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We study a two-stage push–pull system in an assemble-to-order manufacturing environment. Modelling 

the system as an inventory-queue model, we construct a decision model to determine the optimal stock 

level of the semifinished base product and the optimal leadtime of the finished products that will mini- 

mize the total operational cost. We analytically characterize the structure of the optimal policy. For sys- 

tems with moderate demand and upstream processing time variabilities, there exists a threshold deter- 

mined purely by the tradeoff of operational costs so that when the upstream utilization is above the 

threshold, the push–pull strategy is optimal; otherwise the pure-pull strategy is optimal. When the inter- 

arrival time or the upstream service time follows a general probability distribution, the optimal policy 

depends on the demand or process variability at the upstream stage. Our results can be used to guide 

managers in selecting the right inventory and leadtime strategy to cope with system variability. We find 

that in comparison of the downstream variability, under some mild condition, the upstream variability 

has a more significant impact on the choice of the optimal policy, the corresponding inventory, and lead 

time. Further, the guaranteed/constant downstream processing time does not always benefit the supply 

chain performance. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Push and pull systems have become cornerstones of modern

anufacturing practice ( Hopp & Spearman, 2008 ). According to

yke and Cohen (1990) , there are multiple definitions of push and

ull in operations literature. The corresponding definition used in

ur paper is given as follows. Push systems satisfy demand from

nventory and can achieve a high capacity utilization, but may

ause excessive inventory. Pull systems satisfy demand by produc-

ion and are flexible to cope with variabilities in demand pro-

esses, but may result in a long delivery leadtime. To provide a

alance between inventory and leadtime, push–pull systems have

een widely implemented in the assemble-to-order manufactur-

ng environment where product variety and order delivery speed

re two drivers of the competitiveness of a firm (see Olhager &

stlund, 1990 ). This hybrid strategy addresses the variety and de-

ivery speed challenge by allowing the production of semifinished

ase product (SBP) or the ordering of standard items for the whole
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roduct family. A SBP represents a standard item used for the fi-

al assembly operation. An additional advantage of the push–pull

trategy is for the firm to offer customers a competitive promised

elivery time (PDT) when an order is received as a tool to build

ustomers’ trust ( Urban, Sultan, & Qualls, 20 0 0 ). 

In a typical push–pull system, the production of a family of

roducts is often organized into two basic stages. At the upstream

tage, an SBP is made. At the downstream stage, order-specific

omponents are assembled onto an SBP to generate an end prod-

ct for a customer order. The upstream production control is push

ype. while that of the downstream stage is pull type. Phillips’

omputed tomography (CT) scanner supply process offers a good

xample ( Serhadli, 2016 ). Phillips manufactures a basic CT model

nd stores it in Hamburg, Germany. Upon receiving an order from

ne of its dealers, a basic model unit is shipped to Amsterdam,

here customer-specified components and peripheral devices are

ssembled to the basic unit for producing an end product, which

s then tested and delivered to the customer through its distribu-

ion unit within a certain delivery deadline. Since peripheral de-

ices can be supplied promptly by contract manufacturers, Phillips

ocuses on the inventory holding cost of the basic CT model which

ccounts for more than 70% of the total cost of a complete CT

https://doi.org/10.1016/j.ejor.2020.04.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.04.033&domain=pdf
mailto:limingliu@ln.edu.hk
mailto:xuhe@hust.edu.cn
mailto:x.zhu@rug.nl
https://doi.org/10.1016/j.ejor.2020.04.033
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Scanner and takes a relatively long leadtime to produce. Mean-

while, the company also needs to achieve a high fulfillment stan-

dard by reducing customers’ waiting cost that heavily depends on

its promised order delivery leadtime. Therefore, the two key de-

cisions faced by the manager are the stock level of the SBP and

the promised delivery leadtime. The Phillips’ supply system can be

treated as a standard push–pull system where the basic CT model

can be produced before receiving the customer order. Besides the

healthcare industry, this type of assemble-to-order environment is

also common for various heavy industries, such as heavy trucks

and public buses. 

Moreover, the supply process of an Internet retailer, like that

of BestBuy.com ( Maltz, Rabinovich, & Sinha, 2004 ) and Hewlett

Packard ( O’Marah, 2005 ), can also be seen as a two-stage push–

pull process. Usually after an online order is confirmed, an e-

retailer “assembles/configures” the order, from items in its ware-

house/distribution center, according to the customer’s specification

and delivers it through a logistics service provider to the customer

within a pre-specified time window. The upstream stage is the or-

dering process of standard products into the warehouse and, to the

Internet retailer, the whole supply process clearly follows a push–

pull strategy. 

Although it seems that push–pull is the preferred supply strat-

egy in a demand-driven business environment, there is another

major factor that may affect the choice of the supply strategy. For

instance, to cope with an increasing of specific requirements by in-

dividual customers, Phillips had to launch more product lines so

that the demand rate for each product family becomes smaller,

prompting the company to consider reverting the push–pull strat-

egy back to the pure pull strategy under which there is no on-hand

stock of the basic CT model. A similar trend occurs in the auto

industry. General Motors tries to transform itself into a build-to-

order manufacturer from one of the world’s biggest build-to-stock

operations ( Simison, 20 0 0 ). In many situations, the choice between

pure pull and push–pull strategies is not obvious. Many factors are

involved, especially the trade-off of inventory and delivery speed

often determines the choice of the right supply strategy. 

Based on the recent review by Atan, de Kok, Stegehuis, van

Boxel, and Adan (2017) , the academic literature has not yet pro-

posed a clear guideline on the choice between pure pull and push–

pull strategies by considering the integrated decisions of the SBP

stock level and the PDT of the finished products. Furthermore, due

to the complexity of the system, the literature usually considers

inventory and leadtime decisions separately. However, to identify

an appropriate supply strategy and manage supply operations ef-

fectively, these two decisions need be considered simultaneously.

Therefore, the main purpose of this study is to provide an ana-

lytical framework for the choice between pure pull and push–pull

strategies by simultaneously considering the inventory and lead-

time decisions. 

To capture the system dynamics, we construct a two-stage sys-

tem in which an SBP is produced, stored, and then, upon receiv-

ing customer order, assembled into an end product for delivery.

The supply process uncertainty is represented by the upstream

and downstream processing times variability, while the demand

uncertainty is represented by the order arrival process variability.

Based on this system, we construct a decision model to determine

the optimal PDT of the finished products and the SBP inventory

level that minimize the total operational cost, including the hold-

ing costs of SBP and the finished product, the late delivery cost,

and customers’ waiting cost. The choice between pure pull and

push–pull is implied in the decision of SBP inventory level. This

model reflects the tradeoff of inventory and speed. Analyzing this

model, we seek to provide insights into the following important is-

sues. At the strategic level, how do firms choose the right supply

strategy? At the operational level, what is an appropriate tradeoff
f the inventory and delivery speed under a given supply strategy?

urther, we also examine how the upstream and downstream ca-

acity and process variabilities affect the supply strategy and opti-

al inventory and speed tradeoff? 

Our main contributions to the related literature are twofold.

irst, we characterize the structure of the optimal policy for the

ontrol of the push–pull system. For systems with moderate de-

and and upstream stage supply uncertainties, we find that the

ptimal policy for the choice of supply strategy is a threshold type

f the upstream stage capacity utilization. The threshold is com-

letely determined by the tradeoff of different costs. When the

tilization is above the threshold, the push–pull policy is optimal;

therwise, the pure pull policy should be used. Second, we explore

he impact of demand and process variability on the optimal pol-

cy. When demand and or upstream stage supply process uncer-

ainties are not moderate, the policy becomes significantly more

omplicated. Generally speaking, the threshold is replaced by one

r two switching curves. We find that, under some mild condi-

ion, while the upstream variability has a significant impact on the

radeoff of inventory cost and speed that determines the choice of

upply strategy, the downstream supply process plays a minimum

ole. Furthermore, we find that, contrary to intuition, eliminating

nly the downstream processing time variability (by providing a

uaranteed constant downstream processing time) will not always

enefit the supply chain performance. 

The rest of the paper is organized as follows. In Section 2 ,

e briefly review the related literature and highlight our contri-

utions. In Section 3 , we define a two-stage supply system, de-

ive the order response time distribution, and present the deci-

ion model. Section 4 is devoted to the optimal supply strategy

nd control policy of the uncongested and congested downstream

tage. Section 5 exam the impact of the downstream variability on

he choice the supply strategy. In Section 6 , we examine the impact

f upstream variability on the integration strategy and optimal pol-

cy. Finally, we summarize the findings and managerial insights in

etail and point out some potential extensions for further research

n Section 7 . All the proofs are presented in the online supplemen-

ary materials. 

. Literature review 

Our study is related to two streams of research. The one is lit-

rature on the promised delivery time on an inventory-queue sys-

em. The other is the literature on setting planned leadtimes in an

ssembly system. 

First, our work is related to research that models production

ystems as systems of queues or inventory-queues, and examines

nd compares their performance under push, pull, and push–pull

roduction strategies (see Seimchi-Levi, Kaminsky, & Seimchi-Levi,

008 ). Spearman and Zazanis (1992) compare the performance

f push and pull systems and find that pull systems are less

ongested and easier to control. By minimizing the expected

olding and backorder costs, Arreola-Risa and DeCroix (1998) con-

ider the choice between push and pull strategies for multiple

eterogeneous products in a single-stage system. They find that

ith a per unit backorder cost, the choice depends only on cost

arameters and the arrival rate. When the backorder cost is per

nit and per unit time, the production time distribution also

lays a role. Glasserman and Wang (1998) study the tradeoff

etween finished-goods inventory and delivery leadtime in a push

roduction system, and obtain an approximate linear relation

etween the stock level and the delivery leadtime in the heavy-

raffic regime. By modeling the supply/configuration process of

ach component of a multi-component and multi-stage assembly

ystem as a base-stock M 

X / G / ∞ inventory-queue, Cheng, Markus,

in, and Yao (2002) study a network of inventory-queues without
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Table 1 

Related literature. 

Research papers Considering factors Decision variables 

Performance Optimization Variability BSL Leadtime 

Yano (1987) 
√ 

Arreola-Risa and DeCroix (1998) 
√ √ √ 

Glasserman and Wang (1998) 
√ 

Song et al. (2000) 
√ √ √ 

Cheng et al. (2002) 
√ √ √ 

Liu et al. (2004) 
√ √ 

Gupta and Benjaafar (2004) 
√ √ √ 

Axsäter (2005) 
√ √ 

Alptekino ̆glu and Corbett (2010) 
√ √ √ 

Teo et al. (2011) 
√ √ √ 

Cheng et al. (2012) 
√ √ √ 

Atan et al. (2016) 
√ √ 

Ben-Ammar et al. (2018) 
√ √ 

Jansen et al. (2019) 
√ √ 

Our paper 
√ √ √ √ √ 
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p  

d  

a  
ongestion and quantify the tradeoff between inventory and the

nd-customer service level (off-the-shelf availability). Liu, Liu,

nd Yao (2004) consider the effective allocation of inventories

o multiple stocking points in a serial production system. To

ncorporate the congestion effect, each stage is modeled as a

I / G /1 inventory-queue, and a robust job-queue decomposition

pproach is developed to evaluate the system performance. They

nvestigate the tradeoff between the inventory and end-customer

ervice level and find that effective capacity deployment is no

onger the conventional “bowl shaped”, but increasing along

he line downstream when work-in-process inventory can be

ontrolled. 

For the optimization of inventory replenishment and lead time

ecisions, Alptekino ̆glu and Corbett (2010) consider pricing, prod-

ct variety, and promised leadtime decisions for the design of

 production system which is modelled by an M / M /1 inventory-

ueue. They focus on how the tradeoff between leadtime/FGI in-

entory and product variety informs the design choice between

ush and pull supply strategies. To address the trade-off between

apacity requirements and the amount of working in progress,

eo, Bhatnagar, and Graves (2011) consider how to determine the

lanned leadtimes and the corresponding time windows for mul-

iple product families under an pure pull manufacturing environ-

ent. The authors formulate the model into a non-linear optimiza-

ion program to find the optimal values of the planning variables.

heng, Ettl, Lu, and Yao (2012) consider a push–pull production

ystem with a two-stage manufacturing process. The authors de-

elop a nonlinear optimization model to examine the tradeoff be-

ween capacity utilization and inventory cost reduction. Ahmadi,

tan, de Kok, and Adan (2019) study the choice of the lead time

ith a corresponding commitment cost and investigate the im-

act of the commitment cost on the optimal strategy under a

ontinuous-review setting. For this stream of research, 

Gupta and Benjaafar (2004) is the most related to our work.

or a two-stage system where each stage is modelled by an M / M /1

ueue, they determine the optimal base-stock level to minimize

he sum of the expected holding cost and backorder cost. They

nd that the optimal base-stock level depends on the unit hold-

ng cost, unit backorder cost, and the utilization at Stage 1 and is

ndependent of the distribution of order response time. By consid-

ring the leadtime as a decision variable, we use the late delivery

enalty cost to characterize the impact of backorder. We show that

he optimal base-stock level depends on both cost parameters and

he distribution of the order response time. Further, we consider a

eneral arrival process and a general processing time, which allows

s to investigate the impact of variability on the optimal strategies

nd performance. 
Second, our work is also related to the problem of setting

lanned leadtimes given order due dates and random compo-

ent processing (or procurement) leadtimes and final assembly

imes. Yano (1987) considers a two-stage assembly systems with

wo components and finds numerically for some cases nega-

ive safety leadtime for at least one component and substantial

afety leadtime for the final assembly. Song, Yano, and Lerssisuriya

20 0 0) study component planned leadtime and order quantity de-

isions when the customer order due date is given by the quantity

s random. The end-product is assembled from n different compo-

ents with random procurement leadtimes but constant final as-

embling time. Axsäter (2005) suggests an approximation decom-

osition technique to determine the order release times at each

tage for a multi-stage assembly system. Recently, in comparison

f the existing approaches, Atan, Kok, Dellaert, Janssen, and Boxel

2016) develop a faster and more accurate heuristic to compute the

ptimal planned leadtimes at each stage of a multi-stage assem-

ly system. A numerical optimization method is applied to con-

rm the accuracy of the heuristic. Ben-Ammar, Dolgui, and Wu

2018) focus on the determination of optimal order release dates

ith stochastic lead times for each component at each level, and

hey deveop a branch and bound algorithm to minimize the sum

f inventory holding and backlogging costs. Jansen, Atan, Adan, and

e Kok (2019) introduce a concept of a “blame policy” with a new

olding cost accounting scheme, which can be applied to planned

ead-time optimization problems for a assembly system structure. 

In short, we use Table 1 to highlight our contributions to the

xisting literature. Different from the first research line, we explic-

tly investigate how integrated decisions of semi-finished product

nventory and delivery leadtime inform the choice of the pure pull

trategy and the push–pull strategy. Different from the above ATO

iterature where production/procurement leadtimes and order due

ate are exogenous, we consider finite production and final assem-

ling capacities and the integrated decisions of the SBP stock level

nd the promised order delivery time. We focus on the choice be-

ween push–pull and pure pull strategies while the ATO literature

ocusing on component inventory replenishment policies or safety

eadtime decisions. Further, we investigate the impact of demand,

pstream and downstream variability on the optimal strategy and

ystem performance. 

. Model formulation 

We consider a two-stage system that supplies a family of

roducts customized from a single SBP. The upstream stage pro-

uces the SBP while the downstream stage assembles auxiliary

nd custom components on the SBP based on specific customers’
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Table 2 

Model notation. 

T The ORT 

B The base-stock level 

� The PDT 

w The customer waiting cost per unit per unit time 

s The SBP holding cost per unit per unit time 

p The late delivery penalty cost per order per unit time 

c The end product holding cost per unit per unit time 

λ The average arrival rate of customers 

R ( t , B ) The distribution function of T 

�( · ) The cumulative distribution function of process time at Stage 2 

ρ The utilization at Stage 1 

μ1 The mean production rate at Stage 1 

μ2 The mean production rate at Stage 2 
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requirements. The firm does not keep end-product inventory to

maintain supply flexibility and avoid high inventory cost, but may

keep SBP inventory to shorten the order response time (ORT). We

assume that the inter-arrival time of customer orders follows a cer-

tain probability distribution with the mean given by 1/ λ. In other

words, λ can be treated as the average demand rate of customers.

Denoted by T , the ORT is the time period from customer order

confirmation to delivery of the ordered product to the customer.

By the definition of the ORT, T is a random variable that is affected

by both the demand uncertainty and the random processing time.

In Section 4 , we will show how the probability distribution of T

is derived. As stated in the Philip’s example, since the availabil-

ity of the auxiliary components can be guaranteed by contract

manufacturers and the impact of those components on the cost

efficacy is much less important than the SBPs, we do not consider

the operational decisions of the components for the tractability

of the model. Further, to reflect customers’ differentiation at the

downstream stage, the assembly time is usually a general random

variable, indicating different assembly time for different orders. 

To model this supply system, we note that the SBP (e.g., the ba-

sic CT unit) usually takes a very large portion of the total product

cost. It is reasonable to assume that the production facility for the

SBP is flexible and its setup cost is relatively insignificant. Ignoring

the setup cost, we may assume a base-stock policy for the SBP at

Stage 1. This makes the resulting model tractable while still cap-

turing the tradeoff between inventory and fulfillment service. An

eloquent modeling justification of the base-stock control policy for

ATO systems can be found in Song and Yao (2002) . The firm makes

an integrated decision on PDT, denoted by l , and the base-stock

level (BSL) of the SBP, denoted by B , to minimize its expected total

cost rate. When the optimal B is found to be 0, the firm adopts a

pure pull strategy and intentionally keeps no SBP inventory. With

this model setting, the strategic-level decision on the supply strat-

egy is implied in the integrated decision on l and B . This setup

allows the supply system to be either in a pure pull mode when

no SBP inventory is maintained or a push–pull mode with inter-

mediate SBP stock. 

The decision maker is conscious of the impact of waiting time

on customers’ buying intentions and imposes a customer waiting

cost w per order per unit time in the decision objective. Other

costs important to the decision include the SBP holding cost s

per unit per unit time, the late delivery penalty cost p per order

per unit time to compensate the customer for late delivery arising

when the ORT is longer than the PDT, and the end product holding

cost c per unit per unit time when the order is completed earlier

than the time specified by the PDT. It is usually more costly to

hold the end product than to hold SBP, and hence we assume that

c > s . We also must have p > w, since otherwise the firm could just

quote an unreasonably short PDT and take the risk of paying the

late delivery penalty. 

In summary, the assumptions are listed as follows. 

• The policy for the SBP at Stage 1 is a base-stock type. 
• The production capacity at Stage 2 is sufficiently large. 
• The unit holding cost of a finished product is higher than that

of a SBP, i.e., c > s . 
• The unit penalty cost is higher than the unit waiting cost, i.e.,

p > w . 

The notation is summarized in Table 2 . 

We construct the following integrated decision model 

min 

B ≥0 , � ≥0 
T C(B, � ) = λ[ cE(� − T ) + + pE(T − � ) + + w� ] + sE(I) , (1)

where the first term in the brackets is the expected inconvenience

cost, then the second is the expected delay penalty cost, and the

third term means the waiting cost per customer. Thus, the sum-

mation of these terms represents the expected leadtime cost to
erve one customer and then is multiplied by the average demand

ate. sE ( I ) is the holding cost of the expected steady-state inventory

evel of SBP at the downstream of Stage 1. 

Let R ( t , B ) be the distribution function of the ORT T . We have

he following convexity property of TC ( B , � ) with respect to � for

ny given B . The proof of this Lemma 1 as well as all the other

roofs in this paper are given in the appendix. 

emma 1. For any given B , TC ( B , � ) is strictly convex in � . The opti-

al PDT is uniquely given by 

 (� ∗, B ) = 

p − w 

p + c 
. (2)

emark 1. For any given B , (2) gives a newsvendor-type solution

o the optimal PDT in which c + w is the overage cost of increasing

he PDT by one unit while p − w is the underage cost of decreasing

he PDT by one unit. 

. A threshold policy of upstream utilization 

Consider a benchmark model with a Poisson demand process

f single-unit orders at rate λ. Stage 1 has a single processing unit

ith exponential processing time at rate μ1 . With a base-stock

olicy for the SBP output, Stage 1 is then an M / M /1 inventory-

ueue, which allows endogenous/load-dependent leadtimes for

he SBP. We assume that there is no congestion delay at Stage 2,

.e., the assembly operation for an order can always start imme-

iately as long as an SBP is available. The downstream stage is

hen a modified M / G / ∞ queue as in Cheng et al. (2002) . This is

quivalent to assuming an exogenous processing leadtime/ample

apacity at Stage 2, which is reasonable for many of today’s

gile/quick-response supply chains. For example, the delay to the

ssembly operation of customized CT units due to the number

f outstanding customer orders is likely insignificant. Further, the

etting of the general assembly time can represent customers’

pecific requirements for their own finished products. 

When there is an SBP stock out at Stage 1 at the arrival of an

rder, a work-in-process (WIP) delay occurs to this order at Stage

 so that Stage 2 is not a standard M / G / ∞ queue. With Poisson de-

ands, the probability of a WIP delay at Stage 2 equals the stock-

ut probability at Stage 1 by the PASTA theorem ( Wolff, 1989 ). Let

s denote the possible WIP delay by T B . For an arbitrary order, con-

itioning on the job queue length N at Stage 1, the WIP delay is

iven by 

 B = 

⎧ ⎨ 

⎩ 

0 , i f N ≤ B − 1 ;
W 1 r , i f N = B ;∑ N−B 

j=1 W 

j 
1 

+ W 1 r , i f N ≥ B + 1 , 

(3)

here W 

j 
1 

is the service time of the j th job in the job queue at

tage 1 and W 1 r is the steady state residual processing time at

tage 1. The ORT is the sum of T and the exogenous processing
B 
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ime W 2 at Stage 2. With an ample capacity at Stage 2, the state

t Stage 1 and hence the WIP delay are independent of W 2 so that

he distribution function R ( t , B ) of T is the convolution of the dis-

ribution function of W 2 and that of T B . 

emma 2. The distribution function of the ORT for the above defined

wo-stage system is given by 

 (t, B ) = �(t) − ρB 

∫ t 

0 

e −(μ1 −λ)(t−u ) d�(u ) , (4)

here �( · ) is the cumulative distribution function of W 2 and ρ =
/μ1 is the utilization at Stage 1. 

In the following subsections, we first characterize the optimal

olicies for two scenarios: a general downstream delay and a con-

tant downstream delay. We then compare of these two scenarios. 

.1. Random downstream delay 

For the system defined above, the average SBP inventory level

 ( I ) is B − ρ(1 − ρB ) / (1 − ρ) . Substituting (4) into (1) , we have 

 C(B, � ) = λ

[
c 

∫ � 

0 

(� − t ) dR (t , B ) + p 

∫ + ∞ 

� 

(t − � ) dR (t, B ) + w� 

]

+ s 

(
B − ρ(1 − ρB ) 

1 − ρ

)
, (5) 

he corresponding first-order conditions (FOC) are 

¯ (� ∗) + ρB ∗ e −(μ1 −λ) � ∗
∫ � ∗

0 

e (μ1 −λ) u d�(u ) = 

c + w 

c + p 
, (6) 

s + 

(p + s ) ρB ∗+1 ln (ρ) 

1 − ρ

−λ(c + p) ρB ∗ ln (ρ) 

∫ � ∗

0 

∫ t 

0 

e −(μ1 −λ)(t−u ) d�(u ) dt = 0 , (7) 

here �̄(x ) = 1 − �(x ) . 

By Lemma 1 , for any given B , the optimal PDT can be ob-

ained from (6) . Treating � as a function of B , i.e., � ∗( B ), our original

roblem is reduced to a single-variable optimization problem TC ( B ,

 

∗( B )). We first develop a set of bounds for the optimal PDT � ∗( B ). 

emma 3. � ∗( B ) is decreasing in B and bounded, i.e., � ≤ � ∗(B ) ≤ �̄

here 

 = �̄−1 ( 
c + w 

c + p 
) , (8) 

nd �̄ is uniquely given by 

¯ ( ̄� ) + 

∫ �̄ 

0 

e −(μ1 −λ)( ̄� −u ) d�(u ) = 

c + w 

c + p 
. (9) 

The lower bound is obtained with B → ∞ , i.e., when the two

tages are completely decoupled. Clearly, the minimum PDT de-

ends only on the downstream processing rate and cost parame-

ers. The upper bound is obtained by setting B = 0 . As shown be-

ow, it is the optimal PDT when the supply system is pure pull. 

emma 4. When the cumulative distribution �( t ) of the downstream

elay is log-concave, TC ( B , � ∗( B )) is convex if 

¯
 < �−1 

[ 
p + s 

p + c 

] 
, (10) 

nd first concave and then convex otherwise. 

Lemma 4 characterizes the property of TC on the assumption

hat the cumulative distribution of the downstream delay ( �( t ))

s log-concave in t . This assumption is needed to ensure that the

econd derivative of TC ( B , � ∗( B )) with respect to B is increasing in
 . This assumption is very mild. Many common distributions, such

s Uniform, Normal, Erlang, Gamma, and Beta are included in this

istribution family. Based on Lemma 4 , we have the following re-

ults. 

heorem 1. Under the condition that �( t ) is log-concave, there exists

 stage-1 utilization threshold ˜ ρ uniquely given by 

s 

s + w 

+ 

˜ ρ ln ( ̃  ρ) 

1 − ˜ ρ
= 0 , (11) 

uch that: 

(i) When ρ ≥ ˜ ρ, for both the convex and concave–convex cases,

the optimal strategy is push–pull with B ∗ > 0, and ( B ∗, � ∗) is

uniquely determined by FOC (6) and (7) ; 

(ii) When ρ < ˜ ρ and TC is convex, the optimal strategy is pure pull

with B ∗ = 0 and � ∗ = �̄ , where �̄ is given by (9) ; 

(iii) When ρ < ˜ ρ and TC is concave–convex, the optimal strategy is

pure pull with B ∗ = 0 and � ∗ = �̄ if 

�̄ ≤ �−1 

[
p − w 

p + c 
− s 

p + c 

(1 − ρ) 

ρ ln ρ

]
; (12) 

otherwise, the optimal strategy could be pure pull or push–pull,

i.e., 

(B 

∗, � ∗) = arg B,� min { T C(0 , �̄ ) , T C( ̃  B , ˜ � ) } , 
where ( ̃  B , ̃  � ) is determined by FOC (6) and (7) . 

Theorem 1 indicates that under quite general conditions, the

pstream stage capacity utilization level determines the choice of

upply strategy. When the demand rate relative to the upstream

rocessing speed is sufficiently large, a push–pull strategy should

e chosen. Otherwise, a pure pull strategy is usually optimal. How

arge the demand rate is sufficiently large depends only on the

radeoff of the SBP holding cost s and the customer waiting cost

 . On the one hand, when the SBP holding cost s increases, it is

ore costly to hold the SBP stock, which motivates the firm to use

 pure pull strategy. On the other hand, when customer waiting

ost w increases, the firm intends to quote a short leadtime in or-

er to balance the negative consequence of the waiting cost. Thus,

he firm has to use a push–pull strategy for offering a short lead-

ime. This finding illustrates Philips’ case quite closely. With the

ncreasing of specific requirements from customers, the number of

asic CT models increases. As a result, orders based on each ba-

ic CT model decrease significantly, which results in a low capacity

tilization. This forces Philips reverting back to using the pure pull

upply strategy. 

The evolution of Amazon’s distribution strategy provides an-

ther illustration of the managerial insights from Theorem 1 . Ama-

on started with direct shipment from publishers/wholesellers af-

er receiving online customer orders, which is essentially a pure

ull strategy without its own distribution centers and stocks be-

ween suppliers and customers. This strategy worked initially, but

s Amazon’s business volume grew and demand rate increased,

nd as customers becoming more demanding on fast delivery

waiting cost increases), the pure pull strategy started hurting the

usiness and reputation, Amazon had to switch to the push–pull

trategy building its own distribution centers with stocks for rapid

icking and delivery on receiving customer orders. But at what

evel of demand should Amazon switch from pure pull to push–

ull strategy? It is obviously not a easy question to answer for

mazon as well as many other online businesses. Theorem 1 sug-

ests a way to estimate the switching point based on s/ (s + w )

hown in (11) . We note that somewhat unexpectedly the delay

enalty cost is not involved in the determination of the threshold.

his may be explained by noting that the choice of supply strategy
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is made for the trade off of SBP inventory and final product deliv-

ery time, so only the two corresponding costs are involved in the

determination of the threshold. 

The optimal switching policy can also be applied to interpret

the postponement strategy implemented by manufacturing firms.

When the SBP holding cost is relatively low, the required upstream

capacity utilization for the push–pull strategy to be optimal will

also be lower. In practice, this strategy can also be interpreted as

form postponement . Although the product family shares a common

SBP, the forms of the end products depend on customers’ specific

requirements. Therefore, to hedge the demand uncertainty caused

by the variety of the end products, firms should be more likely to

implement the form postponement strategy by holding a certain

amount of SBPs and fulfilling orders by customizing the SBP to end

products, as Dell Computer did for its customer orders. When the

SBP holding cost is relatively high, a higher utilization is required

for the push–pull or form postponement strategy to be optimal.

On the other hand, the pure pull strategy is more likely suitable

with the PDT being set to the upper bound �̄ . This situation may

be called time postponement . The idea is to avoid starting the pro-

duction of SBP in anticipation of the demand when the overall de-

mand is relatively slow and the holding cost of SBP is relatively

high. The CT scanner example discussed earlier fits in this scenario

nicely. The price of each end product is around 1 million US dol-

lars so that the SBP is also very costly while the demand rate, only

from very few specific sectors, such as large hospitals and research

institutions, is also rather low. Therefore, it is cost-efficient for the

CT manufacturer to implement (switch to) the pure pull strategy. 

4.2. Constant downstream delay 

Theorem 1 shows that the policy threshold is independent of

the specific distribution form of the downstream delay within the

log-concave distribution family. Since the log-concave distribution

family covers the whole range of coefficient of variation (CV), we

conjecture that the downstream delay does not affect the policy

threshold. One exception, however, is the case of constant down-

stream delay. Thus, we consider system with a constant down-

stream delay which does not satisfy the log-concave condition in

Theorem 1 . Let the downstream deterministic delay be μ−1 
2 

. The

distribution of the ORT is reduced to 

R (t, B ) = 

{
0 , t < μ−1 

2 

1 − ρB e −(μ1 −λ)(t−μ−1 
2 

) , t ≥ μ−1 
2 

. (13)

By (13) , if � ≤ μ−1 
2 

and assuming p > w, the optimal PDT is

equal to μ−1 
2 

. In the following, we focus on the nontrivial case with

� ≥ μ−1 
2 

. For a constant μ−1 
2 

, the objective function can be simpli-

fied to 

T C(B, � ) = 

pλρB 

μ1 − λ
+ cλ(� − μ−1 

2 ) 

+ wλ� − λρB (c + p) 

[
1 − e −(μ1 −λ)(� −μ−1 

2 
) 

μ1 − λ

]

+ s 

[
B − ρ(1 − ρB ) 

1 − ρ

]
. (14)

Lemma 5. For any given B , the optimal PDT is given by 

� ∗(B ) = 

{ 

1 
μ1 −λ

ln 

(
ρB c+ p 

c+ w 

)
+ μ−1 

2 
, B ∈ [0 , log ρ

c+ w 

c+ p ] 

μ−1 
2 

, B ∈ ( log ρ
c+ w 

c+ p , + ∞ ) 
; (15)

and � ∗( B ) is decreasing in B and bounded, i.e., � ≤ � ∗(B ) ≤ �̄ , where

� = μ−1 
2 

and 

�̄ = 

1 

μ1 − λ
ln 

c + p 

c + w 

+ μ−1 
2 . 
Then, the optimal policy is given by the theorem below. 

heorem 2. There exists a utilization threshold ˜ ρ uniquely given by 

 + 

c + w 

s + w 

ln 
p + c 

w + c 
= 

s 

w + s 

( ̃  ρ − 1) 

˜ ρ ln ˜ ρ

[
1 − ln 

(
s ( ̃  ρ − 1) 

˜ ρ(p + s ) ln ˜ ρ

)]
, (16)

uch that 

(i) When ρ ≥ ˜ ρ, the optimal strategy is push–pull with B ∗ =
log ρ

(
s (ρ−1) 

(s + p) ρ ln ρ

)
and � ∗ = μ−1 

2 
; 

(ii) When ρ < ˜ ρ, the optimal strategy is pure pull with B ∗ = 0

and 

� ∗ = 

1 

μ1 − λ
ln 

(
c + p 

c + w 

+ μ−1 
2 

)
. (17)

It is interesting to note that while the policy structure is very

imple, the switching threshold is much more complicated. Unlike

n the case of general random downstream delay when the thresh-

ld is determined by the tradeoff between the SBP holding cost

nd customer waiting cost, FGI holding cost and delay penalty cost

re also involved in the complicated tradeoff. The reason can per-

aps be found in Theorem 2 itself. When the optimal strategy is

o hold the SBP stock, i.e., push–pull the firm should quotes the

onstant downstream service time as the optimal PDT to avoid FGI

ompletely. However, late delivery may still occur. So it is impor-

ant to consider the tradeoff between FGI holding cost and late de-

ivery penalty cost in addition to the tradeoff between SBP holding

ost and waiting cost to decide when to adopt the push–pull strat-

gy. 

.3. Optimal policy of a congested downstream stage 

This section studies the impact of downstream congestion de-

ay on the optimal policy. When the downstage stage only has a

nite capacity, it is essential to incorporate the congestion delay at

tage 2. Here, we assume that the downstream stage is modelled

y a single server with the general-distributed assembly time. The

pstream stage is modelled by an M / M /1 queue. For such a sys-

em, Lee and Zipkin (1992) suggest an approximation for evaluat-

ng the performance measure of a multistage production system

y assuming that the different stages are operated independently.

he authors claim that their approximation is sufficiently accurate

o be used to find the optimal base-stock level. Based on their ap-

roximations, the downstream stage can be treated as an M / G /1

ueue. Then, we can derive the distribution of ORT given by 

 (t, B ) = �(t) − ρB 

∫ t 

0 

e −(μ1 −λ)(t−x ) d�(x ) , (18)

here �( t ) is the cumulative probability distribution of the so-

ourn time in the M / G /1 queue. Note that �( t ) includes the pro-

essing time and the waiting time. The waiting time reflects the

mpact of congestion on the system while �( t ) in Eq. (4) only in-

ludes the process time. 

In the following, we first present the bounds and then the op-

imal policy by assuming that R ( t , B ) is approximated by (18) . 

emma 6. � ∗( B ) is decreasing in B and bounded, i.e., � ≤ � ∗(B ) ≤ �̄ ,

here 

 = �−1 
(

c + p 

c + w 

)
, (19)

nd �̄ is uniquely given by 

¯ ( ̄� ) + 

∫ �̄ 

0 

e −(μ1 −λ)( ̄� −x ) d�(x ) = 

c + w 

c + p 
. (20)

By following the similar argument like Lemma 4 , we can show

hat under the condition that �( t ) is log concave, if 

¯
 < �−1 

[ 
p + s 

p + c 

] 
, 
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C is convex; otherwise, TC is first concave then convex otherwise.

Analyzing the property of TC , we characterize the optimal policy

or the congested model. 

heorem 3. Under the condition that �( t ) is log-concave, the opti-

al policy is threshold-type (the threshold ˜ ρ is given by (11) ), i.e., 

(i) When ρ ≥ ˜ ρ, the optimal policy is push–pull with B ∗ > 0 in

both the convex and concave–convex cases. ( B ∗, � ∗) is uniquely

determined by 

s + (p + s ) 
ρB ∗+1 ln ρ

1 − ρ
− λ(c + p) ρB ∗ (μ1 − λ) 

×
∫ � ∗

0 

∫ t 

0 

�̄(t − x ) e −(μ1 −λ) x d xd t = 0 , (21) 

�̄(� ∗) + (μ1 − λ) ρB ∗
∫ � ∗

0 

�̄(� ∗ − x ) e −(μ1 −λ) x dx − c + w 

c + p 
= 0 ;

(22) 

(ii) When ρ < ˜ ρ, the optimal policy is pure pull with B ∗ = 0 and

� ∗ = �̄ in the convex case, where �̄ is given by (20) ; 

(iii) When ρ < ˜ ρ and the cost function is concave–convex, if 

�̄ ≤ �̄−1 

[
p − w 

p + c 
− s 

p + c 

(1 − ρ) 

ρ ln ρ

]
, (23) 

the optimal policy is pure pull with B ∗ = 0 and � ∗ = �̄ ; other-

wise, the optimal policy could be pure pull or push–pull, i.e., 

(B 

∗, � ∗) = arg B,� min { T C(0 , �̄ ) , T C( ̃  B , ˜ � ) } , 
where ( ̃  B , ̃  � ) is determined by (21) and (22) . 

Theorems 1 and 3 demonstrate that the same threshold policy

olds for systems with both the uncongested and the congested

ownstream stage. Both theorems show that the thresholds only

epend on the utilization of the upstream stage. The reason may

e that when � is chosen as a decision variable in our model,

o matter whether the downstream stage is congested or not, the

uotation of � has to cover the downstream service time for a sin-

le product. The choice of B is to maintain an appropriate stock

evel to enhance the upstream stage capacity. Thus, the optimal

olicy is only determined by the utilization at Stage 1. 

Similar to the uncongested system discussed in Section 4.2 , we

lso study the constant downstream delay for the congested sys-

em. Suppose that the downstream stage is modelled by an M / D /1

odel. The approximation of the sojourn time for the M / D /1 model

s given by 

 (T ≤ t) = 1 − 1 − ρ2 

ρ2 + r 0 − 1 

e −r 0 t , (24)

here r 0 is given by ρ2 (e r 0 − 1) − r 0 = 0 , r 0 > 1, and ρ2 = λ/μ2 .

he approximation is proposed by Roberts, Mocci, and Virtamo

1996) . By numerical experiments, the authors find that this ap-

roximation is quite accurate. Since the approximation is an expo-

ential distribution, we can prove that the optimal policy has the

ame structure as Theorem 3 . 

. Impact of downstream-process-time variability 

Here, we compare the optimal policy of these two cases to ex-

mine the impact of the downstream variability on the choice of

he supply strategy. 

roposition 1. The policy threshold is lower when the downstream

elay is constant than when the downstream delay is random. 

Somewhat unexpectedly, pure pull strategy can sustain higher

pstream capacity utilization when the downstream delay is ran-

om than when it is deterministic. This suggests that when the
ure pull strategy is more desirable, it is counterproductive to force

 rigid downstream operation/processing time, given the existence

f uncertainty in the upstream operation. 

We now examine how constant and random downstream de-

ays affect performance differently under both pure pull and push–

ull strategies. For tractability, exponential distribution is assumed

ere for the downstream delay, and we use subscripts d and u

o indicate the constant delay and exponential delay, respectively.

n the following two propositions, by substituting �(t) = 1 − e −λt 

nto the results of Theorem 1 , we can derive the expressions of � ∗u 
nd B ∗u . � ∗c and B ∗

d 
can be derived from Theorem 2 . For the brevity,

he expressions of the optimal solutions are presented in the cor-

esponding proofs. 

roposition 2. Under the pure pull strategy: 

(i) When μ2 < μ1 − λ, � ∗
d 

≥ � ∗u ; 
(ii) When μ2 ≥ μ1 − λ, � ∗

d 
≤ � ∗u if (c + w ) / (c + p) ≤ γ̄ , where γ̄

is uniquely given by 

μ2 e 
−(μ1 −λ) /μ2 − (μ1 − λ) e −1 γ̄ μ2 / (μ1 −λ) −1 

μ2 − (μ1 − λ) 
− 1 = 0 , 

and � ∗
d 

> � ∗u otherwise. 

We note that γ̄ = e 2 −e when μ2 = μ1 − λ. 

We further analyze the optimal PDT under the pure pull strat-

gy. From Lemma 1 , the optimal PDT is given by R (� ∗, 0) = (p −
 ) / (c + p) . If and only if μ2 is smaller than the residual upstream

apacity μ1 − λ, we can show that the ORT of the constant model

s stochastically larger than that of the exponential model. By com-

aring (4) with (13) , and the constant model has a longer op-

imal PDT than the exponential model, independent of cost pa-

ameters ( Proposition 2 (i)). When μ2 ≥ μ1 − λ, the comparison of

DT depends on the cost parameters. When the unit overage cost

 + w is relatively small, the firm’s focus is to avoid the under-

ge cost caused by the potential delay. In this case, the exponen-

ial model may require a PDT longer than that of the constant

odel. 

roposition 3. Under the push–pull strategy: 

(i) B ∗
d 

≥ B ∗u ; 
(ii) � ∗

d 
≥ � ∗u if (c + w ) / (c + p) ≥ [ μ2 e 

−(μ1 −λ) /μ2 − (μ1 −
λ) e −1 ] / [ μ2 − (μ1 − λ)] when μ2 	 = μ1 − λ and 2 e −1 ≤
(c + w ) / (c + p) ≥ 0 . 736 when μ2 = μ1 − λ; 

(iii) � ∗
d 

≤ � ∗u if (c + w ) / (c + p) ≤ 0 . 368 . 

Part (i) of Proposition 3 shows that the optimal BSL for the con-

tant model is always higher than that for the exponential model.

or the optimal PDT, the exponential model is more efficient ex-

ept when the delay penalty cost p is significantly greater than the

aiting cost w as indicated in Propositions 2 (ii) and 3 (iii). 

To understand the effects of downstream variability better, we

xamine how the downstream delay variability affects the opti-

al PDT and BSL, and the minimal total cost numerically. We

se constant, two-stage Erlang, exponential, and two-stage hyper-

xponential distributions in increasing coefficient of variation (CV);

nd set parameter values at λ = 6 , μ1 = 10 , μ2 = 7 and s = 0 . 1 , c =
 , p = 4 , w = 2 . We maintain the downstream mean service time

onstant at 1/ μ2 for all the three distributions. We perform sensi-

ivity analysis by varying μ2 (capacity parameter) and λ (demand

arameter), one at a time. The following six figures plot the ef-

ect of the variability on the PDT, BSL, and the total cost. Note that

he values of parameters in numerical instance are based on the

roject with Philips Healthcare by Serhadli (2016) . 

First, we observe from Figs. 1 and 2 that PDT decreases while

SL increases in μ2 . Note that μ2 measures the downstream

roduction rate. When μ increases, the average downstream
2 
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Fig. 1. Impact of the variability on PDT with respect to μ2 . 
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processing time becomes shorter. Thus, the firm can reduce PDT.

Meanwhile, the firm has to increase BSL in order to maintain a

sufficient amount of SBP stock and decrease the chance of process

starvation at the downstream stage. A smaller CV usually leads to

a longer PDT but a lower BSL, except reverting to the highest BSL

when CV reduces to 0 (constant). 

Second, with increasing λ, Fig. 3 shows that the optimal BSL in-

creases independently of the downstream delay CV. When demand

rate λ increases, the firm has to maintain a high level of SBP stock

to fulfill a increasing number of orders. As shown in Fig. 4 , the

PDT on the other hand almost remains constant, but longer PDT is

required for smaller downstream delay CV. 

Third, we observe from Figs. 5 and 6 that the total cost always

increases in CV except the case of constant. A deterministic down-

stream delay always leads to a higher total cost. From Figs. 1 to 4 ,

it is interesting to find that the constant model requires a higher

BSL and a longer PDT. Based on the cost function given by (1) , we

find that a higher BSL yields a higher inventory holding cost of SBP

and a longer PDT yields a higher expected leadtime cost, which re-

sults in greater total cost than the three other models. 

In summary of the above propositions and numerical results,

one interesting managerial insight is that a deterministic down-

stream delay may not bring any performance advantages and cost

savings compared with stochastic downstream delays. This findings

is supported by the Philips case, where Philips prefers to perform

assembly operations in house than outsourcing those operations to

a third-party logistics provider (3PL) even if the 3PL offers a fixed

processing time. There may be a simple explanation, that is, when
he supply delay consists multiple interrelated components, a de-

erministic components among random ones is usually not positive

o the overall effect of the delay. 

. The impact of demand and upstream-processing-time 

ariability 

We show in Section 4 that the downstream variability does

ot affect the strategy switching policy and the deterministic

ownstream delay is in general not preferable compared with the

tochastic downstream delay. These findings are based on moder-

te upstream and demand variabilities (CV = 1). In this section, we

ddress the impact of demand and process variabilities on the op-

imal switch policy at the upstream stage. Here, we assume that

emand variability is characterized by the inter-arrival time vari-

bility, and the process variability by the upstream service time

ariability, respectively. 

.1. Demand variability 

For the impact of demand variability, we model the upstream

tage by a GI / M /1 inventory-queue and the downstream stage by a

I / M / ∞ queue (with WIP delay). By the standard queueing theory

see page 395, Wolff, 1989 ), the distribution of the upstream order

ojourn time is exp [(1 − α) μ1 ] , where α is uniquely given by 

= 

˜ A [(1 − α) μ1 ] . (25)
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Fig. 2. Impact of the variability on BSL with respect to μ2 . 
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Fig. 3. Impact of the variability on PDT with respect to λ. 
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Fig. 4. Impact of the variability on BSL with respect to λ. 
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Fig. 5. Impact of the variability on the total cost with respect to μ2 . 



L. Liu, H. Xu and S.X. Zhu / European Journal of Operational Research 287 (2020) 119–132 129 

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

T
ot

al
 C

os
t

Constant
Erlang
Exponential
Hyper−Exp

Fig. 6. Impact of the variability on the total cost with respect to λ. 
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ote that 0 < α < 1 is the probability that the system is busy at the

emand arrival epoch, whereas ˜ A is the Laplace–Stieltjes transform

f the inter-arrival time distribution. 

Similar to Lemma 2 , we can derive the distribution of ORT,

.e., 

 (t, B ) 

= 

{
1 − e −μ2 t − μ2 ραB −1 

μ2 −μ1 (1 −α) 
[ e −μ1 (1 −α) t − e −μ2 t ] , μ2 	 = (1 − α) μ1 ; 

1 − e −μ2 t − μ1 (1 − α) tραB −1 e −μ1 (1 −α) t , μ2 = (1 − α) μ1 . 

(26) 

The total cost is then given by 

 C(B, � ) = pλ

(
1 

μ2 

+ 

αB 

μ1 (1 − α) 

)

+ (c + w ) λ� − λ(c + p) 
1 − e −μ2 � 

μ2 

−λ(c + p) 
μ2 αB 

μ2 − μ1 (1 − α) 

(
1 − e −μ1 (1 −α) � 

μ1 (1 − α) 
− 1 − e −μ2 � 

μ2 

)

+ s 

(
B − ρ(1 − αB ) 

1 − α

)
. 

We derive the corresponding first-order conditions: for μ2 	 =
(1 − α) μ1 , 

 

−μ2 � + 

μ2 α
B 

μ2 − μ1 (1 − α) 

[
e −μ1 (1 −α) � − e −μ2 � 

]
− c + w 

c + p 
= 0 , (27) 

s − (c − s ) 
ραB ln α

1 − α

− (c + p) 
ραB ln α

1 − α

μ1 (1 − α) e −μ2 � − μ2 e 
−μ1 (1 −α) � 

μ2 − μ1 (1 − α) 
= 0 , (28) 

nd for μ2 = (1 − α) μ1 , 

 

−μ2 � + μ1 (1 − α) �αB e −μ1 (1 −α) � − c + w 

c + p 
= 0 , (29) 
 − (c − s ) 
ραB ln α

1 − α
+ (c + p) ( μ2 � + 1 ) e −μ2 � ραB ln α

1 − α
= 0 . (30) 

emma 7. � ∗( B ) is decreasing in B and bounded, i.e., � ≤ � ∗(B ) ≤ �̄ ,

here 

 = 

1 

μ2 

ln 

c + p 

c + w 

, (31) 

nd �̄ is uniquely given by 

 

e −μ2 � + 

μ2 

μ2 −μ1 (1 −α) 
[ e −μ1 (1 −α) � − e −μ2 � ] = 

c+ w 
c+ p , if μ2 	 = (1 − α) μ1 ; 

e −μ2 � + μ1 (1 − α) �e −μ1 (1 −α) � = 

c+ w 
c+ p , if μ2 = (1 − α) μ1 . 

(32) 

emma 8. Let ˆ μ2 be the unique solution to 

ˆ 2 

(
c − s 

c + p 

)μ1 (1 −α) / ̂ μ2 

− ˆ μ2 
c + w 

c + p 
+ μ1 (1 − α) 

s + w 

c + p 
= 0 . (33) 

(i) For μ2 	 = (1 − α) μ1 , TC is convex if μ2 ≤ ˆ μ2 and first concave

then convex otherwise. 

(ii) For μ2 = (1 − α) μ1 , TC is convex if 

ln 

(
c + p 

c − s 

)
≤ s + w 

c − s 
, 

and first concave then convex otherwise. 

With the above results, we can now present the optimal policy

or the supply strategy. 

heorem 4. The optimal policy for the (GI / M /1, GI / M / ∞ ) system is: 

(i) When ρ ln α
(1 −α) 

< − s 
s + w 

, the optimal policy is push–pull with

B ∗ > 0, and ( B ∗, � ∗) is uniquely determined by (27) and (28) if

μ2 	 = (1 − α) μ1 and by (29) and (30) if μ2 = (1 − α) μ1 ; 

(ii) When ρ ln α
(1 −α) 

≥ − s 
s + w 

and μ2 ≤ ˆ μ2 , the optimal policy is pure

pull with B ∗ = 0 and � ∗ = �̄ ; 

(iii) When ρ ln α
(1 −α) 

≥ − s 
s + w 

and μ2 > ˆ μ2 , the optimal policy is pure

pull with B ∗ = 0 and � ∗ = �̄ if 
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Fig. 7. Switching curve policy under demand variability. 
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μ2 

ln 

[
s (1 − α) 

(c + p) ρ ln α
+ 

c + w 

c + p 

]
, (34)

otherwise, the optimal policy could be pure pull or push–pull,

i.e., 

(B 

∗, � ∗) = arg B,� min { T C(0 , �̄ ) , T C( ̃  B , ˜ � ) } , 
where ( ̃  B , ̃  � ) is determined by (27) and (28) for μ2 	 = (1 −
α) μ1 and by (29) and (30) for μ2 = (1 − α) μ1 . 

We note that α is (at least approximately) a function of the

demand CV and the upstream stage utilization. Theorem 4 shows

that the optimal policy is a switching curve type of ρ and the de-

mand CV. We use Fig. 7 to illustrate the findings based on the

switching curve policy. Here, we assume that the inter-arrival time

follows a k -stage Elrang distribution. Fig. 7 shows that the policy

switching curve divides the feasible policy space into two, with

one for the pure pull strategy and the other for the push–pull

strategy. When the demand variability increases, the demand vari-

ability dominates the choice of the optimal strategy, i.e., the pure

pull strategy is preferred in order to reduce the risk of holding

stock. When utilization increases, utilization dominates the choice

of the optimal strategy, i.e., the push–pull strategy should be im-

plemented to hedge the risk of stockout. 

6.2. Upstream variability 

We model the upstream stage by an M / G /1 inventory-queue and

the downstream stage by M / M / ∞ . For an M / G /1 queue, the explicit

analytical expression for the distribution of the ORT is not avail-

able. Thus, we derive an approximation of the ORT distribution

based on the approximated queue length distribution by Buzacott

and Shanthikumar (1993) and Liu et al. (2004) , i.e., 

P n = 

{
1 − ρ, n = 0 , 

ρ(1 − σ ) σ n −1 , n ≥ 1 , 
(35)

where P n is the probability that the length of queue length is n , C̄ s 
is the coefficient of variation of the service time at the upstream
tage, 

= 

(1 + C̄ 2 s ) ρ

2(1 − ρ) + (1 + C̄ 2 s ) ρ
. 

emma 9. Given the queue length distribution (35) , the ORT distribu-

ion is given by 

 (t, B ) = 1 − e −μ2 t − μ2 σ
B −1 

∫ t 

0 

Ḡ (t − x ) e −μ2 x dx, (36)

here Ḡ (t) = 1 − G (t) and G ( t ) is the cumulative probability distribu-

ion of the stationary waiting-time distribution in the M / G /1 queue. 

From (35) , the expected inventory level is given by E(I) = B −
(1 − σ B ) / (1 − σ ) , and we can then obtain the expected total cost

unction 

 C(B, � ) = λ

[
p( 

1 

μ2 

+ 

σ B 

μ1 (1 − σ ) 
) + (c + w ) L − (c + p) 

∫ L 

0 

R̄ (t , B ) dt 

]

+ s 

[
B − ρ(1 − σ B ) 

1 − σ

]
. (37)

By (2) , we treat � ∗( B ) as a function of B and obtain 

d 2 T C 

dB 2 
= σ B −1 ( ln σ ) 2 

×
[
(s + p) 

ρσ

1 − σ
− (c + p) μ2 

(∫ � 

0 

H (t) dt + 

H (� ) 

ln σ

d� ∗(B ) 

dB 

)]
, 

here 

H(t) = 

∫ t 

0 

Ḡ (t − x ) e −μ2 x dx, 

d� ∗(B ) 

dB 

= 

H(� ) ln σ∫ � 
0 g(l − x ) e −μ2 x dx + σ 1 −B e −μ2 � − ρ1 e −μ2 � 

. 

The complicated d 2 TC / dB 2 makes it extremely difficult (though

ossible) to characterize the property of TC . Here, we consider two

ommon distributions for the upstream service time: two-stage

yper-exponential and two-stage Erlang. For these two distribu-

ions, we can prove that TC ( B , � ∗( B )) is unimodal in B . Then, the

ptimal policy depends on the signs of the two first-derivatives at
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Fig. 8. Switching curve policy under upstream variability. 
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 = 0 and at B = 

ˆ B , where B = 

ˆ B is obtained from d 2 T C/dB 2 | 
B = ̂ B 

=
 . Define 
1 = d T C/d B | B =0 and 
2 = d T C/d B | 

B = ̂ B 
, where 

dT C 

dB 

= λ

[
p 

σ B ln (σ ) 

μ1 (1 − σ ) 
− (c + p) μ2 σ

B −1 ln (σ ) 

∫ � 

0 

H(t ) dt 

]

+ s 

(
1 + 

ρσ B ln (σ ) 

1 − σ

)
. (38) 

roposition 4. Under the assumption that the service time follows

 two-stage hyper-exponential or a two-stage Erlang distribution, the

ptimal policy is given by: 

(i) When 
1 < 0, the optimal supply strategy is push–pull with

( B ∗, � ∗) being uniquely given by the first order conditions based

on (37) ; 

(ii) When 
1 ≥ 0 and 
2 ≥ 0, the optimal supply strategy is pure

pull with B = 0 and � ∗ = �̄ ; 

(iii) When 
1 ≥ 0 and 
2 < 0, the optimal supply strat-

egy could be pure pull or push–pull, i.e., (B ∗, � ∗) =
arg B,� min { T C(0 , �̄ ) , T C( ̃  B , ̃  � ) } , where ˜ B and ˜ � are uniquely

given by the first order conditions based on (37) . 

Proposition 4 indicates that when the service time is a gen-

ral random variable, the optimal policy is characterized by two

urves, i.e., 
1 = 0 and 
2 = 0 . By (38) , the optimal policy mainly

epends on the variability of the upstream processing time and the

pstream utilization. Therefore, the structure of the optimal pol-

cy is similar to a switching-curve type. Under the assumption that

he processing time follows a two-stage hyper-exponential distri-

ution, Fig. 8 shows that when the variability of processing time is

elatively high and utilization is relatively low, the pure pull strat-

gy should be applied; when the variability of processing time is

elatively low and utilization is relatively high, the push–pull strat-

gy should be used. We find that the sharp decrease is caused by

he change of the function that characterizes the switching curve.

hen ρ is lower than 0.6, the function is like a convex function

hile it becomes concave for ρ > 0.6. Different from the findings

f Fig. 7 , either the system variability or utilization cannot domi-

ate the choice of the optimal strategy. 
. Conclusion and future extensions 

For a two-stage system that supplies a family of products cus-

omized from a single SBP, the key issue is to find an appropriate

upply strategy so that a firm can efficiently operate this system

nd provide customers with a competitive PDT. We formulate a de-

ision model for the optimal PDT and the optimal BSL for the SBP.

his model integrates the strategic level integration policy and the

perational level inventory and speed tradeoff decisions. We find

hat under some mild condition, the optimal policy is a threshold

ype, and the threshold is only on the utilization of the upstream

tage when the variability of the upstream processing time is mod-

rate. The thresholds are determined entirely by the system cost

tructure. When the utilization is above the threshold, the push–

ull policy is optimal; otherwise, the pure pull policy is optimal.

owever, when either the service time or the inter-arrival time at

he upstream stage follows a general distribution, the optimal pol-

cy depends on the demand variability or the process variability at

he upstream stage. 

Our second finding is about the impact of the downstream

ariability by the comparison between the constant and uncer-

ain downstream service time. We would expect that the guar-

nteed downstream processing and delivery time is beneficiary to

he supply chain performance. However, the analytical and numer-

cal results are quite unexpected: (1) Under the push–pull strategy,

he optimal BSL for SBP inventory for the constant model may be

igher than that for the uncertain model, and we can find con-

itions under which the optimal PDT for the uncertain model is

horter than that for the constant model; (2) Under the pure pull

olicy, depending on system design and cost parameters, either

he constant model or the uncertain model is more efficient; (3)

he threshold for the constant model is always lower than that for

he uncertain model; (4) the uncertain model may be more cost-

fficient than the constant model. 

There are a number of limitations of this work that could be

otential direction for future research. First, we may consider a de-

entralized two-stage supply chain where BSL and PDT decisions

re made independently. Under this setting, we want to see how

he upstream stage chooses between pull and push modes and
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how the independent decisions may be coordinated. Next, both

pricing and time are key marketing decisions, affecting market

shares and profitability. It is challenging to combine the pricing de-

cision with inventory and quoted leadtime determinations and let

the demand rate be affected by the price and leadtime strategies.

Further, although the issue of inventory replenishment and final

assembly allocations with multiple components and multiple prod-

ucts is out of the scope of the current study, it is worth extending

my model by incorporating these issues. As a starting point, We re-

fer readers to the excellent reviews by Song and Zipkin (2003) and

Atan et al. (2017) . 
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