

 University of Groningen

The design and implementation of Object Grammars
van der Storm, Tijs; Cook, William R.; Loh, Alex

Published in:
Science of computer programming

DOI:
10.1016/j.scico.2014.02.023

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
van der Storm, T., Cook, W. R., & Loh, A. (2014). The design and implementation of Object Grammars.
Science of computer programming, 96, 460-487. https://doi.org/10.1016/j.scico.2014.02.023

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 07-06-2022

https://doi.org/10.1016/j.scico.2014.02.023
https://research.rug.nl/en/publications/82ff95f6-a66e-4be5-977a-254b7aac7426
https://doi.org/10.1016/j.scico.2014.02.023

Science of Computer Programming 96 (2014) 460–487
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

The design and implementation of Object Grammars

Tijs van der Storm a,∗, William R. Cook b, Alex Loh b

a Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG Amsterdam, The Netherlands
b University of Texas at Austin, 1 University Station, Austin, TX 78712, USA

h i g h l i g h t s

• We introduce Object Grammars to parse textual syntax into object graphs.
• Cross references in the object structure are resolved using declarative paths.
• Complex mappings can be further controlled using predicates.
• We show that Object Grammars are both compositional and bidirectional.
• The entire system is self-describing and bootstrapped within itself.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 March 2013
Received in revised form 14 February 2014
Accepted 25 February 2014
Available online 4 March 2014

Keywords:
Domain-specific languages
Model-driven development
Language composition
Syntax definition

An Object Grammar is a variation on traditional BNF grammars, where the notation is
extended to support declarative bidirectional mappings between text and object graphs.
The two directions for interpreting Object Grammars are parsing and formatting. Parsing
transforms text into an object graph by recognizing syntactic features and creating the
corresponding object structure. In the reverse direction, formatting recognizes object graph
features and generates an appropriate textual presentation. The key to Object Grammars
is the expressive power of the mapping, which decouples the syntactic structure from the
graph structure. To handle graphs, Object Grammars support declarative annotations for
resolving textual names that refer to arbitrary objects in the graph structure. Predicates on
the semantic structure provide additional control over the mapping. Furthermore, Object
Grammars are compositional so that languages may be defined in a modular fashion. We
have implemented our approach to Object Grammars as one of the foundations of the Ensō
system and illustrate the utility of our approach by showing how it enables definition and
composition of domain-specific languages (DSLs).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A grammar is traditionally understood as specifying a language, defined as a set of strings. Given such a grammar, it is
possible to recognize whether a given string is in the language of the grammar. In practice it is more useful to actually parse
a string to derive its meaning. Traditionally parsing has been defined as an extension of the more basic recognizer: when
parts of the grammar are recognized, an action is invoked to create the (abstract) syntax tree. The actions are traditionally
implemented in a general-purpose programming language.

* Corresponding author.
E-mail addresses: storm@cwi.nl (T. van der Storm), wcook@cs.utexas.edu (W.R. Cook), alexloh@cs.utexas.edu (A. Loh).
http://dx.doi.org/10.1016/j.scico.2014.02.023
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.02.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:storm@cwi.nl
mailto:wcook@cs.utexas.edu
mailto:alexloh@cs.utexas.edu
http://dx.doi.org/10.1016/j.scico.2014.02.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.02.023&domain=pdf

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 461
In this paper we introduce Object Grammars: grammars that specify mappings between syntactic presentations and
graph-based object structures. Parsing recognizes syntactic features and creates object structures. Object grammars include
declarative directives indicating how to create cross-links between objects, so that the result of parsing can be a graph.
Formatting recognizes object graph features and creates a textual presentation. Since formatting is not uniquely specified,
an Object Grammar can include formatting hints to guide the rendering to text.

The second problem addressed in this paper is modularity and composition of Object Grammars. Our goal is to facilitate
construction of domain-specific languages (DSLs). It is frequently desirable to reuse language fragments when creating new
languages. For example, a state machine language may require an expression sub-language to represent constraints, condi-
tions, or actions. In many cases the sub-languages may also be extended during reuse. We present a generic merge operator
that covers both reuse and extension of languages.

The contributions of this paper can be summarized as follows:

• We introduce the Object Grammar formalism to describe mappings from textual notation to object graphs.
• Cross references in the object structure are resolved using declarative paths in the Object Grammar.
• Complex mappings can be further controlled using predicates.
• We show that Object Grammars are both compositional and bidirectional.
• We present an interpretative implementation of the general parsing algorithm GLL [56].
• The entire system is self-describing and bootstrapped within itself.

The form of Object Grammars presented in this paper is one of the foundations of Ensō, a new programming sys-
tem for the definition, composition and interpretation of external DSLs. At the time of writing, Ensō is implemented
in the Ruby programming language [21]. For more information and links to the source code, the reader is referred to
http://www.enso-lang.org. This paper extends and revises [59] with an extended introduction motivating the design of Ob-
ject Grammars, additional details on the implementation of Object Grammars in Ensō (Section 5), an additional case-study
to evaluate Object Grammars (Section 6), and additional directions for further research (Section 8).

1.1. Ensō: Application software = models + interpreters

Ensō is a programming system for the definition and interpretation of executable specification languages or models.
Examples of such languages include languages for describing data models (schemas), GUIs, security policy, Web applications
and syntax (grammars). The goal of Ensō is to develop application software by combining such languages. The runtime
behavior of an application is defined by composing interpreters for these languages. For instance, an interpreter for a GUI
language renders a specification of a GUI on the screen and ensures that user events are interpreted in the desired way.

All data in the Ensō system is described by a schema, including schemas themselves. A schema is a class-based infor-
mation model, similar to UML Class Diagrams [46], Entity-Relationship Diagrams [12] or other meta-modeling formalisms
(e.g., [7,28,32]). Schemas are interpreted by a data manager. This leads to the perspective of managed data: the way models
are created, queried, or modified is managed by an interpreter of schemas (called a “factory”) [41]. The factory is used to
create objects of types declared in the schema, to update fields of such objects, and to raise an error if undeclared fields
are accessed. An example of interpreter composition is adding a security aspect to the factory. The interpreter of security
policies acts as a proxy for the factory, only passing requests through to the normal factory if the current user is allowed to
read or write a particular property. A similar example is discussed in Section 5 where a schema interpreter is extended to
implement maximal sharing [27].

Object Grammars are Ensō’s language for describing the textual appearance of models, including the textual appearance
of object grammars themselves. Ensō is self-hosted so that all aspects of the system (models, interpreters) are open for
modification and extension. It is not a goal to provide a definitive set of DSLs for building application software. Rather,
Ensō is a platform for the creation, adaptation and extension of DSLs, including the foundational languages, like schema and
grammar. It is therefore important to realize that the version of Object Grammars in this paper is not aimed at parsing all
(existing) languages. The capabilities of Object Grammars as described here represent the current state in the evolution of
the Ensō system. Although the concepts to be developed later in this paper are general, the current implementation makes
trade-offs that reflect our current needs for defining languages in Ensō. The self-describing aspect of Ensō allows the way
the structure of models is described using schemas to be modified if needed, and the same is true of Object Grammars. The
interpreters used to execute these languages are open for extension as well – they are part of the package. In Section 5 we
will see how extensions of the core models and interpreters are used to implement parsing.

1.2. Grammars and models

In textual modeling [44] models are represented as text, which is easy to create, edit, compare and share. To unlock their
semantics, textual models must be parsed into a structure suitable for further processing, such as analysis, (abstract) inter-
pretation or code generation. Many domain-specific models are naturally graph structured. Well-known examples include
state machines, work-flow models, Petri nets, network topologies, class diagrams and grammars. Nevertheless, traditional
approaches to parsing text have focused on tree structures. Context-free grammars, for instance, are conceptually related to

http://www.enso-lang.org

462 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
Table 1
Relating requirements and design decisions.

Requirement Design decision(s)

Unified formalism Integrated data binding
Graph-based models Constructs for reference resolving
Flexible Asynchronous data binding, predicates, and formatting hints
Bidirectional Declarative data binding
Compositional Generalized parsing
Extensible Self-described and bootstrapped

algebraic data types. As such, existing work on parsing is naturally predisposed towards expression languages, not modeling
languages. To recover a semantic graph structure, textual references have to be resolved in a separate name-analysis phase.

Object Grammars invert this convention, taking the semantic graph structure (the model) rather than the parse tree as
the primary artifact. Hence, when a textual model is parsed using an Object Grammar, the result is a graph. Where the
traditional tree structure of a context-free grammar can be described by an algebraic data type, the graphs produced by
Object Grammars are described by a schema.

There is, however, an impedance mismatch between grammars and object-oriented schemas. Grammars describe both syn-
tactic appearance and syntactic tree structure. Schemas, on the other hand, describe semantic graph structures. As a result,
any attempt at bridging grammars and models, has to make certain trade-offs to overcome the essential difference between
grammars and models. Previous work has suggested the use of one-to-one mappings between context-free grammar pro-
ductions and schema classes [1,71]. However, this leads to tight coupling and synchronization of the two formats. A change
to the grammar requires a change to the schema and vice versa. As a result, both grammar and schema have to be written
in such a way that this correspondence is satisfied.

Another trade-off is concerned with how graph structures are derived from the essentially tree-based grammar. In tra-
ditional style parser generators, such as YACC [31] or ANTLR [49], the semantic structure is created by writing general
purpose code. The flexibility of such semantic actions has the advantage that any desired structure can be created, including
graph-like models. However, general purpose code is generally not invertable and as a result constructed trees or graphs
cannot be automatically transformed back to text. The language workbench Xtext provides a generic lookup mechanism
to resolve references based on globally unique identifiers [20]. This basic lookup mechanism can be used to automatically
derive formatters. However, it also restricts the name resolution rules of a language implemented in Xtext. The lookup rules
can be customized by providing name resolution code in Java. However, the semantics of references is then external to the
grammar specification itself and bidirectionality is compromised. Object Grammars, on the other hand, allow more flexibility
than one-to-one mappings, richer name lookup semantics than, e.g., Xtext, while still preserving bidirectionality. As such
they represent a unique point in the design space – inspired by earlier work, but motivated by a unique combination of
requirements.

1.3. Requirements and design decisions

Ensō is an extensible platform for the definition and composition of DSLs. Object Grammars serve to define the “textual
user interface” of such languages. Below we elaborate on the requirements that have guided the design of Object Grammars
and discuss the decisions and trade-offs that have shaped the design of Object Grammars. How the individual features of
the approach are related to earlier work is analyzed in more depth in Section 7. A summary of how the requirements are
addressed is shown in Table 1.

Unified formalism. A single, unified formalism should be sufficient to define the textual syntax of a language the structure of
which is defined in a schema. This requirement implies that how the object structure is created after parsing is specified
within the grammar itself. The Object Grammar formalism features constructs to specify object construction and field bind-
ing directly in the grammar. Furthermore, Object Grammars do not require a separate scanning phase. Instead of allowing
the specification of lexical syntax explicitly, we have opted for a fixed set of token types, which correspond to common
lexemes in programming languages (e.g., numeric literals, string literals, etc.). Furthermore, the tokens correspond to the
primitive types currently supported by the schema language.

Graph-based models. As noted above, the semantic structure of DSLs is often naturally graph-structured. The formalism should
allow expressing a textual syntax that concisely and conveniently maps to such structures. To facilitate the construction
of graph-like models, fields can be bound to objects at arbitrary locations in the resulting object graph. Such binding is
specified using declarative path expressions which locate the target object based on textual names in the input stream.
DSLs are often small, declarative specification languages (context-free grammars are the text book example). Even though
reference resolution is an important aspect of most languages, many DSLs do not feature the complex scoping rules of, for
instance, Java or C#. Hence, we consider full name analysis involving scopes, name spaces, and imports outside the scope of
Object Grammars.

Flexible. Because of the impedance mismatch between grammars and schemas, the mapping between them should be flex-
ible and customizable. To achieve this, the construction and field binding constructs may be “asynchronously” interleaved

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 463
between the syntactic constructs of the formalism, independent of the syntactic structure of the grammar. For instance,
there is no implicit relation between non-terminals and rule alternatives on the one hand, and concepts of the schema
(types, fields, etc.) on the other hand. Additional semantic predicates can be used to further customize the mapping. Asyn-
chronous data binding and predicates promote separation of concerns and loose coupling: the structure of the grammar can
be optimized for readable syntax, whereas the structure of the schema can be optimized for conceptual integrity. Finally,
to further customize the output of formatting an object graph to text, Object Grammars can be decorated with formatting
directives. This set of directives is not aimed at providing complete control over the output, as in general pretty printing
frameworks, but are sufficient to produce readable, indented renderings.

Bidirectional. The textual interface is but one of many possible user interfaces to manipulate models. For instance, some
models are also conveniently edited using GUI forms or diagram editors. To still be able to store models in a textual format,
the grammar formalism should be bidirectional. Bidirectionality is supported if the mapping between syntax and schema
is specified using constructs that admit a bidirectional interpretation. The aforementioned constructs – object construction,
field binding, paths, and predicates – can be interpreted “backwards” to support formatting. During parsing, object con-
struction, field binding and predicates are actions that manipulate the object graph being created, but during formatting
they are interpreted as guards to guide the formatter through the grammar. Path expressions locate the referenced object
during parsing, but during formatting, they are solved to find the textual name that has to be output.

Compositional. To facilitate reuse and extension of languages, the formalism should allow the composition of different lan-
guages. Compositionality is informally defined as the ability to combine two Object Grammars in order to process textual
models that are specified using the combined syntax. To satisfy this requirement, Object Grammars are built on a founda-
tion of general parsing. As a result, Object Grammars support arbitrary context-free syntax, which is closed under union.
Furthermore, general parsing provides a high level of flexibility and expressiveness: the grammar writer does not have to
restructure the grammar, for instance to satisfy lookahead restrictions or to avoid left-recursion. General parsing, however,
might incur ambiguities. This problem is resolved in a pragmatic way: ambiguous sentences are treated as parse-time errors.
In other words, we have traded the static guarantees provided by conventional LR or LL parsing for increased flexibility.

Extensible. The grammar formalism itself should be open for extension and modification. In the spirit of Ensō being a
platform rather than a tool set we would like to be able to modify, extend, or reuse the Object Grammar formalisms in
the same way ordinary DSLs could be extended. One way of achieving this is aiming for a system that is as self-hosting as
possible. In fact, as we will see in Section 4, the formalism of Object Grammars is defined in itself. As such, the current
incarnation of Object Grammars in Ensō can be a stepping stone for more advanced Object Grammar formalisms.

1.4. Organization

This paper is organized as follows. Section 2 introduces Object Grammars from the perspective of how they are used
to define the syntax of languages. This provides an overview of the features for mapping text to object graphs, including
object construction, field binding, path-based references and predicates. Section 3 describes common language composition
scenarios and how they are addressed in Ensō by merging Object Grammars. We identify three use cases for composition,
which are illustrated using Object Grammar examples. Section 4 elaborates on how object Grammars (and schemas) are
described within their own formalism. Section 5 presents the Object Grammar implementation details. We first elaborate
upon the notion of interpretation for executing models. Examples of such model interpreters are parsing, formatting, object
graph building, and merging, which are presented in detail. The section is concluded by detailing the bootstrap process of
Ensō. In Section 6 we evaluate the formalism based on how it is used and reused throughout Ensō. An external case-study
in domain-specific modeling serves as a separate evaluation benchmark. Related work is surveyed in Section 7. We position
Object Grammars in the area of bridging modelware and grammarware and provide pointers to related work on language
composition and self-describing systems. Finally, we conclude the paper in Section 8.

2. Object Grammars

An Object Grammar specifies a mapping between syntax and object graphs. The syntactic structure is specified using
a form of Extended Backus–Naur Form (EBNF) [72], which integrates regular alternative, sequential, iteration and optional
symbols into BNF. Object Grammars extend EBNF with constructs to declaratively construct objects, bind values to fields,
create cross links and evaluate predicates.

2.1. Construction and field binding

The most fundamental feature of Object Grammars is the ability to declaratively construct objects and assign to their
fields values taken from the input stream. The following example defines a production rule named P that captures the
standard notation (x, y) for cartesian points and creates a corresponding Point object.

P ::= [Point] "(" x:int "," y:int ")"

464 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
The production rule begins with a constructor [Point] which indicates that the rule creates a Point object. The literals
"(", "," and ")" match the literal text in the input. The field binding expressions x:int and y:int assign the fields
x and y of the new point to integers extracted from the input stream. The classes and fields used in a grammar must be
defined in a schema [41]. For example, the schema for points is:

class Point x: int y: int

Any pattern in a grammar can be refactored to introduce new non-terminals without any effect on the result of parsing.
For example, the above grammar can be rewritten equivalently as

P ::= [Point] "(" XY ")"
XY ::= x:int "," y:int

The XY production can be reused to set the x and y fields of any kind of object, not just points.
Operationally, the object graph is obtained in two steps. First the input is parsed using the Object Grammar; if successful,

this results in a single, non-ambiguous parse tree annotated with object construction and field binding directives. This phase
is equivalent to traditional, context-free parsing. In the second phase, the resulting parse tree is traversed to build the object
graph. In the example above this will be a single Point object. The details of this process are described in Section 5.3.

The Object Grammars given above can also be used to format points into textual form. The constructor acts as a guard
that specifies that only points should be rendered using this rule. The literal symbols are copied directly to the output. The
field assignments are treated as selections that format the x and y fields of the point as integers.

2.2. Alternatives and object-valued fields

Each alternative in a production can construct an appropriate object. The following example constructs either a constant,
or one of two different kinds of Binary objects. The last alternative does not construct an object, but instead returns the
value created by the nested Exp.

Exp ::= [Binary] lhs:Exp op:"+" rhs:Exp
| [Binary] lhs:Exp op:"*" rhs:Exp
| [Const] value:int
| "(" Exp ")"

This grammar is not very useful, because it is ambiguous. Although the Ensō parser can handle ambiguous grammars,
interpreting an ambiguous parse as an object graph is problematic since it is unclear which derivation is the intended
one. To resolve the ambiguity, we use the standard technique for encoding precedence and associativity using additional
non-terminals.

Term ::= [Binary] lhs:Term op:"+" rhs:Fact | Fact
Fact ::= [Binary] lhs:Fact op:"*" rhs:Prim | Prim
Prim ::= [Const] value:int | "(" Term ")"

This grammar refactoring is independent of the schema for expressions; the additional non-terminals (Term, Fact, Prim)
do not have corresponding classes. Ambiguous grammars are not disallowed: as long as individual input strings are not am-
biguous there will be no error. The original version thus can be used to meaningfully parse fully parenthesized expressions,
but the result will be ambiguous otherwise. The second version, however, handles standard expression notation.

During formatting, the alternatives are searched in order until a matching case is found. For example, to format Bi-
nary(Binary(3,"+",5),"*",7) as a Term, the top-level structure is a binary object with a * operator. The Term
case does not apply, because the operator does not match, so it formats the second alternative, Fact. The first alternative
of Fact matches, and the left hand side Binary(3,"+",5) must be formatted as a Fact. The first case for Fact does
not match, so it is formatted as a Prim. The first case for Prim also does not match, so parentheses are added and the
expression is formatted as a Term. The net effect is that the necessary parentheses are added automatically, to format as
(3+5)*7.

2.3. Collections

Object Grammars support regular symbols to automatically map collections of values. For example, consider this gram-
mar for function calls:

C ::= [Call] fun:id "(" args:Exp* @"," ")"

The regular repetition grammar operator * may be optionally followed by a separator using @, which in this case is a
comma. The args field of the Call class is assigned objects created by zero-or-more occurrences of Exp. A collection field
can also be explicitly bound multiple times, rather than using the * operator. For example, args:Exp* could be replaced
by Args? where Args ::= args:Exp (","Args)?.

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 465
Fig. 1. (a) Example state machine in graphical notation, (b) the state machine in textual notation, and (c) the internal representation of the state machine
in object diagram notation.

class Machine
start : State
states ! State*

class State
machine: Machine / states
name # str
out ! Transition*
in : Transition*

class Transition
event # str
from : State / out
to : State / in

Fig. 2. Schema defining the structure of state machine object graphs.

2.4. Reference resolving

In order to explain path-based reference resolution in Object Grammars, it is instructive to introduce a slightly more
elaborate example. Consider a small DSL for modeling state machines. Fig. 1 displays three representations of a simple state
machine representing a door that can be opened, closed, and locked. Fig. 1(a) shows the state machine in graphical notation.
The same state machine is rendered textually in Fig. 1(b). Internally, the machine itself, its states and the transitions are all
represented explicitly as objects. This is illustrated in the object diagram given in Fig. 1(c).

The object diagram conforms to the State Machine schema given in Fig. 2. The schema consists of a list of named classes,
each having a list of fields defined by a name, a type, and some optional modifiers. For example, the Machine class has
a field named states which is a set of State objects. The * after the type name is a modifier that marks the field as
many-valued. The # annotation marks a field as a primary key, as is the case for the name field of the State class. As a
result, state names must be unique and the states field of Machine can be indexed by name. The / annotation after
the machine field indicates that the machine and states are inverses, as are from/out and to/in. The ! modifier
indicates that the field is part of the spine (a minimal spanning tree) of the object graph. All nodes in a model are assumed
to be uniquely reachable by following just the spine fields. The spine allows visiting each object in the object graph in a
predictable way. This is useful for generic mapping operations on models, such as printing and serialization. Without the
distinction between spine fields and non-spine fields, encoded references could end up in the output at arbitrary locations
based on the specific traversal strategy of the operation (e.g., depth-first vs breadth-first). Currently such operations simplify
traverse the spine and treat all other object fields as cross-links. Not that the states field is on the spine, whereas the
start field is not. The object pointed to by start, however, is required to be included in the set of all states.

The schema could potentially be derived from the grammar, but we prefer to specify them both separately: schemas may
have additional structure in the form of class inheritance, and computed fields, or other meta-data, which may be unrelated
to the Object Grammar.

The textual representation in Fig. 1(b) uses names to represent links between states, while the graphical presentation
in Fig. 1(a) uses graphical edges so names are not needed. When humans read the textual presentation in Fig. 1(b), they
immediately resolve the names in each transition to create a mental picture similar to Fig. 1(a).

Fig. 3 shows an Object Grammar for state machines.1 It uses the reference <root.states[it]> to look up the start
state of a machine and to find the target state of a transition. The path root.states[it] starts at the root of the
resulting object model, as indicated by the special variable root. In this case the root is a Machine object, since M is the

1 The field label start is escaped using \ because start is a keyword in the grammar of grammars; cf. Section 2.7.

466 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
start M
M ::= [Machine] "start" \start:<root.states[it]> states:S*
S ::= [State] "state" name:sym out:T*
T ::= [Transition] "on" event:sym "go" to:<root.states[it]>

Fig. 3. Object Grammar to parse state machines.

start Schema
Schema ::= [Schema] types:TypeDef* @/2
TypeDef ::= Primitive | Class
Primitive ::= [Primitive] "primitive" name:sym
Class ::= [Class] "class" name:sym ClassAnnot /> defined_fields:Field* @/ </
ClassAnnot ::= Parent?
Parent ::= "<" supers:Super+ @","
Super ::= <root.classes[it]>
Field ::= [Field] name:sym.Kind type:<root.types[it]> Mult? Annot?
Kind ::= "#" {key == true}

| "##" {key == true and auto == true}
| "!" {traversal == true}
| ":"

Mult ::= ."*" {many == true and optional == true}
| ."?" {optional == true}
| ."+" {many == true}

Annot ::= "/" inverse:<this.type.fields[it]>
| "=" computed:Expr

Fig. 4. Schema Grammar.

start symbol of the grammar, and the M production creates a Machine. The path then navigates into the field states of
the machine (see Fig. 2), and uses the identifier from the input stream (it) to index into the keyed collection of all states.
The same path is used to resolve the to field of a transition to the target state.

In general, a reference <p> represents a lookup of an object using the path p. Parsing a reference always consumes a
single identifier, which can be used as a key for indexing into keyed collections. Binding a field to a reference thus results
in a cross-link from the current object to the referenced object.

The syntax of paths is reused from a general grammar for expressions, which includes syntax for field dereferencing, and
indexing into collections. A path is anchored at the current object (this), its parent according to the spine of the graph
(parent), or at the root (root). In the context of an object a path can descend into a field by post-fixing a path with .
and the name of the field. If the field is a collection, a specific element can be referenced by indexing in square brackets.
The special variable it represents the string-typed value of the identifier in the input stream that represents the reference
name.

The grammar of schemas, given in Fig. 4, illustrates a more complex use of references. To lookup inverse fields, it is
necessary to look for the field within the class that is the type of the field. For example, in the state machine schema in
Fig. 1(b), the field from in Transition has type State and its inverse is the out field of State. The path for the type
is type:<root.types[it]>, while the path for the inverse is inverse:<this.type.fields[it]>, which refers
to the type object.

To format a path, for example root.states[it] in Fig. 3, the system solves the equation root.states[it]=o to
compute it given the known value o for the field. The resulting name is then output, creating a symbolic reference to a
specific object.

2.5. Predicates

The mapping between text and object graph can further be controlled using predicates. Predicates are constraint ex-
pressions on fields of objects in the object graph. During parsing, the values of these fields are updated to ensure these
constraints evaluate to true. Conversely, during formatting, the constraints are interpreted as conditions to guide the
search for the right rule alternative to format an object.

Predicates are useful for performing field assignments that are difficult to express using basic bindings. For instance,
Ensō grammars have no built-in token type for boolean values to bind to. To write a grammar for booleans, one can use
predicates as follows:

Bool ::= [Bool] "true" { value==true }
| [Bool] "false" { value==false }

Predicates are enclosed in curly braces. When the parser encounters the literal “true” it creates a Bool object and sets its
value field to true. Alternatively, when encountering the literal “false” the value field is assigned false.

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 467
class Schema
types ! Type*

class Class < Type
supers : Class*
subclasses : Class* / supers
defined_fields ! Field*
fields : Field*

= all_fields.select()
{|f| !f.computed}

all_fields : Field*
= supers.flat_map()

{|s| s.all_fields }
.union(defined_fields)

class Type
name # str
schema : Schema / types

class Primitive < Type

class Field
name # str
owner : Class / defined_fields
type : Type
inverse : Field? / inverse
computed ! Expr?
optional : bool
many : bool
key : bool
traversal: bool

Fig. 5. Schema Schema.

When formatting a Bool object, the predicates act as guards. The grammar is searched for a constructor with a fulfilled
predicate or no predicate at all. Thus, a Bool object with field value set to true prints “true” and one with field value
set to false prints “false”.

A more complex example is shown in the Schema Grammar of Fig. 4. The classes and fields used in the grammar are
defined in the Schema Schema shown in Fig. 5: it defines the structure of schemas, including the structure of itself. Note
that this schema introduces subclassing using <: both Primitive and Class are subclass of Type. Furthermore, the
Schema Schema uses the computed fields feature of the schema language to obtain the set of all fields (both defined and
inherited) from a certain class. Both the fields and all_fields are accompanied by a Ruby-style expression computing
their value in terms of other fields. The expressions in curly braces are lambda expressions passed to the collection methods
select and flatmap. Note in Fig. 4 how the inverse field is bound by querying the computed field fields.

The production rule for Mult assigns the boolean fields many and optional in different ways. For instance, when a
field is suffixed with the modifier “*”, both the many and optional fields are assigned to values that make the predicate
true; in this case both optional and many are set to true. Conversely, during formatting, both many and optional must
be true in the model in order to select this branch and output “*”.

2.6. Formatting hints

Object Grammars are bidirectional: they are used for reading text into an object structure and for formatting such
structure back to text. Since object structures do not maintain the layout information of the source text, formatting to
text is in fact pretty-printing, and not unparsing: the formatter has to invent layout. The default formatting simply inserts
a single space between all elements. The layout can be further controlled by including formatting hints directly in the
grammar. There are three such hints: suppress space (.), force line-break (/) and indent/outdent (> and < respectively).
They are ordinary grammar symbols so may occur anywhere in a production.

The following example illustrates the use of . and /.

Exp ::= name:sym | Exp "+" Exp | "(".Exp.")"
Stat ::= Exp.";" | "{" / > Stat* @/ < "}"

Spaces are added between all tokens by default, so the dot (.) is used to suppress the spaces after open parentheses
and before close parentheses around expressions. Similarly, the space is suppressed before the semicolon of an expression-
statement. The block statement uses explicit line breaks to put the open and close curly braces, and each statement, onto
its own line. Furthermore, each individual statement is indented one level. Note that the Stat repetition is separated by
line-breaks (@/) during formatting, but, like all formatting directives, this has no effect on parsing.

2.7. Lexical syntax

Ensō’s Object Grammars have a fixed lexical syntax. This is not essential: Object Grammars can easily be adapted to
scannerless or tokenization-based parser frameworks. For Ensō’s goal, a fixed lexical syntax is sufficient. Furthermore, it
absolves the language designer of having to deal with tokenization and lexical disambiguation.

First of all, the whitespace and comment convention is fixed: spaces, tabs and newlines are interpreted as separators;
they do not affect the resulting object graph in any other way. There is one comment convention, // to end of line. Second,
the way primitive values are parsed is also fixed. In the examples we have seen the int and sym symbols to capture
integers and identifiers respectively. Additional types are real and str for standard floating point syntax and strings
enclosed in double quotes.

468 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
The symbol to capture alpha-numeric identifiers, sym, is treated in a special way, since it may cause ambiguities with
the keyword literals of a language. The parser avoids such ambiguities in two ways. First, any alpha-numeric literal used in
a grammar is automatically treated as a keyword and prohibited from being a sym token. Second, for both keyword literals
and identifiers a longest match strategy is applied. As a consequence, a string ab will never be parsed as two consecutive
keywords or identifiers, but always either as a single identifier, or as a single keyword. Keywords can be used as identifiers
by prefixing them with \. An example of this can be seen in the state machine grammar of Fig. 3, where the start field
name is escaped because start is a keyword in grammars.

3. Object grammar composition

3.1. Modular language development

Modular language development presupposes a composition operator to combine two language modules into one. For
two grammars, this usually involves taking the union of their production rules, where the alternatives of rules with the
same name are combined. To union Object Grammars in such a way, it is also necessary to merge their target schemas
so that references to classes and fields in both languages can be resolved. Object Grammar composition facilitates modular
language development, language reuse and language extension using a single mechanism of merging models. A generic
merge operator � combines any pair of models described by the same schema. Since both grammars and schemas are
themselves such models, the merge operator can be applied to compose Object Grammars by merging two grammars and
merging their respective target schemas. The implementation of � is described in Section 5.5.

The merge operator applied to two Object Grammars G1 � G2 merges the sets of rules. If a rule is present in both G1
and G2 the production alternatives of G2 are appended to the alternatives of the same rule in G1. When a rule is abstract
in either G1 or G2 the result will be a rule with the alternatives of the argument where the rule is not abstract.

Merging two schemas S1 and S2 merges the sets of types in both arguments. Similarly, for a class in both S1 and S2
the fields and super types are merged. The latter can be used, for instance, to let classes in S1 inherit additional fields. The
attributes of a field (e.g., type, multiplicity, or key) are taken from the same field in S2.

The merge operator � is powerful enough to facilitate different kinds of language composition. We distinguish the
following use cases for language composition:

• Language reuse: in this case a particular language is included in another language without modification. An example
would be a reusable expression language. The reused language is included as-is, and its semantics is encapsulated.

• Language extension: a language including another language, but also adding new constructs to included types, is an
instance of language extension. The expression language could be extended by adding new expression variants. The
extended language, however, is still eligible for encapsulated language reuse.

• Language mixin: if the extended language cannot be used independently we speak of language mixin. The extended
language provides open hooks that have to be filled by the extending language. An example is a language mixin for
control-flow statements. Such a language would not include primitive/base statements; these have to be provided by
the extending language.

All three styles are used throughout the implementation of Ensō. Section 6 discusses these examples in more detail. Below
we briefly illustrate how each scenario is addressed by merging.

3.2. Language reuse

As an example of language reuse, consider the addition of entry conditions to the state machine models described by the
schema in Fig. 2. This change requires reusing a generic expression language, Expr. The grammar of Fig. 3 is then modified
as follows:

S ::= [State] "state" name:sym out:T*
| [State] "state" name:sym out:T* "when" cond:Expr

abstract Expr

A new alternative is added to the S rule in order to support state definitions with an entry condition, indicated by the
“when” keyword. The abstract rule Expr captures the, as of yet absent, expression language. The grammar modification
anticipates reuse of the syntax of expressions. Naturally, the state machine schema (Fig. 2) is modified accordingly:

class State
machine: Machine / states
name # str
out ! Trans*
in : Trans
cond ! Expr?

class Expr

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 469
The State class is extended with a new optional field cond which contains the entry condition if present. Since entry
conditions are hierarchically contained in states, the field cond is marked to be on the spine. The empty class Expr is
required to bind the reference in the cond field.

Let’s call this new version of the state machine language Stm′ . The expression language Expr can now be reused by
pairwise composing the grammar and schema of Stm′ with the grammar and schema of Expr:

GStm+Expr = GStm′ � GExpr

SStm+Expr = SStm′ � SExpr

When the schemas are merged the empty Expr class of SStm is identified with the Expr class of the SExpr and the reference
to Expr in class State is updated accordingly. Similarly, merge on grammar entails that the concrete Expr non-terminal
from GExpr is added to the result. The � operator ensures that unbound references to Expr non-terminal will be updated
to point to the new Expr non-terminal as well.

3.3. Language extension

In the previous paragraph we showed how a generic expression language could be reused to add entry conditions to
the state machine language by modifying both grammar and schema directly. However, we would like to extend the state
machine language without having to modify the existing models. This composition case is handled by the �-operator as
well.

The manual modifications to the state machine grammar and schema could be encapsulated as separate language mod-
ules, Gcond and Scond , which are defined as follows:

S ::= [State] "state" name:sym out:T* "when" cond:Expr
abstract Expr
abstract T

class State
cond: Expr?

class Expr

Both grammar and schema only define the changed syntax and object structure of states. Note that an abstract rule T is
now needed to resolve the T non-terminal in the S production. It is not required to repeat the original fields of class S in
SCond since the field sets will unioned by �.

The combined language can now be obtained by composing Stm, Cond and Expr languages:

GStm+Cond = GStm � GCond � GExpr

SStm+Cond = SStm � SCond � SExpr

3.4. Language mixin

Language reuse is used to include a language in another language without changing it, whereas language extension
allows you to extend the included language. In both cases the included language is stand-alone: its grammar does not
include abstract rules and its schema does not have any place-holder classes. Conversely, we speak of language mixin if the
included language is not usable without a host. Including a language mixin requires you to bind place-holder elements to
concrete definitions.

Consider the following language mixin for C-style conditional expressions, showing both grammar and schema at the
same time.

Expr ::= [If] c:Expr "?" t:Expr ":" e:Expr

class Expr
class If < Expr
! c: Expr
! t: Expr
! e: Expr

Although both grammar and schema do not explicitly declare any abstract rules or classes, this language cannot be
used in a stand-alone fashion: there are no terminal Expr alternatives in the grammar, and no leaf Expr classes. This
characteristic is typical for language mixins.

However, the state machine language extended with entry conditions can act as a host language to “ground” the mixin:

GStm+Cond+If = GStm � GCond � GExpr � GIf

S Stm+Cond+If = SStm � SCond � SExpr � SIf

470 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
start Grammar
Grammar ::= [Grammar] "start" \start:<root.rules[it]> rules:Rule* @/2
Rule ::= [Rule] name:sym "::=" arg:Alt
Alt ::= [Alt] > alts:Create+@(/ "|") <
Create ::= [Create] "[".name:sym."]" arg:Sequence | Sequence
Sequence ::= [Sequence] elements:Field*
Field ::= [Field] name:sym.":".arg:Pattern | Pattern
Pattern ::= [Value] kind:("int"|"str"|"real"|"sym"|"atom")

| [Code] "{" expr:Expr "}"
| [Ref] "<".path:Expr.">"
| [Lit] value:str
| [Call] rule:<root.rules[it]>
| [Regular] arg:Pattern."*" Sep? {optional==true and many==true}
| [Regular] arg:Pattern."?" {optional==true}
| [Regular] arg:Pattern."+" Sep? {many==true}
| [NoSpace] .".".
| [Break] "/" (.lines:int | {lines==1})
| [Indent] ">" {indent==1}
| [Indent] "<" {indent==-1}
| "(".Alt.")"

Sep ::= "@".sep:Pattern
abstract Expr

Fig. 6. The Grammar Grammar: an Object Grammar that describes Object Grammars.

class Grammar start: Rule rules! Rule*
class Rule name# str arg! Pattern

grammar: Grammar / rules
class Pattern
class Alt < Pattern alts! Pattern+
class Sequence < Pattern elements! Pattern*
class Create < Pattern name: str arg! Pattern
class Field < Pattern name: str arg! Pattern
class Call < Pattern rule: Rule
class Terminal < Pattern
class Value < Terminal kind: str
class Ref < Terminal path! Expr
class Lit < Terminal value: str
class Code < Terminal expr! Expr
class NoSpace < Pattern
class Break < Pattern lines: int
class Indent < Pattern indent: int
class Regular < Pattern arg! Pattern optional: bool

many: bool sep! Pattern ?
class Expr

Fig. 7. The Grammar Schema.

4. Self-description

4.1. Introduction

The Ensō framework is fully self-describing and Object Grammars are one of the foundations that make this possible.
Grammars and schemas are both first-class Ensō models [38], just like other DSLs in the system. In Ensō, all models are an
instance of a schema, and grammar and schema models are no exception. Schemas are instances of the “schema of schemas”,
which is in turn an instance of itself (see Fig. 5). For grammars the relation is formatting. For example, the state machine
grammar of Fig. 3 formats state machine models. Similarly, the grammar of grammars (Fig. 6) formats itself. The grammar
of schemas (Fig. 4) parses and formats schemas. The schema of grammars (Fig. 7) instantiates grammars, and is formatted
using the grammar of schemas. These four core models and their relations are graphically depicted in Fig. 8.

Just like ordinary models, the core models have an in-memory object graph representation, which is then interpreted at
runtime. Schemas are interpreted by factories, to create and modify object structures. Similarly, both parsing and formatting
are implemented as interpreters of object graphs representing grammars (Section 5). The semantics of the core models is
thus defined in the same way as for “ordinary” models.

Self-description provides two additional benefits. First, the interpreters that provide the parsing and formatting behav-
ior for Object Grammars can be reused to parse and format grammars and schemas themselves. The same holds for the
factories that interpret a schema to construct object graphs: the schema of schemas is just a schema that allows the cre-
ation of schemas, including its own schema. Second, interpreters that are “model generic” can be applied to grammars

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 471
Fig. 8. The four core schema and grammar models.

and schemas as well. One example of such a generic operation is merging, which combines two arbitrary models of the
same type. Merging is applied to grammars and schemas to compose language modules. Because the four core models are
themselves described by a schema, they are amenable to composition and extension in the same way ordinary grammars
and schemas are. This property makes it possible, for instance, that both Schema Schema and Grammar Grammar reuse a
generic expression language (cf. Section 3).

The self-describing nature of Ensō poses interesting bootstrapping challenges. How these are addressed in Ensō is de-
scribed in more detail in Section 5.6.

4.2. Grammar Grammar

The formal syntax of Object Grammars is specified by the Grammar Grammar defined in Fig. 6. A grammar consists of
the declaration of the start symbol and a collection of production rules. A rule is identified by a (non-terminal) name and
has a body consisting of one or more alternatives separated by (|) as defined in the Alt rule.

The grammar rules use the standard technique for expressing precedence of grammar patterns, by adding extra non-
terminals. An alternative is a Sequence of Patterns possibly prefixed by a constructor (Create), which creates a new
object that becomes the current object for the following sequence of patterns. If there is no constructor, the current object
is inherited from the calling rule. The Patterns in a sequence can be Field bindings or syntactical symbols commonly
found in grammar notations, such as literals, lexical tokens, non-terminals, regular symbols, and formatting hints.

There is something very elegant and appealing about the concise self-description in the Grammar Grammar. For example
the Create and Field rules both explain and use the creation/binding syntax at the same time. The Ref and Call rules
seem to be inverses of each other, as the body of a Call is defined by a reference to a rule, and the body of a Ref is a
call to the non-terminal Expr. The normal level and meta-level are also clearly separated, as illustrated by the various uses
of unquoted and quoted operators (| vs. "|", * vs. "*", etc.).

5. Implementation

5.1. Interpretation

In contrast to most DSL systems, which are based on code generation, Ensō exclusively uses dynamic interpretation of
models. An example is a factory object to interpret a schema to dynamically create objects and assign fields [41]. Parsing
and formatting are no exception and are implemented as (a combination of) interpreters of Object Grammars.

These are the three interpreters relevant for the purpose of this paper:

parse : GrammarS → String → ParseTreeS (1)

build : (S : Schema) → ParseTreeS → S (2)

format : GrammarS → S → String (3)

The parse function takes a grammar (compatible with schema S), and a string, and returns a parse tree labeled with
constructors and field bindings interpreted in the context of schema S . The build function then interprets the parse tree
in terms of the schema S (provided as a first argument), resulting in an object graph conforming to S . Note that build is
dependently typed: the value of the first argument determines the type of the result, namely S . The format function realizes
the opposite direction: given a grammar compatible with S and a value of type S it produces a textual representation.

The Ensō parser is implemented as an interpretive variant of the Generalized LL (GLL) parsing algorithm [56]. An overview
of the Ensō GLL interpreter is provided in Section 5.3. The formatting algorithm recursively searches the Object Grammar to
find the relevant productions for rendering objects. This algorithm is described in Section 5.4.

472 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
class Pattern
prev: Pattern?
nxt: Pattern?

class Rule < Pattern
original: Pattern?

class End < Pattern
class EpsilonEnd < End

class Layout < Terminal

class GSS
item! Pattern
pos: int
edges! Edge*

class Edge
sppf: SPPF?
target: GSS

class SPPF
starts: int
ends: int
type: Pattern

class Node < SPPF
kids: Pack+

class Leaf < SPPF
value: str

class Pack
parent: Node / kids
type: Pattern
pivot: int
left: SPPF?
right: SPPF

Fig. 9. Extensions to the Grammar Schema for parsing.

The structure of Object Grammars as described in the Grammar Schema of Fig. 7 is not directly supported by any parsing
algorithm. For this reason, Object Grammars are first preprocessed to obtain a context-free grammar in the strict, traditional
sense.

5.2. Modeling internal data structures

The Grammar Schema extensions are captured by the schema shown in Fig. 9. The left column shows how Pattern and
Rule are changed to include additional fields. Patterns are enriched with prev and nxt pointers to link consecutive
elements in a sequence. The Rule class is extended with an additional super class Pattern so that it is allowed as a value
for nxt pointers.

The new classes End and EpsilonEnd are used to mark the end of a rule alternative. These are used by the GLL
algorithm to pop the parsing stack. Finally the class Layout is used to capture the built-in whitespace and comment
convention of Ensō Object Grammars. The function of these classes is described in more detail below.

The middle column of Fig. 9 describes the structure of the graph-structured stack (GSS). GSSs are used in general
parsing algorithms to deal with non-determinism in context-free grammars [60]. A GSS node has a pointer to an item (the
recognized symbol), a position in the input stream and a set of edges (Edge) to other GSS nodes. Each edge is labeled with
a (binarized) Shared Package Parse Forest (SPPF), which offers an efficient representation of (possibly ambiguous) parse
forests.

The structure of SPPFs is shown in the right column of Fig. 9. Common to all SPPF nodes is that they span a substring
of the input, indicated by the indices starts and ends. The type field captures the syntactic symbol of the node (e.g.,
a Rule). The two subclasses Node and Leaf represent the result of successfully parsing a fragment of the input. A Node
corresponds to the result of parsing a context-free symbol. The kids field contains one-or-more Pack nodes. If a Node
has more than one child, the node is ambiguous. Leaf nodes, on the other hand, capture the result of parsing a terminal
symbol. The corresponding text is stored in the value field. Finally, Pack nodes represent successive parse trees in bina-
rized form via the (optional) left field and (required) right field. The pivot field indicates where the left and right
child “meet” in terms of character/token position in the input.

Both GSS and SPPF are essential data structures of the GLL algorithm. By representing these data structures as Ensō mod-
els, the generic facilities in Ensō for manipulating, storing and printing models provides powerful capabilities for inspecting
the internal data structures of the parsing interpreter. The Grammar Schema extensions in the left column of Fig. 9 are used
in a preprocessing phase that precedes running the GLL interpreter.

Preprocessing Object Grammars consists of four steps: removing formatting, normalization, adding layout, and sequential
linking. Since Object Grammars are represented as object graphs themselves, preprocessing consists of applying a sequence
of model transformations to create additional objects and structure so that the grammar can be used for parsing.

The first step is the simplest and consists of removing all formatting directives (Indent, NoSpace and Break) from the
Object Grammar. Formatting directives affect neither parsing, nor object graph building and can therefore be discarded.

The second step consists of grammar normalization. This process turns the resulting Object Grammar into one that only
consists of rules, non-terminals and terminals. Each rule has one or more alternatives, and each alternative consists of zero
or more (non-)terminal symbols (Call, Lit, Value, Ref, and Code). All other symbols – Create, Field, Regular, and
nested Sequence and Alt symbols – are interpreted as special non-terminals. This means the symbol itself is replaced
with a Call to a new rule that captures the same syntax as the original. For instance, a regular symbol X+ is replaced with
a call to IterPlus_n, where n uniquely identifies this very occurrence of X+. Additionally, the grammar is extended with
a new rule IterPlus_n::= X IterPlus_n | X. The other regular symbols are treated in a similar way.

Field binding (Field) and object creation (Create) symbols are normalized to rules capturing the syntax of their
respective arguments. A link to the original symbol is stored in the original (cf. Fig. 9) field of the added rules so that

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 473
Fig. 10. Object graph showing the effect of normalizing and itemizing start Expr Expr ::= Expr op:"+"Expr.

this information can be carried over to the parse tree during parsing. As a result, no information about object construction
and field binding is lost.

The third preprocessing step consists of inserting a special Layout terminal in between every two consecutive symbols.
The Layout terminal captures the fixed, built-in whitespace and comment convention of Ensō Object Grammars.

Finally, consecutive production elements are linked to one another through prev and nxt (next) links. The nxt pointer
of the last element in a sequence always points to an End object, which communicates to the parsing algorithm that a
production has been fully recognized. For this reason, End object have their nxt pointers refer to Rule objects. The optional
prev pointer is used to determine if an element is the first of a sequence. If a production has no elements, a special end
object is inserted (EpsilonEnd). Linking consecutive production symbols allows the parsing algorithm to use the grammar
objects themselves as unique positions in the grammar, and to progressively move through the grammar.

To see the effect of preprocessing Object Grammars, consider the following small grammar:

start Expr Expr ::= Expr op:"+" Expr

The result of preprocessing could be rendered textually as follows:

start Expr
Expr ::= Expr Layout Field_op Layout Expr
Field_op ::= "+"

The resulting version of the grammar consists of plain BNF. What this rendering does not show, however, is the additional
structure for running the GLL interpreter and building the object graph. This structure can be seen in the structure of the
object graph, as shown in Fig. 10. Note how the field binding op:"+" is still accessible via the original field in the
added rule Field_op, and note also how the original occurrence of the field binder is replaced by a Call to the new rule.
The three calls in the production of the Expr rule are now interleaved with the Layout terminal. Finally, each symbol –
including the inserted Layout symbols – is linked to its predecessor (if any), and to its successor.

474 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
def parse(grm, src)
@cu = @cn = nil
@scan = Scanner.new(src)
@todo = []; @ci = 0;
eval(grm.start)
while !@todo.empty? do
item, @cu, @cn, @ci = @todo.pop
eval(item)

end
pt = node?(grm.start, src.length)
pt || (raise "Parse error")

end

def terminal(t, i, value)
cr = get_node_t(@ci, i, t, value)
@ci = i
if t.prev.nil? && !t.nxt.End? then
@cn = cr

else
@cn = get_node_p(t.nxt, @cn, cr)

end
eval(t.nxt)

end

def eval(t)
case t.schema_class.name
when :Lit then @scan.literal(t.value, @ci) { |i|

terminal(t, i, t.value)
}

when :Layout then @scan.layout(@ci) { |i, ws|
terminal(t, i, ws)

}
when :Ref then @scan.token(’sym’, @ci) { |i, tk|

terminal(t, i, tk)
}

when :Value then @scan.token(t.kind, @ci) { |i, tk|
terminal(t, i, tk)

}
when :Code then terminal(t, @ci, ’’)
when :Rule then t.arg.alts.each { |x|

add(x.elements[0])
}

when :Call then create(t.nxt); eval(t.rule)
when :End then pop
when :EpsilonEnd then
cr = get_node_t(t, @ci)
@cn = get_node_p(t.nxt, @cn, cr)
pop

end
end

Fig. 11. Pseudo Ruby code of the GLL interpreter.

5.3. Parsing and building object graphs

GLL is a general, top-down parsing algorithm, which is both efficient and easy to implement. It supports the complete
class of context-free grammars, including grammars with left recursion. In the implementation described here, tokenization
of the input stream happens in an on-demand fashion. When a certain token type is expected on the basis of the state
of the parser, the scanner is asked to provide this token at the current position of the input stream. If it delivers, parsing
continues, otherwise, the current branch is terminated, and other branches in the grammar will be explored. If there are no
remaining branches and no parse tree spanning the complete input has been created, a parse error is issued. The result of a
successful parse is a (possibly ambiguous) parse forest. The nodes in the parse forest are annotated with grammar patterns
(e.g., Rule, Layout, etc. – see Fig. 7 and Fig. 9).

The generality of GLL supports modularity of syntax definitions. It is well-known that only the full class of context-free
grammars is closed under union. Composing two or more grammars will never break the parser. The flip side is that gram-
mar composition might introduce ambiguity. Although ambiguity of context-free grammars is an undecidable property [10],
ambiguities are often easy to resolve in practice. Lexical ambiguities are dealt with by the framework using a pragmatic
approach. First, a longest-match strategy is applied to all keywords that overlap with the (sym) identifier syntax. Second,
all such keyword literals are always reserved from the identifier syntax, even for composed languages. To force a keyword
to be recognized as an identifier, it can be escaped with \. Note also that, practically, ambiguity of a grammar is only a
problem when actual ambiguous input is parsed. Ambiguous input is always considered to be an error.

The definition of the GLL interpreter is shown in Fig. 11 in pseudo code. The left column shows the top-level function
parse, which receives a grammar (grm) and the input (src). The global variables @cu and @cn represent the current
GSS stack node and SPPF node respectively. The on-demand scanner is initialized in the @scan variable. GLL operates by
maintaining a collection of descriptors that represents a work-list (@todo).

Before entering the main loop, the algorithm is started by calling the grammar interpreter eval (shown on the right)
on the start symbol. The main loop acts like a trampoline, taking elements of the work list and dispatching to eval until
nothing remains to be done. The resulting parse forest, if any, is then found by searching for the SPPF that spans the
complete input and is labeled with the start symbol of grm.

The actual grammar interpreter eval is shown in the right of Fig. 11. Recall that every Ensō object is described by a
schema. The schema class of an object is accessible through the special field schema_class. The eval function uses the
schema class of the grammar symbol t to dispatch to the appropriate action.

The first five cases deal with the terminal symbols Lit, Layout, Ref, Value and Code. The blocks passed to the
scanner methods are only executed if the requested token type is recognized in the input at position @ci. Otherwise,
control returns to the main loop in parse. If the terminal is successfully recognized, the routine terminal (shown on
the left) creates the necessary SPPF nodes, using the helper routines get_node_t (Leaf) and get_node_p (Node). After
that, parsing immediately continues with the next element in the sequence (eval(t.nxt)).

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 475
def build(pt, ob=nil, f=false, vs=[], ps=[])
case pt.schema_class.name
when :Node then
amb_error(pt) if is_amb?(pt)
build_node(pt.type, pt, ob, f, vs, ps)

when :Leaf then
build_leaf(pt.type, pt, ob, f, vs, ps)

when :Pack then
build(pt.left, ob, false, vs, ps)
build(pt.right, ob, !pt.left.nil? , vs, ps)

end
end

def fixup(root, fixes)
begin
later = []; change = false
fixes.each do |path, obj, fld|
x = path.deref(root, obj)
if x then # the path can be resolved
update(obj, fld, x)
change = true

else # if not , try it later
later << [path, obj, fld]

end
end
fixes = later

end while change
raise "Fix-up error" unless later.empty?

end

def build_node(s, pt, ob, f, vs, ps)
case s.schema_class.name
when :Rule then
if s.original then
build_node(s.original, pt, ob, f, vs, ps)

else
build(pt.kids[0], ob, f, vs, ps)

end
when :Create then
build(pt.kids[0], ob=@fact.make(s.name))

when :Field then
build(pt.kids[0], ob, true, vs=[], ps=[])
vs.each { |v| update(ob, s.name, v) }
ps.each { |p| @fixes << [p, ob, s.name] }

else
build(pt.kids[0], ob, f, vs, ps)

end
end

def build_leaf(s, pt, ob, f, vs, ps)
case s
when :Lit then vs << pt.value if f
when :Value then
vs << convert(pt.value, s.kind)

when :Ref then
ps << subst_it(pt.value, s.path)

when :Code then assert(s.code, ob)
end

end

Fig. 12. Pseudo Ruby code to turn parse trees into object graphs. The entry function is build (upper left).

The last four cases (Rule, Call, End and EpsilonEnd) invoke additional GLL helper routines. First, add schedules
new work items on the work list. This procedure is called when a production is encountered. Second, create pushes new
GSS nodes which function as “return points” after a non-terminal has been recognized. Third, the pop routine pops the
GSS, possibly creating additional SPPF nodes and scheduling additional work items. This routine is called if the end of a
production is reached (End, or EpsilonEnd symbols). Recall that EpsilonEnd captures an empty production. For this
reason an empty SPPF node is recorded using get_node_t and get_node_p.

The precise semantics of get_node_t, get_node_p, add, create, and pop is outside of the scope of this paper. For
more information we refer to the work by Scott and Johnstone [56] which contains full definitions of these five routines.
One important aspect however, is that GSS, SPPF and Pack nodes should be shared. This means that a GSS is only created if
no GSS with the same item and position (pos) already exists. Similarly, an SPPF is only created if no SPPF with the same
starts and ends and type values already exists. Finally, Pack nodes are shared based on the values of the parent,
type and pivot fields.

To implement sharing of GSS and SPPF nodes, Ensō leverages the fact that all data is managed by schema inter-
preters [41]. This means that when and how objects are created and accessed can be customized to a great extent. In
this particular instance, we have implemented a custom data manager (extending the default one) which employs a tech-
nique similar to hash-consing [27] to realize sharing. If a constructor is called with the same arguments for a second time,
the factory returns a previously allocated object. As a result, the cross-cutting aspect of sharing is now defined at a single
place.

If parsing is successful, the build function creates the object-graph from the concrete syntax tree returned from the parse
function. This happens in two steps. First, the spine of the object graph is created using the function build shown in
Fig. 12. The first argument to build is the syntax tree, ob represents the “current” object, and f indicates if field assign-
ment can be performed. Finally, vs and ps collect values and paths respectively. The build procedure recursively traverses
the syntax tree and depending on whether a node is a Node or a Leaf calls into either build_node or build_leaf
(shown at the right of Fig. 12). If the current node pt is Pack node, both the left node (if any) and the right node are built
recursively.

The build_node function creates objects and assign fields based on the type annotation of the SPPF. If the rule is the
result of normalization, build_node is called recursively with the same pt, but with a different label, s.original. This
ensures that normalized Create and Field are taken into account. For other rules, build_node simply continues with
the children. If the kids field of a Node SPPF contains more than one elements, an ambiguity error is raised in build.
Hence, only the first child (pt.kids[0]) is passed to recursive invocations of build_node.

476 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
def format(s, os, out=[])
case s.schema_class.name
when :Rule then
return format(s.arg, os, out)

when :Call then
return format(s.rule, os, out)
when :NoSpace, :Indent, :Break then
out << s
return true

when :Code then
return eval_expr(s.expr, os.current)

when :Alt then s.alts.each { |x|
if format(x, os.copy, sub = []) then
out += sub; return true

end
}

when :Sequence then
total = []; ok = true
s.elements.each { |x|
ok &= format(x, os, sub = [])
total += sub

}
out += total if ok
return ok

continued from previous column ...
when :Create then
o = os.current
if o && o.schema_class.name == s.name then
os.next
return format(s.arg, Stream1.new(o), out)

end
when :Field then # [literal case omitted]
o = os.current
fld = o.schema_class.all_fields[s.name]
return format(s.arg, fld.many ?

StreamN.new(o[s.name]) :
Stream1.new(o[s.name]), out)

when :Lit then
out << s.value; return true

when :Value then
return format_value(s.kind, os.current, out)

when :Ref then
out << solve_path(s.path, os.current)
return true

end
return false

end

Fig. 13. Pseudo Ruby code of the object graph formatting algorithm.

For constructor directives Create, the factory object @fact is asked to create an object of the right class. The created
object becomes the new current object when recursing down the tree. In the case for Field nodes, the values collected
in vs are directly assigned to the corresponding fields in the current object. The paths ps are recorded as “fixes” to the
current object for the current field in the global variable @fixes; these fixes are applied later to create cross-links.

The build_leaf routine deals with terminal symbols. Both Lit and Value values are simply added to the collection
of values vs. Values are first converted to the expected type; the value of a literal is recorded literally, but only when
the node is directly below a field binder (i.e., f is true). When a reference is encountered (Ref) the special keyword it is
substituted for the name that has been parsed, and the resulting path expression is added to ps. Finally, Code predicates
are asserted in the context of the current object using an expression interpreter assert. The fields of ob are assigned so
that the expression s.code becomes true.

In the second step, the path-based references are resolved in an iterative fix-point process. This is shown in the bottom,
right-hand side of Fig. 12. The fix-point process ensures that dependencies between references are dynamically discovered.
If in the end some of the paths could not be resolved – for instance because of a cyclic dependency – an error is produced.

5.4. Formatting

Formatting works by matching objects against constructor and field specifications in an Object Grammar. In essence,
the formatter searches for a rendering that is compatible with the object graph. When the class in a constructor directive
matches the class of the object being formatted, the object is formatted using the body of the production. If formatting fails
when recursing through the grammar, the formatter backtracks to select a different production. If no suitable alternatives
can be found, an error is raised.

Fig. 13 shows the (slightly simplified) algorithm for rendering an object graph to text. The format function receives
a grammar symbol s, an object stream os and an output stream out (initialized as an empty list). The function re-
turns a boolean indicating whether formatting succeeded or not. The object stream represents a cursor over the object
graph, containing a single (Stream1) or a collection of objects (StreamN). After formatting, the output stream will consist
of sequence of strings and formatting objects (NoSpace, Ident, and Break). This result is then rendered to text in a
straightforward way.

For rules and non-terminal calls, format recurses to the arg and rule fields, respectively. The formatting symbols
are simply added to the output stream; they will be interpreted when the output stream is rendered to text. Code objects
do not contribute any output, but might indicate failure, namely when the code expression s.expr evaluates to false in
the context of the current object. When encountering an Alt symbol, format tries every alternative with a clean output
stream sub, and on first success appends the result to out, and returns true. Sequencing is dual to alternation: in this case
each sub element must be formatted successfully for the formatting of the Sequence symbol to be successful. If this is the
case, all output generated by the sub elements (total) is appended to out.

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 477
An object can be rendered if it matches up to a Create symbol with the same name. In that case, the object cursor (os)
is moved to the next element, and the current object is formatted using the argument of a Create symbol. The formatting
of a Field consists of retrieving the field’s value on the current object, and formatting it with a fresh object cursor. For the
sake of brevity, we have omitted the code that deals with field arguments that consist of a literal. In that case, the value
stored in the current object should be equal to the value of the literal itself.

The value of a literal (Lit) is simply added to the output. For Value terminals, however, the helper function for-
mat_value uses the kind field to apply necessary escaping and quoting of strings. Finally, in order to format cross-links
in the object graph, the path of Ref is used to find the value of it. So, whereas the fixup process searches for objects
based on a path, and identifier and an object graph, here the target object is given from the start, and the path is used to
find the textual name to output.

The cases for Regular symbols have been omitted from Fig. 13. It is however easy to see that they can be handled
through normalization to combinations of Alt and Sequence, similar to the normalization described in Section 5.3.

The alternatives of a rule are represented using ordered collections because the Alt class (see Fig. 7) does not have a
key field. For parsing the ordering is irrelevant: in GLL all alternatives are explored in “parallel”. However, as is clear from
the code in Fig. 13, the formatter explores the alternatives in the order of declaration. If a rule is recursive without providing
sufficient constraints on an alternative to actually recurse deeper into the object graph, the formatter might not terminate.

Consider the following grammar:

Exp ::= "(" Exp ")"
| [Var] name:sym
| ...

In this case the formatter will keep on trying the first bracketing alternative because it never fails on an expression object.
As result, the formatter will forever try to surround the expression to be rendered with parentheses without ever rendering
the expression itself.

In practice this situation is avoided by placing such alternatives as the last one in the list, so that parentheses are
only added when really needed. Nevertheless, non-termination can always resurface after composing such a grammar with
another one. A completely general solution will explore the alternatives based on a kind of specificity ordering, where the
alternatives imposing the strongest constraints are explored first.

5.5. Merging

In Ensō, composition of grammars and schemas are both accomplished using the same generic merge operator · � ·. This
operator can be characterized as an overriding union where conflicts are resolved in favor of the second argument. Since
a language is defined by its schema and grammar, the composition of a base language B with an extension E is given by
composing grammars G B � G E and schemas S B � S E .

The algorithm implementing � is shown in pseudo Ruby code in Fig. 14. There are two passes in the merge algorithm.
In the first pass, build traverses the spine of the object graph o1 to create any new object required. If build encounters
an object in o2 but none at the same location on the spine in o1, it creates a new copy of that object and attaches it to
the graph of o1. Primitive fields from o1 are always overridden by the same fields of o2, allowing the extension to modify
the original language. Pairs of objects are merged by merging the values of each field. Collections are merged pair-wise
according to their keys; outer_join is a relational join of two collections, matching up all pairs of items with equivalent
keys and pairing up the remaining items with nil. For instance, applying merge to two Object Grammars combines the
alternatives of rules with the same name in both grammars. If the collection is a list (i.e., containing objects without a key),
the elements are concatenated. An example of this is merging two collections of rule alternatives; Alt objects do not have
a key (cf. Fig. 7), so the result of merging is the concatenation of both collections.

The first pass also establishes a mapping memo, between each object in o2 and the corresponding object in the same
spine location in o1. This mapping is used in the second phase, where non-spine fields – those without the ! modifier –
are made to point to their new locations. The object graph is once again traversed along the spine, but this time link
looks up memo for each non-spine field in order to find the updated target object.

Note how the algorithm exploits the fact that every Ensō model is described by a schema, which is again a model. For
instance the main loop of build iterates over the fields of the type parameter, which is an instance of the class Type in
the Schema Schema (Fig. 5). Each field fld is queried for its name, type and multiplicity to direct the algorithm. In fact,
merge, and other such operations, may all be considered to be interpreters over some model.

The outer_join call in Fig. 14 matches objects in two keyed collections based on their key. This implies that objects
in such collections live in the same name space. Often this is what is actually desired, for instance to concatenate lists
of productions of two rules with the same name, or to union field sets if two classes have the same name. On the other
hand, there is currently no mechanism for qualifying names to avoid name clashes. To cater for the scenario where named
elements should stay in their own name spaces, a generic rename operation can be used, similar to symbol renaming in
SDF [64]. For instance, in the case of a grammar, this operation can be used to selectively rename rules or referenced classes
in constructors. If referenced classes are renamed, a corresponding rename is also needed on the schema.

478 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
def merge_into(type, o1, o2)
build(type, o1, o2, memo = {})
link(type, true, o1, o2, memo)

end

def build(type, a, b, memo)
return if b.nil?
memo[b] = new = a || type.new
type.fields.each do |fld|
ax = a && a[fld.name]
bx = b[fld.name]
if fld.type.Primitive? then
new[fld.name] = bx

elsif fld.spine
if !fld.many
build(fld.type, ax, bx, memo)

else
ax.outer_join(bx) do |ai, bi|
build(fld.type, ai, bi, memo)

end
end

end
end

end

def link(type, spine, a, b, memo)
return a if b.nil?
new = memo[b]
return new if !spine
type.fields.each do |fld|
ax = a && a[fld.name]
bx = b[fld.name]
next if fld.type.Primitive?
if !fld.many? then
val = link(fld.type, fld.spine, ax, bx, memo)
new[fld.name] = val

else
ax.outer_join(bx) do |ai, bi|
x = link(fld.type, fld.spine, ai, bi, memo)
unless new[fld.name].include?(x)
new[fld.name] << x

end
end

end
end
return new

end

Fig. 14. Pseudo Ruby code for the generic � operator.

5.6. Bootstrapping

Since Ensō is self-describing, parsing and building the four core models of Section 4 require a bootstrapping process.
Loading a model from a file requires a grammar for that particular type of model. We also need a schema so that parse trees
produced by the parser can be instantiated. All objects in an object graph have an “instance of” pointer to the schema class
they are instantiated from (schema_class). Unfortunately, the four core models, are mutually dependent. For instance,
Grammar Schema requires Schema Grammar and Schema Schema, and Schema Grammar requires Grammar Schema and
Grammar Grammar, etc. The bootstrapping process ensures that the circular dependency of the four core models is broken,
and that the schema_class pointers eventually point to classes of the right schema. In particular, the schema of schemas
conforms to itself, so its schema_class points to itself.

Let xL designate the contents of a file x.L, where the file extension L indicates the language of the model, then the
following recursive equation captures how Ensō models are loaded:

load(xL) = loadgs
(
xL, load(Lgrammar), load(Lschema)

)
(4)

Where loadgs is defined as:

loadgs(xL, g, s) = build
(
parse(g, xL), factory(s)

)
(5)

Bootstrapping the Ensō system requires computing the fixed point of Eq. (4). For instance, to load a state machine model
doors.statemachine, we first try to load the statemachine.grammar and statemachine.schema. Then, the
input is parsed using the grammar and the result is passed to a factory initialized with the schema. But of course,
loading statemachine.grammar, requires loading grammar.grammar and grammar.schema. In turn, grammar.-
grammar can only be loaded if grammar.grammar and grammar.schema are available. . . . Furthermore, loading
statemachine.schema, requires schema.grammar and schema.schema. And to load schema.grammar. . . And
so on. To resolve this infinite regression, the four core models of Fig. 8 are loaded through an intricate bootstrap process,
which is visualized in Fig. 15.

The diagram can be read from left to right. The solid arrows indicate loading steps. Each step is labeled with a number
indicating order of occurrence. The dashed arrows represent the relation “described by” or “instance of”. The nodes in the
diagram with italic labels indicate object graphs; the other nodes represent files. A box around a grammar and one or more
files indicates that those files are parsed using that grammar. Below we briefly describe each successive step.

1. A bootstrap version of schema schema is loaded from a JSON [13] file using a mock SchemaSchema that is implemented
in plain Ruby. The loaded SchemaSchema is an instance of the mock SchemaSchema.

2. Since we now have a proper SchemaSchema, we can create schemas. This is used when loading the grammar schema
from JSON.

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 479
Fig. 15. Visualization of the Ensō bootstrap process.

3. The GrammarSchema can be used to create grammars. So, this time, we load the bootstrap version of the grammar of
grammars. We are now in the situation that we can parse grammars.

4. The first grammar that is loaded by parsing is SchemaGrammar. Its instance-of pointer points to the GrammarSchema
obtained in step 2. We can now load schemas from file.

5. The real SchemaSchema is loaded from file. Its instance-of pointer, however, still points to the bootstrap SchemaSchema
obtained in step 1.

6. The real GrammarSchema is loaded from file. It will be an instance of the real SchemaSchema of the previous step.
7. Because the real GrammarSchema is now available, and we have a grammar to parse grammars, we can load the real

GrammarGrammar. It will be an instance of GrammarSchema loaded in step 6.
8. Since the previous SchemaGrammar pointed to the bootstrap GrammarSchema of step 2, the real SchemaGrammar is

loaded from file to ensure that it is an instance of the real GrammarSchema (step 6).
9. Finally, the link from SchemaSchema (step 5) to the bootstrap SchemaSchema (step 1) is severed; all instance-of pointers

are made self-referencing.

After the bootstrap is complete, the loaded models are cached, so that loading of additional models just involves the four
core models obtained in steps 5, 6, 7, and 8.

For the sake of presentation we have omitted the way Object Grammar composition affects the bootstrap process. Since
both grammars and schemas require an expression language, the bootstrap process is actually more complex than described
here. When the expression language is not yet available, computed fields in schemas, and predicates in grammars are coded
directly in Ruby. As soon as the four core models are available, the expression grammar and schema are loaded and the
bootstrap process is restarted. Finally, the extensions to the Grammar Schema needed for parsing and normalization (Fig. 9)
are literally included in the bootstrap version. In the second round they are merged into the Grammar Schema of Fig. 7.

6. Evaluation

6.1. Introduction

The goal of Ensō is the definition, composition and interpretation of DSLs. The textual syntax of these DSLs is defined
using Object Grammars. Object Grammars are used to load DSL programs into the system. The Ensō system currently consists
of a number of such DSLs. In this section we elaborate how well Object Grammars live up to their promise. In particular we
aim to show the following:

• Practicality: Object Grammars can be used to define practical languages.
• Variety: the formalism allows different kinds of languages (e.g., tree- and graph-like languages), to be defined in a

concise way.
• Reuse: the composition of Object Grammars may lead to significant reuse across languages.

Recall that the goal of Object Grammars is not to be able to define existing, general-purpose language such as Java or COBOL.
Unlike other systems that do have this goal, such as Rascal [35], Object Grammars are targeted solely at defining new DSLs.

480 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
Fig. 16. Language composition in Ensō. Each arrow A → B indicates an invocation of B � A.

Table 2
SLOC count (a) and reuse percentages (b) for schemas, grammars and interpreters of the languages currently in Ensō.

Language Schema Grammar Interpreter

Grammar 55 31 1394
Schema 31 20 744
Stencil 68 28 1387
Web 79 43 885
Auth 28 16 276
Piping 80 22 306
Controller 26 14 155

Command 36 24 114
Expr 45 30 113
XML 10 6 47

(a)

Reuse percentages

Language Schema Grammar Interpreter

Grammar 45% 49% 20%
Schema 59% 60% 12%
Stencil 54% 76% 20%
Web 51% 55% 31%
Auth 62% 65% 25%
Piping 36% 58% 27%
Controller 64% 45% 42%

(b)

The cross-linking feature of Object Grammars is also not to be considered as a substitute for full name-analysis of such
languages (which is, for instance, the key goal of NaBL [36]).

As we hope to have shown in the course of this paper, Object Grammars can be used to define practical languages. Both
the foundational schema and grammar languages are defined using Object Grammars. In addition, the Ensō system currently
features a language for defining GUIs (Stencil), security policies (Auth) and Web applications (Web). The Stencil and Web
languages are languages to transform arbitrary Ensō models to a GUI resp. Web interface. Of the current set of languages
in Ensō, these languages are most like an ordinary programming language in that they feature control-flow statements and
expressions. The Grammar, Schema and Auth languages are much more declarative languages. In the grammars for Grammar
and Schema the path-based references are essential in resolving cross references. Furthermore, Object Grammars were used
in the Ensō submission to the Language Workbench Challenge 2012 (LWC’12) [40]. This involved two inherently graph-like
languages. Below we first review the languages provided with Ensō, how they are composed and what benefits in terms of
reuse had been gained. Second, we discuss the LWC’12 case-study in some more detail.

6.2. Composition in Ensō

Many of the current set of languages in Ensō are defined by composing two or more language modules. Fig. 16 shows
how Ensō languages are related with respect to language composition. Each edge in the diagram represents an invocation
of �. The arrow points in the direction of the result. For instance, the Stencil and Web languages are, independently, merged
into the Command language. As a result both Stencil and Web include, and possibly override and/or extend the Command
language. If a language reuses or extends multiple other languages, the merge operator is applied in sequence. For instance,
Command is first merged into Web, and then XML is merged into the result.

The core languages in Ensō include both the Schema and Grammar languages, as well as Stencil, a language to define
graphical model editors, and Web a language for Web applications. Additionally, Ensō features a small set of library lan-
guages that are not deployed independently but reused in other languages. An example of a library language is Expr, an
expression language with operators, variables and primitive values. It is, for instance, reused in Grammar for predicates and
paths and in Schema for computed fields. Command is a control-flow language that captures loops, conditional statements
and functions. The Command language reuses the Expr language for the guards in loops and conditional statements.

The composition with the Expr language is an example of language reuse. The language is reused as a black box, without
modification. The composition of Command with Stencil and Web is an example of language mixin. Stencil is created by
adding language constructs for user-interface widgets, lines, and shapes to the Command language as valid primitives. The
Command language can now be used to create diagrams. A similar extension is realized in the Web language: here a
language for XML element structure is mixed with the statement language of Web. The extension works in both directions:
XML elements are valid statements, statements are valid XML content. The Piping and Controller languages are from a
domain-specific modeling case-study in the domain of piping and instrumentation for the Language Workbench Challenge
2012 [19,40]. Fig. 16 only shows the Controller part which reuses Expr.

An overview of the number of non-empty, non-comment source lines of code (SLOC) is shown in Table 2(a). We show
the number for the full languages in Ensō as well as the reused language modules (Command, Expr and XML). A language
consists of a schema, a grammar and an interpreter. The interpreters are all implemented in Ruby. Table 2(b) shows the

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 481
Fig. 17. Diagram editor (left) showing a textual piping model of a simple heating system (right).

start System
System ::= [System] elements:Element* sensors:Sensor*
Element ::= [Source] name:sym ":" "source" outputs:Pipe kind:sym

| [Exhaust] name:sym ":" "exhaust" input:Pipe name:sym
| [Vessel] name:sym ":" "vessel" outputs:Pipe Inputs
| [Valve] name:sym ":" "valve" outputs:Pipe Inputs
| [Splitter] name:sym ":" "splitter" outputs:(Pipe Pipe) Inputs
| [Pump] name:sym ":" "pump" outputs:Pipe Inputs
| [Radiator] name:sym ":" "radiator" outputs:Pipe Inputs
| [Joint] name:sym outputs:Pipe "=" inputs:Conn* @"+"
| [Burner] name:sym ":" "burner" Inputs Gas outputs:Pipe
| [Room] name:sym ":" "room"

Sensor ::= [Sensor] ("sensor" {controllable==false} |"control" {controllable==true})
name:sym ":" kind:sym
"(" (attach:<root.elements[it]> | attach:Conn) ")"

Pipe ::= [Pipe] { length == 0.0 and diameter == 0.0}
| [Pipe] "[" ("l" ":" length:real)? ("d" ":" diameter:real)? "]"

Inputs ::= "in" "=" inputs:Conn
Gas ::= "gas" "=" gas:Conn
Conn ::= <root.elements[it].outputs[0]>

| <root.elements[it].outputs[0]> "." "left"
| <root.elements[it].outputs[1]> "." "right"
| <root.elements[it].input> "." "input"

Fig. 18. Object Grammar for piping layout models.

reuse percentage for each language [25]. This percentage is computed as 100 × #SLOCreused/#SLOCtotal. Which languages are
reused in each case can be seen from Fig. 16. As can be seen from this table, the amount of reuse in schemas and grammars
is consistently high. It shows that the merge operator is powerful enough to combine realistic languages in a variety of ways,
with actual payoff in terms of reuse.

6.3. Case-study: Piping and instrumentation

To demonstrate the capabilities of the Ensō system, we have performed a case-study in the domain of piping and instru-
mentation [70] for the Language Workbench Challenge 2012 [40]. The resulting application can be used to simulate models
of heating systems. There are two parts to this system: a language for defining the piping circuit, and a controller language
to manage its behavior.

Fig. 17 shows a screen shot of a running diagram editor (left) of an example piping model (right). The Object Gram-
mar for piping models is shown in Fig. 18. The diagram editor is constructed using the graphical model editor language
Stencil. Internally, the piping language uses automatic reference resolving of Object Grammars to connect pipes to various
components, such as valves, pumps and heaters. This can be observed in the Sensor and Conn grammar rules.

The dynamic behavior of a piping model is determined by a separate controller language, which is a state machine
language similar to but more extensive than the language of Fig. 2. Its Object Grammar is shown in Fig. 19. It reuses
the Expr language to represent enabling conditions on transitions. Transitions are connected to states using path-based
references.

The schema of the piping layout language is enriched with additional fields and classes to represent dynamic state
of a simulation (temperature, pressure and flow). This is similar to how the Grammar Schema is extended for parsing

482 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
start Ctl
Ctl ::= [Controller] "start" initial:<root.states[it]>

/ globals:Assign*@/
/ states:State*@/
constraints:Constraint*@/

State ::= [State] "state" name:sym ":" transitions:Transition*@/ commands:Action*@/
Action ::= Assign | Splitter
Assign ::= [Assign] var:Expr "=" val:Expr

| [Assign] "raise" var:Expr "by" val:Expr
| [Assign] "lower" var:Expr "by" val:Expr

Splitter ::= [TurnSplitter] "turn" "splitter" splitter:sym
("left" {percent == 0.0} |

"center" {percent == 0.5} |
"right" {percent == 1.0})

Transition ::= [Transition] "if" guard:Expr "goto" target:<root.states[it]>
Constraint ::= [Constraint] "test" cond:Expr "do" action:Action
abstract Expr

Fig. 19. Object Grammar for piping controllers.

Fig. 20. Diagram editor for a controller for simulating a simple heating system.

(Section 5.2). The Stencil model which maps the piping model to the interactive visualization exploits this information to
reflect temperature changes through the animation of coloring of nodes and edges (Fig. 17).

Fig. 20 shows a diagram editor for the state machine controlling the piping model of Fig. 17. The current state is high-
lighted in dark. Since both windows in Fig. 17 and Fig. 20 are actually diagram-based editors, the models can be changed
directly while the simulation is running.

The piping and instrumentation case-study shows the utility of both automatic reference resolution, and composition
of object grammars. Both the language for specifying piping layouts and the language for specifying controllers require
cross-links. Furthermore, the controller language reuses the Expr language for its enabling conditions. The piping layout
models are enriched with additional structure for maintaining dynamic state using the generic merge operator. The complete
system is built on a total of six (sub-)languages: the domain-specific Piping and Controller languages, and the reusable
Stencil, Grammar, Schema, and Expr languages.

7. Related work

7.1. Grammars and models

The subject of bridging modelware and grammarware is not new [1,71]. In the recent past, numerous approaches to
mapping text to models and vice versa have been proposed [20,22,29,34,37,44,45]. Common to many of these languages
is that references are resolved using globally unique, or hierarchically scoped names. Such names can be opaque Unique
Universal Identifiers (UUIDs) to uniquely identify model elements or key attributes of the elements themselves [26]. The
main difference between these approaches and Object Grammars is that Object Grammars replace the name-based strategy

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 483
Table 3
Positioning syntax definition frameworks.

System Ref. Bidirectional Compositional Resolving Asynchronous Self-describing

TCS [34] �� � � � �
Xtext [20] � � � � �
EMFText [14,29] � � � � �
MontiCore [37] � � � � �
TCSSL [23] �� � � � �
YACC [31] � � �� � �
SDF [64] � � � � �
Ensō � � � � �

by allowing arbitrary paths through the model to find a referenced object. This facilitates mappings that require non-global
or non-hierarchical scoping rules.

A feature-based comparison of representative systems is shown in Table 3. The table includes YACC [31] as the archetypi-
cal action-based parser generator. SDF [64] is included to represent tree-based grammar formalisms. Both can be considered
to be at opposite ends of a spectrum of syntax definition formalisms, from strictly imperative, to purely declarative. Below
we discuss the model-based systems in more detail.

The Textual Concrete Syntax (TCS) language supports deserialization and serialization of graph-structured models [34].
Field binders can be annotated with {refersTo = 〈name〉}, which binds the field to the object of the field’s class with
the field 〈name〉 having the value of the parsed token. Rules can furthermore be annotated with addToContext to add it
to the, possibly nested, symbol table. The symbol table is built after the complete source has been parsed to allow forward
references. Only simple references to in-scope entities are allowed, however. Path-based references of Object Grammars
allow more complex reference resolution, possibly across nested scopes. TCS aims to have preliminary support for pretty
printing directives to control nesting and indentation, spacing and custom separators. However, these features seem to be
unimplemented.

Xtext is an advanced language workbench for textual DSL development [20]. The grammar formalism is restricted form of
ANTLR so that both deserialization and serialization is supported. Xtext supports name-based referencing. To customize the
name lookup semantics Xtext provides a Scoping API in Java. Apart from the use of simple names, Xtext differs from Object
Grammars in that, by default, linking to target objects is performed lazily. Again, this can be customized by implementing
the appropriate interfaces. Xtext supports a limited form of modularity through grammar mixins. For lexical syntax Xtext
provides a standard set of terminal definitions such as INT and STRING, which are available for reuse.

EMFText is an Ecore based formalism similar to Xtext grammars [14,29]. EMFText, however, supports accurate unparsing
of models that have been parsed. For models that have been created in memory or have been modified after parsing,
formatting can be controlled by pretty printing hints similar to the . and / symbols presented in this paper. The grammar
symbol #n forces printing of the n spaces. Similarly, !n is used for printing a line-break, followed by n indentation steps.

In the MontiCore system both meta-model (schema) and grammar are described in a single formalism [37]. This means
that the non-terminals of the grammar introduces classes and syntactic categories at the same time. Grammar alternatives
are declared by non-terminal “inheritance”. As a result, the defined schema is directly tied to the syntactic structure of
the grammar. The formalism supports the specification of associations and how they are established in separate sections.
The default resolution strategy assumes file-wide unique identifiers, or syntactically hierarchical namespaces. This can be
customized by programming if needed.

The Textual Concrete Syntax Specification Language (TCSSL) is another formalism to make grammars meta-model-
aware [23]. It features three kinds of syntax rules: CreationRules which function like our [Create] annotations –
SeekRules, which look for existing objects satisfying an identifying criterion – and SingletonRules, which are like Cre-
ationRules, but only create a new object if there is no existing object satisfying a specified criterion. The queries used
in SeekRules seem more powerful than simple, name-based resolution; it is however unclear from the paper how they are
applied for complex scenarios. TCSSL furthermore allows code fragments enclosed in double angular brackets (<<>>) but it
is unclear how this affects model-to-text formatting.

An interesting point in the spectrum between Yacc and SDF is obtained by observing that parser and pretty printer are
in fact isomorphic. In [52], the authors exploit this fact to present a generic, polymorphic interface for specifying syntactic
descriptions. Such descriptions capture enough information so that the interface can be implemented by both parsing and
formatting algorithms. As a result, a single specification is sufficient to get a parser and formatter for free. Although this
framework is AST-based, the resulting descriptions are quite similar in aim to Object Grammars.

7.2. Language composition

Modular language development is an active area of research. This includes work on modular extension of DSLs and mod-
eling languages [42,62,66,67], extensible compiler construction [5,17], modular composition of lexers [11] and parsers [9,55],
modular name analysis [16] and modular language embedding [53]. For an overview the composition capabilities of various
systems we refer to [18].

484 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
Object Grammars support a powerful form of language composition through the generic merge operation (�) applied in
tandem to both grammars and schemas. The merge operator covers language extension and unification as discussed in [18].
In essence, merge captures an advanced form of inheritance similar to feature composition [2,3]. However, merge currently
applies only syntactic and semantic structure. To achieve the same level of compositionality at the level of behavior, i.e.
interpreters, is an important direction for further research. A promising approach for realizing interpreter composition is the
recent work on feature-oriented programming using Object Algebras [47].

Composition of grammars is well-studied topic in computer science. It is well-known that only the full class of context-
free grammars (CFG) is closed under composition. Composing to grammars in subclasses of context-free grammars, such
as LL(k) or LR(k), is not guaranteed to produce a grammar that is again in the subclass. This fact motivated the choice of
using general parsing as the basis of Object Grammars. Parsing Expression Grammars (PEGs) [24] are also closed under
union and, moreover, never lead to ambiguities. However, unlike CFGs, the alternatives in a grammar rule are ordered and,
consequently, the composition of alternatives when combining grammars is ordered as well. This can lead unexpected re-
sults when parsing using the composed grammar. For instance, composing PEGs A ::= a and A ::= a B produces the
grammar A ::= a / a B (where / indicates ordered choice). The alternative a B has now become unreachable because
PEG parsing does not backtrack over rule alternatives: as soon as the first a is recognized, the second alternative is never
considered. Another drawback is that PEGs generally do not support left-recursion (see however, [61,69]).

7.3. Self-description

Self-description is a well-known concept in different areas of programming languages and software engineering. In
model-driven engineering, for instance, it is commonly assumed that the meta model of meta models, the “meta meta
model”, conforms to itself [8,32]. This is similar to how the Schema Schema describes itself. Self-describing grammar for-
malisms are almost as old as BNF itself. Most parser generators employ formalisms that are able to describe itself. An early
example of such a system is Meta II [54]. Object Grammars bring both notions of self-description together into the model
of Fig. 8.

Programming languages that are used to describe there own semantics are known at least since McCarthy’s meta-circular
Lisp 1.5 interpreter [43]. A programming language that is really defined in terms of its own concepts and structures leads
to advanced forms of computational reflection [58] where the semantics of a programming language can be inspected and
changed while it runs. In particular, this leads to a reflective tower of interpreters where the next level of semantics is
defined in terms of layers below [30,68]. A similar layering can be observed when changing any of the core models in Ensō.
For instance, to change the grammar formalism, both the Grammar Grammar and the Grammar Schema must be changed
to accommodate, for instance, a new syntactic construct. However the addition itself cannot be used yet in the grammar,
since then the old grammar cannot be used to parse the new grammar.

Although the concept of bootstrapping is well-known, and widely practiced in the area of compiler construction, litera-
ture about the conceptual aspects of bootstrapping is surprisingly scarce. Appel provides an in-depth guide to bootstrapping
in the context of ML [4]. Another in-depth discussion of how to bootstrap extensible object models is provided in [50,51].
Bootstrap sequences can be described with T-diagrams, which are a visual formalism to reason about translator interac-
tions [15]. These can be used to better understand complex bootstrapping processes given a number of language processors
(compilers, interpreters, etc.) [39].

7.4. Discussion

The requirements for mapping grammars to meta-models were first formulated in [33]: the mapping should be cus-
tomizable, bidirectional and model-based. The Object Grammars presented in this paper satisfy these requirements. First,
the mapping is customizable because of asynchronous binding: the resulting structures are to a large extent independent of
the structure of the grammar. Path-based referencing and predicates are powerful tools to control the mapping, but admit
a bidirectional semantics so that formatting of models back to text is possible. Formatting can be further guided using
formatting hints. Finally, Object Grammars are clearly model-based: both grammars and schemas are themselves models,
self-formatted and self-describing respectively. A comparative overview of systems to parse text into graph structures that
conform to class-based meta-models can be found in [26].

To our knowledge, Object Grammars represent the first approach to mapping between grammars and meta-models that
supports modular combination of languages. Xtext, EMFText, TCS, MontiCore, and TCSSL are implemented using ANTLR.
ANTLR’s LL(∗) algorithm, however, makes true grammar composition impossible. Object Grammars, on the other hand, are
compositional due to the use of the general GLL parsing algorithm [56]. Moreover, the use of a general parsing algorithm
has the advantage that there is no restriction on context-free structure. For instance, the designer of a modeling language
does not have to worry about whether she can use left-recursion or whether her grammar is within some restricted class
of context-free grammars, such as LL(k) or LR(k). As a result, Object Grammars can be structured in a way that is beneficial
for resulting structure, without being subservient to a specific parsing algorithm. Object Grammars share this freedom with
other grammar formalisms based on general parsing, such as SDF [64] and Rascal [35].

The way references are resolved in Object Grammars bears resemblance to the way attributes are evaluated in attribute
grammars (AGs) [48]. AGs represent a convenient formalism to specify semantic analyses, such as name analysis and type

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 485
checking, by declaring equations between inherited attributes and synthesized attributes. The AG system schedules the
evaluation of the attributes automatically. Modern AG systems, such as JastAdd [17] and Silver [63], support reference
attributes: instead of simple values, such attributes may evaluate to pointers to AST nodes. They can be used, for instance,
to super-impose a control-flow graph on the AST. Reference resolving in Object Grammars is similar to attributes: they are
declarative statements of fact, and the system – in our case the build function – decides how to operationally make these
statements true.

A similar approach is the Name-Binding Language (NaBL) [36]. NaBL supports the specification of name spaces, scoping
rules and reference resolution strategies by attaching declarative, domain-specific attributes to abstract syntax patterns. The
NaBL engine interprets such specifications to resolve name-based references, and records the result in a separate semantic
index.

Object-grammars are different from both attribute grammars and NaBL, however, in that the focus is on graph-like
object-oriented data models. Although some attribute grammar systems (e.g., Kiama [57]) can be used to evaluate attributes
on arbitrary graphs, many systems take the AST or parse tree as the starting point. Moreover, path-based references only
allow navigating the object graph without performing arbitrary computations, and without native support for name spaces
and scoping. Extending the Ensō schema language with AG style attributes is an area for further research.

8. Concluding remarks

8.1. Directions for further research

Object Grammars represent a comprehensive approach to mapping textual syntax to object graphs. We have shown how
this formalism can be used for the practical definition and composition of DSLs. Nevertheless, there are ample opportunities
for further research. Below we briefly discuss two important directions.

Expressiveness of paths. The first question to be addressed is: What is the expressiveness of path-based references? There
seems to be a spectrum of approaches to reference resolution. Pure context-free grammars only admit tree structures and
hence cannot be used to create cross links. On the other end, the traditional, separate specification of name analysis provides
the most expressive power. Somewhere in the middle we find the automatic global reference resolution of Xtext [20],
dedicated name resolution features of NaBL [36], and attribute grammar formalisms (e.g., [16]). Where to position Object
Grammars on this spectrum? Intuitively it seems at least inbetween global reference resolution and NaBL. A direction of
future work is thus to formally characterize what is possible with path-based references and what is not. This will involve
experimenting with path-based encodings of name resolution concepts such as shadowing, name spaces, imports, overriding,
etc. We consider the features supported by NaBL to be a suitable benchmark.

Static guarantees. What is the formal compatibility relation between an Object Grammar and its target schema? This question
needs to be answered to be able to provide static guarantees with respect to success of parsing and formatting. In other
words, is it possible to check that every string parsed by an Object Grammar produces an object graph conforming to the
target schema? Conversely, how can we check that every object conforming to a schema, can be rendered to text using
an object grammar? Similar questions can be asked in the context of Object Grammar composition. For instance: when is
composition commutative? The current merge algorithm overwrites properties that are found in both models, so in general
this does not hold. A related question is: how to statically check that if two Object Grammars G1 and G2 are compatible
to schemas S1 and S2 respectively, the composition G1 � G2 is compatible to S1 � S2? Having automatic checks for such
properties would make the use of Object Grammars less error-prone. Moreover, it would provide a stepping stone for
advanced IDE support for Object Grammars, such as coupled refactoring of both grammar and schema [65].

We are currently exploring abstract interpretation as a way to infer the “implied” schema of an Object Grammar. This
inferred schema could then form the basis for comparison with the intended schema. For parsing, the inferred schema
should be subsumed by the intended schema: any object produced using the grammar should conform to the intended
schema. For formatting, it is the other way round: any object conforming to the intended schema should also conform to
the inferred schema. Techniques used in description logic could be used for computing such relations [6]. Note that the
asynchronous nature of specifying object construction and field binding, the frequent occurrence of recursion in production
rules, and the generality of predicates very much complicate such schema inference. Moreover, subsumption of schemas
might not even be decidable in the general case.

8.2. Conclusion

Object Grammars are a formalism for bidirectional mapping between text and object graphs. Unlike traditional grammars,
Object Grammars include a declarative specification of the semantic structure that results from parsing. The notation allows
objects to be constructed and their fields to be bound. Paths specify cross-links in the resulting graph structure. Thus the
result of parsing is a graph, not a tree. Object Grammars can also be used to format an object graph into text.

Our implementation of Object Grammars in Ensō supports arbitrary context-free grammars. This is required when com-
posing multiple grammars together. We have presented elaborate details on how Object Grammars are realized in Ensō.
Finally, we have shown how Object Grammars are used in Ensō to support modular definition and composition of DSLs.

486 T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487
Acknowledgements

We are thankful to the anonymous referees whose feedback lead to considerable improvement of this paper. We thank
Ali Afroozeh for helping improve the parser.

References

[1] M. Alanen, I. Porres, A relation between context-free grammars and meta object facility metamodels, Technical report 606, Turku Centre for Computer
Science, 2004.

[2] S. Apel, D. Hutchins, A calculus for uniform feature composition, ACM Trans. Program. Lang. Syst. 32 (2008) 19:1–19:33.
[3] S. Apel, C. Kastner, C. Lengauer, FeatureHouse: Language-independent, automated software composition, in: Proceedings of the International Conference

on Software Engineering (ICSE), pp. 221–231.
[4] A.W. Appel, Axiomatic bootstrapping: a guide for compiler hackers, ACM Trans. Program. Lang. Syst. 16 (1994) 1699–1718.
[5] P. Avgustinov, T. Ekman, J. Tibble, Modularity first: a case for mixing AOP and attribute grammars, in: Proceedings of the International Conference on

Aspect-Oriented Software Development (AOSD), ACM, 2008, pp. 25–35.
[6] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation, and Applica-

tions, Cambridge University Press, 2003.
[7] K. Bąk, K. Czarnecki, A. Wąsowski, Feature and meta-models in Clafer: mixed, specialized, and coupled, in: Proceedings of the 3rd International

Conference on Software Language Engineering (SLE’10), Springer, 2011, pp. 102–122.
[8] J. Bézivin, On the unification power of models, Softw. Syst. Model. 4 (2005) 171–188.
[9] M. Bravenboer, E. Visser, Parse table composition, in: Proceedings of the International Conference on Software Language Engineering (SLE), in: LNCS,

vol. 5452, Springer, 2009, pp. 74–94, revised selected papers.
[10] D.G. Cantor, On the ambiguity problem of Backus systems, J. ACM 9 (1962) 477–479.
[11] A. Casey, L. Hendren, MetaLexer: a modular lexical specification language, in: Proceedings of the International Conference on Aspect-Oriented Software

Development (AOSD), ACM, 2011, pp. 7–18.
[12] P.P. Chen, The entity-relationship model—toward a unified view of data, ACM Trans. Database Syst. 1 (1976).
[13] D. Crockford, The application/json media type for JavaScript Object Notation (JSON), RFC 4627 (Informational), 2006.
[14] DevBoost, EMFText: concrete syntax mapper, http://www.emftext.org/, 2012.
[15] J. Earley, H. Sturgis, A formalism for translator interactions, Commun. ACM 13 (1970) 607–617.
[16] T. Ekman, G. Hedin, Modular name analysis for Java using JastAdd, in: Proceedings of the International Summerschool on Generative and Transforma-

tional Techniques in Software Engineering (GTTSE), Springer, 2006, pp. 422–436.
[17] T. Ekman, G. Hedin, The JastAdd system—modular extensible compiler construction, Sci. Comput. Program. 69 (2007) 14–26.
[18] S. Erdweg, P.G. Giarrusso, T. Rendel, Language composition untangled, in: Proceedings of the International Workshop on Language Descriptions, Tools

and Applications (LDTA), 2012.
[19] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W.R. Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P.J. Molina, M. Palatnik,

R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E. Visser, K. van der Vlist, G. Wachsmuth, J. van der Woning, The state of the art in language
workbenches. Conclusions from the language workbench challenge, in: M. Erwig, R.F. Paige, E.V. Wyk (Eds.), Proceedings of the Sixth International
Conference on Software Language Engineering (SLE’13), 2013.

[20] M. Eysholdt, H. Behrens, Xtext: implement your language faster than the quick and dirty way, in: OOPSLA Companion (SPLASH), ACM, 2010,
pp. 307–309.

[21] D. Flanagan, Y. Matsumoto, The Ruby Programming Language, O’Reilly, 2008.
[22] F. Fondement, Concrete syntax definition for modeling languages, PhD thesis, EPFL, 2007.
[23] F. Fondement, R. Schnekenburger, S. Gérard, P.A. Muller, Metamodel-aware textual concrete syntax specification, Technical report LGL-2006-005, EPFL,

2006.
[24] B. Ford, Parsing expression grammars: a recognition-based syntactic foundation, in: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’04), ACM, 2004, pp. 111–122.
[25] W. Frakes, C. Terry, Software reuse: metrics and models, ACM Comput. Surv. 28 (1996) 415–435.
[26] T. Goldschmidt, S. Becker, A. Uhl, Classification of concrete textual syntax mapping approaches, in: Proceedings of the European Conference on Model

Driven Architecture—Foundations and Applications (ECMDA-FA), in: LNCS, vol. 5095, 2008, pp. 169–184.
[27] E. Goto, Monocopy and associative algorithms in an extended LISP, Technical report 74-03, University of Tokyo, 1974.
[28] M. Hammer, D. McLeod, The semantic data model: a modelling mechanism for data base applications, in: Proceedings of the International Conference

on Management of Data (SIGMOD), ACM, 1978, pp. 26–36.
[29] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, C. Wende, Derivation and refinement of textual syntax for models, in: Model Driven Architecture—

Foundations and Applications (ECMDA-FA), in: LNCS, vol. 5562, Springer, 2009, pp. 114–129.
[30] S. Jefferson, D. Friedman, A simple reflective interpreter, LISP Symb. Comput. 9 (1996) 181–202.
[31] S.C. Johnson, YACC—yet another compiler-compiler, Technical report CS-32, AT & T Bell Laboratories, 1975.
[32] F. Jouault, J. Bézivin, KM3: A DSL for metamodel specification, in: Proceedings of the 8th IFIP WG 6.1 International Conference on Formal Methods for

Open Object-Based Distributed Systems (FMOODS’06), in: LNCS, vol. 4037, Springer, 2006, pp. 171–185.
[33] F. Jouault, J. Bézivin, On the specification of textual syntaxes for models, in: Eclipse Modeling Symposium, Eclipse Summit Europe, 2006.
[34] F. Jouault, J. Bézivin, I. Kurtev, TCS: a DSL for the specification of textual concrete syntaxes in model engineering, in: Proceedings of the International

Conference on Generative Programming and Component Engineering (GPCE), ACM, 2006, pp. 249–254.
[35] P. Klint, T. van der Storm, J. Vinju, Rascal: A domain specific language for source code analysis and manipulation, in: Proceedings of the International

Working Conference on Source Code Analysis and Manipulation (SCAM), IEEE, 2009, pp. 168–177.
[36] G. Konat, L. Kats, G. Wachsmuth, E. Visser, Declarative name binding and scope rules, in: K. Czarnecki, G. Hedin (Eds.), Software Language Engineering,

in: LNCS, vol. 7745, Springer, 2013, pp. 311–331.
[37] H. Krahn, B. Rumpe, S. Völkel, Integrated definition of abstract and concrete syntax for textual languages, in: Proceedings of the International Confer-

ence on Model Driven Engineering Languages and Systems (MoDELS), in: LNCS, vol. 4735, Springer, 2007, pp. 286–300.
[38] I. Kurtev, J. Bézivin, F. Jouault, P. Valduriez, Model-based DSL frameworks, in: OOPSLA Companion (OOPSLA), ACM, 2006, pp. 602–616.
[39] O. Lecarme, M. Pellissier, M.C. Thomas, Computer-aided production of language implementation systems: A review and classification, Softw. Pract. Exp.

12 (1982) 785–824.
[40] A. Loh, Piping and instrumentation in Ensō, Language Workbench Challenge Workshop at Code Generation 2012, http://www.languageworkbenches.net/

index.php?title=LWC_2012, 2012, Accessed March 23rd, 2013.

http://refhub.elsevier.com/S0167-6423(14)00090-2/bib416C616E656E3034s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib416C616E656E3034s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4170656C3038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4178696F6D61746963426F6F74737472617070696E67s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib417667757374696E6F763038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib417667757374696E6F763038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib444C48616E64626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib444C48616E64626F6F6Bs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib436C616665723130s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib436C616665723130s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib556E69664D6F64656C73s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib42726176656E626F6572563038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib42726176656E626F6572563038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib416D62556E646563696461626C65s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib43617365793131s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib43617365793131s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4368656E31393736s1
http://www.emftext.org/
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib544469616772616D73s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib456B6D616E32303035s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib456B6D616E32303035s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib456B6D616E3037s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib45726477656747523132s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib45726477656747523132s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4C574332303133s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4C574332303133s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4C574332303133s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4C574332303133s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib457973686F6C64743130s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib457973686F6C64743130s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib52756279504Cs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib466F6E64656D656E743037s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib466F6E64656D656E743036s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib466F6E64656D656E743036s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib50454773s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib50454773s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4672616B65733936s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib476F6C647363686D6964743038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib476F6C647363686D6964743038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib48617368436F6E73696E67s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib48616D6D657231393738s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib48616D6D657231393738s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib48656964656E72656963683039s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib48656964656E72656963683039s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib53696D706C655265666C656374697665s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4A6F6837352E79616363s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4B4D33s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4B4D33s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4A6F7561756C7430364545s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4A6F7561756C743036s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4A6F7561756C743036s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib72617363616Cs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib72617363616Cs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4E424Cs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4E424Cs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D6F6E7469436F7265s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D6F6E7469436F7265s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4B75727465763036s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib426F6F7473747261704261636B67726F756E64s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib426F6F7473747261704261636B67726F756E64s1
http://www.languageworkbenches.net/index.php?title=LWC_2012
http://www.languageworkbenches.net/index.php?title=LWC_2012

T. van der Storm et al. / Science of Computer Programming 96 (2014) 460–487 487
[41] A. Loh, T. van der Storm, W.R. Cook, Managed data: modular strategies for data abstraction, in: Proceedings of the ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software (Onward! ’12), ACM, 2012, pp. 179–194.

[42] L.T. Lukas Diekmann, Parsing composed grammars with language boxes, in: Workshop on Scalable Language Specification, 2013, Online: http://tratt.net/
laurie/research/pubs/papers/diekmann_tratt_parsing_composed_grammars_with_language_boxes.pdf.

[43] J. McCarthy, LISP 1.5 Programmer’s Manual, MIT Press, 1962.
[44] B. Merkle, Textual modeling tools: overview and comparison of language workbenches, in: OOPSLA Companion (SPLASH), ACM, 2010, pp. 139–148.
[45] P.A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R. Schneckenburger, S. Gérard, J.M. Jézéquel, Model-driven analysis and synthesis of textual

concrete syntax, Softw. Syst. Model. 7 (2008) 423–441.
[46] Object Management Group, Unified Modeling Language Specification, version 1.3, OMG, http://www.omg.org, 2000.
[47] B.C. Oliveira, T.v.d. Storm, A. Loh, W.R. Cook, Feature-oriented programming with object algebras, in: ECOOP, in: LNCS, vol. 7920, Springer, 2013,

pp. 27–51.
[48] J. Paakki, Attribute grammar paradigms—a high-level methodology in language implementation, ACM Comput. Surv. 27 (1995) 196–255.
[49] T.J. Parr, R.W. Quong, ANTLR: a predicated-LL(k) parser generator, Softw. Pract. Exp. 25 (1995) 789–810.
[50] I. Piumarta, Accessible language-based environments of recursive theories (a white paper advocating widespread unreasonable behavior), Technical

report RN-2006-001-a, Viewpoints Research Institute (VPRI), 2006.
[51] I. Piumarta, A. Warth, Open, extensible object models, in: R. Hirschfeld, K. Rose (Eds.), Self-Sustaining Systems, Springer-Verlag, 2008, pp. 1–30.
[52] T. Rendel, K. Ostermann, Invertible syntax descriptions: unifying parsing and pretty printing, in: Haskell’10, ACM, 2010, pp. 1–12.
[53] L. Renggli, M. Denker, O. Nierstrasz, Language boxes: bending the host language with modular language changes, in: Proceedings of the International

Conference on Software Language Engineering (SLE), in: LNCS, vol. 5969, Springer, 2010, pp. 274–293.
[54] D.V. Schorre, META II a syntax-oriented compiler writing language, in: Proceedings of the 1964 19th ACM National Conference, ACM’64, ACM, 1964,

pp. 41.301–41.3011.
[55] A.C. Schwerdfeger, E.R. Van Wyk, Verifiable composition of deterministic grammars, in: Proceedings of the Conference on Programming Language

Design and Implementation (PLDI’09), ACM, 2009, pp. 199–210.
[56] E. Scott, A. Johnstone, GLL parse-tree generation, Sci. Comput. Program. 78 (2013) 1828–1844.
[57] A.M. Sloane, L.C. Kats, E. Visser, A pure embedding of attribute grammars, Sci. Comput. Program. 78 (2013) 1752–1769.
[58] B.C. Smith, Reflection and semantics in LISP, in: Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages

(POPL’84), ACM, 1984, pp. 23–35.
[59] T. van der Storm, W.R. Cook, A. Loh, Object grammars: Compositional & bidirectional mapping between text and graphs, in: Proceedings of the 5th

International Conference on Software Language Engineering (SLE’12), in: LNCS, vol. 7745, Springer, 2012, pp. 4–23.
[60] M. Tomita, LR parsers for natural languages, in: Proceedings of the 10th International Conference on Computational Linguistics (COLING’84), 1984,

pp. 354–357.
[61] L. Tratt, Direct left-recursive parsing expression grammars, Technical report EIS-10-01, School of Engineering and Information Sciences, Middlesex

University, 2010.
[62] E. Van Wyk, Aspects as modular language extensions, in: Proc. of Language Descriptions, Tools and Applications (LDTA), in: Electronic Notes in Theo-

retical Computer Science, vol. 82.3, Elsevier Science, 2003.
[63] E. Van Wyk, D. Bodin, J. Gao, L. Krishnan, Silver: an extensible attribute grammar system, Sci. Comput. Program. 75 (2010) 39–54.
[64] E. Visser, Syntax definition for language prototyping, PhD thesis, University of Amsterdam, 1997.
[65] J. Visser, Coupled transformation of schemas, documents, queries, and constraints, Electronic Notes in Theoretical Computer Science 200 (2008) 3–23.
[66] M. Völter, Language and IDE modularization and composition with MPS, in: Generative and Transformational Techniques in Software Engineering IV

(GTTSE’11), in: LNCS, vol. 7680, Springer, 2013, pp. 383–430, revised papers.
[67] M. Völter, E. Visser, Language extension and composition with language workbenches, in: OOPSLA Companion (SPLASH), ACM, 2010, pp. 301–304.
[68] M. Wand, D. Friedman, The mystery of the tower revealed: A nonreflective description of the reflective tower, LISP Symb. Comput. 1 (1988) 11–38.
[69] A. Warth, J.R. Douglass, T. Millstein, Packrat parsers can support left recursion, in: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program Manipulation (PEPM’08), ACM, 2008, pp. 103–110.
[70] Wikipedia, Piping and instrumentation diagram, Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Piping_and_

instrumentation_diagram, 2012, accessed March 23rd, 2013.
[71] M. Wimmer, G. Kramler, Bridging grammarware and modelware, in: Proceedings of the Satellite Events at the MoDELS Conference, Springer, 2006,

pp. 159–168.
[72] N. Wirth, What can we do about the unnecessary diversity of notation for syntactic definitions?, Commun. ACM 20 (1977) 822–823.

http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D616E6167656444617461s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D616E6167656444617461s1
http://tratt.net/laurie/research/pubs/papers/diekmann_tratt_parsing_composed_grammars_with_language_boxes.pdf
http://tratt.net/laurie/research/pubs/papers/diekmann_tratt_parsing_composed_grammars_with_language_boxes.pdf
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4C6973703135s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D65726B6C653130s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D756C6C65723038s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D756C6C65723038s1
http://www.omg.org
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib464F504F41s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib464F504F41s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5061616B6B6931393935s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib506172723935s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5065707369436F6C61s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5065707369436F6C61s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4F70656E4578744F626A4D6F64656C73s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib496E7650617273655072696E74s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib52656E67676C693039s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib52656E67676C693039s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D6574614949s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4D6574614949s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5363687765726466656765723039s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5363687765726466656765723039s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib474C4C505447454Es1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4B69616D614147s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4243536D6974684C697370s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4243536D6974684C697370s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4F474174534C45s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib4F474174534C45s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib546F6D697461s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib546F6D697461s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib74726174745F5F6469726563745F6C6566745F7265637572736976655F70617273696E675F65787072657373696F6E5F6772616D6D617273s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib74726174745F5F6469726563745F6C6566745F7265637572736976655F70617273696E675F65787072657373696F6E5F6772616D6D617273s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib76616E77796B303362s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib76616E77796B303362s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib76616E77796B3130736370s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib56697339372E746865736973s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib436F75706C6564547261666Fs1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib566F656C7465724D6F64756C6172s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib566F656C7465724D6F64756C6172s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib566F6C746572563130s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5265666C656374697665546F776572s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5065676C656674s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib5065676C656674s1
http://en.wikipedia.org/w/index.php?title=Piping_and_instrumentation_diagram
http://en.wikipedia.org/w/index.php?title=Piping_and_instrumentation_diagram
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib57696D6D65723035s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib57696D6D65723035s1
http://refhub.elsevier.com/S0167-6423(14)00090-2/bib576972746831393737s1

	The design and implementation of Object Grammars
	1 Introduction
	1.1 Ensō: Application software = models + interpreters
	1.2 Grammars and models
	1.3 Requirements and design decisions
	1.4 Organization

	2 Object Grammars
	2.1 Construction and ﬁeld binding
	2.2 Alternatives and object-valued ﬁelds
	2.3 Collections
	2.4 Reference resolving
	2.5 Predicates
	2.6 Formatting hints
	2.7 Lexical syntax

	3 Object grammar composition
	3.1 Modular language development
	3.2 Language reuse
	3.3 Language extension
	3.4 Language mixin

	4 Self-description
	4.1 Introduction
	4.2 Grammar Grammar

	5 Implementation
	5.1 Interpretation
	5.2 Modeling internal data structures
	5.3 Parsing and building object graphs
	5.4 Formatting
	5.5 Merging
	5.6 Bootstrapping

	6 Evaluation
	6.1 Introduction
	6.2 Composition in Ensō
	6.3 Case-study: Piping and instrumentation

	7 Related work
	7.1 Grammars and models
	7.2 Language composition
	7.3 Self-description
	7.4 Discussion

	8 Concluding remarks
	8.1 Directions for further research
	8.2 Conclusion

	Acknowledgements
	References

