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1 Introduction

A number of experimental hints of lepton flavour universality violation in the semileptonic

transitions b→ s`+`− [1–3] and b→ c`−ν` [4–9] have recently been found.1 In general,

physics beyond the Standard Model that generates lepton flavour non-universality is likely

to also produce direct lepton flavour violation [10]. Theoretical models seeking to simul-

taneously explain all these anomalies, for example with a vector leptoquark, often lead to

relatively large branching fractions for the decays B→ Kµ±τ∓ [11–16].

The branching fractions for the two µτ charge combinations are not in general the

same, as they depend on the details of the physics mechanism producing the decay. In this

paper, we present a search for the decay B+→ K+µ−τ+. From an experimental point of

view, this combination is preferred over B+→ K+µ+τ− as it has a lower background from

semileptonic B→ DXµ+νµ decays, where X refers to any number of additional particles,

because Cabibbo-favoured decays of the charm meson are likely to lead to kaons of the

same charge as the muon. An upper limit on the branching fraction for the signal decay

has been previously set by the BaBar collaboration [17] B(B+→ K+µ−τ+) < 2.8× 10−5

at 90% confidence level (CL).

We reconstruct the full four-momentum of the τ lepton using B+ mesons from the

decay B∗0s2 → B+K−, which amounts to about 1% of B+ production. By reconstructing

the decay vertex of the B+ meson from the K+µ− pair and the momentum of the K−

1The inclusion of charge-conjugate processes is implied throughout.
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meson, it is possible to determine the momentum of the B+ meson up to a quadratic

ambiguity by imposing mass constraints on the B∗0s2 and B+ mesons [18]. This technique

was first used to study relative branching fractions in B+→ D0Xµ+ν decays [19]. We then

search for a peak in the missing-mass squared distribution corresponding to the τ mass

squared, m2
τ . Even signal B+ mesons not coming from a B∗0s2 decay show a peak at m2

τ . We

account for the contribution of these non-B∗0s2 candidates in the analysis. The τ leptons are

selected inclusively, as we only require one additional charged track near the K+µ− pair

to help discriminate against background. To normalise the branching fraction, we use the

decay B+→ J/ψK+, with J/ψ→ µ+µ−. The normalisation channel is also used to quantify

the contributions from B∗0s2 decays, as well as non-B∗0s2 candidates with nearby kaons.

In addition to providing the missing-mass discriminating variable, this method allows

us to study the control sample composed of same-sign B+K+ decays, which does not

include any B∗0s2 component. We use this sample to optimise the signal selection, and

motivate our description of the background missing-mass shape.

2 Detector, data samples, and simulation

The LHCb detector [20, 21] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c

quarks. The detector includes a high-precision tracking system consisting of a silicon-strip

vertex detector surrounding the pp interaction region, a large-area silicon-strip detector

located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-

tions of silicon-strip detectors and straw drift tubes placed downstream of the magnet.

The tracking system provides a measurement of the momentum, p, of charged particles

with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV.2

The minimum distance of a track to a primary pp interaction vertex (PV), the impact

parameter, is measured with a resolution of (15 + 29/pT)µm, where pT is the component

of the momentum transverse to the beam, in GeV. Different types of charged hadrons are

distinguished using information from two ring-imaging Cherenkov detectors. Muons are

identified by a system composed of alternating layers of iron and multiwire proportional

chambers. The online event selection is performed by a trigger, which consists of a hard-

ware stage, based on information from the calorimeter and muon systems, followed by a

software stage, which applies a full event reconstruction. At the hardware trigger stage,

events are required to have a muon with high pT or a hadron, photon or electron with high

transverse energy deposited in the calorimeters. The software trigger requires a two-, three-

or four-track secondary vertex with a significant displacement from any primary vertex.

We use data samples collected from 2011 to 2018, at centre-of-mass energies of 7, 8,

and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. We model signal and

normalisation decays using simulation. In the simulation, pp collisions are generated using

Pythia [22, 23] with a specific LHCb configuration [24]. Decays of hadrons and τ leptons

are described by EvtGen [25]. The interaction of the generated particles with the detector,

and its response, are implemented using the Geant4 toolkit [26, 27] as described in ref. [28].

2Natural units with c = 1 are used throughout.
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For the signal, we consider both a phase space model and variations of the decay

kinematics with effective operators for the b→ sµ+τ− interaction and their corresponding

Wilson coefficients using the distributions from ref. [29] (see also ref. [30]) and the form

factors from ref. [31]. The branching fraction limit is determined for various hypotheses:

for the phase-space decay, for a decay via the vector or axial-vector operators O(′)
9 or O(′)

10 ,

and for a decay using the scalar or pseudoscalar operators O(′)
S or O(′)

P [29].

3 Selection and missing mass calculation

The selection of B+ candidates begins with a K+µ− pair with an invariant mass

mK+µ− > 1800 MeV to reduce background from semileptonic charm decays. The K+ and

µ− candidates are formed from high-quality tracks consistent with kaon and muon hy-

potheses and inconsistent with being produced at any PV in the event. The K+µ− vertex

must be of high quality and well separated from any PV. The K+µ− pair is associated

with a single PV by choosing the vertex that minimizes the quantity χ2
IP, defined as the

change in the χ2 of the vertex fit when including or excluding the K+µ− pair in the fit.

To better separate signal candidates with τ leptons from background, we require an

additional track, labelled t+, with charge opposite to that of the muon. This track must also

be of high quality and inconsistent with being produced at any PV in the event. By adding

this third track, we also fully reconstruct the normalisation mode B+ → J/ψK+, with

J/ψ→ µ+µ−. Many background candidates are expected to come from B-meson decays

of the form B→ D(→ K+Xµ−)K+Y , where X and Y refer to any number of additional

particles. In these cases the kaon originating from the D meson is assigned as the additional

track. Since only approximately 2% of τ decays contain a charged kaon, we apply particle

identification requirements so that the track is unlikely to be a charged kaon. Events in

which multiple candidates are found, or events in which a candidate τ+ → π+π−π+ντ
decay is reconstructed, are not used in this search. This removes backgrounds and avoids

overlap with ongoing searches at LHCb exclusively using this decay channel. The overall

signal loss is less than 3%.

We split the data samples into signal and normalisation regions based on the invariant

mass of the K+µ−t+ triple, using the muon hypothesis for the third track. Candidates

with mKµµ < 4800 MeV fall into the signal region, while candidates with 5180 < mKµµ <

5380 MeV and |mµµ −mJ/ψ| < 40 MeV fall into the normalisation region.

The B+ candidate direction is estimated using the associated PV and K+µ− vertex

positions. We next consider prompt tracks, i.e. those that are consistent with being pro-

duced at that PV. Those tracks identified as kaons, with a charge opposite to that of the

kaon in the K+µ− pair and a small perpendicular momentum relative to the B+ candidate

direction, are combined with the B+ candidates to form B∗0s2 candidates. We refer to this

sample as the opposite-sign kaon (OSK) sample. Additionally, we select a control sample,

referred to as same-sign kaon (SSK) sample, by adding prompt kaons of the same sign as

the kaon in the K+µ− pair.

From ref. [19], the two B-meson energy solutions are

EB =
∆2

2EK

1

1− (pK/EK)2 cos2 θ
[1±

√
d], where (3.1)
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d =
p2K
E2
K

cos2 θ −
4m2

Bp
2
K cos2 θ

∆4

(
1−

p2K
E2
K

cos2 θ

)
, (3.2)

∆2 = m2
BK −m2

B −m2
K , (3.3)

where mBK = mB∗0s2
is the assumed B+K− mass, pK and EK are the reconstructed prompt

kaon momentum and energy, and θ is the laboratory frame angle between the prompt kaon

and B-meson directions. The missing four-momentum of the τ lepton, Pmiss, is then recon-

structed as PB −PK+µ− , where PB and PK+µ− are the four-momenta of the B meson and

K+µ− pair. The missing mass squared is calculated using the lowest energy, real solution

for which the resulting missing energy is greater than the reconstructed energy of the third

track under a pion mass hypothesis. With this choice, we correctly reconstruct the energy

of signal decays in simulation in more than 75% of cases. About 9% of all signal decays

have no such solution and are lost. Both signal and normalisation candidates, as well as

the SSK control-sample candidates, are required to pass this procedure. Candidates in the

signal region are additionally required to have the residual missing mass squared, defined as

the four-momentum difference of the B meson and K+µ−t+ triple, (PB − PK+µ− − Pt)2,
greater than −0.5 GeV2. This requirement removes background and only poorly recon-

structed signal candidates which do not peak at the τ mass squared. The minimum mass

difference, defined in ref. [19] as

∆mmin =

√
m2
B +m2

K + 2mB

√
p2K sin2 θ +m2

K −mB −mK , (3.4)

is required to be greater than 30 MeV. This removes contributions from B0
s1 and

B∗0s2→ B∗+K− decays, as well as background in which a kaon from the B decay is wrongly

associated to the primary vertex.

Missing-mass distributions for the signal simulation and the full data sample after the

above selection are shown in figure 1. All signal decays, whether they come from a B∗0s2
meson or not, peak at the known m2

τ , however the non-B∗0s2 candidates have a much wider

peak than the B∗0s2 ones. The data distributions are shown for both the OSK and SSK

samples. They have similar shapes with a broad hump centred near 5 GeV2. We note that

the OSK sample has a higher yield than the SSK; this excess has been observed in both

fully and partially reconstructed decays [19, 32].

4 Normalisation

We determine the yield of the normalisation decay, as well as the relative efficiency of the

signal modes with respect to the normalisation mode, separately for each data-taking year.

For the normalisation mode, we determine the inclusive yield of B+ → J/ψK+ decays,

whether or not they originate from a B∗0s2 meson, by a binned maximum-likelihood fit to

the K+µ−t+ mass distribution, where we assign the muon mass hypothesis to the third

track. The signal is described with a Gaussian distribution, and the background with a

linear model.
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Figure 1. Missing mass squared, m2
miss, distributions for (left) simulated signal B+→ K+µ−τ+

decays and (right) all selected candidates in data before applying the signal optimisation described

in section 5.
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Figure 2. Distributions of normalization candidates in (left) mass, mK+µ−µ+ , and (right) the

mass difference, mB+K− −mB+ −mK− . The result of each fit is shown as a solid line, with the

background component as a dashed line.

We determine the fraction of the normalisation candidates coming from B∗0s2 decays

using a K+µ−t+ mass fit for the combined-years data sample using the same model as

the separated-years samples, along with a binned maximum-likelihood fit to the measured

mass-difference distribution mB+K− −mB+ −mK− around the B∗0s2 peak. For the latter

fit, we describe the signal peak with a Gaussian core that transitions to an exponential

tail on each side, and we model the background with a third-degree polynomial. The

results of these fits are shown in figure 2. The total data sample contains 4240 ± 70

B+→ J/ψK+ decays; the fraction originating from B∗0s2 decays is fB∗0s2 = (25.4± 1.8) %,

where the uncertainty combines the statistical and systematic uncertainties from the choice

of fit function. The year-to-year variation is not found to be statistically significant, so we

use the value obtained from the combined dataset for all years.

The relative efficiency of the signal and normalisation modes is determined using simu-

lation with corrections from data. For B∗0s2 decays the relative efficiencies in different years

average around 30%, with an absolute year-to-year variation of less than 3%. Different

signal decay models change the relative efficiency by approximately 10%, with the decays

via scalar and pseudoscalar operators having a lower overall efficiency. Signal events in

– 5 –
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which the B+ meson does not originate from a B∗0s2 decay have a lower selection efficiency,

primarily because fewer of these candidates pass the residual missing-mass requirement

and fall into the missing-mass fit range. Using simulation, we derive an additional factor

for this signal component of rnon-B∗0s2 = 0.849 ± 0.007, which gives the relative efficiency

with respect to the B∗0s2 mode.

5 Multivariate signal selection

We further improve the signal selection using a Boosted Decision Tree (BDT) classification

with the Adaboost algorithm [33]. The BDT inputs are primarily chosen to distinguish

additional tracks coming from signal τ lepton decays from various sources of background.

Some examples are semileptonic b-hadron decays to charm where the charm hadron pro-

duces a kaon with charge opposite that of the muon, or b-hadron decays where the muon

is produced in the semileptonic decay of a child charm hadron. The background training

sample is taken from the SSK sample in the m2
miss region around m2

τ . This focuses the

training on the sources of background which fall near the signal peak. We describe the

signal with simulation samples that include only B∗0s2 decays; the effect of the BDT on

non-B∗0s2 signal simulation is then estimated separately.

The training makes use of different topological reconstructions of the K+µ−t+ triple:

in addition to the signal selection, we also first combine either the kaon and the track or

the muon and the track into a pair before adding the third particle. The pair masses and

the flight distance of the pair in each topology help to distinguish the signal from back-

ground, for instance when the pair comes from a charm hadron decay. We also include the

flight distance of the τ , which we reconstruct as the distance along the τ trajectory found

in the missing-mass calculation from the K+µ− vertex to the point of closest approach

of the third track. The result of a separate isolation discriminant is included to reduce

background with additional charged tracks; this discriminant is trained to distinguish ad-

ditional tracks belonging to the same b-hadron decay from other tracks in the event. It

uses the kinematics of the additional tracks, their distances to and angles with the signal

candidate tracks, and topological information from vertices formed by the additional tracks

and signal candidate tracks.

A loose requirement on the signal optimisation BDT output is applied, keeping about

70% of all simulated B∗0s2 signal candidates and about 40% of non-B∗0s2 signal candidates.

We perform the final fit to the m2
miss distribution in four bins of the BDT output. The bins

are chosen by optimising the expected upper limit using a number of background events

derived from the yields in the OSK and SSK m2
miss sidebands from 1 to 2 GeV2 and 4

to 6 GeV2.

6 Background studies

The background in this analysis is composed of a large number of different partially recon-

structed b-hadron decays. None of them, however, produce a narrow peak in m2
miss. Only

– 6 –
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B+ mesons produced from B∗0s2 decays have a resolution comparable to the signal. Further-

more, if there is more than one missing particle then the true missing-mass distribution

will be much wider than the expected signal peak. Charm hadrons have masses close to the

τ mass, however there is no Standard Model decay B+→ K+µ−D+. We are not sensitive

to decays such as B+→ K+π−D+, where the pion is misidentified as a muon, because of

their low branching fraction and the rate at which hadrons are misidentified as muons.

We expect that the missing-mass distribution, summed over many different background

components, is smooth, and we model it as a polynomial.

These assumptions are tested using simulation and data. We produce fast simulation

samples with RapidSim [34] of a number of potential exclusive background sources from B+,

B0, B0
s , and Λ0

b hadrons; the true missing-mass distributions for these decays are smeared

to estimate their shapes in data. No sign of any sharply peaking component is found. In

data we consider a number of different control samples, namely all possible Kµt charge

combinations in both OSK and SSK samples, excluding the signal selection of K+µ−t+

in the OSK sample. There is no sign of any narrow peak in any of the distributions, even

after applying a tight requirement on the BDT output.

Maximum-likelihood fits to the SSK sample using polynomials of different degrees in

the restricted m2
miss range from 1 to 6 GeV2 are used to study the background shape in more

detail. The optimal number of free polynomial parameters in the most signal-like BDT

output bin, based on the best-fit value of −2 logL, penalised by one for each additional pa-

rameter, is four. We further study the effect of background modelling by performing a large

number of pseudoexperiments, both background-only and with injected signal at branch-

ing fractions of 1× 10−5 and 2× 10−5. In these studies, we first fit a background model

of some polynomial degree to one of the control samples to determine a base background

model. We generate many pseudodatasets from this background model, and then fit them

both with polynomials of the same degree as well as different degrees. Based on these stud-

ies, we take into account the systematic uncertainty due to the background modelling by

reporting the weakest limit using background descriptions of third, fourth, or fifth degree

polynomials, all of which well describe the background shapes in the pseudoexperiments.

7 Fit description

We search for the K+µ−τ+ missing-mass peak with an unbinned maximum-ikelihood fit

simultaneously in four bins of BDT output in the OSK K+µ−t+ signal channel. The fit

is performed in the missing-mass range 1 < m2
miss < 6 GeV2. The parameter of interest

is the branching fraction B(B+→ K+µ−τ+). We describe the m2
miss shape for the signal

component with a generalized hyperbolic distribution [35] with shape parameters obtained

from simulation. Two signal shapes are used: one for B∗0s2 decays, and one for the wider

non-B∗0s2 contribution. We determine the shapes separately in each bin of BDT response.

The signal decay model does not significantly affect the signal missing-mass shape. The

background is described by polynomial functions which vary independently in each BDT

output bin.

– 7 –
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We base the normalisation of the signal components on the yields of the B+→ J/ψK+

decays; the yield is determined in data year-by-year to account for different efficiencies

between years. We combine this together with the relative efficiencies, εrel; the known

B+→ J/ψK+ with J/ψ→ µ+µ− combined branching fraction, abbreviated as B(J/ψK+);

and the parameter of interest to derive a total number of B+→ K+µ−τ+ signal decays.

This total is divided between B∗0s2 and non-B∗0s2 decays based on the observed fraction in the

normalization channel, and then distributed across the four BDT bins. This gives yields

in each BDT bin j of

Nj(B
+→ K+µ−τ+|B∗0s2 ) = εB∗0s2 ,j

B(K+µ−τ+)

B(J/ψK+)
fB∗0s2

×
∑

i∈years
εrel,iNi(J/ψK

+), (7.1)

Nj(B
+→ K+µ−τ+|non-B∗0s2 ) = εnon-B∗0s2 ,j

B(K+µ−τ+)

B(J/ψK+)
(1− fB∗0s2 )

×
∑

i∈years
εrel,irnon-B∗0s2Ni(J/ψK

+), (7.2)

where εB∗0s2 ,j and εnon-B∗0s2 ,j are the separate efficiencies for each signal component to be

found in BDT bin j. The main parameters of the fit are thus the B+→ K+µ−τ+ branching

fraction, four parameters for the background normalisation in each BDT bin, and up to

five parameters describing the polynomial background shapes in each BDT bin.

The largest systematic uncertainty comes from the choice of background model. The

fifth degree background description obtains the weakest limit among the tested background

models. We include the effects of other systematic uncertainties using Gaussian-constrained

nuisance parameters. These nuisance parameters modify the normalisation yield, the rela-

tive efficiency of the signal and normalisation channels, the signal yield in each BDT bin,

and the signal shapes. The largest effects come from the modelling of the kinematics of

B∗0s2 decays in simulation, which results in 5% changes in the relative efficiency and in the

signal fractions in each bin of BDT response. The relative statistical uncertainty of the

B∗0s2 fraction taken from the normalisation channel is approximately 7%. Altogether, the

total effect of these systematic uncertainties on the final limit is small, at the 10−6 level.

8 Results and conclusion

The result at the best fit point is shown in figure 3. The obtained value for the signal branch-

ing fraction from the maximum-likelihood fit is (1.9± 1.5)× 10−5. No significant excess

is observed, and we set upper limits on the branching fraction using the CLs method [36].

We perform a scan in the signal branching fraction, obtaining the signal and background

p-values from the distributions of a one-sided profile-likelihood-ratio test statistic obtained

with pseudoexperiments in which we vary the constraints on the systematic uncertainties.

The scan used to determine the observed limits, compared to the expected one, is shown

in figure 4. The expected upper limit at 90% CL is 2.3× 10−5. The observed 90% and

– 8 –
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Figure 3. Fits to the missing-mass-squared distribution OSK signal sample in each bin of BDT

output included in the final fit. The best fit is overlaid. BDT bin 1 is the most background-like.

The fit is performed using a fifth degree polynomial description of the background.

95% CL limits, assuming a phase space signal decay model, are:

B(B+→ K+µ−τ+) < 3.9× 10−5 at 90% CL,

< 4.5× 10−5 at 95% CL.

An identical limit is obtained when the decay is generated from the effective opera-

tors O(′)
9 or O(′)

10 . If instead it is produced from O(′)
S or O(′)

P , the obtained limit is

B(B+→ K+µ−τ+) < 4.4× 10−5 at 90% CL and < 5.0× 10−5 at 95% CL.

This is the first result from the LHCb experiment for the lepton-flavour violating

decay B+→ K+µ−τ+. By studying B+ mesons from B∗0s2 decays, we are able to make

the first analysis at LHCb of a B hadron decay using inclusive τ decays. This provides

complementary information to searches for lepton-flavour violation at LHCb with three-

prong τ decays, for example B0
(s)→ τ±µ∓ decays [37]. We observe no significant signal,

and set an upper limit slightly above that obtained by the BaBar collaboration [17].
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