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ABSTRACT

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import
from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing
demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches.
Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more fea-
sible from both technological and economic perspectives. We review current methods and provide a framework for using
them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers
linked to these traits need be determined, including how to implement this information into a selective breeding program.
Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which
traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol pro-
grams, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequenc-
ing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene
discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving bio-
control practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol
agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most prom-
ising applications of genetic and genomic methods to improve biological control efficacy.

Key words: artificial selection, biological control, genetics, genome assembly, genomics, insect breeding, microbiome,
modelling
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I. INTRODUCTION

Biological control (the use of natural enemies to control
pests), is arguably the best solution for phasing out large-scale
pesticide use (Thomas & Willis, 1998; Bale, van Lenteren, &
Bigler, 2008). It has been broadly applied for hundreds of
years and to great success in both greenhouse and open field
systems worldwide (van den Bosch, 1971; Stiling &
Cornelissen, 2005). Most research into the fundamentals of
biological control has been from an ecological perspective,
focusing on aspects such as optimal foraging and risk moni-
toring (Wajnberg, Bernstein, & vanAlphen, 2008;Heimpel &
Mills, 2017). As clearly not all programs result in the desired
level of pest management, there is considerable room for
improvement (Wajnberg, 2004). The reasons for biocontrol
programs not always reaching their full potential are

manifold, ranging from releasing the wrong control agents,
agents not being adapted to local conditions, undesired inter-
actions with the native fauna, and evolutionary changes in
the pest species upon invasion.

In the past, the default method for improving biocontrol
was to find a more efficient wild species or strain as the bio-
control agent (Hassan &Guo, 1991; Hassan, 1994; Nomikou
et al., 2001; Hoelmer & Kirk, 2005). However, the Nagoya
protocol for Access and Benefit Sharing of Genetics
Resources has severely limited international exchange of bio-
logical materials, so sourcing more-effective biocontrol
agents from the field has become severely restricted (Cock
et al., 2010; Deplazes-Zemp et al., 2018; Mason et al., 2018).
Moreover, certain geographical regions strictly regulate
which agents can be used, e.g. only local strains originating
from the region itself (Loomans, 2007; Hunt, Loomans, &
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Kuhlmann, 2011). Concurrently, demand for more effective
biocontrol agents is rising, driven by the growth of the
organic food production market (valued at 62.9 billion
USD as of 2013; Willer & Lernoud, 2019; Baker, Green, &
Loker, 2020). The global biological control market was
worth 1.7 billion USD in 2015, with sales growing three
times faster than pesticides (van Lenteren et al., 2018). Addi-
tionally, policy developments have aimed to reduce synthetic
pesticide use (van Lenteren et al., 2018) such as an EU-wide
neonicotinoid ban (Gross, 2013; Stokstad, 2018) and continu-
ous curtailment of organophosphate use in the USA and world-
wide (Hertz-Picciotto et al., 2018). The rise of the organic
market in conjunction with a reduction of pesticide use has
resulted in the rapid growth and increased market value of the
biocontrol industry (de Clercq, Mason, & Babendreier, 2011;
Dunham, 2015; vanLenteren et al., 2018). It is nowmore urgent
than ever to understand how to improve effectively and effi-
ciently non-native biocontrol agents already in use and to
develop novel native biocontrol agents.We review recent devel-
opments in the field of biological control that indicate that
genetics-based solutions are key (Fig. 1).

For decades, genetic methods have been advocated to
improve the efficacy of biocontrol programs (White,
Debach, & Garber, 1970; Hoy, 1986; Hopper et al., 1993;
Narang, Bartlett, & Faust, 1993; Nunney, 2003; Routray
et al., 2016; Kruitwagen, Beukeboom, & Wertheim, 2018;
Lirakis & Magalh~aes, 2019). Significant genetic variation
has been demonstrated in several key life-history and beha-
vioural traits of potential biocontrol agents (Hoy, 1985;
Rousch, 1990; Hopper et al., 1993; Wajnberg, 2004; Fergu-
son, 2020). However, despite its proven application in crop
and livestock breeding, there have been few attempts to
improve biocontrol agents through genetic means. We cur-
rently witness a revival of the idea to apply genetics to the
improvement of biocontrol programs, by exploiting intra-
and interspecific variation (Lommen, de Jong, &
Pannebakker, 2017; Kruitwagen et al., 2018), performing
experimental evolution (Lirakis & Magalh~aes, 2019), adapt-
ing the microbiome for improved rearing methods (Ras
et al., 2017; Koskinioti et al., 2020a, 2020b), and by popula-
tion and field-monitoring of released agents (Roderick &
Navajas, 2003; Stouthamer & Nunney, 2014; Coelho
et al., 2016). Notably, these methods all employ classic genet-
ics principles within a species’ existing gene pool, distinguish-
ing them from genetically modified organisms (GMOs) that
have DNA from foreign organisms introduced into their
genomes. That means that the methods discussed here com-
ply with the requirements of the organic food industry and
any policies that limit or prohibit GMO use (Gomiero,
Pimentel, & Paoletti, 2011). Next to genetic applications,
we need an evolutionary perspective on the sustainability
and risks of biocontrol programs, for example to enable pre-
dictions of future adaptations of pests and agents
(Hufbauer & Roderick, 2005; Szűcs et al., 2019). Finally,
application of genetics and genomics in biocontrol programs
cannot be evaluated without considering the role of environ-
mental and ecological processes (Thrall et al., 2011).

We first identify which organismal traits are important for
biological control and should therefore be targeted for
improvement (so-called ‘biocontrol traits’). Next, we present
the current state and future prospects of using genetic and
genomic methods towards that aim. We consider these
methods from evolutionary and ecological contexts, that is
how these methods can realistically operate in long-term
breeding programs and in the field (Fig. 2). Because of
their prevalence and economic importance (van Lenteren
et al., 2018), we focus on programs using arthropod bio-
control agents, although these universal genetics principles
overlap with other agents (e.g. nematodes, fungi, bacteria).
Although the most common form of biological control is
augmentative (the recurrent release of a biocontrol agent
population not expected to establish permanently, or to
supplement an existing population), the methods discussed
here can also be applied to classical biological control
(release of a new agent with the intention of establishing
a self-sustaining population and level of pest control in
the area of the pest) and conservation biological control
(conserving natural habitat to increase populations of nat-
ural enemies). As genomics are key to many of these
methods, we provide a key on how to obtain genome-
based resources in specific biocontrol contexts. We con-
clude by reviewing present uses and forecasting applica-
tions of the most promising genetic and genomic
methods in the future.

II. WHAT ARE BIOCONTROL TRAITS?

One of the prime reasons preventing the uptake of genetic
improvements of biocontrol agents is difficulty in deciding
which traits to optimize. Candidate traits can be roughly subdi-
vided into pest-suppression ability, adaptation to abiotic factors,
reducing ecological risk, and improving mass production or
storage [see Kruitwagen et al. (2018) and Bielza et al. (2020) for
a comprehensive overview]. For some traits, such as pest kill-
rate, the direction of improvement is apparent as killing more
pests is a primary determinant of biocontrol success (Stiling &
Cornelissen, 2005). However, for other traits, the direction to
take is less obvious. For example, most biocontrol agents attack
hosts/prey that are clumped in patches in the environment.
Would it be more effective for the agent to clear patches
completely before moving on, or to disperse rapidly to protect
a larger total crop area (Wajnberg, Roitberg, & Boivin, 2016;
Plouvier & Wajnberg, 2018)? The optimal strategy depends
on the specific ecological circumstances faced by the biocontrol
agent and the economic harm inflicted by pest species at low
density. Optimality models based on behavioural ecology can
provide important insights into the critical characteristics of nat-
ural enemies for successful biological control (Mills &
Kean, 2010; Wajnberg et al., 2016; Lommen et al., 2017).
Recently, Plouvier & Wajnberg (2018) developed a general
modelling framework that identifies key biocontrol agent life-
history traits from an economical perspective. For dispersal-
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and-predation simulations, two different optimized life-history
strategies for the agents were found to result in higher potential
economic returns, differing in plant-leaving decision and host

handling time of the biocontrol agent, but also in their respec-
tive fecundity, longevity, and dispersal ability. Such a general
modelling framework can be parameterised for biocontrol

Fig 1. Overview of the potential of genetic methods to address biocontrol challenges.
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species with different biology (including parasitoids and preda-
tors) and different ecological situations to help identify the key
traits to target for genetic improvement.

A key requirement for biocontrol traits to be targeted for
selection is significant heritability (the proportion of the total
phenotypic variation among individuals that is due to addi-
tive genetic variation), which allows a trait to be improved
by (artificial) selection. The amount of standing genetic vari-
ation depends on the type of trait and its genetic architecture,
which can be defined as the number and location of the
loci involved, and their interactions (such as dominance,
epistasis and pleiotropy). Traits closely associated with fit-
ness that are important for biocontrol, such as life-history
and behavioural traits (Mousseau & Roff, 1987;
Wajnberg, 2004; Lommen et al., 2017; Kruitwagen
et al., 2018; Xia et al., 2020), typically have lower heritabil-
ities than physiological and morphological traits
(Mousseau & Roff, 1987). The amount of genetic varia-
tion for biocontrol traits is currently poorly investigated

and insufficiently known. For example, in a recent review
of arthropod biocontrol literature, of 2927 articles identi-
fied as investigating genetics of biocontrol traits, only
69 reported data on genetic variation (Ferguson, 2020).
Selection of low-heritability traits towards optimal values
is possible, but the efficiency of this process depends on a
trait’s genetic architecture. It is therefore of key impor-
tance to uncover the genetic architecture of biocontrol
traits if we aim efficiently to improve them.

III. WHAT GENETIC INFORMATION DO
WE NEED?

(1) Genome assembly

Assembling a genome for a biocontrol agent of interest vastly
expands the possibilities for generating new knowledge on

Fig 2. Guide to the use of genetic methods in research and development, sorted according to research question. QTL, quantitative
trait locus.
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the genetic architecture of biocontrol traits. A reference
genome facilitates studies that focus on gene expression ana-
lyses, targeted gene editing, and marker-informed selection.
Although producing a high-quality genome (high coverage,
few gaps) is often portrayed as an essential goal
(Bentley, 2006; Faino & Thomma, 2014), a high-level
resolved genome may often not be required. Instead,
sequences may be collected, assembled, and annotated to
the level required for a specific project, and the genome
can later be improved to the level desired by other parties
(Papanicolaou et al., 2017). In other words, in more applied
circumstances, such as biological control, the aim may be a
‘good-enough’ genome rather than a high-quality genome.
Also, some applications can already be realised with an incom-
plete genome, including the quick generation of molecular
markers such as microsatellites (Grbi�c et al., 2011; Abe &
Pannebakker, 2017;Kamimura et al., 2019) for low-cost analysis
of genetic variation (Baker, Loxdale, & Edwards, 2003; Paspati
et al., 2019) and linkage map construction (Beukeboom
et al., 2010; Niehuis et al., 2010).

Genome assembly goes through various stages: sequencing
from an inbred stock or a single individual, aligning the
sequences into an assembly, and annotating the assembly with
protein-coding information (Ekblom & Wolf, 2014). Although
still requiring a considerable amount of labour and funding,
recent technological advances have lowered the cost of sequenc-
ing a genome considerably (Wetterstrand, 2019). In the context
of biological control, successfully producing a workable genome
within one’s budget and objectives requires careful strategy. For
example, for many biocontrol agent species, the amount of
DNA extracted from a single individual (because of small body
size) is insufficient for sequencing a genome (Richards &
Murali, 2015; Cruaud et al., 2019). Pooling many genetically
identical individuals is a solution, but how to obtain such a sam-
ple varies among species; this is easier and has been done, for
instance, with isofemale lines of haplodiploid parasitoids
(Werren et al., 2010; Geib et al., 2017; Ferguson et al., 2020)
but can be more challenging for species that are difficult to
inbreed (e.g. ladybirds; Facon et al., 2011). Figure 3 presents a
key for deciding which sequencing strategy to use for various
biological control situations, accounting for the current state
of the technology, the biology of the species, and the objective
for assembling the genome.

For relatively large-sized species, such as the parasitoid
beetle Aleochara bilineataGyllenhal, a tissue sample from a sin-
gle individual female was adequate for producing a high-
quality reference Illumina-based genome; this was done via

a third party (Kraaijeveld et al., 2019). By contrast, a single
individual of the minute predatory mite Amblyseius swirskii

Athias-Henriot swirskii is inadequate for extracting enough
DNA to sequence a genome. A solution was found by pooling
enough genetically identical individuals to meet the initial
genomic weight requirement, but this required an additional,
logistically difficult inbreeding step (Paspati et al., 2019) that
was not necessary for A. bilineata. A draft genome was created

Fig 3. Sequencing strategy key for obtaining genomes of
biocontrol agents with selected examples of species. bp,
base pair.
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for A. swirskii with inbred individuals using the laboratory
benchtop sequencer MinION. This genome was not
intended to serve as a high-quality, long-term reference
genome for this species, but was used to develop markers
affordably for tracking genetic diversity in mass-reared popu-
lations (Paspati et al., 2019). This approach had the advan-
tage of flexible in-house troubleshooting with an affordable
machine and materials.

(2) Gene discovery

Mapping genes has a long tradition in breeding and
research, particularly using quantitative trait loci studies
(QTL) [e.g. maize height (Burr et al., 1988), soybean seed
morphology (Mansur et al., 1993), pig fatness and growth
(Andersson et al., 1994) and Nasonia parasitoid wasp sex ratio
(Pannebakker et al., 2011)]. A QTL study uses crosses of indi-
viduals with different extreme phenotypes and links their seg-
regation in offspring to molecular marker data to identify the
genetic basis of complex traits (Lynch &Walsh, 1998; Beuke-
boom & Zwaan, 2007). High-throughput sequencing and
genome-wide association studies (GWAS) have enabled
higher resolution mapping screens (Schlötterer et al., 2014),
that is identification of loci with different allele frequencies
between two populations with different phenotypes of the
target trait (Bastide et al., 2013).

For QTL mapping and GWAS, the statistical power to
identify causative variants increases with the number of
individuals analysed. In addition, in a QTL approach,
power increases with the number of generations invested,
but mapping precision is typically lower than GWAS.
The genotyping costs can be reduced by relying on
sequencing pools of individuals with extreme phenotypes
(Pool-GWAS; Schlötterer et al., 2014). This approach
was used to create a genome-wide map for body pigmenta-
tion in Drosophila melanogaster Meigen (Bastide et al., 2013)
and can theoretically be applied to any target trait in any
arthropod. Although individuals for these studies can be
sourced from commercial biocontrol populations, these
tend to be inbred and contain only a fraction of the genetic
variation harboured by natural populations (Rasmussen
et al., 2018; Paspati et al., 2019). For exploratory studies,
sampling from wild populations may be better for collect-
ing sufficiently variable individuals with clear segregation
of phenotype, and thus correspondingly distinct genotypes
for candidate loci. Alternatively, as it may be legally or
logistically difficult to sample multiple natural populations
across a large geographic range, commercial strains that
are already in use and have contrasting phenotypes may
be used instead. For instance, long-established Tricho-

gramma cacoeciae Marchal strains originating from France
and Tunisia have higher fecundity under different temper-
atures (Pizzol et al., 2010), and would be good candidates
for investigating loci linked to climate adaptation.

Another approach to delineating the genomic architecture
of biocontrol traits is studying gene expression. Sequencing
transcriptomes and proteomes, which are complete RNA

and protein expression profiles of an organism respectively,
has become increasingly easy and affordable. The advantage
of gene expression studies is that they delve into context-
dependent phenotypes. For example, gene expression differ-
ences between the sexes are highly relevant for parasitoid
wasps (Wang, Werren, & Clark, 2015) because females have
active genes for host-feeding, envenomation and oviposition
that males lack. Spatiotemporal expression pattern differ-
ences of protein and transcript quantity, methylation, RNA
splicing, and post-translational modification may be respon-
sible for sex-specific phenotypes, and can be used to find
trait-linked loci even when genetic sequences are identical
between males and females (Wang et al., 2015). Such studies
have been used to delineate the architecture of, for example,
sex determination (Verhulst, Beukeboom, & van de
Zande, 2010), oviposition (Pannebakker et al., 2013; Cook
et al., 2015), and venom composition (de Graaf et al., 2010)
in Nasonia vitripennis (Walker), and antennal perception of dif-
ferent olfactory cues, i.e. male mate-searching versus female
host-searching in the parasitoids Cotesia vestalis (Haliday)
(Nishimura et al., 2012) and Chouioia cunea Yang (Zhao
et al., 2016).
Analysis of transcriptomic and proteomic data obtained

at different environmental or culturing conditions is also a
powerful tool, as it can both identify and quantify patterns
of gene expression (Wang et al., 2009). For example, tran-
scriptome analyses of the ladybird Cryptolaemus montrouzieri

Mulsant or the parasitic wasps Cotesia typhae Fernández-
Triana and Lysiphlebus fabarum Marshall show that these
biocontrol agents have adapted to alternative prey/hosts
by modifying the regulation of genes mainly related to
development, digestion, detoxification and virulence
(Li et al., 2016; Benoist et al., 2017; Dennis et al., 2017).
Mechanisms underlying resistance to certain pesticides in
the predatory mite Neoseiulus barkeri Hughes and the lady-
bird beetle Propylaea japonica (Thunberg) were identified
by analysing RNA sequencing (RNAseq) data (Tang
et al., 2014; Cong et al., 2016). Transcriptomics may also
pave the way to understanding symbiont-mediated resis-
tance to parasitism (Oliver, Moran, & Hunter, 2005),
and help to reverse this effect or to make parasitoids more
virulent. Additionally, proteomic analysis of aphid parasit-
oids Aphidius colemani Haliday that were either exposed to
fluctuating high and low temperatures or to constant cold
provided insight on genes and proteins involved in surviv-
ing temperature extremes, such as those involved in energy
metabolism (Colinet et al., 2007). Nutrigenomics (how diet
affects gene expression) also has great potential for
improving artificial diets for mass rearing of biocontrol
agents, and for selecting strains that develop particularly
well on such diets (Coudron, Yocum, & Brandt, 2006;
Yocum, Coudron, & Brandt, 2006). A final interesting
application of transcriptomics for biocontrol is to identify
the genetic architecture of memory and learning, as para-
sitoids can be trained to recognise host species (Huigens
et al., 2009). Recently, genes in the Ras (rat sarcoma) and
phosphoinositide 3-kinase (PI3K) pathways were found
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to be responsible for interspecific differences in Nasonia

memory retention (Hoedjes et al., 2014, 2015).
Gene-expression studies can thus contribute to under-

standing adaptation mechanisms of biocontrol agents to a
new environment, prey/host defences or novel hosts. Yet
careful control of expression data collection, such as consis-
tent life stage or common garden conditions, is important,
as phenotypic plasticity can add noise to analyses. Ultimately,
understanding gene expression patterns is essential to allow
the preservation of a robust phenotype, or how likely a phe-
notype is to persist in various agro-ecological environments
(Félix & Barkoulas, 2015).

(3) Genome editing for exploratory research

Advances in genomics approaches and knowledge have made it
possible tomodify certain regions in the genome of an organism
to study how such modifications are reflected in its phenotype.
New phenotypic variants can be generated by knocking-down
or knocking-out genes. Knocking-down refers to temporary
gene expression inhibition through RNA interference (Pratt &
MacRae, 2009). Knocking-out refers to permanent alteration
through the germ line, and the most advanced of these knock-
out approaches is clustered regulatory interspaced short palin-
dromic repeats (CRISPR) (Hsu, Lander, & Zhang, 2014).
Knocking-down or knocking-out candidate biocontrol trait
genes can lead to insights regarding their functions that can be
used to optimize selection or breeding of biocontrol agents.
For example, they can be used to examine the role of genes in
a trait through linkage with the null phenotypes, and those
genes can be specifically targeted for selection. Currently,
gene-editing technology is exploratory and for fundamental
research use, but should not be used in novel biocontrol release
programs. Although no external DNA is introduced with
knock-down or knock-out, some countries consider gene-editing
techniques to be in the same legal category as GMOs (EU;
Callaway, 2018) whereas others do not [USA (Kim &
Kim, 2016; Waltz, 2016); Australia (Mallapaty, 2019)]. They
are therefore subject to many of the same regulations that vary
broadly in restrictiveness, e.g. allowed in the USA versus a com-
plete ban in the EU (reviewed in Alphey & Bonsall, 2018). In
addition, the compatibility of gene-editing with the current
‘non-GMO’marketability of biological control is questionable.

(4) Microbiomes

Currently, there is much interest in the role of the micro-
biome in organismal functioning. In a biocontrol context,
it is known that microbes can generate chemical signals
that attract parasitoids to their host, and that bacteria
can have a defensive role against parasitoids, such as in
aphids (Oliver, Moran, & Hunter, 2006; Schmid
et al., 2012; Rothacher, Ferrer-Suay, & Vorburger, 2016;
Jamin & Vorburger, 2019; Koskinioti et al., 2019; Dicke,
Cusumano, & Poelman, 2020). Nowadays, universal
DNA markers can be applied to characterise the micro-
biome, that is to identify all bacterial symbionts to at least

family or genus level, and their proportionate presence
(Ras et al., 2017). This can be used to infer the relative
abundance and relative contribution of each symbiont to
biocontrol traits. However, despite the enormous atten-
tion on the role of microbiomes, we still know very little
about whether and how microbes contribute to arthropod
life-history traits and biocontrol traits in particular (Janson
et al., 2008; Brinker et al., 2019; Gurung, Wertheim, &
Falcao Salles, 2019). In addition, the factors that deter-
mine the microbiome composition are often not well
known. Such information is important to judge how con-
sistent the microbiome is transgenerationally, and if it
can be manipulated through rearing.

IV. HOW CAN GENETICS BE USED TO IMPROVE
BIOLOGICAL CONTROL?

(1) Artificial selection

The traditional approach to improving biocontrol agents has
been through artificial selection. Artificial selection exploits
inter-individual genetic variation of life-history or beha-
vioural traits. For example, agent species have been selected
to improve tolerance to climatic conditions to expand their
geographic range of use (White et al., 1970), pesticide resis-
tance (allowing their compatibility with pesticide spraying)
(Roush & Hoy, 1981b; Spollen & Hoy, 1992), plant adapta-
tion, especially to tomato in strains of Phytoseiulus persimilis
Athias-Henriot (Drukker et al., 1997) and development time,
to speed up production (Rodriguez-Saona & Miller, 1995).
Rather than performing crosses of individuals with desired
traits, experimental evolution exposes populations to specific
environmental conditions for several generations and deter-
mines the effect on the trait of interest. Although generally
successful (Lirakis & Magalh~aes, 2019), artificial selection
remains underutilised in biological control
(Wajnberg, 2004; Lommen et al., 2017; Kruitwagen
et al., 2018). There are several reasons for this. One obvious
reason is lack of sufficient genetic variation because too few
individuals are collected for a source population (but little is
known about such unsuccessful attempts in the literature).
A second possibility is that once selected, the genetic varia-
tion in the selected population will change through stochastic
processes such as genetic drift (Roush &Daly, 1990; Stoutha-
mer, Luck, & Werren, 1992; Hopper et al., 1993;
Wajnberg, 2004). The conclusion has been that to avoid
these issues arising from ‘selection relaxation’, biocontrol
agents must be continuously re-selected, which can be eco-
nomically prohibitive. There is, however, little empirical evi-
dence for this, and a recent study on Drosophila indicates that
laboratory populations may not change much in life-history
parameters compared to their natural counterparts
(Michalak et al., 2019).

Trade-offs between life-history traits are also a factor in
biocontrol evolution. Life-history theory poses that an organ-
ism has limited resources to allocate to each trait. To select
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for the enhancement of one or more traits, as is the goal
in biocontrol breeding, pleiotropic and disadvantageous
changes can occur in other traits, and the overall effect
on the biocontrol function of the organism can be unpre-
dictable (Stearns, 1989; Roff, 2007). A trade-off may be
detrimental for biocontrol because it affects negatively
either another trait or another stage in the biocontrol pro-
gram. For instance, it has been noted that traits corre-
sponding to high yield and ease of use under laboratory
and industrial conditions are favourable, but adaptation
to captivity may come at the expense of an agent’s efficacy
in the field (Mackauer, 1976; Hopper et al., 1993;
Sørensen, Addison, & Terblanche, 2012; Sánchez-Rosario
et al., 2017). An example is laboratory maintenance nega-
tively impacting female fecundity, body size, host-killing,
and host-searching in the parasitoid Muscidifurax raptor Gir-
ault and Sanders (Geden et al., 1992). It is also logistically
difficult to phenotype complex traits for many biocontrol
agents (e.g. measuring total fecundity, total host-killing,
dispersal ability, etc.).

However, the means to address many of these problems
are at hand. There is evidence, for example, that selection
relaxation may not be as problematic as previously believed.
Theoretically, if the selection regime is strong enough, the
trait goes to fixation in a population, i.e. the entire popula-
tion will carry the desired trait and it is no longer subject to
drift (Falconer & Mackay, 1996). Moreover, several traits
that are selected apparently entail no trade-off in other traits.
This is reflected in the value of selected traits being main-
tained in insect lines even after many generations of no active
selection on the trait (e.g. White et al., 1970; Croft &
Meyer, 1973; Roush & Hoy, 1980; see Lirakis &
Magalh~aes, 2019).

Key to these solutions is understanding the genetic archi-
tecture of the trait under selection, which would allow the
combination of individual phenotype selection with molecu-
lar genetics through applying marker-assisted selection
(Lande & Thompson, 1990). When, for instance, we know
the loci and alleles associated with a desired or undesired tar-
get trait, we can breed a more efficient biocontrol agent by
selecting for the former and avoiding the latter. Not all
trade-offs may be detrimental to biological control. For
example early reproduction may come at a cost of longevity
(Williams, 1996), but a long life may not be important to a
captive population’s net productivity if it is frequently supple-
mented with new, fecund individuals. Knowing the genetic
underpinning of trade-offs between traits would assist in
understanding and preventing unwanted correlated
responses to selection (Fig. 4B). For example, antagonistic
pleiotropy (genes operating on multiple traits but in opposing
directions) is known for fecundity versus longevity in the melon
fly, Zeugodacus cucurbitae (Coquillett) (Miyatake, 1997) and
higher larval survival versus lower adult body mass in
D. melanogaster (Bochdanovits & de Jong, 2004); additional
studies could uncover these in biocontrol agent species. If
there are variable pathways corresponding to different
trade-offs, it should be possible to select through one with

the fewest unfavourable trade-offs, exploiting the ubiquitous
presence of genetic redundancy.
Learning behaviour is another biocontrol trait that

responds to selection. Parasitoids (Dukas, 2000; van den Berg
et al., 2011; Hoedjes et al., 2014, 2015; Kraaijeveld
et al., 2018; Kruidhof et al., 2019), and predators (Rahmani
et al., 2009; Schausberger et al., 2010) can be directly selected
to recognise pest species better, or indirectly to recognise
more efficiently recruitment signals from plants following
herbivore attack (tritrophic interactions) (van der Putten
et al., 2001; Turlings & Wäckers, 2004). Juvenile predatory
Phytoseiulus persimilis Athias-Henriot can be trained to accept
specific prey species and retain this habit throughout its life-
time (Rahmani et al., 2009), as can numerous parasitoid
wasps (reviewed in Kruidhof et al., 2019). Delineating the
genetic architecture of memory and learning can thus assist
in breeding lines that can learn and retain this information
better.
Knowledge of the genetic architecture of traits can assist

with artificial selection through deliberate targeting of linked
genes. This is particularly helpful for traits that are laborious
or challenging to phenotype repeatedly. For example, for
many arthropods, assaying lifetime reproductive output
would require counting thousands of offspring and waiting
until the animal dies. In the meantime, work is invested in
caring for the next generation whether or not their progeni-
tors prove to have high lifetime fecundity. Instead, rather
than the trait itself, selection can target a linked molecular
marker, which is called marker-assisted selection (MAS)
(Lande & Thompson, 1990). Identification of candidate
genes and QTL through the aforementioned gene discovery
methods are key to developing direct markers for genes that
control the trait of interest, or markers that are in linkage dis-
equilibrium with the trait and are proximate to the coding
gene. Although much work remains to uncover the genetic
bases of traits, there are already good results documented
for arthropods linking genes and QTL to foraging (Page
et al., 2000), grooming (Oxley, Spivak, & Oldroyd, 2010),
and Varroa mite resistance in honey bees (Behrens
et al., 2011); fertility in the parasitoid Leptopilina clavipesHartig
(Pannebakker et al., 2004); and sex ratio (Pannebakker
et al., 2011), memory retention and olfaction (Hoedjes
et al., 2014, 2015), host specificity (Desjardins et al., 2010),
and pupal diapause (Paolucci et al., 2016) in N. vitripennis.

(2) Genomic selection

For complex traits with highly polygenic bases or genes with
complicated epigenetic effects, direct and linkage equilib-
rium MAS may not be possible. In such cases, it is possible
to use markers that are linked to a total breeding value
instead of any specific phenotype (reviewed in
Dekkers, 2004). Genomic selection employs this concept
potentially to circumvent the need for proving marker cau-
sality. The statistical method of genomic selection uses infor-
mation from genome-wide DNA-markers such as single
nucleotide polymorphisms (SNPs) to select for complex traits
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(Meuwissen, Hayes, & Goddard, 2001) (Fig. 4C). This
method is particularly helpful when artificial selection
(marker assisted or not) is hampered by low heritability either
through strong environmental noise and/or low levels of
additive genetic variance. The genomic selection method
considers markers distributed throughout the whole genome
and estimates an effect of each marker, irrespective of the sta-
tistical significance of this effect. The total estimated genetic
effect of an individual is the sum of the effects of all its
markers as the genomic estimated breeding value (GEBV).
By including effects of all markers, this method avoids miss-
ing a substantial portion of the genetic variance contributed
by loci of minor effects, in contrast to methods that aim to
identify the causal genes underlying traits. Although genomic
selection still requires the collection of both genotypes and
phenotypes, this work only needs to be done for the initial ref-
erence population and then at infrequent iterations as the
predictive power of the reference population is gradually
reduced over generations, given the potential evolution of
the G matrix.

An advantage of genomic selection over traditional selec-
tion methods is that a higher accuracy of GEBVs can be
achieved for traits of low heritability, and for traits that can-
not be recorded on the selected candidate itself, but can be
predicted through its genotype (Meuwissen et al., 2001). Over
the last decade, genomic selection has proved its potential in
animal breeding, that is dairy cattle (Hayes et al., 2009; Luan
et al., 2009; VanRaden et al., 2009) and pigs (Lopes
et al., 2017), but it has not yet been applied to biocontrol
agents. Genomic selection methods may be particularly

useful because GEBV can be estimated directly from the
genotype, without the need for accurate pedigrees that are
lacking for most biocontrol agents. One current challenge
to genomic selection is the cost of large-scale SNP panels,
but these are already undergoing a rapid reduction in diffi-
culty and expense. Also, collection of a sufficient amount of
DNA may require sacrificing the selected candidate, but
breeding of close relatives, such as offspring or full siblings,
may offer a solution.

(3) Field monitoring of genetic variation,
performance, and ecological risk

The availability of genetic markers allows for population
genetic analyses, either at a coarse scale such as in the case
of microsatellite panels, or at a fine scale such as dense SNP
panels based on assembled genomes. A powerful application
of population genetics in biocontrol is monitoring of agents
released into the field (Fig. 4A), allowing for the monitoring
of their genetic variation, field performance, and
ecological risk.

An important use of population genetics in biocontrol is
the assessment of genetic variation. Loss of genetic variation
is expected to occur in all captive populations, through
inbreeding, selection, and random genetic drift, even when
mass-reared at high numbers (Mackauer, 1976). Although
this does not always result in fitness or performance loss
[see Hopper et al. (1993) and references therein; de Clercq,
Vandewalle, & Tirry (1998); Facon et al. (2011)], experiments
have shown severe effects of inbreeding depression and

Fig 4. Examples of the application of genetic techniques in biocontrol, in increasing order of complexity. (A) Genotyping for field
monitoring of released biocontrol agents. (B) Design of optimal rearing strategy based on genetic architecture of traits of interest.
(C) Genomic selection to improve polygenic or hard-to-phenotype traits.

Biological Reviews 95 (2020) 1838–1854 © 2020 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

Next gen biocontrol 1847



domestication on the reproductive performance of large cap-
tive populations of Drosophila (Woodworth et al., 2002) and a
Chinese biocontrol population of the parasitoid Binodoxys

communisGahan (Gariepy, Boivin, & Brodeur, 2014). Specific
care should be taken when culturing parasitoid wasps. As
haplodiploid species, parasitoids are generally expected to
suffer less from inbreeding depression for fitness traits, but
in some species a loss of genetic variation for sex-
determination loci results in sterile males, and can lead to
extinction of smaller populations (Stouthamer et al., 1992;
Zayed & Packer, 2005; Hein, Poethke, & Dorn, 2009; Reta-
mal et al., 2016; Zaviezo et al., 2018; Leung, van de Zande, &
Beukeboom, 2019). These potentially large effects on fitness
and performance make the monitoring of genetic
variation a key part of mass-culturing biocontrol agents.
For those species with an assembled genome, whole-genome
genotype-by-sequencing (GBS) techniques (Baird et al., 2008)
allow for fine-scale population analyses by providing accu-
rate allele frequency estimates to track evolution at a geno-
mic scale and identify genomic regions under selection in
contrasting ecological situations (Davey & Blaxter, 2010).
This can also lead the way to unravelling the genetic architec-
ture of relevant biocontrol traits.

A biocontrol agent’s performance and ecological risk in
the field can also be monitored via genetics methods. For
example, for parasitoids, juvenile development often
occurs within the host, making them difficult to detect at
this stage. Furthermore, many species are difficult to iden-
tify via morphology because they belong to mega-diverse
groups of minute insects that may not be phylogenetically
well resolved (Stouthamer et al., 1999; Sumer et al., 2009;
Cruaud et al., 2019). Dispersal, host specificity, and attack
rate can all be determined with polymerase chain reaction
(PCR) amplification to detect the presence of species-
specific DNA of parasitoids in hosts (Gariepy et al., 2007,
2008; Stahl et al., 2019). A similar approach has been taken
for gut-content analysis to measure predation of the
target pest or screen for consumption of non-target
species [mostly for predators, e.g. Hoogendoorn &
Heimpel (2001), Thomas et al. (2013), Brown et al. (2014)
and Nguyen et al. (2019); but see Rougerie et al. (2011)
for a parasitoid example], as well as constructing complex
food-webs (Krehenwinkel et al., 2017). These methods can
be used to modify biocontrol programmes, for example by
selection of more efficacious agents with fewer non-target
effects.

Traditional neutral markers have been successfully used
for performance monitoring of released strains [e.g. for the
parasitoid Trichogramma pretiosum Riley, in which laboratory
fecundity was correlated to field efficacy for 35 isofemale lines
over 3 days (Coelho et al., 2016) and for the olive fly parasit-
oid Psittalia lounbysuryi (Silvestri) for ongoing monitoring of a
biocontrol programme in southern France (Bon et al., 2008;
Malausa et al., 2010)]. However, high-density population
genomic methods, such as GBS, allow for more detailed
tracking of the introgression of the genetic material into pre-
viously released populations (Stouthamer & Nunney, 2014).

Despite the importance of tracking the fate of released
agents and their associated alleles, there has been little effort
invested in species-identification assays or genotype-based
post-release monitoring in the field, possibly because of its
logistic difficulty (Blossey & Skinner, 1999; Coombs &
McEvoy, 1999; but see Rugman-Jones &
Stouthamer, 2017). Typically, preserved individuals are
brought back to the laboratory for DNA extraction, PCR
amplification, and sequencing. A recent novel approach
allows real-time identification of a biocontrol agent in the
field by loop-mediated isothermal amplification (LAMP)
(Lee, 2017). This is a low-cost alternative to PCR that can
be conducted in a single test tube and at a single temperature.
In a biocontrol context, this method has been tested to detect
parasitoidism of the Asian chestnut gall wasp Dryocosmus kuri-

philus Yasumatsu by Torymus sinensis Kamijo (Colombari &
Battisti, 2016), but it could facilitate all the field-monitoring
applications described.

(4) Microbiome manipulation

Microbiomes may constitute an important target for modify-
ing biocontrol agent performance. The composition of the
microbial community of an organism can be altered through
rearing conditions (e.g. a probiotic diet), via a breeding
regime or by genetic manipulation (Grau, Vilcinskas, &
Joop, 2017; Ras et al., 2017). For example, D. melanogaster
fed a probiotic bacterium were less susceptible to infections
of pathogenic bacteria (Blum et al., 2013). Sterile male perfor-
mance was enhanced and Pseudomonas pathogen levels were
reduced when the Mediterranean fruit fly Ceratitis capitata

(Wiedemann) was fed bacterial supplements (Ami, Yuval, &
Jurkevitch, 2010). Although these studies focused on flies
used in the sterile insect technique (mass-releasing sterile
males to outcompete wild individuals), the same principles
can be applied to biocontrol agents. Supplemented diets,
including those with probiotics, can potentially directly
improve the performance of mass-reared parasitoids and
predators (Nomikou et al., 2003, Ras et al., 2017; Koskinioti
et al., 2020a, 2020b), as can feeding on factitious hosts or prey
with a specific microbiome indirectly.
It is also possible for host specimens to transmit their

microbes to released biocontrol agents and influence their
physiology and ecology (Schuler et al., 2013). In such cases,
microbial screening with genetic markers would be useful
for investigating microbiome shifts that are responsible for
phenotype alterations. It is also known that microbes can
be responsible for chemical signals that attract parasitoids
to their host. This implies that biocontrol agents can poten-
tially be trained using these host microbiomes to be more effi-
cient at finding hosts. In the case of defensive microbes in pest
species, exposure to such microbes during development may
confer immunity in the next generation (Ras et al., 2017).
These applications are, however, still theoretical and will
require microbiome determination of specific biocontrol
agent–pest pairs, identification of relevant symbionts, and
development of methods to optimise their use.
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A specific class of potentially useful symbionts are those
that manipulate their hosts’ reproduction, such as Wolbachia

(Dedeine et al., 2001; Vavre, Fouillet, & Fluery, 2003; Wer-
ren, Baldo, & Clark, 2008). Wolbachia can cause cytoplasmic
incompatibility, which acts as a reproductive barrier among
species or strains (Bourtzis et al., 1996; Fouillet et al., 2000;
Gotoh, Noda, & Hong, 2003; Werren et al., 2008). However,
it is possible to cure arthropods ofWolbachia with antibiotics,
permitting interspecies hybridisation or inter-strain repro-
duction (Breeuwer & Werren, 1995). This can, for example,
be exploited to create strains that cannot interbreed with
native congeners, reducing ecological risk [e.g. predators
and parasitoids (Floate, Kyei-Poku, & Coghlin, 2006; Mach-
telinckx et al., 2009)].

Wolbachia is also implicated in thelytokous reproduction
(female parthenogenesis) in numerous insect species, such as
the Drosophila parasitoids Asobara and Leptopilina

(Breeuwer & Werren, 1995; Dedeine et al., 2001; Schidlo
et al., 2002; Kremer et al., 2009), aphid parasitoids
(Starý, 1999), and Trichogramma species (Stouthamer, Luck, &
Hamilton, 1990; Stouthamer & Kazmer, 1994). Thelytoky is
particularly significant for parasitoids in biocontrol because
of its potential for increasing production of host-killling
females. In addition, parthenogenesis induction byWolbachia

can be used as a tool for advanced genotypic selection, which
exploits the gamete duplication mechanism that underlies
parthenogenesis induction by Wolbachia and allows for fast
selection of beneficial gene combinations in parasitoids for
biocontrol (Russell & Stouthamer, 2011). In species that do
not carry Wolbachia, intentional infection (Yamashita &
Takahashi, 2018) can potentially be used to alter reproduc-
tion and life-history traits. Such transfection applications
require careful testing, as Wolbachia phenotypes are not
always the same between species (Veneti et al., 2012). Also,
Wolbachia can reduce the relative number of other potentially
beneficial symbiotic bacteria (Audsley, Ye, &McGraw, 2017;
Ye et al., 2017) and conversely, other microbiota can outcom-
pete Wolbachia (Kondo, Shimada, & Fukatsu, 2005; Goto,
Anbutsu, & Fukatsu, 2006; Hughes, Rivero, &
Rasgon, 2014; Rossi et al., 2015). These competition dynam-
ics within microbiomes (Brinker et al., 2019; Gurung
et al., 2019) are an important consideration when releasing
manipulated strains into the field, as is the fact that new
microbes introduced via hosts may become permanent fix-
tures in their ecosystem.

V. CONCLUSIONS

(1) It is a misconception that genetic solutions to biocon-
trol problems have been too complex to attempt,
explaining the perceived ‘lack of progress’ in recent
decades (Poppy & Powell, 2004; Lommen
et al., 2017; Kruitwagen et al., 2018). Rather, the sim-
pler approach of sourcing superior strains from nature
has been more common, but this approach is now

severely restricted. Despite their general applicability,
animal breeding techniques have not been exploited
to their full potential in the biocontrol field.

(2) As biocontrol agents need to perform in a complex
ecological environment, this makes it hard to decide
which traits to optimise, but we are progressively gain-
ing more knowledge on this, for instance by applying
modelling frameworks (Plouvier & Wajnberg, 2018).

(3) Several novel genetic and genomic approaches are at
hand, yet each application requires proper contextua-
lisation for a realistic projection of success. Marker-
based methods (such as field-tracking and strain identi-
fication) are already being implemented (Fig. 4A).
Others are not yet in use but are imminently possible,
such as integrating knowledge of genetic architecture
to develop more effective breeding programs
(Fig. 4B). Still others, such as genomic selection, are
currently largely in the theoretical realm. This may
be due to novel technologies being prohibitively labour
intensive or expensive, or still requiring troubleshoot-
ing. The rapid development of genomic sequencing
techniques and the resulting cost reductions
(Wetterstrand, 2019) will find applications in biocon-
trol as they have in other biological fields and applica-
tions (Handelsman, 2004; Hudson, 2008; Tautz,
Ellegren, & Weigel, 2010; Ashley, 2016; Hohenlohe
et al., 2018; Supple & Shapiro, 2018). Some applica-
tions are already successful, such as determining per-
formance of released agents by characterising their
diets. Furthermore, even in the more advanced appli-
cations, it is likely that a first success will lead to rapid
embracement by the scientific community and indus-
try, parallel to the development of the PCR technique
and the human genome project. For example, a proof-
of-principle study on genomic selection for a biocon-
trol agent would prove its feasibility even if cost and
efficiency still need further optimisation (Xia, 2020;
Xia et al., 2020) (Fig. 4C).

(4) Novel methodology to uncover the genetic architec-
ture of life-history traits, in combination with increas-
ing investment in research and development by
biocontrol companies, will rapidly expand the knowl-
edge base of the biocontrol field. Gene-editing tech-
niques are a useful research tool for delineating this
genetic architecture, but as the current biocontrol
market depends on a reputation of using more tradi-
tional genetics methods, now is not the time to use
gene-edited organisms in the field.

(5) Knowledge about genetic variation can be used to
design artificial selection programs, either by tradi-
tional selective breeding (White et al., 1970; Ram &
Sharma, 1977; Voroshilov, 1979; Roush &
Hoy, 1981a; Hoy, 1986; Rosenheim & Hoy, 1988;
Spollen & Hoy, 1992; Zhang et al., 2018), or more
sophisticated genomic selection (Xia, 2020; Xia
et al., 2020) or experimental evolution approaches
(Lirakis & Magalh~aes, 2019). As strong directional
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selection may also cause genetic impoverishment and
increase vulnerability to pathogens and diseases, such
approaches should always be designed to maintain suf-
ficient genetic variation.

(6) A caveat is that these approaches do have their limita-
tions; for example, a founding population may lack
sufficient genetic variation to select upon
(Mackauer, 1976), and even best practices and inten-
tions are not fool-proof (e.g. selection for higher host
specificity versus unpredicted host shifts in the field; Fol-
lett et al., 2000).

(7) The aim of this review is to stimulate the application of
genetic and genomic methodology in next-generation
biological control. We hope that it will lead to an
increasing awareness of the potential of biocontrol
agent breeding among scientists, the biocontrol indus-
try, growers, and the general public.
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BOLCKMANS, K., CÔNSOLI, F. L., HAAS, F., MASON, P. G. & PARRA, J. R. P. (2010).
Do new access and benefit sharing procedures under the convention on Biological
diversity threaten the future of biological control? BioControl 55, 199–218.

COELHO, A., RUGMAN-JONES, P. F., REIGADA, C., STOUTHAMER, R. & PARRA, J. R. P.
(2016). Laboratory performance predicts the success of field releases in inbred lines
of the egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae).
PLoS One 11, e0146153.

COLINET, H., NGUYEN, T. T. A., CLOUTIER, C., MICHAUD, D. & HANCE, T. (2007).
Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold
exposure. Insect Biochemistry and Molecular Biology 37, 1177–1188.

Biological Reviews 95 (2020) 1838–1854 © 2020 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical
Society.

1850 Kelley Leung et al.

https://doi.org/10.1002/ps.5857
https://doi.org/10.1002/ps.5857


COLOMBARI, F. & BATTISTI, A. (2016). Native and introduced parasitoids in the
biocontrol of Dryocosmus kuriphilus in Veneto (Italy). EPPO Bulletin 46, 275–285.

CONG, L., CHEN, F., YU, S., DING, L., YANG, J., LUO, R., TIAN, H., LI, H., LIU, H. &
RAN, C. (2016). Transcriptome and difference analysis of fenpropathrin resistant
predatory mite, Neoseiulus barkeri (Hughes). International Journal of Molecular Sciences 17,
15–17.

COOK, N., TRIVEDI, U., PANNEBAKKER, B. A., BLAXTER, M., RITCHIE, M. G., TAUBER, E.,
SNEDDON, T.& SHUKER, D.M. (2015). Oviposition but not sex allocation is associated
with transcriptomic changes in females of the parasitoid wasp Nasonia vitripennis. G3
Genes|Genomes|Genetics 5, 2885–2892.

COOMBS, E. M. & MCEVOY, P. B. (1999). Biological control of plant invaders: regional
patterns, field experiments, and structured population models. Ecological Applications
9, 387–401.

COUDRON, T. A., YOCUM, G. D. & BRANDT, S. L. (2006). Nutrigenomics: a case study in
the measurement of insect response to nutritional quality. Entomologia Experimentalis et
Applicata 121, 1–14.

CROFT, B. A. & MEYER, R. H. (1973). Carbamate and organophosphorus
resistance patterns in populations of Amblyseius fallacis. Environmental

Entomology 2, 691–696.
CRUAUD, A., NIDELET, S., ARNAL, P., WEBER, A., FUSU, L., GUMOVSKY, A., HUBER, J.,

POLASZEK, A. & RASPLUS, J. Y. (2019). Optimized DNA extraction and library
preparation for minute arthropods: application to target enrichment in chalcid
wasps used for biocontrol. Molecular Ecology Resources 19, 702–710.

DAVEY, J. L. & BLAXTER, M. W. (2010). RADseq: next-generation population genetics.
Briefings in Functional Genomics 9, 416–423.

DEDEINE, F., VAVRE, F., FLEURY, F., LOPPIN, B., HOCHBERG, M. E. & BOULETREAU, M.
(2001). Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a
parasitic wasp. Proceedings of the National Academy of Sciences of the United States of America
98, 6247–6252.

DEKKERS, J. C. M. (2004). Commercial application of marker- and gene-assisted
selection in livestock: strategies and lessons. Journal of Animal Science 82(E-Suppl),
E313–E328.

DENNIS, A. B., PATEL, V., OLIVER, K. M. & VORBURGER, C. (2017). Parasitoid gene
expression changes after adaptation to symbiont-protected hosts. Evolution 71,
2599–2617.

DEPLAZES-ZEMP, A., ABIVEN, S., SCHABER, P., SCHAEPMAN, M., SCHAEPMAN-STRUB, G.,
SCHMID, B., SHIMIZU, K. K. & ALTERMATT, F. (2018). The Nagoya protocol could
backfire on the global south. Nature Ecology and Evolution 2, 917–919.

DESJARDINS, C. A., PERFECTTI, F., BARTOS, J. D., ENDERS, L. S. &WERREN, J. H. (2010).
The genetic basis of interspecies host preference differences in the model parasitoid
Nasonia. Heredity 104, 270–277.

DICKE, M., CUSUMANO, A. & POELMAN, E. H. (2020). Microbial symbionts of
parasitoids. Annual Review of Entomology 65, 171–190.

DRUKKER, B., JANSSEN, A., WILLEM, R. & SABELIS, M. W. (1997). Improved control
capacity of the mite predator Phytoseiulus persimilis (Acari: Phytoseiidae) on tomato.
Experimental & Applied Acarology 21, 507–518.

DUKAS, R. (2000). Potential fitness consequences of associative learning in a parasitoid
wasp. Behavioral Ecology 11, 536–543.

DUNHAM, W.C. (2015). Evolution and future of biocontrol. In 10th Annual Biocontrol
Industry Meeting (ABIM), Basel, Switzerland.

EKBLOM, R. & WOLF, J. B. W. W. (2014). A field guide to whole-genome sequencing,
assembly and annotation. Evolutionary Applications 7, 1026–1042.

FACON, B., HUFBAUER, R. A. A., TAYEH, A., LOISEAU, A., LOMBAERT, E., VITALIS, R.,
GUILLEMAUD, T., LUNDGREN, J. G. G. & ESTOUP, A. (2011). Inbreeding depression
is purged in the invasive insect Harmonia axyridis. Current Biology 21, 424–427.

FAINO, L. & THOMMA, B. P. H. J. (2014). Get your high-quality low-cost genome
sequence. Trends in Plant Science 19, 288–291.

FALCONER, D. S.&MACKAY, T. F. C. (1996). Introduction to Quantitative Genetics. Longman,
London.
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