
, D2i =

(
0

1

)
. The parameters ai, bi, ci and fi are

chosen to be

ai = 2, ci = 1, i = 1, 2, . . . , 6,

b1 = b4 = 1, b2 = b5 = 2, b3 = b6 = 3,

f1 = f4 = 1, f2 = f5 = 2, f3 = f6 = 3.

The pairs (Ai, Bi) are stabilizable and the pairs (C1i, Ai) are detectable. We also
have that D1iE

>
i = 0, D>2iC2i = 0, D1iD

>
1i = 1 and D>2iD2i = 1. The communica-

tion graph between the six agents is assumed to be an undirected cycle graph. The
largest eigenvalue of the corresponding Laplacian matrix L is λ6 = 4.

We choose the matrices S and R in the regulator equations (7.2) to be

S =

(
0 1

0 0

)
, R =

(
1 1

0 1

)
.

The eigenvalues of S are on the imaginary axis and the pair (R,S) is observable.
We solve the equations (7.2) and compute

Πi =

1 0

0 1

0 0

 , Γi =
(
0 1

)
, i = 1, 2, . . . , 6.

The objective is to design a protocol of the form (7.3) such that the associated cost
(7.10) satisfies J < γ while achieving z-output synchronization. Let the desired
upper bound be γ = 18.

Following the design method in Theorem 7.4, for i = 1, 2, . . . , 6, we compute a
positive definite solution Pi to (7.27) by solving the Riccati equation

A>i Pi + PiA
>
i − PiBiB>i Pi + C>2iC2i + εIni = 0

with ε = 0.001. We also compute a positive definite solution Qi to (7.27) by solving
the dual Riccati equation

AiQi +QiA
>
i −QiC>1iC1iQi + EiE

>
i + σIni

= 0

with σ = 0.001. Accordingly, we compute the associated gain matrices Fi and Gi
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Figure 7.1: Plots of trajectories of the first component of the output vectors
z1, z2, . . . , z6

to be

F1 = F4 =
(
−1.0005 −1.7329 −0.7326

)
,

F2 = F5 =
(
−1.0005 −1.2345 −0.4951

)
,

F3 = F6 =
(
−1.0005 −1.0327 −0.3982

)
,

and

G1 = G4 =
(
0.3290 0.0341 0.0028

)>
,

G2 = G5 =
(
0.2804 0.0193 0.0007

)>
,

G3 = G6 =
(
0.2578 0.0132 0.0002

)>
.

As an example, we take the initial states of the agents to be x10 =
(
1.0 1.4 1.6

)>
,

x20 =
(
1.2 −1.7 0.5

)>
, x30 =

(
1.3 −1.2 1.3

)>
, x40 =

(
0.6 1.6 −1.3

)>
,

x50 =
(
1.8 1.5 1.6

)>
, x60 =

(
−1.1 1.7 0.9

)>
. We take the initial states wi

to be zero, and the initial states vi to be v10 =
(
0.9 1.1

)>
, v20 =

(
0.8 1.4

)>
,
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Figure 7.2: Plots of trajectories of the second component of the output vectors
z1, z2, . . . , z6

v30 =
(
−1.0 0.9

)>
, v40 =

(
1.8 1.1

)>
, v50 =

(
−1.6 1.4

)>
, v60 =

(
1.1 −1.2

)>
.

In Figures 7.1 and 7.2, we have plotted the trajectories of the output vectors zi,
i = 1, 2 . . . , 6 of the controlled network. The proposed protocol indeed achieves
z-output synchronization for the network.

Moreover, for i = 1, 2, . . . , 6, we compute

Si = tr(C1iQiPiQiC
>
1i) + tr(C2iQiC

>
2i),

and obtain that

S1 = S4 = 0.6621, S2 = S5 = 0.4379, S3 = S6 = 0.3637.

Note that, for all i = 1, 2, . . . , 6, we have

Si <
γ

NλN
= 0.75,

it then follows from Theorem 7.4 that the designed protocol is suboptimal, i.e. the
associated cost is indeed smaller than the desired tolerance γ = 18.
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7.7 Conclusions

In this chapter, we have studied theH2 suboptimal output synchronization prob-
lem for heterogeneous linear multi-agent systems. Given a heterogeneous multi-
agent system and an associated H2 cost functional, we have provided a design
method for computing dynamic output feedback based protocols that guarantee
the associated cost to be smaller than a given upper bound while the controlled
network achieves output synchronization. For each agent, its two local control
gains are given in terms of solutions of two Riccati inequalities, each of dimension
equal to that of the agent dynamics. The computation of the local control gains
involves the largest eigenvalue of the Laplacian matrix of the communication
graph. We have also considered the special case that full state information of the
agents is available.





8 H2 andH∞ suboptimal distributed
filter design for linear systems

This chapter investigates the H2 and H∞ suboptimal distributed filtering prob-
lems for continuous time linear systems. Consider a linear system monitored by a
number of local filters, where each of the filters receives only part of the measured
output of the system. Each filter can communicate with the other filters according
to an a priori given strongly connected weighted directed graph. The aim is to
design filter gains that guarantee theH2 orH∞ norm of the transfer matrix from
the disturbance input to the output estimation error to be smaller than an a priori
given upper bound, while all local filters reconstruct the full system state asymp-
totically. We provide a centralized design method for obtaining such suboptimal
distributed H2 and H∞ filters. The proposed design method is illustrated by a
simulation example.

8.1 Introduction

Recent years have witnessed an increasing interest in problems of state estimation
for spatially constrained large-scale systems. Such problems are relevant in ap-
plications, such as power grids [32], industrial plants [107] and wireless sensor
networks [86]. Due to the physical constraints, the measured output of these
systems is often monitored by a sensor network, consisting of a number of local
sensors. Each of these local sensors makes use of its local measurements and
then communicates with the other local sensors. In this way, all of these sensors
together are able to estimate the state of the system asymptotically. In this problem
setting, one of the main challenges is that none of the local sensors by itself is able
to estimate the system state by using its own local measurements. Consequently,
standard estimation methods do not directly apply anymore.

The distributed estimation problem has been mainly studied in two research
directions, namely, distributed observer design and distributed Kalman filtering.
In [88], an augmented state observer was proposed to cast the distributed observer
design problem into a decentralized control problem for linear systems, using the



116 8.H2 andH∞ suboptimal distributed filter design for linear systems

notion of ‘fixed modes’ [92]. Later on, in [113], the results in [88] were extended
and a more general form of distributed observers was provided, allowing the
rate of convergence of the observer to be freely assignable. In [114], for time-
varying communication graphs, a hybrid observer was introduced to distributedly
estimate the state of a linear system. Based on observability decompositions, the
problem of distributed observer design was also investigated in [27, 49, 65]. In [66],
an attack resilient algorithm was introduced to address the distributed estimation
problem when certain nodes are compromised by adversaries.

On the other hand, much attention in the literature has also been devoted
to distributed filtering problems. A Kalman-filter-based distributed filter was
proposed in [81, 83, 84]. There, the proposed methods employ a two-step strategy:
a state update rule based on a Kalman-filter and a data fusion step based on
consensus. In [105], a distributed robust filtering problem was addressed using
dissipativity theory. Later on in [106], the results of [105] were generalized to the
case that the communication graph is allowed to randomly change. Recently, in
[47], a distributed Kalman-Bucy filtering problem was studied, using the idea of
averaging the dynamics of heterogeneous multi-agent systems [48].

Different from the existing work, in this chapter, we will consider two deter-
ministic versions of the distributed optimal filtering problem for linear systems,
i.e., the distributed H2 and H∞ filtering problems. Given a linear system and a
network of local filters, each local filter receives a portion of the measured output
of the system and then exchanges its state with that of its neighboring local filters.
Together, these local filters form a distributed filter. We introduce H2 and H∞
performances to quantify the influence of the disturbances on the output estima-
tion error. The distributed optimal filtering problem is then to find suitable filter
gain matrices such that the associatedH2 orH∞ performance is minimized, while
the states of all local filters asymptotically track the system state. However, due
to non-convexity, this problem is difficult to solve in general. Therefore, in this
chapter we will address a suboptimality version of this problem. The objective of
this chapter is then to design suitable filter gain matrices such that theH2 orH∞
performance is smaller than an a priori given tolerance. The main contributions of
this chapter are the following:

1. We establish conditions for the existence of suitable filter gains in terms of
solvability of LMI’s for both theH2 andH∞ suboptimal distributed filtering
problem. For the H2 filtering problem, all except one of these LMI’s will
always turn out to be solvable.

2. We provide conceptual algorithms for obtaining suitable distributedH2 and
H∞ suboptimal filters, respectively.

This chapter is organized as follows. In Section 8.2, we review some basic
results on graph theory, detectability properties of linear systems, and theH2 and
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H∞ performance of linear systems. Subsequently, in Section 8.3 we formulate the
H2 and H∞ suboptimal distributed filtering problems. We then provide design
methods for obtaining such distributed filters in Section 8.4. In Section 8.5 we
provide a simulation example to illustrate our design method. Finally, in Section
8.6 we formulate our conclusions.

8.2 Preliminaries

8.2.1 Detectability and detectability decomposition

In this subsection, we will review detectability and the detectability decomposition
of linear systems. Consider the linear system

ẋ = Ax,

y = Cx,
(8.1)

where x ∈ Rn represents the state and y ∈ Rp the measured output. The matrices
A and C are of suitable dimensions.

Let p(s) be the characteristic polynomial of A. Then p(s) can be factorized as

p(s) = p−(s)p+(s),

where p−(s) and p+(s) have roots in the open left half-plane and the closed right
half-plane, respectively. The undetectable subspace of the pair (C,A) is defined as

S := N ∩ ker
(
p+(A)

)
,

where

N := ker


C

CA
...

CAn−1

 .

The pair (C,A) is detectable if and only if S = {0}, see e.g. [116].
There exists an orthogonal matrix T ∈ Rn×n such that the pair (C,A) is trans-

formed into the detectability decomposition form

T>AT =

(
A11 0

A21 A22

)
, CT =

(
C1 0

)
,

where A11 ∈ Rv×v, A21 ∈ R(n−v)×v, A22 ∈ R(n−v)×(n−v), C1 ∈ Rp×v and the pair
(C1, A11) is detectable. In addition, if we partition T = (T1 T2), where T1 contains
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the first v columns, then the undetectable subspace is given by

im(T2) = S.

Since T is orthogonal, we also have

im(T1) = S⊥.

8.2.2 H2 andH∞ performance of linear systems

In this subsection, we will review theH2 andH∞ performance of a linear system
with external disturbances. Consider the linear system

ẋ = Ax+ Ed,

y = Cx,
(8.2)

where x ∈ Rn is the state, d ∈ Rq the external disturbance and y ∈ Rp the measured
output. The matrices A, C and E are of suitable dimensions.

We will first review theH2 performance of the system (8.2). Let Td(t) = CeAtE

be the impulse response of (8.2). Then the associatedH2 performance is defined
to be the square of its L2-norm, given by

J =

∫ ∞
0

tr
[
T>d (t)Td(t)

]
dt. (8.3)

Note that the performance (8.3) is finite if the system (8.2) is internally stable, i.e.,
A is Hurwitz.

The following well-known result provides a necessary and sufficient condition
under which (8.2) is internally stable and (8.3) is smaller than a given upper bound
(see e.g. [33], [96]):

Lemma 8.1. Let γ > 0. Then the system (8.2) is internally stable and J < γ if and only
if there exists P > 0 satisfying

A>P + PA+ C>C < 0,

tr
(
E>PE

)
< γ.

Next, we will review the H∞ performance of the system (8.2). Let Td(s) =

C(sIn − A)−1E be the transfer matrix of (8.2). If A is Hurwitz, then the H∞
performance of (8.2) is defined as theH∞ norm of Td(s), given by

||Td||∞ := sup
ω∈R

σ(T (jω)), (8.4)
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where σ(Td(jω)) is the maximum singular value of the complex matrix Td(jω).

The well-known bounded real lemma provides a necessary and sufficient
condition under which (8.2) is stable and (8.4) is smaller than a given upper bound
(see e.g. [124], [102]):

Lemma 8.2. Let γ > 0. Then the system (8.2) is internally stable and ||Td||∞ < γ if and
only if there exists P > 0 such that

A>P + PA+
1

γ2
PEE>P + C>C < 0.

In the next section, we will formulate theH2 andH∞ distributed filter design
problems that will be addressed in this chapter.

8.3 Problem formulation

Consider the finite-dimensional linear time-invariant system

ẋ = Ax+ Ed,

y = Cx+Dd,

z = Hx,

(8.5)

where x ∈ Rn is the state, d ∈ Rq the external disturbance, y ∈ Rr the measured
output and z ∈ Rp the output to be estimated. The matrices A, C, D, E and H are
of suitable dimensions.

The standard optimal filtering problem for the system (8.5) is to find a filter
that takes y as input and returns an optimal estimate ζ of z, while the filter state
asymptotically tracks the state x of (8.5). Here, ‘optimal’ means that theH2 orH∞
norm of the transfer matrix from d to the estimation error z − ζ is minimized over
all such filters. In that problem setting, however, a standing assumption is that
one single filter is able to acquire the complete measured output y of the system.

In this chapter, we relax this assumption. More specifically, we assume that
the measured output y of (8.5) is not available to one single filter, but is observed
by N local filters. Moreover, each local filter only acquires a certain portion of the
measured output, namely,

yi = Cix+Did,

where yi ∈ Rri , Ci ∈ Rri×n and Di ∈ Rri×q , for i = 1, 2, . . . , N . Here, the matrices
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Ci and Di are obtained by partitioning

C =


C1

C2

...
CN

 , D =


D1

D2

...
DN

 .

Clearly, the original output y of (8.5) has then been partitioned as

y =


y1

y2

...
yN


and

∑N
i=1 ri = r. In this chapter it will be a standing assumption that the pair

(C,A) is detectable. We will also assume that none of the pairs (Ci, A) is detectable
itself. If, for at least one i, the pair (Ci, A) is detectable, the distributed filtering
problem boils down to the standard optimal filtering problem.

In our distributed case, each local filter makes use of the portion of the mea-
sured output that it acquires and will then communicate with its neighboring
local filters by exchanging filter state information. In this way, the local filters will
together form a distributed filter. Following [27] and [49], we propose a distributed
filter of the form

ẇi = Awi +Gi(yi − Ciwi) + Fi

N∑
j=1

aij(wj − wi),

ζi = Hwi, i = 1, 2, . . . , N,

(8.6)

where wi ∈ Rn is the state of the ith local filter and ζi ∈ Rp is the associated output.
The matrices Gi ∈ Rn×ri and Fi ∈ Rn×n are local filter gains to be designed. The
coefficients aij are the entries of the adjacency matrix A of the communication
graph. In this chapter, it will be a standing assumption that this graph is a strongly
connected weighted directed graph.

For the ith local filter, we introduce the associated local state estimation error
ei and local output estimation error ηi as

ei := x− wi,
ηi := z − ζi, i = 1, 2, . . . , N.
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The dynamics of the ith local error system is then given by

ėi = (A−GiCi)ei + Fi

N∑
j=1

aij(ej − ei) + (E −GiDi)d,

ηi = Hei, i = 1, 2, . . . , N.

Denote e = (e>1 , e
>
2 , . . . , e

>
N )>, η = (η>1 , η

>
2 , . . . , η

>
N )> and

Ā := blockdiag(A−GiCi) ∈ RnN×nN ,
F̄ := blockdiag(Fi) ∈ RnN×nN ,
Ē := col(E −GiDi) ∈ RnN×q.

The global error system is then given by

ė =
(
Ā− F̄ (L⊗ In)

)
e+ Ēd,

η = (IN ⊗H)e,
(8.7)

where L ∈ RN×N is the Laplacian matrix of the communication graph. The im-
pulse response of the system (8.7) from the disturbance d to the output estimation
error η is equal to

Td(t) = (IN ⊗H)e(Ā−F̄ (L⊗In))tĒ.

We introduce the globalH2 cost functional

J =

∫ ∞
0

tr
[
T>d (t)Td(t)

]
dt. (8.8)

The distributedH2 optimal filtering problem is then the problem of minimizing
the H2 cost functional (8.8) over all distributed filters (8.6) such that the global
error system (8.7) is internally stable. Note that (8.8) is a function of the local gain
matrices F1, F2, . . . , FN and G1, G2, . . . , GN .

Unfortunately, due to the particular form of (8.6), this optimization problem
is, in general, non-convex and it is unclear whether a closed-form solution exists.
Therefore, instead of trying to find an optimal solution, we will address a version of
this problem that only requires suboptimality. More concretely, we aim at designing
a distributed filter such that the error system (8.7) is internally stable and theH2

performance (8.8) is smaller than an a priori given tolerance γ. In that case, we say
that the distributed filter (8.6) isH2 γ-suboptimal:

Definition 8.1. Let γ > 0. The distributed filter (8.6) is calledH2 γ-suboptimal if:

1. for all i = 1, 2, . . . , N , whenever d = 0, we have that limt→∞
(
x(t)− wi(t)

)
→ 0

for all initial conditions on (8.5) and (8.6).
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2. the associated performance (8.8) satisfies J < γ.

Correspondingly, theH2 suboptimal distributed filtering problem that we will
address is the following:

Problem 8.1. Let γ > 0. For i = 1, 2, . . . , N , find gain matrices Gi ∈ Rn×ri and
Fi ∈ Rn×n such that the distributed filter (8.6) isH2 γ-suboptimal.

In addition to the distributed filtering problem withH2 performance, in this
chapter we will also consider the version of this problem withH∞ performance.
Obviously, the transfer matrix of the system (8.7) from the disturbance d to the
output estimation error η is equal to

Td(s) = (IN ⊗H)
(
sInN − (Ā− F̄ (L⊗ In))

)−1
Ē.

TheH∞ performance of the distributed filter (8.6) is given by theH∞ norm ||Td||∞
of Td(s). The problem that we will then consider is to design a distributed filter
(8.6) such that the error system (8.7) is internally stable and itsH∞ performance is
smaller than an a priori given tolerance γ. In that case, we say that the distributed
filter (8.6) isH∞ γ-suboptimal:

Definition 8.2. Let γ > 0. The distributed filter (8.6) is calledH∞ γ-suboptimal if:

1. for all i = 1, 2, . . . , N , whenever d = 0, we have that limt→∞
(
x(t)− wi(t)

)
→ 0

for all initial conditions on (8.5) and (8.6).

2. ||Td||∞ < γ.

Correspondingly, the H∞ suboptimal distributed filtering problem that we
will address is the following:

Problem 8.2. Let γ > 0. For i = 1, 2, . . . , N , find gain matrices Gi ∈ Rn×ri and
Fi ∈ Rn×n such that the distributed filter (8.6) isH∞ γ-suboptimal.

8.4 H2 andH∞ suboptimal distributed filter design

In this section, we will address Problems 8.1 and 8.2 introduced above and provide
design methods for obtaining suboptimal distributed filters.

As we have explained before, the ith local filter (8.6) receives only a certain
portion of the measured output, namely,

yi = Cix+Did, i = 1, 2, . . . , N.

In order to proceed, we first apply orthogonal transformations to the pairs (Ci, A).
For i = 1, 2, . . . , N , let Ti be an orthogonal matrix such that the pair (Ci, A) is
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transformed into the detectability decomposition form

T>i ATi =

(
Ai11 0

Ai21 Ai22

)
, CiTi =

(
Ci1 0

)
, (8.9)

where Ai11 ∈ Rvi×vi , Ai21 ∈ R(n−vi)×vi , Ai22 ∈ R(n−vi)×(n−vi), Ci1 ∈ Rri×vi
and the pair (Ci1, Ai11) is detectable. The integer vi is equal to the dimension
of the othogonal complement of the undetectable subspace of the pair (Ci, A).
Accordingly, partition

T>i E =

(
Ei1
Ei2

)
, HTi =

(
Hi1 Hi2

)
, (8.10)

where Ei1 ∈ Rvi×q , Ei2 ∈ R(n−vi)×q , Hi1 ∈ Rp×vi and Hi1 ∈ Rp×(n−vi).

Using the fact that (Ci1, Ai11) is detectable, let Qi1 be any positive definite
solution to

Ai11Qi1 +Qi1A
>
i11 −Qi1C>i1Ci1Qi1 < 0. (8.11)

Then, by defining
Gi1 := Qi1C

>
i1, (8.12)

the matrix Ai11 −Gi1Ci1 is Hurwitz.

In the sequel, we will make use of the transformed matrices (8.9) and (8.10)
and the gain matrix (8.12) to obtain filter gains that solve Problems 8.1 and 8.2.
Before presenting the main results of this chapter, we will first provide a lemma
that will be essential for later use. This lemma is a generalization of [27, Lemma 4],
and connects the Laplacian matrix of the communication graph with detectability
properties of the system (8.5).

Lemma 8.3. Let L := ΘL + L>Θ, where Θ is defined as in Lemma 1.2. Define T :=

blockdiag(Ti) ∈ RnN×nN , where the Ti are the orthogonal matrices introduced in (8.9)
and (8.10). Let mi > 0 and

Mi :=

(
miIvi 0

0 0n−vi

)
, i = 1, 2, . . . , N.

Define M := blockdiag(Mi). Then,

T>(L ⊗ In)T +M > 0. (8.13)

Proof. Note that the inequality (8.13) holds if and only if the inequality

L ⊗ In + TMT> > 0 (8.14)
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holds. Let U ∈ RN×N be an orthogonal matrix that diagonalizes the matrix L, i.e.,

U>LU = Λ = diag(0, λ2, . . . , λN ).

Then, the inequality (8.14) holds if and only if

(U ⊗ In)(Λ⊗ In)(U ⊗ In)> + TMT> > 0 (8.15)

holds. The inequality (8.15) holds if

(U ⊗ In)

(
λ2InN −

(
λ2In 0

0 0n(N−1)

))
(U ⊗ In)> + TMT> > 0 (8.16)

holds, where we use the fact that λ2 6 λi for i = 2, 3, . . . , N . Note that (8.16) is
equal to

λ2InN − (U ⊗ In)

(
λ2In 0

0 0n(N−1)

)
(U ⊗ In)> + TMT> > 0. (8.17)

Next, recall that

U =
(

1√
N
1N U2

)
and U> =

(
1√
N
1>N

U>2

)
,

the inequality (8.17) is equivalent to

λ2InN −
λ2

N
(1N ⊗ In)(1N ⊗ In)> + TMT> > 0. (8.18)

Now, by pre- and post-multiplying T> and T , the inequality (8.18) holds if and
only if

λ2InN +M − λ2

N

(
T1 . . . TN

)> (
T1 . . . TN

)
> 0. (8.19)

Notice that, according to detectability decompositions, the matrix Ti can be par-
titioned as Ti = (Ti1 Ti2) with Ti1T

>
i1 + Ti2T

>
i2 = In, for i = 1, 2, . . . , N . By

applying Schur complement, the inequality (8.19) holds if and only if
R1 . . . 0 T>1
...

. . .
...

...
0 . . . RN T>N
T1 . . . TN

N
λ2
In

 > 0 (8.20)
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holds, where

Ri =

(
(λ2 +mi)Ivi 0

0 λ2In−vi

)
, i = 1, 2, . . . , N.

Again by using Schur complement, the inequality (8.20) is equivalent to
λ2In−v1 0 . . . 0 T>12

0 R2 . . . 0 T>2
...

...
. . .

...
...

0 0 . . . RN T>N
T12 T2 . . . TN

N
λ2
In − 1

λ2+m1
T11T

>
11

 > 0. (8.21)

Now, by repeatedly applying Schur complement, we obtain that the inequality
(8.19) holds if and only if

N

λ2
In −

N∑
i=1

1

λ2 +mi
Ti1T

>
i1 −

N∑
i=1

1

λ2
Ti2T

>
i2 > 0.

holds. Since

N

λ2
In −

N∑
i=1

1

λ2 +mi
Ti1T

>
i1 −

N∑
i=1

1

λ2
Ti2T

>
i2

=
N

λ2
In −

N∑
i=1

1

λ2
Ti1T

>
i1 −

N∑
i=1

1

λ2
Ti2T

>
i2

+

N∑
i=1

1

λ2
Ti1T

>
i1 −

N∑
i=1

1

λ2 +mi
Ti1T

>
i1

=

N∑
i=1

(
1

λ2
− 1

λ2 +mi

)
Ti1T

>
i1

Let mmin = min{m1,m2, . . . ,mN}, then we have

N

λ2
In −

N∑
i=1

1

λ2 +mi
Ti1T

>
i1 −

N∑
i=1

1

λ2
Ti2T

>
i2

>
N∑
i=1

(
1

λ2
− 1

λ2 +mmin

)
Ti1T

>
i1

=

(
1

λ2
− 1

λ2 +mmin

)(
T11 . . . TN1

) (
T11 . . . TN1

)>
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Since mmin > 0, then 1
λ2
− 1

λ2+mmin
> 0. Therefore, the inequality (8.13) holds if

rank
(
T11 . . . TN1

)
= n,

i.e., the matrix
(
T11 . . . TN1

)
has full row rank. In the sequel, we will show that

indeed rank
(
T11 . . . TN1

)
= n.

Define

Ni := ker


Ci
CiA

...
CiA

n−1

 ∈ Rn

and
Si := Ni ∩ ker

(
p+(A)

)
,

where p+(A) is defined in Subsection 8.2.1. Note that

im(Ti1) = S⊥i .

Furthermore, if the pair (C,A) is detectable, then

N⋂
i=1

Si = 0.

Next, we find that (
im
(
T11 . . . TN1

))⊥
= (im(T11) + . . .+ im(TN1))

⊥

=

N⋂
i=1

(im(Ti1))
⊥

=

N⋂
i=1

Si

=0,

where the last step is due to the assumption that the pair (C,A) is detectable.
It then follows from

(
im
(
T11 . . . TN1

))⊥
= 0 that rank

(
T11 . . . TN1

)
= n.

Consequently, the inequality (8.3) holds. This completes the proof.

The lines of the proof of Lemma 8.3 is analogous to that of [27, Lemma 4],
replacing the observability decomposition by the detectability decomposition. We
provide the detailed proof here to make this chapter self-contained.
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In the next two subsections, we will deal with the design of H2 and H∞
suboptimal distributed filters, respectively.

8.4.1 H2 suboptimal distributed filter design

In this subsection, we will provide a design method for obtainingH2 suboptimal
distributed filters. More specifically, we aim at finding a distributed filter such
that the global error system (8.7) is stable and the associatedH2 performance (8.8)
is less than an a priori given tolerance.

The next lemma expresses the existence of suitable gain matrices Fi and Gi,
i = 1, 2, . . . , N in terms of solvability of LMI’s.

Lemma 8.4. Let γ > 0. Let the matrices T , M and L be as introduced in Lemma 8.3. Let
ε > 0 be such that

T>(L ⊗ In)T +M > εInN . (8.22)

Let Gi1 be as defined in (8.12). For i = 1, 2, . . . , N , assume there exist κ > 0, Pi1 > 0

and Pi2 > 0 satisfying(
Φi +H>i1Hi1 + κ(mi − ε)Ivi A>i21Pi2 +H>i1Hi2

Pi2Ai21 +H>i2Hi1 Ψi

)
< 0 (8.23)

and
N∑
i=1

tr
[
(Ei1 −Gi1Di)

>Pi1(Ei1 −Gi1Di) + E>i2Pi2Ei2
]
< γ, (8.24)

where

Φi := A>i11Pi1 + Pi1Ai11 − C>i1G>i1Pi1 − Pi1Gi1Ci1, (8.25)

Ψi := Pi2Ai22 +A>i22Pi2 +H>i2Hi2 − κεIn−vi . (8.26)

For i = 1, 2, . . . , N , define gain matrices Fi and Gi by

Fi := κθiTi

(
P−1
i1 0

0 P−1
i2

)
T>i (8.27)

and

Gi := Ti

(
Gi1
0

)
. (8.28)

Then the corresponding distributed filter (8.6) isH2 γ-suboptimal.

Proof. First, it follows from (8.13) in Lemma 8.3 that there exists ε > 0 such that
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(8.22) holds. Next, note that (8.23) is equivalent to

blockdiag
(

Φi +H>i1Hi1 A>i21Pi2 +H>i1Hi2

Pi2Ai21 +H>i2Hi1 Pi2Ai22 +A>i22Pi2 +H>i2Hi2

)
+κ(M − εInN ) < 0.

(8.29)

Using (8.22), it follows from (8.29) that

blockdiag
(

Φi +H>i1Hi1 A>i21Pi2 +H>i1Hi2

Pi2Ai21 +H>i2Hi1 Pi2Ai22 +A>i22Pi2 +H>i2Hi2

)
−κT>(L ⊗ In)T < 0.

(8.30)

Let

P := blockdiag(Pi), Pi := Ti

(
Pi1 0

0 Pi2

)
T>i . (8.31)

Clearly, P > 0. By using (8.27), (8.28), (8.31), (8.9) and (8.10), then (8.30) holds if
and only if

Ā>P + PĀ− (L> ⊗ In)F̄>P + PF̄ (L⊗ In) + IN ⊗H>H < 0 (8.32)

holds, where F̄ := blockdiag(Fi) and Fi is defined by (8.27). Therefore, there exist
κ > 0, Pi1 > 0 and Pi2 > 0 such that (8.23) holds for i = 1, 2, . . . , N if and only if
there exists P > 0 of the form (8.31) such that (8.32) holds. Since the solutions of
(8.23) also satisfy (8.24), we obtain

tr
(
Ē>PĒ

)
< γ. (8.33)

Finally, since (8.32) and (8.33) have a solution P > 0, it follows from Lemma 8.1
that the error system (8.7) is internally stable and J < γ. Thus the distributed filter
(8.6) with (8.28) and (8.27) isH2 γ-suboptimal.

Remark 8.5. In Lemma 8.4, the choice of the parameters mi > 0 is arbitrary. The
parameter ε > 0 should be chosen sufficiently small so that (8.22) holds. The gain
Gi is defined by (8.28). Then, of course, the question arises: for chosen mi > 0,
ε > 0 and Gi, how can we find the smallest γ > 0 such that the corresponding
distributed filter (8.6) isH2 γ-suboptimal? This requires to find the smallest γ such
that the LMI’s (8.23) and (8.24) are solvable. It is well known that this can be done
by using a standard bisection algorithm, see e.g. [124, page 115].

Remark 8.6. Lemma 8.4 states that if there exist solutions κ > 0, Pi1 > 0 and
Pi2 > 0 satisfying (8.23) and (8.24), then the distributed filter (8.6) with gain
matrices (8.27) and (8.28) is H2 γ-suboptimal. There, the inequality (8.24) is a
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global condition for checking suboptimality. In fact, such suboptimality condition
can also be checked locally. Indeed, if for i = 1, 2, . . . , N there exist solutions
satisfying (8.23) and

tr
[
(Ei1 −Gi1Di)

>Pi1(Ei1 −Gi1Di) + E>i2Pi2Ei2
]
<

γ

N
,

then the corresponding distributed filter (8.6) with (8.27) and (8.28) is H2 γ-
suboptimal.

Lemma 8.4 provides a condition for the existence of suitable gain matrices Fi
and Gi in terms of solvability of LMI’s. In the next theorem, we show that, in fact,
the LMI’s (8.23) in Lemma 8.4 always have solutions. In fact, we can take Pi2 to be
the identity matrix of dimension n−vi and Pi1 to be the unique solution of a given
Lyapunov equation. In this way we obtain the following conceptual algorithm for
computing suitable gain matrices.

Theorem 8.7. Let γ > 0. Then anH2 γ-suboptimal distributed filter of the form (8.6) is
obtained as follows:

(i) Compute θ = (θ1, θ2, . . . , θN ) with θi > 0 such that θL = 0 and θ1N = N .

Then, for i = 1, 2, . . . , N :

(ii) Compute orthogonal matrices Ti that put A, Ci, E and H into the form (8.9) and
(8.10).

(iii) Take mi = 1 and compute ε > 0 such that

T>(L ⊗ In)T +M > εInN . (8.34)

(iv) Compute Qi1 > 0 satisfying (8.11). Define Gi1 := Qi1C
>
i1.

(v) Take κ > 0 sufficiently large such that

Ai22 +A>i22 +H>i2Hi2 − κεIn−vi

+
1

κε
(Ai21 +H>i2Hi1)(Ai21 +H>i2Hi1)> < 0.

(8.35)

(vi) Compute Pi1 > 0 satisfying the Lyapunov equation

(Ai11 −Gi1Ci1)>Pi1 + Pi1(Ai11 −Gi1Ci1) +H>i1Hi1 + κIvi = 0. (8.36)

(vii) Define gain matrices Fi and Gi by

Fi := κθiTi

(
P−1
i1 0

0 In−vi

)
T>i , Gi := Ti

(
Gi1
0

)
. (8.37)
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Then for all γ > 0 satisfying

N∑
i=1

tr
[
(Ei1 −Gi1Di)

>Pi1(Ei1 −Gi1Di) + E>i2Ei2
]
< γ, (8.38)

the corresponding distributed filter (8.6) with gain matrices (8.37) isH2 γ-suboptimal.

Proof. Using Lemma 8.3, by choosing mi = 1 for i = 1, 2, . . . , N , there exists ε > 0

such that (8.34) holds. Next, for i = 1, 2, . . . , N , we choose κ > 0 sufficiently
large such that (8.35) holds . Since Qi1 is a positive definite solution of (8.11) and
Gi1 := Qi1C

>
i1, then Ai11 − Gi1Ci1 is Hurwitz. Consequently, for i = 1, 2, . . . , N ,

the Lyapunov equation (8.36) has unique solution Pi1 > 0. Since (8.35) holds and
−κεIvi < 0, by using the Schur complement, we obtain(

−κεIvi A>i21 +H>i1Hi2

Ai21 +H>i2Hi1 Ψ̃i

)
< 0, i = 1, 2, . . . , N, (8.39)

where Ψ̃i := Ai22 +A>i22 +H>i2Hi2 − κεIn−vi . Using (8.36) and Pi2 = In−vi , it then
follows that (8.23) holds.

On the other hand, by taking Pi2 = In−vi in (8.24), we obtain (8.38). It
then follows from Lemma 8.4 that the corresponding distributed filter is H2 γ-
suboptimal.

Remark 8.8. Note that, in step (i) of Theorem 8.7, we need to compute the left
eigenvector θ of the Laplacian matrix corresponding to the eigenvalue 0. This
requires so-called global information on the communication graph. This depen-
dency on global information can be removed using algorithms that compute left
eigenvectors of the Laplacian matrix in a distributed fashion, see e.g. [12] or [24].
On the other hand, in step (iii) we need to compute ε. To do so, we need knowledge
of the orthogonal matrices Ti, the matrix M and the Laplacian matrix L, which is
global information. Also in step (v), we need to find one κ that satisfy (8.35) for
i = 1, 2, . . . , N . Note that, however, we can always take ε > 0 sufficiently small
and κ > 0 sufficiently large such that (8.34) and (8.35) hold, respectively. This
might however lead to an achievable tolerance γ that is very large, giving poor
suboptimality of the corresponding distributed filter.

In general, the computation of our suboptimal filters requires global informa-
tion, so cannot be performed in a decentralized fashion. This is in contrast with
the decentralized computation of distributed state observers as described in [50].
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8.4.2 H∞ suboptimal distributed filter design

In this subsection, we will provide a method for obtaining H∞ suboptimal dis-
tributed filters. More concretely, we aim at finding, for a given tolerance γ > 0, a
distributed filter such that the global error system (8.7) is stable and ||Td||∞ < γ.

The next lemma expresses the existence of suitable gain matrices Fi and Gi,
i = 1, 2, . . . , N in terms of solvability of N nonlinear matrix inequalities.

Lemma 8.9. Let γ > 0. Let the matrices T , M and L be as introduced in Lemma 8.3. Let
ε > 0 be such that

T>(L ⊗ In)T +M > εInN . (8.40)

Let Gi1 be as defined in (8.12). For i = 1, 2, . . . , N , assume there exist κ > 0, Pi1 > 0

and Pi2 > 0 satisfying(
Φi + κ(mi − ε)Ivi Ωi

Ω>i Ψi − κεIn−vi

)
< 0, (8.41)

where

Φi = (Ai11 −G>i1Ci1)>Pi1 + Pi1(Ai11 −G>i1Ci1)

+
1

γ2
Pi1(Ei1 −Gi1Di)(Ei1 −Gi1Di)

>Pi1 +H>i1Hi1, (8.42)

Ωi = A>i21Pi2 +H>i1Hi2 +
1

γ2
Pi1(Ei1 −Gi1Di)E

>
i2Pi2, (8.43)

Ψi = Pi2Ai22 +A>i22Pi2 +
1

γ2
Pi2Ei2E

>
i2Pi2 +H>i2Hi2.

For i = 1, 2, . . . , N , define gain matrices Fi and Gi by

Fi := κθiTi

(
P−1
i1 0

0 P−1
i2

)
T>i (8.44)

and

Gi := Ti

(
Gi1
0

)
. (8.45)

Then the corresponding distributed filter (8.6) isH∞ γ-suboptimal.

Proof. First, it follows from (8.13) in Lemma 8.3 that there exists ε > 0 such that
(8.22) holds. Next, note that (8.41) is equivalent to

blockdiag
(

Φi Ωi
Ω>i Ψi

)
+ κ(M − εInN ) < 0. (8.46)
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Using (8.22), it then follows from (8.46) that

blockdiag
(

Φi Ωi
Ω>i Ψi

)
− κT>(L ⊗ In)T < 0. (8.47)

Let

P := blockdiag(Pi), Pi := Ti

(
Pi1 0

0 Pi2

)
T>i . (8.48)

Clearly, P > 0. By using (8.44), (8.45), (8.48), (8.9) and (8.10), then (8.47) holds if
and only if

Ā>P + PĀ− (L> ⊗ In)F̄>P − PF̄ (L⊗ In)

+
1

γ2
PĒĒ>P + IN ⊗H>H < 0

(8.49)

holds, where F̄ := blockdiag(Fi) and Fi is defined by (8.44). Therefore, there exist
κ > 0, Pi1 > 0 and Pi2 > 0 such that (8.41) holds for i = 1, 2, . . . , N if and only if
there exists P > 0 of the form (8.31) such that (8.49) holds. Finally, since (8.49) has
a solution P > 0, it follows from Lemma 8.2 that the error system (8.7) is internally
stable and ||Td||∞ < γ. Thus the distributed filter (8.6) with (8.45) and (8.44) is
H∞ γ-suboptimal.

Lemma 8.9 provides a condition for the existence of suitable gain matrices Fi
and Gi in terms of solvability of the nonlinear matrix inequalities (8.41). However,
these inequalities are not LMI’s. However, by using suitable Schur complements,
we can transform the inequalities (8.41) into LMI’s. In this way we obtain the
following conceptual algorithm for computing suitable gain matrices.

Theorem 8.10. Let γ > 0. Then anH∞ suboptimal distributed filter of the form (8.6) is
obtained as follows:

(i) Compute θ = (θ1, θ2, . . . , θN ) with θi > 0 such that θL = 0 and θ1N = N .

For i = 1, 2, . . . , N :

(ii) Compute an orthogonal matrix Ti that puts A, Ci, E and H into the form (8.9) and
(8.10).

(iii) Take arbitrary mi > 0 and compute ε > 0 such that

T>(L ⊗ In)T +M > εInN . (8.50)

(iv) Compute Qi1 > 0 satisfying (8.11). Define Gi1 := Qi1C
>
i1.
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(v) Compute Pi1 > 0, Pi2 > 0 and κ > 0 such that the inequality ∆i A>i21Pi2 +H>i1Hi2 Pi1(Ei1 −Gi1Di)

Pi2Ai21 +H>i2Hi1 Pi2Ai22 +A>i22Pi2 Pi2Ei2
(Ei1 −Gi1Di)

>Pi1 E>i2Pi2 −γ2Iq

 < 0 (8.51)

with ∆i = (Ai11 −G>i1Ci1)>Pi1 +Pi1(Ai11 −G>i1Ci1) + κ(mi − ε)Ivi +H>i1Hi1

holds.

(vi) Define gain matrices Fi and Gi by

Fi := κθiTi

(
P−1
i1 0

0 In−vi

)
T>i , Gi := Ti

(
Gi1
0

)
. (8.52)

Then the corresponding distributed filter (8.6) isH∞ γ-suboptimal.

Proof. By taking the appropriate Schur complements in (8.51), it follows that (8.51)
hold if and only if (8.41) hold. The rest follows from Lemma 8.9.

We conclude this section by noting that remarks similar to Remark 8.5 and
Remark 8.8 hold in theH∞ case.

8.5 Simulation example

In this section, we will use a simulation example borrowed from [49] to illustrate
the conceptual algorithm in Theorem 8.7 for designingH2 suboptimal distributed
filters. Consider the linear time-invariant system

ẋ = Ax+ Ed,

y = Cx+Dd,

z = Hx,

(8.53)

where

A =


0 1 0 0

−1 0 0 0

0 0 0 2

0 0 −2 0

 , E =


0.1

0.1

0

0.1

 , C = I4,

D =


0.1

0

0.1

0.1

 , H =

1 0 0 0

0 2 0 0

0 0 0 1

 .
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4 1

2

3

Figure 8.1: The communication graph between the local filters.

The system (8.53) is monitored by four local filters, and each local filter acquires a
portion of the measured output y, namely,

yi = Cix+Did, i = 1, 2, 3, 4,

where the matrices Ci and Di are obtained by partitioning

C =


C1

C2

C3

C4

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , D =


D1

D2

D3

D4

 =


0.1

0

0.1

0.1

 .

The pair (C,A) is detectable but none of the pairs (Ci, A) is detectable.

We assume the four local filters to be of the form (8.6).

The communication graph between the four local filters is depicted in Figure
8.1. The graph is strongly connected and the associated Laplacian matrix is given
by

L =


2 −1 0 −1

0 1 −1 0

−1 0 1 0

−1 0 0 1

 .

The normalized left eigenvector θ of L associated with eigenvalue 0 is computed
to be θ =

(
1 1 1 1

)
.

Next, for i = 1, 2, 3, 4, we compute an orthogonal matrix Ti such that the
matrices A, Ci, E and H are transformed into the form (8.9) and (8.10). For
i = 1, 2, 3, 4, we take mi = 1. We also compute ε = 0.42 such that (8.34) holds.
Subsequently, for i = 1, 2, 3, 4, we solve (8.35) and compute κ = 9.6. Following the
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Figure 8.2: Plots of trajectories of x1 (dashed lines) and the corresponding filter
state component (solid lines).
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Figure 8.3: Plots of trajectories of x2 (dashed lines) and the corresponding filter
state component (solid lines).
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Figure 8.4: Plots of trajectories of x3 (dashed lines) and the corresponding filter
state component (solid lines).
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Figure 8.5: Plots of trajectories of x4 (dashed lines) and the corresponding filter
state component (solid lines).
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steps in Theorem 8.7, gain matrices Fi and Gi are then computed as

F1 =


0.3636 0.0837 0 0

0.0837 0.3442 0 0

0 0 9.6000 0

0 0 0 9.6000

 ,

F2 =


0.3460 −0.0660 0 0

−0.0660 0.3579 0 0

0 0 9.6000 0

0 0 0 9.6000

 ,

F3 =


9.6000 0 0 0

0 9.6000 0 0

0 0 0.4274 0.0491

0 0 0.0491 0.4217

 ,

F4 =


9.6000 0 0 0

0 9.6000 0 0

0 0 0.4220 −0.0445

0 0 −0.0445 0.4266

 ,

and

G1 =


0.4445

0.0488

0

0

 , G2 =


−0.0488

0.4445

0

0

 ,

G3 =


0

0

0.4465

0.0248

 , G4 =


0

0

−0.0248

0.4465

 .

As an example, we take the initial state of the system (8.53) to be x0 =(
1 −0.5 −1 0

)>
and the initial state of the distributed filter to be zero. In

Figures 8.2, 8.3, 8.4 and 8.5, we have plotted the state trajectories of the system
and that of the distributed filter in absence of external disturbances. It can be seen
that the states of the local filters asymptotically track the state of the system (8.53).
Moreover, we compute

N∑
i=1

tr
[
(E>i1 −D>i G>i1)Pi1(Ei1 −Gi1Di) + E>i2Ei2

]
= 1.3717.
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Thus, for all γ > 1.3717, the distributed filter (8.6) with gain matrices Fi and Gi is
H2 γ-suboptimal.

8.6 Conclusions

In this chapter, we have studied theH2 andH∞ suboptimal distributed filtering
problems for linear systems. We have established conditions for the existence of
suitable filter gains. These are expressed in terms of solvability of LMI’s. Based on
these conditions, we have provided conceptual algorithms for obtainingH2 and
H∞ suboptimal distributed filters, respectively.



9 Conclusions and future research

In this thesis, we have studied the distributed linear quadratic suboptimal control
problem, the distributed H2 suboptimal control problem, and the H2 and H∞
suboptimal distributed filtering problems. In the present chapter we will discuss
the main results and contributions presented in Chapters 2 - 8. We will also
provide directions for possible future research.

9.1 Conclusions

In Chapter 2, we have studied a suboptimality version of the distributed linear
quadratic optimal control for leaderless homogeneous multi-agent systems. Given
a number of homogeneous agents, we have introduced a global linear quadratic
cost functional. The communication graph between the agents is represented by
a connected undirected graph. We have provided a centralized design method
for computing distributed control laws, whose cost is bounded by a given upper
bound for all initial states in a closed ball of a given radius, such that the controlled
network achieves synchronization. The computation of the local control gain
uses the exact knowledge of the smallest nonzero and largest eigenvalue of the
Laplacian matrix. As an extension, we have also provided a design method for
computing distributed control laws which does not depend on exact knowledge
of the smallest nonzero and largest eigenvalue of the Laplacian matrix.

In Chapter 3, we have extended the results in Chapter 2 on distributed linear
quadratic optimal control for leaderless homogeneous multi-agent systems to the
case of distributed linear quadratic optimal tracking control for leader-follower
homogeneous multi-agent systems. Given one autonomous leader and a num-
ber of followers, we have introduced an associated global linear quadratic cost
functional. We have established a centralized design method for computing dis-
tributed control laws, whose cost is smaller than an upper bound for all initial
states bounded in a norm by given radius, such that the controlled followers reach
tracking synchronization. The computation of the local control gain depends on
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the smallest and largest eigenvalue of a given positive definite matrix associated
with the communication graph between the agents.

The computation of the local control gains in Chapters 2 and 3 requires exactly
knowledge of eigenvalues of the Laplacian matrix or of a given positive definite
matrix associated with the communication graph, which is global information.
Consequently, the design methods for obtaining such distributed control laws are
in a centralized fashion. In Chapter 4, we have aimed at removing this dependence
on global information. More specifically, we have considered the distributed
linear quadratic optimal control problem for leaderless multi-agent systems with
single integrator dynamics. We have first shown that the optimal local control gain
can only be obtained in a centralized fashion, i.e. the computation of the local
gain depends on global information. We have then established a decentralized
computation method for obtaining distributed control laws, where each agent
computes its local control gain using sampled information of its neighboring
agents. This decentralized computation leads to a suboptimal overall network
behavior.

In Chapter 5, we have studied the distributedH2 suboptimal control problem
for homogeneous multi-agent systems by static relative state feedback. Given a
number of identical agents, an associated H2 cost functional and a connected
weighted undirected communication graph interconnecting the agents. We have
provided a centralized design method for obtaining distributed protocols such
that the associated H2 cost is smaller than an a priori given upper bound while
the controlled network achieves state synchronization.

In Chapter 6, we have generalized the results in Chapter 5 on the distributed
H2 suboptimal control problem for homogeneous multi-agent systems by static
state feedback to the case of dynamic relative output feedback. We have first solved an
open problem of finding, for a single continuous-time linear system, a separation
principle basedH2 suboptimal dynamic output feedback controller. We have then
made use of these results to establish a centralized design method for computing
distributed H2 suboptimal protocols such that the controlled network reaches
state synchronization.

In Chapter 7, we have further generalized the results in Chapters 5 and 6 on
distributed H2 suboptimal control of homogeneous multi-agent systems to the
case of heterogeneous multi-agent systems. For heterogeneous systems, since the
agent dynamics is possibly non-identical, in particular the state space dimensions
of the agents may differ. Therefore, instead of state synchronization as considered
in Chapters 5 and 6, it is more interesting and natural to consider output synchro-
nization. Given a heterogeneous multi-agent system and anH2 cost functional, we
have proposed a centralized method for computing distributed protocols such
that the associated H2 cost is smaller than an a priori given upper bound while
the controlled agents reach output synchronization.
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In Chapter 8, we have studied theH2 andH∞ suboptimal distributed filtering
problem for linear systems. Given a linear system monitored by a number of local
filters, where each local filter receives only a part of the system output according
to a given strongly connected directed graph. We have established conceptual
algorithms for obtainingH2 andH∞ suboptimal distributed filters, in the sense
that the H2 or H∞ norm of the transfer matrix of the disturbance input to the
output estimation error is smaller than an a priori given upper bound while all
local filters reconstruct the system state asymptotically.

9.2 Future research

The results presented in this thesis can be extended in several directions.

• In this thesis, we have investigated suboptimality versions of the distributed
linear quadratic optimal control problem, the distributedH2 optimal control
problem, and the distributed H2 and H∞ optimal filtering problem. Fu-
ture research could investigate whether, in general, there exist closed form
solutions for the genuine optimal control and filtering problems.

• The computation of the local control gains in Chapters 2, 3, 5 - 7 requires
exact knowledge of the eigenvalues of the Laplacian matrix or of a given
positive definite matrix associated with the communication graph, which
is global information. As a possibility for future research, we mention the
development of methods for decentralized computation of the control gains.

• In Chapter 4, the model of the agents is represented by single integrator
dynamics. One possibility for future research is to generalize the results in
Chapter 4 to the case of general higher dimensional agent dynamics. Another
possibility for future research is to extend the results in Chapter 4, in which
the time clock of sampling is synchronized for all agents, to the case that the
sampling takes place in an asynchronous way, using results, for example, in
[9, 58].

• Chapters 5 - 7 are concerned with the distributed H2 suboptimal control
problem. It would be interesting to extend the results in these chapters to
that of distributedH∞ suboptimal control.

• In Chapter 8, the computation of the distributed filters requires centralized
computation. As a possibility for future research, we mention the extension
of the results in this chapter to the case that filter gains are computed in a
decentralized fashion, see for example [50]. Another possibility for future
research is to allow the local filters to estimate, instead of the complete state,
only part of the state of the monitored system.
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Summary

The thesis is concerned with several problems related to distributed linear quadratic
control and filtering. In particular, we consider the distributed linear quadratic
optimal control problem, the distributedH2 optimal control problem, and theH2

andH∞ optimal distributed filtering problems. Due the the non-convex nature of
these problem, the actual optimization problems are in general very challenging
and it is not clear whether closed form solutions exist. Therefore, in this thesis,
instead we consider suboptimality versions of these problems.

We first consider the distributed linear quadratic suboptimal control problem
for leaderless linear multi-agent systems. Given a multi-agent system with identical
agent dynamics and a global linear quadratic cost functional, we establish a
centralized design method for computing distributed control laws such that the
associated cost is smaller than a given upper bound while the controlled network
achieves state synchronization. We then extend these results to the problem of
distributed linear quadratic suboptimal tracking control for leader-follower multi-
agent systems. We provide a centralized design method for computing distributed
suboptimal control laws such that the states of the controlled followers track that
of the leader asymptotically.

In the two problems above, the proposed design methods are centralized, i.e.
the computation of the local gains depends on so-called global information. To
remove the dependence on this global information, as the third problem, we aim
at decentralized computation of the local gains. For multi-agent systems with single
integrator agent dynamics, we establish a decentralized computation method for
obtaining distributed suboptimal control laws, where each agent computes its
own local control gains using sampled state information of its neighboring agents.

As the fourth problem, we consider the distributed H2 suboptimal control
problem for leaderless homogeneous multi-agent systems by static relative state
feedback. Given a multi-agent system and an associated H2 cost functional, we
provide a centralized design method for obtaining distributed protocols such that
the associatedH2 cost functional is smaller than a given upper bound while the
controlled network achieves state synchronization. We then generalize the results
on distributed H2 suboptimal control using static state feedback to the case of
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dynamic relative output feedback. The results on distributedH2 suboptimal control
for state synchronization of homogeneous multi-agent systems are then further
generalized to the case of output synchronization of heterogeneous multi-agent
systems.

Finally, we study the H2 and H∞ suboptimal distributed filtering problems.
Given is a linear system monitored by a number of local filters, where each
local filter receives only a certain part of the system output. The local filters
exchange information about their estimates of the system state with their neighbors
according to a given communication graph. We establish conceptual algorithms
for obtainingH2 andH∞ suboptimal distributed filters, in the sense that theH2 or
H∞ norm of the transfer matrix of the disturbance input to the output estimation
error is smaller than an a priori given upper bound while all local filters reconstruct
the system state asymptotically.



Samenvatting

In dit proefschrift worden verschillende gedistribueerde lineair-kwadratische re-
gelproblemen en filterproblemen bestudeerd. In het bijzonder bestuderen we
het gedistribueerde lineair-kwadratische optimale regelprobleem, het gedistri-
bueerde H2 optimale regelprobleem en de H2 en H∞ optimale gedistribueerde
filterproblemen. Vanwege de niet-convexe aard van deze problemen zijn de ei-
genlijke optimalisatieproblemen over het algemeen erg uitdagend en is het niet
duidelijk of er oplossingen in gesloten vorm bestaan. Daarom bestuderen we in
dit proefschrift suboptimale versies van deze problemen.

Het eerste probleem waar we ons op richten is het gedistribueerde lineair-
kwadratische suboptimale regelprobleem voor lineaire multi-agent systemen zon-
der leiders. Voor een multi-agent systeem met identieke agent-dynamica en een
globale lineair-kwadratische kostenfunctionaal stellen we een gecentraliseerde ont-
werpmethode vast om gedistribueerde regelwetten te berekenen, zodanig dat
de geassocieerde kosten kleiner zijn dan een gegeven bovengrens, terwijl het
geregelde netwerk toestandsynchronisatie bereikt. Vervolgens breiden we deze
resultaten uit naar het gedistribueerde lineair-kwadratische suboptimale tracking
regelprobleem voor leider-volger multi-agent systemen. We bieden een gecentrali-
seerde ontwerpmethode om gedistribueerde suboptimale regelwetten te berekenen
zodanig dat de toestanden van de geregelde volgers die van de leider asymptotisch
tracken.

In de twee hierboven beschreven problemen zijn de voorgestelde methoden
gecentraliseerd, dat wil zeggen dat de berekening van de lokale versterkingsfac-
toren afhankelijk is van zogenaamde globale informatie. Om de afhankelijkheid
van deze globale informatie te omzeilen, streven we bij wijze van het derde pro-
bleem naar gedecentraliseerde berekeningen van de lokale versterkingsfactoren. Voor
multi-agent systemen met enkelvoudige integrator agent-dynamica stellen we een
gedecentraliseerde methode vast om gedistribueerde suboptimale regelwetten te
verkrijgen, waar elke agent zijn eigen lokale regel versterkingsfactoren berekent
met behulp van bemonsterde toestandinformatie van de aangrenzende agenten.

Het vierde probleem dat wordt onderzocht is het gedistribueerdeH2 subop-
timale regelprobleem voor homogene multi-agent systemen zonder leiders door
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middel van statische relatieve toestandsterugkoppeling. Voor een multi-agent sys-
teem en een bijbehorendeH2 kostenfunctionaal bieden we een gecentraliseerde
ontwerpmethode om gedistribueerde protocollen te verkrijgen zodanig dat de
bijbehorendeH2 kostenfunctionaal kleiner is dan een gegeven bovengrens, terwijl
het geregelde netwerk toestandssynchronisatie bereikt. Vervolgens generaliseren
we de resultaten van gedistribueerde H2 suboptimale regeling met behulp van
statische toestandsterugkoppeling naar het geval van dynamische relatieve uitgangs-
terugkoppeling. De resultaten van gedistribueerdeH2 suboptimale regeling voor
toestandssynchronisatie van homogene multi-agent systemen worden vervolgens
verder gegeneraliseerd naar het geval van uitgangssynchronisatie van heterogene
multi-agent systemen.

Tenslotte bestuderen we deH2 enH∞ suboptimale gedistribueerde filterpro-
blemen. Gegeven is een lineair systeem dat gemonitord wordt door een aantal
lokale filters, waar elk lokaal filter slechts een bepaald gedeelte van de uitgang
van het systeem ontvangt. De lokale filters wisselen informatie over hun schatting
van de toestand van het systeem uit met die van de aangrenzende filters volgens
een gegeven communicatiegraaf. We stellen conceptuele algoritmes vast voor het
verkrijgen vanH2 enH∞ suboptimale gedistribueerde filters, in die zin dat deH2

of H∞ norm van de transfermatrix van de verstoringsingang naar de uitgangs-
schattingsfout kleiner is dan een a priori gegeven bovengrens, terwijl alle lokale
filters de systeemtoestand asymptotisch reconstrueren.
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