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1 Introduction

During the last 15 years, since the discovery of integrability in the AdS5/CFT4 duality [1–3],

a remarkable progress has been made in testing Maldacena’s duality [4]. Despite of this, the

ambitious long term goal to understand quantum gravity would possibly require a better

picture of the holographic principle, which generically states that a theory of gravity is

equivalent to a gauge theory living on the boundary of the spacetime. With this in mind,
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there has been a remarkable effort in investigating the integrable AdSd/CFTd−1 duality,

with d < 5, and integrable deformations, [2, 3, 5–8], see also references therein.

Another interesting and fascinating arena where the holographic principle could be

tested is provided by taking particular physical limits of the string, such that the final

theory shows a different (and possibly simpler) behaviour from the initial one. Some

examples are given for instance by the non- and ultra-relativistic limits, i.e. when the

speed of light c tends to infinity or zero, respectively [9–14]. However, limits where other

physical parameters of the theory are involved (e.g. radius of some spacetime geometry,

string angular momentum) are interesting as well.

During the last decade, aspects of the non-relativistic string have been extensively in-

vestigated [15–19], due also to interesting applications that Newton-Cartan geometry has

found in the context of condensed matter physics and holography [20–25]. As an exam-

ple, in [26] it has been proposed a theory described by a σ-model which has a relativistic

worldsheet, and a non-relativistic target space geometry. This theory is unitary, ultraviolet

complete and its S-matrix has a non-relativistic symmetry algebra. Other non-relativistic

theories have been discussed e.g. in [27–29], and aspects such as the equations of motion,

T-duality transformations, and the identification of the spacetime geometry, dubbed as

string Newton-Cartan geometry and its coupling to matter, have received a growing at-

tention [16, 18, 30–33]. Classifying non-relativistic spacetime geometries is also an active

field of research [34–36]. It turns out that a more systematic and rigorous way to discuss

various string regimes is given in the context of the Lie algebra expansion, and this will be

discussed extensively in this paper.

The method of Lie algebra expansion, which was rigorously formulated in [37, 38] based

on the initial work of [39], consists in generating new Lie algebras (usually bigger) from

a given one, once an initial decomposition is defined. A general feature of the method is

that in the lowest order of the expansion, one obtains the İnönü-Wigner contraction of the

initial algebra with respect to the given decomposition. The contracted algebra gives us

information about the physical regime that is inspected by the expansion.

From the mathematical point of view, the idea of Lie algebra expansion consists in

rescaling the group coordinates with a parameter λ. From the physical point of view, this

parameter λ should be identified with a certain function of some physical parameter(s)

appearing in the theory. One of the powerful features of the Lie algebra expansion is that

it comes equipped with the so-called truncation rules, which ensure that the expansion

is truncated consistently. Recently, the Lie algebra expansion has been applied in the

context of the Einstein-Hilbert action [40, 41], later further developed in [31, 42], and also

by including supersymmetry [43, 44]. Lie algebra expansion has been also further extended

to the semigroup expansion method [45–49]. These methods have recently found interesting

applications in several different contexts [50–54].

In this paper we apply the method of Lie algebra expansion to integrable coset σ-

models, which typically appear in the context of string theory, to inspect various physical

regimes. The starting point is to write down a 2d action with an associated global and

gauge symmetry, G and H respectively, where formally H ⊂ G. The global symmetry

algebra Lie(G) is then expanded and appropriately truncated, which in turns implies an
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expansion of the initial 2d action. The action of the initial model is classically integrable.

It is in the aim of this paper to investigate whether classical integrability is also a property

of the expanded actions of the new σ-models.1

Plan of the paper. In section 2, we define the 2d string σ-model and the Lie algebra

expansion, and we fix the notation. In section 3, we apply the Lie algebra expansion to the

AdS5×S5 supersting action, where we reproduce and extend in a systematic way actions

of known regimes (flat space, BMN and non-relativistic). In section 4, we give a criterion

for the algebra truncation such that the equations of motion of the expanded action of the

new σ-model are equivalent to the zero curvature condition of a Lax connection. We write

the Lax connection for the cases discussed in AdS5×S5.

This paper ends with some appendices, where we give our conventions and the com-

mutation relations of the Lie algebras which appear through the paper.

2 Lie algebra expansion applied to Coset sigma-models

2.1 The sigma-model

In this section we introduce the string σ-models that will be of central importance in this

paper, and we set the notation. We consider a 2-dimensional string σ-model with target

space G/H, where G and H are Lie (super)groups, whose respective Lie (super)algebras are

g and h. We assume that g admits a Z4 outer automorphism, such that it decomposes as

g =
(0)

g⊕
(1)

g⊕
(2)

g⊕
(3)

g ,
(0)

g ≡ h . (2.1)

We denote the string world-sheet coordinates as σµ ≡ (τ, σ), and the world-sheet metric

as hµν . The Levi-Civita symbol is taken with the convention ετσ = −ετσ = +1. The

commutation relations of g are denoted by

[TA, TB] = fAB
CTC , (2.2)

where TA are the generators of g, and we denote by
(k)

TA the generators of
(k)

g. The coset

representative g ∈ G is given by

g(τ, σ) = exp

( 3∑
k=0

(k)
αA(τ, σ)

(k)

TA

)
, (2.3)

where
(k)
αA(τ, σ), for k = 1, 2, 3, are the fields carrying the propagating d.o.f. of the σ-model.

We introduce the left-invariant Maurer-Cartan 1-form A given by

A = −g−1dg ≡ LATA , (2.4)

which satisfies the Maurer-Cartan equation

dA− 1

2
A ∧A = 0 , (2.5)

1Classical integrability of the bosonic non-relativistic string has been discussed in [55–58].
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where the wedge product between Lie algebra valued forms has been defined in eq. (A.1a).

The Maurer-Cartan equation in components reads

dLA =
1

2
fBC

ALB ∧ LC . (2.6)

We denote Maurer-Cartan 1-forms with calligraphic letters, and Lie algebra generators

with latin uppercase letters. The Z4 automorphism induces a decomposition of the Maurer-

Cartan 1-form as follows

A =
(0)

A+
(1)

A+
(2)

A+
(3)

A , (2.7)

with
(k)

A =
(k)

LA
(k)

TA . (2.8)

We consider the string σ-model action

S = −1

2

∫
∂M3

d2σ
√
|h|hµνstr(

(2)

Aµ
(2)

Aν)− 1

2

∫
M3

str
[ (2)

A ◦ (
(3)

A ∧
(3)

A)−
(2)

A ◦ (
(1)

A ∧
(1)

A)
]
, (2.9)

with the convention defined in eq. (A.1), where ‘str’ stands for the inner product2 on g, M3

is a 3-dimensional manifold, whose boundary is the 2-dimensional string world-sheet, and

the brackets between the currents in the Wess-Zumino term of eq. (2.9) indicate that the

(anti)commutator between the generators must be taken. The relative coefficient between

the kinetic and the Wess-Zumino terms in eq. (2.9) is fixed to be ±1 by requiring invariance

of the full action under κ-symmetry [60]. Here we choose it to be +1.

The equations of motion for the fields are:

∂µ(
√
|h|hµν

(2)

Aν)−
√
|h|hµν [

(0)

Aµ,
(2)

Aν ] +
1

2
εµν([

(1)

Aµ,
(1)

Aν ]− [
(3)

Aµ,
(3)

Aν ]) = 0 , (2.10a)(√
|h|hµν + εµν

)
[
(3)

Aµ,
(2)

Aν ] = 0 , (2.10b)(√
|h|hµν − εµν

)
[
(1)

Aµ,
(2)

Aν ] = 0 , (2.10c)

It is interesting from the classical integrability point of view of the theory that this set of

equations is equivalent to the condition of vanishing curvature

dL − 1

2
L ∧L = 0 , (2.11)

of the following Lax connection [60]

Lµ = `0
(0)

Aµ + `1
(2)

Aµ + `2
1√
|h|
hµνε

νρ
(2)

Aρ + `3
(1)

Aµ + `4
(3)

Aµ , (2.12)

where the parameters `i can be parametrised in terms of a single spectral parameter z as

`0 = 1 , `1 =
1

2

(
z2 +

1

z2

)
, `2 = −1

2

(
z2 − 1

z2

)
, `3 = z , `4 =

1

z
. (2.13)

Having described the σ-model and some aspects of its classical integrability, in the next

section we shall introduce the Lie algebra expansion method.

2This cannot be the Killing form, since the latter one must be identically zero in order to make the beta

function vanish [59].
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2.2 Lie algebra expansion

In this section we give a brief introduction to the Lie algebra expansion method, referring

to [37–39] for a more detailed analysis. This method is a fundamental tool that will give

us a general procedure to inspect different physical regimes, e.g. the non-relativistic one,

starting from the AdS5×S5 string σ-model.

The expansion procedure for a given Lie superalgebra is a systematic way to generate

a new superalgebra, usually bigger that the starting one. The original approach described

in [37] consists in decomposing the initial superalgebra in subspaces V0, V1, V2, . . . , Vn. Such

decomposition is associated with a rescaling of the group parameters by a constant λ. This,

in turn, implies that the Maurer-Cartan 1-forms are expanded as power series in λ. By

studying the Maurer-Cartan equations term by term in the expansion, it is possible to

define the truncation criteria for the expanded 1-forms, in such a way that the coefficients

in the expansion could be seen as the Maurer-Cartan 1-forms of a new algebra. In this way,

it is possible to generate a new algebra from the initial one, which is in general bigger. For

convenience, we will perform the expansion directly at the level of the generators, where

every term in the corresponding power series plays the role of a new generator in the new

algebra, the structure constant being fixed by the analysis of the Maurer-Cartan equations.

2.2.1 Decomposition V0 ⊕V1

The expansion rules are determined by the decomposition of the algebra, and different

decompositions lead to different physical regimes. We consider the following decomposition

g = V0 ⊕ V1 (2.14)

where V0 and V1 have a symmetric space structure,

[V0, V0] ⊆ V0 [V0, V1] ⊆ V1 [V1, V1] ⊆ V0 . (2.15)

Denoting the generators of each subspaces V0 and V1 by

V0 = span{TA0} , V1 = span{TA1} , (2.16)

where A0 and A1 label the generators in the two subspaces, then the algebra expansion is

given by

TA0 =

N0∑
k=0, k even

λk
(k)

TA0 =
(0)

TA0 + λ2
(2)

TA0 + . . . , (2.17a)

TA1 =

N1∑
k=1, k odd

λk
(k)

TA1 = λ
(1)

TA1 + λ3
(3)

TA1 + . . . , (2.17b)

where N0 and N1 are even and odd natural numbers respectively, and they represent a

truncation of the infinite expansion. The truncated expanded algebra is called g(N0, N1),

and the truncation is consistent if the following truncation conditions are satisfied [37]

N1 = N0 ± 1 . (2.18)

– 5 –
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If we denote the commutation relations of g as in eq. (2.2), then the commutation relations

between the generators of g(N0, N1) are

[
(m)

TA,
(n)

TB] = fAB
C

(m+n)

TC , (2.19)

which are inherited from eq. (2.2), and are zero when the order in λ on l.h.s. does not

match the order in λ on r.h.s.. We stress that if the order m + n exceeds the truncation

order then the structure constant vanishes. The lowest order of the expansion, which is

given by g(0, 1), corresponds to the İnönü-Wigner contraction of the initial algebra with

respect to the subalgebra V0. This algebra gives us the information about which physical

regime is inspected in the expansion.

The Z4 grading does not need to be aligned in general with the V0⊕V1 decomposition.

This means that any generator
(k)

T belonging to
(k)

h will have, in general, a component along

both V0 and V1. To consider this, we decompose the Maurer-Cartan 1-form
(k)

A as

(k)

A =
(k)

B +
(k)

C ,
(k)

B ∈ V0 ,
(k)

C ∈ V1 , (2.20)

where
(k)

B and
(k)

C expand as

(k)

B =

N0∑
i=0, i even

λi
(k,i)

B =
(k,0)

B + λ2
(k,2)

B + . . . , (2.21a)

(k)

C =

N1∑
i=1, i odd

λi
(k,i)

C = λ
(k,1)

C + λ3
(k,3)

C + . . . . (2.21b)

The reader should be careful to distinguish the bold index k, which refers to the Z4 grading,

and the index i, which refers to the expansion in λ.

This procedure induces an expansion of the components
(k)

LA of the Maurer-Cartan

1-form as
(k)

LA =
(k)

MA +
(k)

NA , (2.22)

where
(k)

B =
(k)

MA0
(k)

TA0 ,
(k)

C =
(k)

NA1
(k)

TA1 , (2.23)

and the induced expansion is

(k)

MA0 =

N0∑
i=0, i even

λi
(k,i)

MA0 =
(k,0)

MA0 + λ2
(k,2)

MA0 + . . . , (2.24a)

(k)

NA1 =

N1∑
i=1, i odd

λi
(k,i)

NA1 = λ
(k,1)

NA1 + λ3
(k,3)

NA1 + . . . . (2.24b)

At this point, we are interested in the dynamic of the initial σ-model after performing the

Lie algebra expansion described above. In general, the action eq. (2.9), keeping the bilinear

product fixed from the beginning, will expand as

S =
(0)

S + λ
(1)

S + . . . , (2.25)

– 6 –
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where
(0)

S is just the action eq. (2.9) with all
(k)

LA replaced by
(k,0)

MA, while
(1)

S is the action

eq. (2.9) where all
(k)

LA are replaced by
(k,0)

MA except for one of them, which must be replaced by
(k,1)

NA, and all possible combinations must be considered. In a similar way one can recursively

reconstruct the action
(n)

S. The equations of motion of the generic action
(n)

S and its classical

integrability, as well as its global symmetries, will be considered later in section 4.

In this paper we shall always apply the Lie algebra expansion to the string action (2.9)

written in terms of the Wess-Zumino 3-form, but not to the equivalent one written in

terms of the Wess-Zumino 2-form. As it will be discussed in section 4, the reason for this is

because the equations of motion for the generic expanded action
(n)

S, obtained from the initial

action S written in terms of the Wess-Zumino 3-form, coincide with the initial equations of

motion for (2.9) expanded up to the n-th order. This is not always the case when the initial

action is written in terms of the Wess-Zumino 2-form, and this is a necessary condition in

order to apply the techniques presented in this paper.

In the method of Lie algebra expansion, one should regard all expanded generators as

new independent generators of a new Lie algebra. Therefore the σ-model associated with

this new Lie algebra will have in general a bigger number of physical fields, one for each

independent generator. The general coset representative of this new σ-model will be

g(τ, σ) = exp

 3∑
k=0

N0∑
i=0
i even

N1∑
j=1

j odd

(
(k,i)
α A0(τ, σ)

(k,i)

TA0 +
(k,j)
α A1(τ, σ)

(k,j)

TA1

) , (2.26)

where
(k,i)
α A0(τ, σ) and

(k,j)
α A1(τ, σ), for k = 1, 2, 3, are the fields carrying the propagating

d.o.f. of the new σ-model.

So far we have introduced the notion of Lie algebra expansion [37, 39]. Next, we will

apply this method to derive σ-model actions which describe physics in different regimes in

the context of AdS5×S5 superstring. As we shall see, there are other possible decomposi-

tions of g, such as the three subspace decomposition, which are useful as well. We did not

discussed them here in general, but they will be introduced later, tailored for the particular

cases considered.

3 Lie algebra expansion in AdS5×S5 superstring

In the previous section we have introduced the technique of Lie algebra expansion. In this

section we shall apply it to investigate different regimes of the AdS5×S5 superstring sigma

model, drawing a systematic way to reproduce and extend known results.

The Green-Schwarz action for a string propagating in AdS5×S5 has been constructed

by Metsaev-Tseytlin [61] as a 2-dimensional σ-model with target space the supercoset

G/H0 ≡
PSU(2, 2|4)

SO(4, 1)× SO(5)
. (3.1)

– 7 –
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We follow the Metsaev-Tseytlin’s notation, where the psu(2, 2|4) superalgebra genera-

tors are

Pâ , Jab , Ja′b′ , Qαα′I , (3.2)

and where the indices run as follows

â, b̂, ĉ, . . . = 0, . . . , 9 AdS5×S5 tangent space indices

a, b, c, . . . = 0, . . . , 4 AdS5 tangent space indices

a′, b′, c′, . . . = 5, . . . , 9 S5 tangent space indices

α, β, γ, . . . = 1, . . . , 4 AdS5 spinor indices

α′, β′, γ′, . . . = 1, . . . , 4 S5 spinor indices

I, J,K, . . . = 1, 2 N = 2 supersymmetry indices

We use the compact notation for the rotation generators Jâb̂, where the constraint Jaa′ = 0

is imposed. We also denote collectively α̂ = (α, α′). The Z4 outer automorphism of

psu(2, 2|4) induces the decomposition

psu(2, 2|4) =
(0)

h⊕
(1)

h⊕
(2)

h⊕
(3)

h ,
(0)

h = span{Jâb̂} ,
(2)

h = span{Pâ} ,
(1)

h = span{Qαα′ 1} ,
(3)

h = span{Qαα′ 2} . (3.3)

The left-invariant Maurer-Cartan 1-forms are given by

A = LATA = LâPâ +
1

2
Lâb̂Jâb̂ + Lαα

′ IQαα′ I , (3.4)

where one must impose that Laa
′

= 0, as a consequence of Jaa′ = 0. The psu(2, 2|4)

superalgebra commutation relations are:

[Pa, Pb] = Jab

[Pa′ , Pb′ ] = −Ja′b′
[Pâ, Jb̂ĉ] = ηâb̂Pĉ − ηâĉPb̂

[Jâb̂, Jĉd̂] = 2ηĉ[b̂Jâ]d̂ − 2ηd̂[b̂Jâ]ĉ

[QI , Pâ] = − i
2
εIJQJΓâ

{QI , QJ} = −2iδIJCΓâPâ + εIJCΓâb̂Jâb̂

[QI , Jâb̂] = −1

2
QIΓâb̂ (3.5)

The AdS5×S5 action is the following

SAdS5×S5 = −1

2

∫
∂M3

d2σ
√
|h|hµνLâµLb̂νηâb̂ − i

∫
M3

(τ3)IJ L̄
I ∧ LâΓâ ∧ LJ , (3.6)

where τ3 is the third Pauli matrix. Having set the notation for the AdS5×S5 σ-model, now

we shall use the Lie algebra expansion to describe its dynamic in various regimes. The

regimes considered in this paper are the flat space, BMN and non-relativistic (Newton-

Hooke and Galilei).
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3.1 The flat space case

As pointed out in [61], from the AdS5×S5 superstring action one can recover the flat space

action given in [62]. This is performed by taking the common radius of AdS5 and S5 to be

large such that (a subalgebra of) the N = 2, D = 10 Poincaré superalgebra is obtained as

an İnönü-Wigner contraction of the psu(2, 2|4) superalgebra. However, the two-subspaces

decomposition of psu(2, 2|4) as described in section 2.2 is not useful in this case, but we

need the following three-subspaces decomposition3

psu(2, 2|4) = V0 ⊕ V1 ⊕ V2 , (3.7)

where

V0 = span{Jâb̂} , V1 = span{Qαα′ I} , V2 = span{Pâ} . (3.8)

A specific analysis of this case leads to the following expansion

Jâb̂ =

N0∑
k=0, k even

λk
(k)

Jâb̂ =
(0)

Jâb̂ + λ2
(2)

Jâb̂ + . . . , (3.9a)

Qαα′ I =

N1∑
k=1, k odd

λk
(k)

Qαα′ I = λ
(1)

Qαα′ I + λ3
(3)

Qαα′ I + . . . , (3.9b)

Pâ =

N2∑
k=2, k even

λk
(k)

Pâ = λ2
(2)

Pâ + λ4
(4)

Pâ + . . . , (3.9c)

where N0, N1 and N2 are even, odd and even natural numbers respectively. The expanded

algebra is denoted by psu(2, 2|4)(N0, N1, N2) and there are four different allowed trunca-

tion conditions,

N1 = N0 − 1 , and N2 = N0 − 2 ,

N1 = N0 − 1 , and N2 = N0 ,

N1 = N0 + 1 , and N2 = N0 , (3.10)

N1 = N0 + 1 , and N2 = N0 + 2 .

The commutation relations between the generators of the algebra psu(2, 2|4)(N0, N1, N2)

are inherited from the commutation relations of psu(2, 2|4) and share the same structure

as in eq. (2.19). The commutation rules for the lower level algebra, i.e. psu(2, 2|4)(0, 1, 2),

which corresponds to the generalized İnönü-Wigner contraction, are listed in section B.2.

In order to derive the action describing the flat space regime studied in [62] we consider

the truncation at (N0, N1, N2) = (0, 1, 2), i.e.

Jâb̂ =
(0)

Jâb̂ , QI = λ
(1)

QI , Pâ = λ2
(2)

Pâ . (3.11)

3The relation between the expansion parameter λ and the common radius R is λ2 = R.
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By doing this, the psu(2, 2|4) superalgebra contracts to a subalgebra of the N = 2, D = 10

Poincaré superalgebra.4 The first non-zero action is

(4)

S = −1

2

∫
∂M3

d2σ
√
|h|hµν

(2)

Lâµ
(2)

Lb̂νηâb̂ − i
∫
M3

(τ3)IJ
(1)

L̄I ∧
(2)

LâΓâ ∧
(1)

LJ ≡ Sflat space , (3.12)

which is the flat space action constructed by Henneaux-Mezincescu [62]. So far we discussed

the lowest order expansion, which is sufficient to reproduce the flat space action. However

expansions at higher orders are interesting as well, and would produce different actions

with different symmetries. It is the main part of this paper to show later that integrability

and the symmetries of these higher order actions are under control.

3.2 The Berenstein-Maldacena-Nastase (BMN) case

In the BMN limit, the spacetime geometry seen by the fast spinning point-like string

changes from AdS5×S5 to the pp-wave background. The action in the pp-wave background

has been constructed by Metsaev [63], and the contraction that leads from the psu(2, 2|4)

superalgera to the pp-wave isometry superalgebra has been found by Hatsuda, Kamimura

and Sakaguchi [64].

The reader should refer to [64] for the notation used in this section. Here the space

indices run as î, ĵ, . . . = 1, . . . , 8, while +,− indicate the light-cone directions. The gener-

ator P ∗
î

is defined as P ∗
î
≡ J0̂i if î = 1, . . . , 4, or as P ∗

î
≡ J9̂i if î = 5, . . . , 8, and Q±,I are

the projected supercharges defined by [64]

Q±,I =
1

2
(1± Γ9Γ0)QI . (3.13)

The commutation relations are listed in section B.5. We decompose the psu(2, 2|4) super-

algera as5

psu(2, 2|4) = V0 ⊕ V1 ⊕ V2 , (3.14)

where

V0 = span{Jîĵ , P−, Q−,I} , V1 = span{Pî, P
∗
î
, Q+,I} , V2 = span{P+} . (3.15)

The decomposition above induces the following expansion of the generators

Jîĵ =

N0∑
k=0, k even

λk
(k)

Jîĵ =
(0)

Jîĵ + λ2
(2)

Jîĵ + . . . , (3.16a)

P− =

N0∑
k=0, k even

λk
(k)

P− =
(0)

P− + λ2
(2)

P− + . . . , (3.16b)

4We specify that this is only a subalgebra because generators of the type Jaa′ are absent in psu(2, 2|4).

However, as it was shown in its construction in [62], the action (3.12) has global symmetry the full N =

2, D = 10 Poincaré superalgebra.
5The relation between the expansion parameter λ and the contraction parameter Ω in [64] is λ = Ω−1.
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Q−,I =

N0∑
k=0, k even

λk
(k)

Q−,I =
(0)

Q−,I + λ2
(2)

Q−,I + . . . , (3.16c)

Pî =

N1∑
k=1, k odd

λk
(k)

Pî = λ
(1)

Pî + λ3
(3)

Pî + . . . , (3.16d)

P ∗
î

=

N1∑
k=1, k odd

λk
(k)

P ∗
î

= λ
(1)

P ∗
î

+ λ3
(3)

P ∗
î

+ . . . , (3.16e)

Q+,I =

N1∑
k=1, k odd

λk
(k)

Q+,I = λ
(1)

Q+,I + λ3
(3)

Q+,I + . . . , (3.16f)

P+ =

N2∑
k=2, k even

λk
(k)

P+ = λ2
(2)

P+ + λ4
(4)

P+ + . . . , (3.16g)

with truncation conditions

N1 = N0 − 1 , and N2 = N0 ,

N1 = N0 + 1 , and N2 = N0 , (3.17)

N1 = N0 + 1 , and N2 = N0 + 2 .

By truncating at (N0, N1, N2) = (0, 1, 2), the psu(2, 2|4) superalgebra contracts to the

pp-wave isometry superalgebra. The first non-zero action is

(2)

S = −1

2

∫
∂M3

d2σ
√
|h|hµν

(
2
(2)

L+
µ

(0)

L−ν +
(1)

L î
µ

(1)

L ĵ
ν δîĵ

)
− i
∫
M3

(τ3)IJ

(
(0)

L̄−,I ∧
(2)

L+Γ+ ∧
(0)

L−,J

+
(1)

L̄+,I ∧
(0)

L−Γ− ∧
(1)

L+,J +
(1)

L̄+,I ∧
(1)

L îΓî ∧
(0)

L−,J +
(0)

L̄−,I ∧
(1)

L îΓî ∧
(1)

L+,J

)
≡ SBMN , (3.18)

and by recalling the properties of the light-cone projectors, the Wess-Zumino term of

eq. (3.18) can be recombined into the form (τ)IJ L̄
I ∧ LâΓâ ∧ LJ , which is in agreement

with Metsaev [63]. Also in this case, one can consider higher order expansions which go

beyond the contraction.

3.3 The non-relativistic cases

3.3.1 The Newton-Hooke case

A non-relativistic limit of the AdS5×S5 action has been taken in [27]. In our approach we

take an expansion procedure instead of a limit, and at the end of this section we comment

how we reproduce the result of [27].

To deal with the non-relativistic cases which will be discussed in this paper, we de-

compose the AdS5 index as a = (a, a) where a = 0, 1 and a = 2, 3, 4. a are longitudinal

indices, a transverse indices with respect to the string worldsheet.6 In this section we

6The name longitudinal and transverse is defined in the context of non-relativistic theory by the fact

that in this regime the space is foliated [26, 30, 33].
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are interested in the Newton-Hooke non-relativistic case, which is characterised by the

fact that the subspace decomposition of psu(2, 2|4) defines an expansion such that at the

lowest level one gets the İnönü-Wigner contraction that leads from super-AdS algebra to

super-Newton-Hooke algebra. To do this, we need to project the supercharges as

Q±,I = (Π̂±)IJQJ , (3.19)

where

(Π̂±)IJ =
1

2
[1± Γ0Γ1 ⊗ (τ3)IJ ] . (3.20)

Next, we decompose the psu(2, 2|4) superalgebra as7

psu(2, 2|4) = V0 ⊕ V1 ,

where

V0 = span{Jab, Jab, Ja′b′ , Pa, Q+,I} ,
V1 = span{Jab, Pa, Pa′ , Q−,I} . (3.21)

The expansion follows the general rules described in subsubsection 2.2.1. We perform the

truncation at (N0, N1) = (2, 1), i.e.

Jab =
(0)

Jab + λ2
(2)

Jab ,

Jab =
(0)

Jab + λ2
(2)

Jab ,

Ja′b′ =
(0)

Ja′b′ + λ2
(2)

Ja′b′ ,

Pa =
(0)

Pa + λ2
(2)

Pa ,

Q+,I =
(0)

Q+,I + λ2
(2)

Q+,I ,

Jab = λ
(1)

Jab ,

Pa = λ
(1)

Pa ,

Pa′ = λ
(1)

Pa′ ,

Q−,I = λ
(1)

Q−,I . (3.22)

By expanding, the psu(2, 2|4) superalgebra becomes an extension of the stringy Newton-

Hooke superalgebra. The first non-zero action is

(0)

S = −1

2

∫
∂M3

d2σ
√
|h|hµν

(0)

Laµ
(0)

Lbνηab − i
∫
M3

(τ3)IJ
(0)

L̄+,I ∧
(0)

LaΓa ∧
(0)

L+,J ≡ Sdiv
non-rel , (3.23)

which reproduces the superficially divergent term of [27], while the first non-zero action

associated with a non-zero power of λ is

(2)

S = −1

2

∫
∂M3

d2σ
√
|h|hµν

(
2
(2)

Laµ
(0)

Lbνηab +
(1)

Laµ
(1)

Lbνδab +
(1)

La
′
µ

(1)

Lb
′
ν δa′b′

)
− i
∫
M3

(τ3)IJ

(
(0)

L̄+,I ∧
(2)

LaΓa ∧
(0)

L+,J +
(1)

L̄−,I ∧
(0)

LaΓa ∧
(1)

L−,J + 2
(2)

L̄+,I ∧
(0)

LaΓa ∧
(0)

L+,J

+ 2
(1)

L̄−,I ∧
(1)

LaΓa ∧
(0)

L+,J + 2
(1)

L̄−,I ∧
(1)

La
′
Γa′ ∧

(0)

L+,J

)
≡ Sfinite

non-rel , (3.24)

7In this case, the expansion parameter λ cannot be identified straightforwardly with the expansion

parameter ω in [27], since in the method proposed in this paper negative powers of λ are not considered.

However the actions are related by a global rescaling factor.
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which matches the finite term of [27], up to the term
(2)

L̄+,I ∧
(0)

LaΓa ∧
(0)

L+,J . The comparison

with [27] should only be made before any limit is taken (i.e. one can make a comparison with

equations (4.2) to (4.5) therein, up to the power shift of λ). The global symmetry appearing

in [27] is the stringy Newton-Hooke superalgebra, while in our case the actions eq. (3.23)

and eq. (3.24) are invariant under the extended stringy Newton-Hooke superalgebra, where

in eq. (3.24) it acts fully, while in eq. (3.23) in part trivially. This is a reflection of the fact

that in [27] the fields are rescaled by a parameter ω, which in turns implies an expansion of

the Maurer-Cartan 1-forms. However the expanded terms in the Maurer-Cartan equations

do not gain the meaning of coming from new algebra generators, which is on the other hand

the main point of the Lie algebra expansion. For this reason our model has 12 bosonic

fields, while in [27] there are only 10. However we expect that one can truncate our theory

to a subsector, where for instance in the bosonic sector the two fields associated with
(2)

Pa

are identified with the two fields associated with
(0)

Pa. In this way we expect that the global

symmetry can also be reduced to the stringy Newton-Hooke superalgebra.

3.3.2 The Galilei case

In this section we propose the Galilean AdS5×S5 action by using the method of Lie algebra

expansion. This case can be obtained in two different ways, one is to start from the

Newton-Hooke case and perform a large radius expansion, the other one is to start from

the large radius expansion and perform a non-relativistic expansion. We remark that the

commutativity of the two expansions are meant at the level of the contraction, while for

higher orders, some attention should be paid in comparing the two procedures. Here we

follow the pattern from super-Poincaré to super-Galilei. The decomposition to consider is

the same leading from psu(2, 2|4) to super-Newton-Hooke, i.e.

Super-Poincaré = V0 ⊕ V1

where

V0 = span{Jab, Jab, Ja′b′ , Pa, Q+,I} ,
V1 = span{Jab, Pa, Pa′ , Q−,I} . (3.25)

The projected supercharges Q±,I are defined as in eq. (3.19) and the expansion follows the

same rules of eq. (3.22). Performing a truncation at (N0, N1) = (2, 1), the super-Poincaré

algebra becomes an extension of the super-Galilei algebra. The lowest order action is

(0)

S = −1

2

∫
∂M3

d2σ
√
|h|hµν

(0)

Laµ
(0)

Lbνηab − i
∫
M3

(τ3)IJ
(0)

L̄+,I ∧
(0)

LaΓa ∧
(0)

L+,J , (3.26)

and at the next order, we have

(2)

S = −1

2

∫
∂M3

d2σ
√
|h|hµν

(
2
(2)

Laµ
(0)

Lbνηab +
(1)

Laµ
(1)

Lbνδab +
(1)

La
′
µ

(1)

Lb
′
ν δa′b′

)
− i
∫
M3

(τ3)IJ

(
(0)

L̄+,I ∧
(2)

LaΓa ∧
(0)

L+,J +
(1)

L̄−,I ∧
(0)

LaΓa ∧
(1)

L−,J + 2
(2)

L̄+,I ∧
(0)

LaΓa ∧
(0)

L+,J

+ 2
(1)

L̄−,I ∧
(1)

LaΓa ∧
(0)

L+,J + 2
(1)

L̄−,I ∧
(1)

La
′
Γa′ ∧

(0)

L+,J

)
. (3.27)
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We remark that these actions look formally the same as the ones in the super-Newton-

Hooke case, although the global symmetry is different. Higher order truncations of the

non-relativistic cases here discussed could also be considered.

4 Lie algebra expansion and integrability

In this section we study the integrability properties of the σ models associated with the

expanded algebras. We define the conditions under which the final model is integrable and

derive the expression for the corresponding Lax connection.

Consider a string σ-model action S given in (2.9) expressed in terms of the fields,

αa, where a is a generic multi-index (e.g. the Z4 grading, the generator’s label, or both).

Denoting the equations of motion by Ea, we write the variation of the action as

δS = Eaδαa , (4.1)

where the sum over a is understood. We denote the Lax connection by

L = k aAa + k
′
a ?2 Aa , (4.2)

where k a, k
′
a are some coefficients, which in general are functions of a spectral parameter.

We have, by initial assumption, that the equations of motion are equivalent to the zero

curvature condition for the Lax pair, i.e.

Z = dL − 1

2
L ∧L = 0 . (4.3)

The equivalence has to be understood between the set of equations of motion, with index

a, and the set of zero curvature equations organized with the same index, i.e.{
Ea = 0

}
⇐⇒ Z = 0 . (4.4)

Now we can expand both sides and the equivalence should continue to hold, furthermore

it should hold order by order, i.e.{(k)

Ea = 0
}
⇐⇒

(k)

Z = 0 , (4.5)

namely the set of equations of motion at order k in the expansion parameter is equivalent to

the set of conditions coming from the zero curvature equation at the same order. However,

the expansion is applied at the level of the action, and not at the level of the equations of

motion. This means that in the variation of a certain expanded action
(n)

S it appears both the

expansion of the equations of motion and the order in λ of the associated field. Moreover,

it can be checked explicitly that the equations of motion for the
(n)

S action obtained from

the expansion of (2.9) coincides with the equations of motion for (2.9) expanded up to the

n-th order. Therefore we have that

δS =

∞∑
k=0

λk
( ∑
i+j=k

(i)

Eaδ(j)αa
)

= 0 , (4.6)
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Order Variation of the Action Zero Curvature Equations

0
(0)

Eaδ
(0)
αa = 0 va

(0)

Za = 0

1
((1)

Eaδ
(0)
αa +

(0)

Eaδ
(1)
αa
)

= 0 va
(1)

Za = 0

2
((0)

Eaδ
(2)
αa +

(1)

Eaδ
(1)
αa +

(2)

Eaδ
(0)
αa
)

= 0 va
(2)

Za = 0

...
...

n

(∑n
i=0

(i)

Eaδ
(n−i)

αa
)

= 0 va
(n)

Za = 0

Table 1. Comparison between the variation of the action and the zero curvature equations order

by order in λ.

which must be compared with the expansion of the zero curvature equation

∞∑
k=0

λkva
(k)

Za = 0 , (4.7)

where, in view of the expansion to not carry free indices, we contracted the zero curvature

condition with a set of orthonormal vectors va, which has just the meaning that any

a components of Z should satisfy the equation separately. In order to study the general

behaviour, it is useful to write down explicitly all terms entering in the expansions above, i.e.

(0)

Eaδ(0)αa + λ
((1)

Eaδ(0)αa +
(0)

Eaδ(1)αa
)

+ λ2
((0)

Eaδ(2)αa +
(1)

Eaδ(1)αa +
(2)

Eaδ(0)αa
)

+ . . . = 0 , (4.8)

and

va
(0)

Za + λva
(1)

Za + λ2va
(2)

Za + . . . = 0 . (4.9)

Comparing order by order we obtain table 1.

By using the equivalence eq. (4.5), we recognise that at zeroth order the set of equations
(0)

Ea = 0 is equivalent to the set of equations
(0)

Za = 0. Moving at first order, we recognise

that the equations of motion for
(1)
αa are equivalent to the zeroth order equations

(0)

Za = 0,

while the equations of motion for
(0)
αa are equivalent to the zero curvature condition at first

order,
(1)

Za = 0. If we consider now the equations of motion for the second order action then

we find that they are equivalent to the zero curvature equations up to the second order.

This is a general recursive relation. Thus we learn that considering the expanded action

at order n,
(n)

S, the equations of motion for this action are equivalent to the zero curvature

condition up to that order.

This argument suggests us that the initial Lax connection expanded up to order n

is a good candidate Lax connection for the action
(n)

S. However in order to apply the

general correspondence above to our models there are some subtleties that we have to

consider. In particular it could happen that, due to the specific expansion or truncation,
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some fields, while appearing in the zero curvature equations, may not appear in the action

and thus we loose the corresponding equations of motion. This implies that, in these

cases, we cannot consider all the zero curvature equations up to order n, but we need to

refine the correspondence by imposing further conditions. In order to have an equivalence

between the zero curvature equations and the equations of motion we need to make sure

that the equations of motion coming from the action contain the same set of Maurer

Cartan form components appearing in the Lax connection. Considering a truncated algebra

g(N0, N1, . . .) the associated Lax connection is obtained by expanding the original Lax

connection up to the order of truncation. This implies that all the currents appearing

in the algebra will also appear in it and in the zero curvature equations, thus in order

to preserve the equivalence with the equations of motion, after the expansion, we should

require the same to happen in the n-th order term Lagrangian.8 We are going to inspect

how this request will put some constraints on the possible choices of n in relation with the

given truncation N0, N1, . . ..

There are two possible mechanisms that could affect the correspondence between equa-

tions of motions and zero curvature equations, the first due to a shift in the lowest order of

the expansion, the second due to the truncation. In order to understand them and derive

the opportune conditions let us consider a simplified model, a Lagrangian term given by

two generic currents, A and B,

L = AB , (4.10)

where contractions of the indices carried by the two currents, with opportune tensors, are

understood; these will not play any role in this context. All the cases we are dealing with

in the present work fall in the following type of expansion

A = λnA

(nA)

A+ λnA+1
(nA+1)

A+ . . . (4.11a)

B = λnB

(nB)

B + λnB+1
(nB+1)

B + . . . , (4.11b)

where nA, nB are the lowest order expansion for currents A and B respectively and are

non-negative integers. We can plug the expansion in the Lagrangian obtaining

L = λnA+nB

(nA)

A
(nB)

B + λnA+nB+1
( (nA+1)

A
(nB)

B +
(nA)

A
(nB+1)

B
)

+ . . . . (4.12)

The first mechanism spoiling the equivalence could be already understood looking at the

lowest order term, at order nA+nB. This contains only the currents
(nA)

A and
(nB)

B, thus if we have

considered the Lax connection up to this order, as above, we would have naively included

in it all the currents up to the order nA+nB, but this means that if nB > 1 we would have

considered also
(nA+1)

A. This current clearly cannot be present in the Lax connection associated

with the lowest order term in the action since this does not produce the corresponding

8We remark that the quadratic term in zero curvature equation could not produce term of order higher

than the truncation order, since commutation relations between expanded generators whose sum of expan-

sion order exceeds the truncation order vanish identically.
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equation of motion. Thus we have a shift between the order of the Lagrangian term we

are considering and the expansion of the zero curvature equations. Our strategy to take

care of this problem is, rather than speaking about zero curvature equation at order n, to

speak about zero curvature equations associated with the truncated algebra g(N0, N1, . . .)

and then require that all the fields of the algebra appear in the n-th order Lagrangian.

Thus instead of starting from the action and then build the Lax connection we start from

the Lax connection associated with a truncated algebra g(N0, N1, . . .), i.e. obtained by

expanding the original Lax connection L up to the truncation orders, denoted with

L (N0, N1, . . .) , (4.13)

and then ask ourselves if there is an action term in the expansion of the Lagrangian whose

equations of motion are equivalent to the zero curvature equation of L (N0, N1, . . .). In

particular this means to investigate if there is an action term at a certain order n containing

all the currents appearing in the Lax connection L (N0, N1, . . .). To do this we could

consider the n = m + nA + nB order term, where m is a generic natural number, in the

Lagrangian above,

(m+nA+nB)

L =
(m+nA)

A
(nB)

B +
(m+nA−1)

A
(nB+1)

B + . . .+
(nA)

A
(nB+m)

B . (4.14)

This term contains the A and B currents at order iA and iB respectively, with

nA 6 iA 6 n− nB (4.15a)

nB 6 iB 6 n− nA . (4.15b)

The second mechanism that could affect our correspondence is due to the truncation of the

infinite expansion. Truncating the expansion of A and B at orders NA and NB respectively

then if NA > n−nB the current A at order NA cannot appear eq. (4.14). The same is true

for the current B at order NB if NB > n − nA and depending on the specific truncation

more terms could not be present in the Lagrangian term while being part of the truncated

algebra. In particular the set of terms appearing in eq. (4.14) after the truncation is defined

by the following intervals

max{nA, n−NB} 6 iA 6 min{n− nB, NA} (4.16a)

max{nB, n−NA} 6 iB 6 min{n− nA, NB} . (4.16b)

A missing term in the Lagrangian clearly gives a problem in the correspondence between

equations of motion and zero curvature equations since, while not present in the former, it

will continue to appear in the latter. Thus we have to impose that all the currents in the

algebra are present in the n-th order Lagrangian term after the truncation. This amount

to require

max{nA, n−NB} = nA

min{n− nB, NA} = NA

max{nB, n−NA} = nB

min{n− nA, NB} = NB ,
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corresponding to following conditions

nA +NB 6 n 6 NA + nB (4.17a)

nB +NA 6 n 6 NB + nA , (4.17b)

were the first condition comes from the A current terms and the last from the B current

terms. In particular the upper bounds of the conditions eq. (4.17) are equivalent to the

condition that the n-th order in the expansion of the Lagrangian is not modified by the

truncation. The set of conditions eq. (4.17) could also be expressed as

max{nA +NB, nB +NA} 6 n 6 min{NA + nB, NB + nA} , (4.18)

which in turns is equivalent to

n = nA +NB = nB +NA . (4.19)

We note that these conditions not only could limit the possible value of n but also the

possible truncations of the algebra that we could consider. The form of these conditions

depends on the type of Lagrangian and expansion that we are considering, thus they

should be evaluated separately in all the models we are studying. Let us just remark that

the same argument could be also applied to action terms, like the Wess-Zumino term,

containing more that two currents just grouping them, in turn, into two sets and repeating

the analysis on all the possible sets. The final condition will be given by the intersection

of all the conditions obtained in this way.

By applying the argument just exposed to the specific cases we have considered in the

present work we find that the conditions, analogous to eq. (4.18), that must hold between

the n-th order term and the truncation orders N0, N1, . . . to guarantee integrability for

the Flat space, BMN and non-relativistic regimes are the following

Flat Space

max{N2 + 2, N1 + 3} 6n 6 N2 + 2 (4.20)

BMN

max{N0 + 2, N1 + 1, N2} 6n 6 min{N0 + 2, N1 + 1, N2} (4.21)

Newton-Hooke/Galilei

max{N0, N1 + 1} 6n 6 N0 . (4.22)

These conditions ensure that the equations of motion coming from the n-th order term of

the expanded action are equivalent to the zero curvature equations of the Lax connection

obtained by expanding the initial Lax connection up to the truncation orders,

L (N0, N1, . . .) . (4.23)
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Case Integrability Condition Algebra

Flat max{N2 + 2, N1 + 3} 6 n 6 N2 + 2
psu(2, 2|4)(n− 2, n− 3, n− 2)

psu(2, 2|4)(n− 4, n− 3, n− 2)

BMN max{N0 + 2, N1 + 1, N2} 6 n 6 min{N0 + 2, N1 + 1, N2} psu(2, 2|4)(n− 2, n− 1, n)

Newton-Hooke/

Galilei
max{N0, N1 + 1} 6 n 6 N0 psu(2, 2|4)(n, n− 1)

Table 2. We show, in the different cases considered in this work, for an action term at n-th order

in the expansion, the conditions that should hold between n and the truncation orders N0, N1, . . .

to ensure integrability. In the last column we list the possible truncated algebras fulfilling these

conditions. It is immediate to see that some truncations are ruled out by the conditions.

Case Truncation Integrability Condition

N1 = N0 − 1 and N2 = N0 − 2 not integrable

N1 = N0 − 1 and N2 = N0 n = N0 + 2

N1 = N0 + 1 and N2 = N0 not integrable
Flat Space

N1 = N0 + 1 and N2 = N0 + 2 n = N0 + 4

N1 = N0 − 1 and N2 = N0 not integrable

N1 = N0 + 1 and N2 = N0 not integrableBMN

N1 = N0 + 1 and N2 = N0 + 2 n = N0 + 2

N1 = N0 − 1 n = N0
Newton-Hooke/Galilei

N1 = N0 + 1 not integrable

Table 3. Relations between n and the truncation to be satisfied in order to have an integrable n-th

order action. We remark that some truncation are ruled out by the request of integrabilty.

The results of the analysis for the different regimes we are investigating in the present work

are summarized in table 2 and table 3. In table 2, for a given n-th order action term, we

show the conditions that should be satisfied to preserve integrability and the truncated

algebras satisfying these conditions. These algebras are the global symmetries of the n-th

order Lagrangian term. In table 3 we show how the truncations are affected by the request

of integrability of the n-th order action term. In particular for any possible truncation we

write if this could give an integrable model and, eventually, which is the condition that the

request of integrability poses between the order n-th and the truncation order N0.

In building an integrable expanded action and its associated Lax connection there are

two possible approaches. One could start with the algebra g(N0, N1, . . .), produced via

Lie algebra expansion, then the Lax connection is fully defined, and one may wonder if

there is an expanded action term satisfying the integrability relation. On the other hand

one could also start from an n-th order action term picking it from the infinite expansion

of the algebra, since the integrability condition implies that this action term will not be

modified by the truncation, and then look for the truncated algebra g(N0, N1, . . .) fulfilling

the integrability conditions. We note also that, considering an n-th order Lagrangian term,

the algebras fulfilling the integrability condition have a fully non-trival action on it.
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Having discussed the integrability of the generic expanded action, in the next subsec-

tions we give some explicit examples of Lax connection for expanded action, listing them

in the different regimes studied in the previous section.

4.1 Integrability of truncated actions

4.1.1 The flat space case

The action
(4)

S in eq. (3.12) is obtained from the algebra truncation at (N0, N1, N2) = (0, 1, 2),

and therefore the condition eq. (4.20) required for integrability is indeed satisfied. In the

following notation for the Maurer-Cartan 1-forms

Pµ = LâµPâ , QIµ = LIµQI , Jµ = Lâb̂µ Jâb̂ , (4.24)

where the index I is not summed over, the Lax pair for the action
(4)

S in eq. (3.12) is

Lµ =
(0)

Lµ +
(1)

Lµ +
(2)

Lµ , (4.25)

where

(0)

Lµ = `0
(0)

Jµ ,
(1)

Lµ = `3
(1)

Q1
µ + `4

(1)

Q2
µ , (4.26)

(2)

Lµ = `1
(2)

Pµ + `2
1√
|h|
hµνε

νρ
(2)

Pρ .

4.1.2 The BMN case

With the truncation at (N0, N1, N2) = (0, 1, 2), the action
(2)

S in eq. (3.18) is integrable,

since eq. (4.21) is satisfied. In the notation

P±µ = L±µP± , P̃µ = LîµPî , Q±,Iµ = L±,Iµ Q±,I , J̃µ = Lîĵµ Jîĵ , G∗µ = L∗ îµ P
∗
î
,

(4.27)

the Lax pair for the action
(2)

S in eq. (3.18) is

Lµ =
(0)

Lµ +
(1)

Lµ +
(2)

Lµ , (4.28)

where

(0)

Lµ = `0

(0)

J̃µ + `1
(0)

P−µ + `2
1√
|h|
hµνε

νρ
(0)

P−ρ + `3
(0)

Q−,1µ + `4
(0)

Q−,2µ ,

(1)

Lµ = `0
(1)

G∗µ + `1

(1)

P̃µ + `2
1√
|h|
hµνε

νρ
(1)

P̃ρ + `3
(1)

Q+,1
µ + `4

(1)

Q+,2
µ , (4.29)

(2)

Lµ = `1
(2)

P+
µ + `2

1√
|h|
hµνε

νρ
(2)

P+
ρ .
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4.1.3 The Newton-Hooke and Galilei cases

The action
(0)

S in eq. (3.23) is integrable since the condition eq. (4.22) is satisfied by the

algebra psu(2, 2|4)(0,−1); this is just the subalgebra

V0 = span{Jab, Jab, Ja′b′ , Pa, Q+,I} . (4.30)

By introducing the notation

P‖µ = LaµPa , P⊥µ = LaµPa , P ′µ = La
′
µ Pa′ , Q±,Iµ = L±,Iµ Q±,I ,

J ‖µ = Labµ Jab , J ⊥µ = Labµ Jab , J ′µ = La
′b′
µ Ja′b′ Gµ = Labµ Jab , (4.31)

the Lax pair for the action
(0)

S is

Lµ =
(0)

Lµ = `0(
(0)

J ‖µ +
(0)

J ⊥µ +
(0)

J ′µ ) + `1
(0)

P‖µ + `2
1√
|h|
hµνε

νρ
(0)

P‖ρ + `3
(0)

Q+,1
µ + `4

(0)

Q+,2
µ . (4.32)

With the truncation at (N0, N1) = (2, 1), the action
(2)

S in eq. (3.24) satisfies the integrability

condition in eq. (4.22), and its Lax pair is

Lµ =
(0)

Lµ +
(1)

Lµ +
(2)

Lµ , (4.33)

where
(0)

Lµ is the same as in eq. (4.32), and

(1)

Lµ = `0
(1)

Gµ + `1(
(1)

P⊥µ +
(1)

P ′µ) + `2
1√
|h|
hµνε

νρ(
(1)

P⊥ρ +
(1)

P ′ρ) + `3
(1)

Q−,1µ + `4
(1)

Q−,2µ ,

(2)

Lµ = `0(
(2)

J ‖µ +
(2)

J ⊥µ +
(2)

J ′µ ) + `1
(2)

P‖µ + `2
1√
|h|
hµνε

νρ
(2)

P‖ρ + `3
(2)

Q+,1
µ + `4

(2)

Q+,2
µ .

The same formulas presented above in the context of the Newton-Hooke case also applies

for the Galilei case.

5 Conclusions

In this paper, the Lie algebra expansion has been applied to obtain new σ-models from

a given one. The starting point is a generic 2d integrable string σ-model with a coset

target space G/H. The isometry algebra g has been expanded by using the method of the

Lie algebra expansion. This in turns implies an expansion of the Maurer-Cartan 1-forms

and therefore an expansion of the action. The expanded Lie algebra contains in general a

greater number of generators if compared with the initial one. In our approach we associate

with each generator of the new Lie algebra an independent field. This implies that the new

σ-model will in general have a greater number of fields.

In the context of the AdS5×S5 σ-model, we reproduced and extended in a system-

atic way the action and the symmetries of some known regimes. In the flat space and

BMN cases, the actions known in the literature are obtained by considering contractions

of psu(2, 2|4). This is reproduced as a zero level expansion in our formalism, but the
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advantage of using the Lie algebra expansion method is that one has a complete control

on symmetries and truncations also for higher order. The non-relativistic regimes of the

AdS5×S5 superstring have also been explored. We reproduced the action terms in equa-

tions (4.2) to (4.5) of [27], although in our case the global symmetry is an extension of

the stringy Newton-Hooke superalgebra, instead of the stringy Newton-Hooke superalge-

bra of [27]. We commented on a possible truncation to a subsector of our model, which

potentially connects our result to [27].

The main result of this paper is about the classical integrability of the new σ-model.

We gave a criterion for the algebra truncation such that the equations of motion of the

actions for the new σ-model are equivalent to the vanishing curvature condition of a Lax

connection. The strategy that we followed was to insert a given truncated expansion of

the generators into the Lax pair of the initial σ-model, and to look for which n-th order

expanded actions possess the equations of motion equivalent to the vanishing curvature of

the Lax pair so constructed. This brings a set of conditions between the truncation orders

N0, N1, . . . and the order n of the expanded integrable action.

In the context of expansions of Chern-Simons [37, 43] or Einstein-Hilbert [42] actions,

the no-missing terms relation guarantees that any gauge symmetry of the initial action is

preserved also for the expanded action. The 2d σ-model action considered in this paper

possesses a fermionic local symmetry, the so-called κ-symmetry, however this type of argu-

ment cannot be applied. The main reason is because the world-sheet metric hµν does not

expand, but its k-symmetry variation does, since it depends on a Maurer-Cartan 1-form

and a fermionic current κµ. The κ-symmetry invariance condition of the initial action will

in general expand in powers of λ, however, in contrast to what happens in [37, 42, 43], it

is now not clear how to identify it as the κ-symmetry invariance of the n-order action for

the reason mentioned before.

We hope that this work can provoke new ideas for exploring other regimes of string

σ-models. For instance, studying the expansion around the contraction that leads from the

AdS superalgebra to the Caroll superalgebra is a way to investigate the ultra-relativistic

limit of the string σ-model. Beyond classical integrability, it would be interesting to explore

the quantum integrability property of these models. By this, we mean to find the R-matrix

invariant under e.g. these non- or ultra-relativistic algebras, such that it satisfies the Yang-

Baxter equation, braiding unitarity and crossing-symmetry, and ultimately, writing down

the Bethe ansatz by using the R-matrix so constructed.9

In this paper, we always expanded the string action written in terms of the Wess-

Zumino (WZ) 3-form, but we did not expand the equivalent one written in terms of the WZ

2-form. The reason for this is because the equations of motion for the generic expanded

action
(n)

S, obtained from an initial action S written in terms of the WZ 2-form, do not

coincide with the initial equations of motion for S expanded up to the n-th order. On the

other hand, this happens to be the case when the initial action S is written in terms of the

9This is a program that has not been done in AdS5×S5 yet, since only the S-matrix invariant under

the residual centrally extended algebra su(2|2)2 has been found [65]. However this has been done for lower

dimensional integrable AdS σ-models, e.g. [66–69].
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WZ 3-form, and this is a necessary condition in order to apply the techniques presented in

this paper.

This issue has already been pointed out in [39], where they discuss that the algebra

contraction that leads from AdS5×S5 to the flat space makes the WZ 2-form disappearing

from the action, and this clearly affects the equations of motion. The authors propose

that instead of taking the usual algebra contraction that leads from psu(2, 2|4) to the

Poincaré superalgebra, one should take a generalised contraction, which was the first idea

of a Lie algebra expansion. In this way, one introduces an extra fermionic generator cubic

in λ which compensates the miss-matching order between the kinetic and the WZ 2-form

previously found when only contracting. Perhaps a generalisation of this trick allows to

apply the results of this paper also to a generic action written in terms of a WZ 2-form.

Finally, it is an interesting question whether the expanded σ-model is still describing

a string theory. The conditions that need to be checked are given in [59]. If the isometry

algebra of the initial σ-model has vanishing Killing form, then this will persist after the

expansion. Regarding the central charge condition, this should be evaluated case by case.
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A Conventions

We define products between Lie algebra valued 1-forms, A = AATA and B = BATA as

A ∧ B = (AA ∧BB) [TA, TB] (A.1a)

A ◦ B = (AA ∧BB) TATB (A.1b)

where AA ∧ BB = AAµB
B
ν dxµ ∧ dxν is the usual wedge product of differential forms. The

Pauli matrices are:

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
. (A.2)
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Levi-Civita symbols:

εµν : ετσ = −ετσ = +1 ,

εIJ : ε12 = ε12 = +1 . (A.3)

Gamma matrices γa and γa′ (associated with AdS5 and S5 respectively):

{γa, γb} = ηab = diag(−+ + + +) , {γa′ , γb′} = δa′b′ = diag(+ + + + +) . (A.4)

Spacetime gamma matrices Γâ:

Γa = γa ⊗ 1′4 ⊗ τ1 , Γa′ = 14 ⊗ γa′ ⊗ τ2 . (A.5)

The gamma matrices satisfy

C−1ΓâC = ΓTâ , (A.6)

where C is the charge conjugation matrix, which is taken to be C = iΓ0. This implies that

ΓT0 = +Γ0 , ΓTm = −Γm . (A.7)

The Majorana supercharges QI satisfy the Weyl condition

QI = QI
1 + Γ11

2
, Γ11 = Γ0123456789 = 14 ⊗ 1′4 ⊗ τ3 , (A.8)

B Algebras

In this section we summarise the lowest order expansions which lead to the algebras that

appeared through the paper. For the pp-wave algebra, we refer to [64].

B.1 Super AdS5×S5 algebra: psu(2, 2|4)

The starting point for all expansions considered in this paper is the psu(2, 2|4) superalgebra,

whose non zero commutation relations are

[Pa, Pb] = Jab

[Pa, Jbc] = 2ηa[bPc]

[QI , Pa] = − i
2
εIJQJγa

[QI , Jab] = −1

2
QIγab

[Pa′ , Pb′ ] = −Ja′b′
[Pa′ , Jb′c′ ] = 2ηa′[b′Pc′]

[QI , Pa′ ] =
1

2
εIJQJγa′

[QI , Ja′b′ ] = −1

2
QIγa′b′

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c

[Ja′b′ , Jc′d′ ] = 2ηc′[b′Ja′]d′ − 2ηd′[b′Ja′]c′

{Qαα′I , Qββ′J} = δIJ

[
− 2iCα′β′(Cγ

a)αβPa + 2Cαβ(C ′γa
′
)α′β′Pa′

]
+ εIJ

[
Cα′β′(Cγ

ab)αβJab − Cαβ(C ′γa
′b′)α′β′Ja′b′

]
(B.1)
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B.2 Super Poincaré algebra

By applying the decomposition eq. (3.9) to eq. (B.1), and by considering the lowest level

expansion, we get the following psu(2, 2|4)(0, 1, 2) superalgebra, which is a subalgebra of

the N = 2, D = 10 super Poincaré algebra.

[Pa, Jbc] = 2ηa[bPc]

[QI , Jab] = −1

2
QIγab

[Pa′ , Jb′c′ ] = 2ηa′[b′Pc′]

[QI , Ja′b′ ] = −1

2
QIγa′b′

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c

[Ja′b′ , Jc′d′ ] = 2ηc′[b′Ja′]d′ − 2ηd′[b′Ja′]c′

{Qαα′I , Qββ′J} = δIJ

[
− 2iCα′β′(Cγ

a)αβPa + 2Cαβ(C ′γa
′
)α′β′Pa′

]
(B.2)

B.3 Stringy super-Newton-Hooke algebra

By applying the decomposition eq. (3.21) to eq. (B.1), and by considering the lowest

level expansion, we get the following psu(2, 2|4)(0, 1) superalgebra, which contains as a

subalgebra the stringy Newton-Hooke superalgebra.

[Pa, Pb] = Jab

[Pa, Pb] = Jab

[Pa, Jbc] = 2ηa[bPc]

[Pa, Jbc] = 2ηa[bPc]

[Pa, Jbc] = ηabPc

[Pa′ , Jb′c′ ] = 2ηa′[b′Pc′]

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c

[Jab, Jcd] = 2ηc[bJa]d

[Jab, Jcd] = −2ηd[bJa]c

[Ja′b′ , Jc′d′ ] = 2ηc′[b′Ja′]d′ − 2ηd′[b′Ja′]c′

[Q+, Pa] =
1

2
Q−τ2γa

[Q±, Pa] =
1

2
Q±τ2γa

[Q±, Jab] = −1

2
Q±γab

[Q±, Jab] = −1

2
Q±γab

[Q+, Jab] = −1

2
Q−γab

[Q+, Pa′ ] = − i
2
Q−τ2γa′

[Q±, Ja′b′ ] = −1

2
Q±γa′b′

{Q+
αα′ , Q

+
ββ′} = 1

[
− 2iCα′β′(Cγ

aΠ±)αβPa

]
+ iτ2

[
Cα′β′(Cγ

abΠ±)αβJab + Cα′β′(Cγ
abΠ±)αβJab − (CΠ±)αβ(C ′γa

′b′)α′β′Ja′b′

]
{Q±αα′ , Q

∓
ββ′} = 1

[
− 2iCα′β′(Cγ

aΠ∓)αβPa + 2(CΠ∓)αβ(C ′γa
′
)α′β′Pa′

]
+ iτ2

[
2Cα′β′(Cγ

abΠ∓)αβJab

]
(B.3)
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B.4 Stringy super-Galilei algebra

By applying the decomposition eq. (3.21) to the algebra eq. (B.2), or equivalently, by

applying the decomposition eq. (3.9) to the algebra eq. (B.3), we obtain the following

Super-Poincaré(0, 1), which contains as a subalgebra the stringy Galilei superalgebra.

[Pa, Jbc] = 2ηa[bPc]

[Pa, Jbc] = 2ηa[bPc]

[Pa, Jbc] = ηabPc

[Pa′ , Jb′c′ ] = 2ηa′[b′Pc′]

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c

[Jab, Jcd] = 2ηc[bJa]d − 2ηd[bJa]c

[Jab, Jcd] = 2ηc[bJa]d

[Jab, Jcd] = −2ηd[bJa]c

[Ja′b′ , Jc′d′ ] = 2ηc′[b′Ja′]d′ − 2ηd′[b′Ja′]c′

[Q±, Jab] = −1

2
Q±γab

[Q±, Jab] = −1

2
Q±γab

[Q+, Jab] = −1

2
Q−γab

[Q±, Ja′b′ ] = −1

2
Q±γa′b′

{Q+
αα′ , Q

+
ββ′} = 1

[
− 2iCα′β′(Cγ

aΠ±)αβPa

]
{Q±αα′ , Q

∓
ββ′} = 1

[
− 2iCα′β′(Cγ

aΠ∓)αβPa + 2(CΠ∓)αβ(C ′γa
′
)α′β′Pa′

]
(B.4)

B.5 BMN algebra

In this section we report the pp-wave algebra commutation relations [64]

[Jîĵ , Jk̂l̂] = 2ηk̂[ĵJî]l̂ − 2ηl̂[ĵJî]k̂

[Pî, Jĵk̂] = 2ηî[ĵPk̂]

[P ∗
î
, Jĵk̂] = 2ηî[ĵP

∗
k̂]

[Pî, P
∗
ĵ

] = − 1√
2
ηîĵP+

[P−, Pî] = − 1√
2
P ∗
î

[P−, P
∗
î

] =
1√
2
Pî

[Q+,I , P−] = − 1√
2
Q+,JIεIJ

[Q−,I , Pî] = − 1

2
√

2
Q+,JΓ+IΓîεIJ

[Q−,I , P
∗
î

] = − 1

2
√

2
Q+,IΓ+Γî

[Q±,I , Jîĵ ] = −1

2
Q±,IΓîĵ

{Q+,I , Q+,J} =− 2iδIJCΓ+P+

{Q+,I , Q−,J} =− iδIJCΓîPîΓ−Γ+ − iεIJCΓ−Γ+

[
ΓiIP ∗i + Γi

′
JP ∗i′

]
{Q−,I , Q−,J} =− 2iδIJCΓ−P− +

i√
2
εIJCΓ−

[
ΓijIJij + Γi

′j′JJi′j′
]
, (B.5)

where

Q±,I =
1

2
(1± Γ9Γ0)QI (B.6)
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and

Γ± =
1√
2

(Γ9 ± Γ0)

I = Γ1234

J = Γ5678 . (B.7)
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[6] B. Stefański Jr., Green-Schwarz action for Type IIA strings on AdS4 × CP 3, Nucl. Phys. B

808 (2009) 80 [arXiv:0806.4948] [INSPIRE].

[7] D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS2xS(2)xT(6), J. Phys.

A 44 (2011) 275401 [arXiv:1104.1793] [INSPIRE].

[8] F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS5 × S5 superstring

action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].

[9] E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei

Gravity, JHEP 03 (2017) 165 [arXiv:1701.06156] [INSPIRE].

[10] J. Hartong, Gauging the Carroll Algebra and Ultra-Relativistic Gravity, JHEP 08 (2015) 069

[arXiv:1505.05011] [INSPIRE].

[11] E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll Particles, Class. Quant. Grav.

31 (2014) 205009 [arXiv:1405.2264] [INSPIRE].

[12] C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and

Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016

[arXiv:1402.0657] [INSPIRE].

[13] B. Cardona, J. Gomis and J.M. Pons, Dynamics of Carroll Strings, JHEP 07 (2016) 050

[arXiv:1605.05483] [INSPIRE].

[14] E. Bergshoeff, J. Gomis and P. Salgado-ReboLledó, Non-relativistic limits and
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[48] P. Concha and E. Rodŕıguez, Non-Relativistic Gravity Theory based on an Enlargement of

the Extended Bargmann Algebra, JHEP 07 (2019) 085 [arXiv:1906.00086] [INSPIRE].
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