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Early Detection of Sepsis Induced
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Abstract. Sepsis is an excessive bodily reaction to an infection in the
bloodstream, which causes one in five patients to deteriorate within two
days after admission to the hospital. Until now, no clear tool for early
detection of sepsis induced deterioration has been found. This research
uses electrocardiograph (ECG), respiratory rate, and blood oxygen sat-
uration continuous bio-signals collected from 132 patients from the Uni-
versity Medical Center of Groningen during the first 48 h after hospital
admission. This data is examined under a range of feature extraction
strategies and Machine Learning techniques as an exploratory frame-
work to find the most promising methods for early detection of sepsis
induced deterioration. The analysis includes the use of Gradient Boost-
ing Machines, Random Forests, Linear Support Vector Machines, Multi-
Layer Perceptrons, Naive Bayes Classifiers, and k-Nearest Neighbors
classifiers. The most promising results were obtained using Linear Sup-
port Vector Machines trained on features extracted from single heart
beats using the wavelet transform and autoregressive modelling, where
the classification occurred as a majority vote of the heart beats over
multiple long ECG segments.

Keywords: Sepsis · Machine Learning · Bio-signals · Health care

1 Introduction

Sepsis is a life-threatening organ dysfunction caused by an uncontrolled reaction
to infection by the organism [1] that can lead to organ failure, septic shock, and
death [2]. Common symptoms of sepsis include higher heart rate and respiratory
rate, and abnormal changes in bodily temperature [3]. Sepsis is one of the most
common causes for mortality among chronically ill patients, and it is estimated
that sepsis affects at least 240 people out of 100,000 in the United States, while
severe sepsis affects between 51 and 95 out of 100,000 [4]. Most patients affected
by sepsis are admitted to the hospital through the Emergency Department (ED),
and it was shown that approximately 20% of patients admitted to the ED with
infection or sepsis deteriorate [5].

Early detection of sepsis induced deterioration is extremely valuable since it
allows for fast and effective treatment. In [6] it was shown that each hour of delay
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in the application of appropriate treatment is correlated with a mean increase
in mortality of 7.6%. Nevertheless, despite the intensive research in the field, it
is still not clear how the onset, progress, and response to treatment of sepsis can
be accurately monitored [7].

The traditional approach for tracking sepsis onset and development is to
use discrete values describing vital signs and non-specific symptoms [3]. More
recently, measures obtained from Heart Rate Variability (HRV) have been gath-
ering research interest. Although at present the most successful studies in this
area concerned sepsis development in neonates [8], some studies have been car-
ried out to explore the predictive potential of HRV measures in adults [9,10]. In
2017 the SepsiVit study was started at the University Medical Center of Gronin-
gen (UMCG), which involves a long term data collection program, and aims at
determining whether HRV measures can provide a reliable source of information
for predicting deterioration in patients with suspected sepsis in the ED [11].

The current study focuses on the potential of Machine Learning based algo-
rithms paired with the use of raw Electrocardiograph (ECG), Plethysmograph,
and Respiratory Rate bio-signals collected during the SepsiVit study at the
UMCG as sources of information for early detection of patient deterioration
due to sepsis. Seven different Machine Learning classifiers are tested and their
classification accuracies are compared across three different feature extraction
methods. The first two methods involve Histograms of Derivatives (HOD) of
the bio-signals, while the third one uses morphological features of heart beats
extracted using the wavelet transform and autoregressive modelling as applied
in [12]. The third feature extraction method was also tested in a majority vote
fashion across 5 min long signal windows and 1 h long signal windows.

This paper is organized as follows. Section 2 describes the dataset in more
detail. Section 3 illustrates the three feature extraction methods used to process
the dataset. Section 4 lists and explains the machine learning models and how
they were applied. Section 5 describes the experimental setup and the obtained
results, while Sect. 6 concludes the paper.

2 Dataset

The dataset used in this research was collected at the ED of the UMCG according
to the protocol of the SepsiVit study. All patients included in the study (i) are
more than 18 years old, (ii) present a suspected infection or sepsis, (iii) show
two or more systemic inflammatory response syndrome criteria as defined by
the International Sepsis Definitions Conference [13], and (iv) provided written
informed consent. Patients are not included in the study in case of (i) known
pregnancy, (ii) when the patient is not admitted to the hospital from the ED or is
transfered to another hospital or care facility, and (iii) in case of previous cardiac
transplantation [11]. While the aim of the SepsiVit study is to collect data from
171 patients, the collected and labeled data at the time of the current study
includes 132 patients (84 males; average age 61.5 years; median age 63.5 years;
average missing data 53%).
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For each patient, high sample rate vital signs are recorded with a bedside
patient monitor (Philips IntelliVue MP70 System with MultiMeasurement Mod-
ule using custom software based on the Philips IntelliVue Data Export Interface
Protocol). The data includes time series data of ECG (500 Hz), Plethysmograph
(125 Hz), and Respiratory Rate (62.5 Hz) bio-signals recorded for up to 48 h since
admission to the ED. No imputation strategy is used to recover missing data due
to the complexity and unpredictability of the bio-signals involved. The electrodes
for recording the ECG signals are placed according to the EASI configuration
[14], and in particular the data from Lead II is used for this analysis. After the
data is collected, the outcomes for the patient’s condition are recorded. Specifi-
cally, five outcomes are monitored: whether the patient (i) had to be transferred
to the Intensive Care Unit (ICU), (ii) died in the hospital, (iii) developed kidney
failure, (iv) developed liver failure, or (v) developed respiratory failure. Since
the goal of this analysis is to provide a tool for early sepsis deterioration, each
patient was labeled as ‘deteriorating’ if they registered positive to any of these
five outcomes, and ‘healthy’ otherwise. The proportions of the two groups are
specific to each feature extraction method depending on the amount of usable
data, and are mentioned in the respective subsections of the paper.

3 Feature Extraction Methods

The detection of early signs of sepsis induced deterioration using bio-signals
requires a procedure of feature extraction from the raw data, so that each
extracted feature vector represents a segment of the original data. With this
in mind, a good feature extraction procedure should yield feature vectors that
are most similar among the same class and most different across different classes.

The three feature extraction methods described in this section are compared
with the ones currently being developed as a part of the SepsiVit study, which
were obtained exclusively from the ECG signal, after the removal of technical
and physiological artifacts [15]. They include HRV measures as described in [16],
and geometrical features of the R-R intervals [17].

3.1 Histograms of Derivatives

The first approach involves the extraction of the distribution of the first and
second order derivatives of the available signals, or Histograms of Derivatives
(HOD). This method is conceptually close to the Histogram of Oriented Gra-
dients strategy used in image processing [18]: the objective is to obtain the
frequency distribution of change in signal intensity across a signal segment. The
derivative of a function at a specific input value is defined as the slope of the
tangent line to the graph of the function at that point. In the case of the dig-
ital signals used in this study, an approximation of the derivative function is
computed as:

dx

dt
=

xt+h − xt

h
(1)
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where h is the unit interval between consecutive samples. For each of the three
signals used in this study, h is set to 1 since the time between consecutive samples
in each signal is constant.

The first step of this procedure is, for each patient’s bio-signals (i.e. ECG,
Plethysmograph, and Respiratory Rate), to extract all simultaneous 5-minute
long signal segments that don’t contain any missing data. The result is a collec-
tion of 5-minute long data triplets containing the three bio-signals. The length of
5 min for each signal window was chosen experimentally as it produced improved
classification accuracies compared to a length of 30 min. This choice was also
guided by the convenience of requiring only 5 min of recorded signal before
attempting detection of sepsis induced deterioration, which would speed up the
potential application of treatment.

Fig. 1. Plot showing first and second order derivatives
of an ECG signal segment taken from the SepsiVit
dataset.

At this stage, the first
and second derivatives of
each signal segment are
computed. Given each sig-
nal in each data triplet,
Eq. 1 was applied across
the whole signal segment.
The result is 6 signals,
two for each type of bio-
signal, of which one is
the first order derivative,
and the other is the sec-
ond order derivative, com-
puted by applying Eq. 1 on
the computed first deriva-
tive. A plot representing an
example of first and second
order derivatives computed
in such fashion is shown in
Fig. 1.

In order to obtain the frequency distribution of each derivative, a 20-bin
frequency histogram is computed for each of the 6 derivative signals. In order
to exclude outliers, the extrema of each histogram are computed as follows. For
each of the 6 derivative signals, the minimum and maximum values are collected
across the whole dataset, for a total of 12 values. A 95% interval is then calculated
for each of the 12 resulting lists of values. The lowest value in the 95% interval
was chosen for the minimum of each histogram, while the maximum value in the
95% interval was chosen for the maximum of each histogram. The values found
with this method are reported in Table 1.

The result was six 20-bin histograms, three for the first derivative of ECG,
Plethysmograph, and Respiratory Rate, and three for their second derivatives,
for each 5-minute long data segment. Each of these histograms was then centered
(by subtracting the mean) and scaled (by dividing by the standard deviation).
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These six histograms were then concatenated so that the first three vectors were
the histograms of the first derivative of ECG, Plethysmograph, and Respira-
tory Rate histograms, while the last three were the histograms of the second
derivatives in the same order.

The last step of the feature extraction process involved, for the ECG signal
contained in each of the data triplets, extracting the mean and the standard devi-
ation of the Heart Rate, μ(HR) and σ(HR). These two values were appended
to each concatenated frequency histogram vector to produce a 122-dimensional
feature vector. Only patients that had at least one uninterrupted 5-minute long
window containing all three bio-signals were included in this procedure. This fea-
ture extraction method yielded 14,389 feature vectors from 89 different patients.
Out of the total number of data triplets, 50.8% came from patients marked as
‘deteriorating’.

3.2 Δ of Histograms of Derivatives

The second feature extraction approach is largely based on the one described in
Subsect. 3.1. The objective of this method is to obtain a measure of the change
between the HODs of consecutive 5-minute long data triplets. Initially all pairs
of consecutive 5-minute long data triplets are collected, so that in each pair
the second triplet directly follows the first one in the time domain. The two 122-
dimensional feature vectors for both data triplets are then extracted according to
the procedure described in Subsect. 3.1. The final feature vector is then computed
as the element-wise difference between the two vectors as:

fvΔ = fvt − fvt−1 (2)

where fvt−1 and fvt are the feature vectors extracted from the first and second
data triplets respectively. Only patients that had at least one uninterrupted
10-minute long window containing all three bio-signals were included in this
procedure. This feature extraction procedure yielded 13,110 feature vectors from
88 different patients. Out of the total number of data triplets, 50.5% came from
patients marked as ‘deteriorating’.

3.3 Wavelet Transform and Autoregressive Modelling

The last feature extraction procedure involves using the wavelet transform and
autoregressive modelling on exclusively the ECG signal. This approach relies on
extracting morphological features from individual heart beats, replicating the
approach found in [12]. This procedure required a preprocessing step of noise
removal from the ECG signal and extraction of all available heart beats (done
with the Python package Biosppy 0.5.1), where the R-peaks were detected using
Hamilton’s approach [19]. Each heart beat is extracted in the form of an array
of 300 samples, where the R-peak occurs at the 100th sample. An example of a
series of extracted heart beats is shown in Fig. 2.
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Table 1. Extrema of each of the 6 frequency histograms, computed for the SepsiVit
dataset by considering the 95% interval for each minimum and maximum value in each
derivative signal.

1st derivative 2nd derivative

Min Max Min Max

ECG −348 343 −307 307

Pleth. −756 768 −511 518

Resp. −681 722 −523 676

Fig. 2. Plot showing exemplar heart beats extracted
from an ECG segment taken from the SepsiVit dataset,
after noise removal has been applied. The different col-
ors represent the different heart beats. (Color figure
online)

Due to memory limita-
tions of the computer used
when running the Machine
Learning algorithms, a sam-
ple of 10,000 heart beats
was selected for each patient
to be used in the study. The
sample of heart beats for
each patient was selected
by (1) extracting all heart
beats for that patient, and
(2) keeping 10,000 evenly
spaced heart beats across
all heart beats of the
patient ordered in the time
domain. This was done
to ensure that, for each
patient, heart beats from
all stages of their stay in
the hospital were available.
A time-frequency decomposition of each heart beat was then produced using the
wavelet transform as done in [12], which has been shown to be a good tool for
QRS complex detection [20].

The wavelet transform is an operation that represents a signal with a series
of coefficients which describe the energy distribution of the signal across both
time and frequency. The continuous wavelet transform (CWT) of a continuous
signal is defined as [21]:

CWTx(b, a) =
1

√|a|

∫ ∞

−∞
x(t)g

(
t − b

a

)
dt (3)

where the wavelet g(t) satisfies the conditions reported in [22]. a and b (a, b ∈
�, a �= 0) are the dilation and translation parameters. The chosen wavelet, which
in the case of this study is the Daubechies wavelet of order 8, as done by Qibin
and Liqing [12], is compressed or expanded depending on the value of a, in such a
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way that coefficients can be extracted to describe the morphology of the signal at
different frequency ranges. The high computational complexity of this approach
can be reduced by discretising one or both parameters of the function. The case
where a is discretised is defined as the dyadic wavelet transform DyWT . a is
discretised along the dyadic sequence 2i (i ∈ N) [20]. DyWT is then defined as:

DyWTx(b, 2i) =
1√
2i

∫ ∞

−∞
x(t)g

(
t − b

2i

)
dt (4)

The dyadic wavelet transform was consequently applied to all heart beat sig-
nals (done with the Python package pywt 1.0.6 [23]). A required parameter for
the operation was the decomposition level, which influences the frequency ranges
extracted from the signal. The chosen decomposition level was 4 as done in [12].
The wavelet transform decomposition yielded four detail coefficients d1, d2, d3, d4
and the vector of approximation coefficients a4. The detail coefficients represent
the high frequency parts of the ECG signal, while the vector of approximation
coefficients a4 represent the lower frequency changes in each heart beat, corre-
sponding with the main features of the QRS complexes. For each heart beat, the
vector a4 contained 32 points.

The second step was the extraction of the coefficients of an autoregressive
model trained on each heart beat. An autoregressive model of order p of a signal
x[n] is defined as the linear combination of the p previous samples in the signal,
and can be expressed as:

x[n] =
p∑

i=1

a[i]x[n − i] + e[n] (5)

where a[i] is the ith coefficient and e[n] is white noise with mean zero [12].
The number of coefficients p was chosen to be 14 using the Akaike Information
criterion [24], so that the 14 coefficients aar of the autoregressive model were
extracted from each heart beat (done with the Python package statsmodels 0.9).
The two obtained vectors a4 = {w1, . . . , w32} and aar = {a1, . . . , a14} were
then concatenated to form the feature vector for that heart beat. Only patients
whose ECG signal contained at least one heart beat detectable using Hamilton’s
approach [19] were included in this procedure. This feature extraction procedure
yielded 1,155,997 feature vectors from 123 different patients. Out of the total
number of data triplets, 44.9% came from patients marked as ‘deteriorating’.

Due to the large number of feature vectors obtained with this method, Prin-
cipal Component Analysis (PCA), a common feature reduction procedure, was
used to compress the dimensionality of the feature vectors from 46 to 10 dimen-
sions [25]. PCA involves projecting a set of vectors across the dimension with the
maximal variance, in order to reduce the number of dimensions while preserving
the maximal amount of information regarding the distribution of the vectors.
For each test, PCA was applied by fitting it on the training split of the data,
and then applying it to both the training and the testing splits of the data.
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4 Machine Learning Methods

All algorithms described in this section were implemented in Python using the
package scikit-learn 0.19.1 [26]. The dataset was split into training and test-
ing/validation sets using 90% and 10% of the data respectively. The strategy
used for splitting the dataset was group 10-fold cross-validation, so that 10 itera-
tions of testing were performed for each algorithm. An important property of the
group k-folds strategy for dataset splitting is that no data from the same patient
occurred in different folds, so as to eliminate overfitting over single patients. The
results as reported in Sect. 5 consist of the mean classification accuracy for the
tuned models across the 10 training iterations, along with its standard deviation.
The accuracy was computed as the number of correct classifications over all clas-
sification attempts. For the Linear Support Vector Machine, weighted k-Nearest
Neighbors, and Multi-Layer Perceptron, the data must be scaled. A MinMax
scaler, which scales each feature to an interval [0, 1], was chosen experimentally
as it yielded better results compared to a standard scaler. For each training fold
the scaler was fitted on the training split of the dataset, and consequently applied
to both the training and the testing split. Class scaling was applied to the two
classes in the training phase for all classifiers except for the Multi-Layer Percep-
tron and the Weighted k-Nearest Neighbors, in order to normalise the impact

Table 2. Parameters used for each of the classifiers. The feature extraction methods are,
in order: Histograms of Derivatives (HOD, see Subsect. 3.1), Difference of Histograms of
Derivatives (HODΔ, see Subsect. 3.2), wavelet transform and autoregressive modelling
(HB, see Subsect. 3.3), and using the HRV measures extracted as part of the SepsiVit
study (SV). The classifiers are, in order: Linear Support Vector Machine (SVM), Ran-
dom Forest (RF), Gradient Boosting Machine (GBM), Weighted k-Nearest Neighbors
(WkNN), Multi-Layer Perceptron (MLP), and Linear Regression (LR).

HOD HODΔ HB SV

SVM C 11 12 15 9.5

RF n estimators 7, 000 5, 000 3, 500 5, 000

GBM n estimators 10, 000 10, 000 10, 000 10, 000

learning rate 0.01 0.01 0.005 0.0001

min samples. 10

WkNN n neighbors 6 11 251 55

p 1

MLP hidden n. 31 53 7 4

learning rate 0.0005 0.0005 0.0005 0.001

max iter 3, 000

activation logistic

LR C 15 8 10 15

solver newton-cg

multi class multinomial
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of the distribution of the two classes during training. The parameter tuning for
all algorithms was done by parameter grid search using cross-validation. The
parameters for all algorithms are reported in Table 2.

4.1 Linear Support Vector Machine

Support Vector Machines (SVMs) are a set of supervised learning algorithms
useful in classification, which is widely and successfully applied in the medical
field [12,27,28]. A Linear Support Vector Machine generates a hyperplane which
position and orientation is optimised to best differentiate between the two classes,
and which is computed using the support vectors, which are the vectors in the
training set closest to the decision hyperplane [29]. The Linear SVM model used
the squared hinge loss function, which produced a classification boundary with a
soft margin, yielding classification probabilities. The only tuned parameter was
C, which represents the importance given to outliers during training.

4.2 Random Forest

A Random Forest is an ensemble-based algorithm which works as a combina-
tion of decision tree predictors [30]. Each tree in a Random Forest is initialised
using the values of a random vector sampled independently using the same dis-
tribution. This method is more robust to overfitting compared to standard deci-
sion trees [31]. All default parameters were kept the same as the scikit-learn
implementation of the algorithm [26], except for n estimators, the number of
trees to be generated. As the number of trees is increased, the accuracy nor-
mally increases and eventually plateaus. In the case of the wavelet transform
and autoregressive modelling feature extraction method (see Subsect. 3.3), the
number of generated trees was artificially kept low to accomodate for the memory
limitations of the computer used in the analysis.

4.3 Gradient Boosting Machine

The Gradient Boosting Machine algorithm is, much like the Random Forest,
an ensemble-based algorithm used in classification which combines a number of
weak decision tree classifiers into a strong decision tree classifier. Each decision
tree is generated by combining the previous decision trees and applying a higher
weight to events that are difficult to predict. The result is a gradient descent algo-
rithm that minimizes the classification error by generating more decision trees
[32]. The two parameters that were tuned for this algorithm were n estimators,
the number of trees to be generated, and learning rate, which shrinks the contri-
bution of each tree. There is a trade-off between the values of the two parameters,
so they need to be adjusted to each other. For all other parameters, the defaults
of the scikit-learn package were used, except for the value of min samples leaf ,
which was set to 10. This value defines the minimum number of feature vectors
to be found in each leaf of the decision trees.
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4.4 Weighted k-Nearest Neighbors

The Weighted k-Nearest Neighbors (WkNN) algorithm is a variation of the stan-
dard k-Nearest Neighbors classification algorithm. The latter works by, for each
feature vector in the testing set, producing a majority vote across the k clos-
est feature vectors of the training set, according to a specified distance metric.
The WkNN algorithm works in a similar fashion, with the added feature that
votes from each neighboring feature vector are scaled depending on their dis-
tance from the feature vector to be classified [33]. The tuned parameter was
only n neighbors, which is k, the number of the closest feature vectors that
are taken into account for the classification. The distance metric used for this
algorithm was the Minkowski distance, with the inverse scaling factor p set to 1.

4.5 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a type of feedforward artificial neural net-
work which implements the backpropagation supervised learning algorithm. The
MLP implemented as a part of this study contained only one hidden layer. The
amount of neurons in the hidden layer was the parameter hidden neurons, tuned
for each feature extraction method. The final, output layer contains a number
of neurons equal to the number of classes, to which activations a Softmax func-
tion is applied in order to compute class-wise probabilities. The learning rate
parameter was also tuned using cross-validation [31,34]. All other parameters
were kept to the defaults given by scikit-learn, except for the applied logistic
activation function, and the maximum number of training iterations for the
algorithm, which was set to 3,000.

4.6 Näıve Bayes Classifier

The Näıve Bayes classifier is one of the simplest probabilistic classifiers, which
has the advantage of being computationally inexpensive, and has been used with
success on Heart Rate Arrhythmia classification in [35]. This classifier constructs
a set of probabilities, which correspond to the probability that each feature value
appears among the feature vectors within a certain class. The Näıve Bayes clas-
sifier makes, however, a strong assumption of conditional independence between
the features within the feature vectors [36]. This assumption rarely holds in real
life scenarios, and it clearly doesn’t hold for the feature vectors extracted with
the procedures described in Sect. 3. For this study, the Gaussian Näıve Bayes
classifier was used, which relies on the assumption that the likelihood of the
features follows a Gaussian distribution. The algorithm was tested as it tends
to perform well in many classification tasks, and because of its conveniently low
computational complexity. This classifier requires only the prior probabilities of
the two classes, computed as the proportion of each class across each complete
processed dataset.
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4.7 Logistic Regression

The Logistic Regression classifier is a standard linear model for classification. In
this study, a multinomial logistic regression was used, which means that the prob-
ability estimates should be better calibrated per class compared to a dichotomous
implementation. The classifier used the ‘newton-cg’ solver. The only parameter
tuned using cross-validation was C, the inverse of the regularization strength α.

5 Experiments and Results

For each tuned classifier and for every testing procedure, the mean and standard
deviation of the classification accuracy across the 10 folds of the cross-validation
process are reported. The testing procedures were five in total. The first three
involved standard classification of the feature vectors obtained with the three
feature extraction methods described in Sect. 3 using cross-validation. For each
of the three produced datasets, each feature vector was assigned the same label
as the patient that it was extracted from. During the training phase, the classifier
was trained on the training set using the correct labels. During the testing phase,
each feature vector was classified as belonging to the ‘deteriorating’ class or to
the ‘healthy’ class. The result of the classification was then compared with the
correct label in order to compute the accuracy (i.e. the proportion of correct
classifications during the testing phase).

The last two testing procedures were applied to the morphology descriptors,
which are described in Subsect. 3.3). For both testing procedures, the training
phase was the same as for the third testing procedure, so that the classifier could
classify each heart beat as ‘deteriorating’ or not given its feature vector. What
changed in the last two testing procedures was the testing phase. The first of
the two testing procedures was done as a majority vote, where heart beats are
extracted and processed for all 5-minute long ECG segments. The classification
process is then applied to all heart beats in each 5-minute long ECG segment so
that if 50% or more of the heart beats are classified as ‘deteriorating’, then the
whole segment receives such classification outcome. The third testing procedure
is performed in a similar fashion by taking a majority vote across 12 5-minute
long ECG segments.

All testing procedures are compared to the performance of the tuned algo-
rithms used on the HRV features extracted as part of the SepsiVit study, as
mentioned in Sect. 3. All outcomes of the testing procedures are reported in
Table 3.

The Histograms of Derivatives and Differences of Histograms of Derivatives
methods for feature extraction did not show any promise, ranging from a mean
classification accuracy of 43.1± 11.9% for the Multi-Layer Perceptron in the
Difference of Histograms of Derivatives procedure, to 56.6± 12% for the Random
Forests algorithm applied to the Histograms of Derivative method for feature
extraction.

The best results were obtained using the Linear Support Vector Machine on
the feature vectors extracted in the SepsiVit study, which had a mean accuracy
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Table 3. Mean and standard deviation of the classification accuracies for all models
and testing procedures. The testing procedures are, in order: Histograms of Deriva-
tives (HOD, see Subsect. 3.1), difference of Histograms of Derivatives (HODΔ, see
Subsect. 3.2), wavelet transform and autoregressive modelling without majority vote
(HB, see Subsect. 3.3), wavelet transform and autoregressive modelling applied in a
majority vote fashion over 5-minute long ECG segments (MV), wavelet transform and
autoregressive modelling applied in a majority vote fashion over 12 5-minute long ECG
segments (MV2), and using the HRV measures extracted as part of the SepsiVit study
(SV).The classifiers are, in order: Linear Regression (LR), Weighted k-Nearest Neigh-
bors (WkNN), Näıve Bayes (NB), Linear Support Vector Machine (SVM), Multi-Layer
Perceptron (MLP) Random Forest (RF), and Gradient Boosting Machine (GBM).

HOD HODΔ HB MV MV2 SV

LR 54.1± 14.3 50.5± 7.4 59.3± 9.4 60.6± 10.8 61.0± 10.6 63.0± 5.2

WkNN 52.8± 6.7 50.4± 6.6 55.1± 6.3 57.1± 10.9 57.8± 11.2 57.9± 5.8

NB 54.8± 13.3 49.7± 14.3 51.8± 10.7 54.0± 15.4 53.9± 15.9 57.9± 5.8

SVM 52.4± 13.9 50.5± 12.7 60.9± 9.1 62.2± 10.7 62.4± 10.9 65.5± 7.9

MLP 53.8± 11.1 43.1± 11.9 59.8± 12.9 57.1± 15.2 56.9± 15.9 60.3± 8.1

RF 56.3± 12 54.8± 6.7 55.4± 7.8 58.2± 12.2 58.5± 12.8 59.3± 6.9

GBM 54.6± 8.4 54.4± 9.0 57.6± 7.8 61.5± 13.1 61.9± 13.6 61.3± 8.5

of 65.5% and a standard deviation of 7.9%. The most promising results were
obtained with the feature extraction method involving the wavelet transform and
autoregressive modelling, which was only marginally improved by the majority
vote testing procedures. The Linear Support Vector Machine classifier produced
the best results with the data extracted in this fashion, peaking at 62.4± 10.9%
mean classification accuracy.

Overall, the Linear Support Vector Machine was the best classifier, sometimes
beaten by the Random Forest.

6 Conclusion and Future Work

The results presented in the previous section show that none of the attempted
feature extraction methods are superior in their ability to encapsulate differ-
ences between the two classes and similarity among the same class compared to
the HRV features extracted as part of the SepsiVit study [11]. Nonetheless, the
results of this study imply that there is more useful information in the morpho-
logical descriptions of the ECG signal compared to the frequency distributions
of the slopes of high frequency bio-signals.

While there was an increase in classification accuracy obtained by applying
the majority vote testing strategies, the fact that the improvement was as small
as 1.5% indicates that the improvement is only marginal, and given the benefits
of early detection of sepsis induced deterioration [6], a classification strategy
requiring less data such as the standard heart beat classification or the majority
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vote across 5-minute ECG segments might be more beneficial for improving
survival rates, compared to one that uses 60-minute ECG segments.

A difficulty encountered in this study was the limited size of the dataset.
The low variability in the bio-signals across the data of each individual patient
makes it so that the diversity in the dataset, and so the capacity of the Machine
Learning algorithms to properly generalise the problem, is entirely dependent
on the amount of different patients included in the study. Since reaching the
target of the SepsiVit study of 171 patients (i.e. only 30% more than were avail-
able for this research) is likely not going to produce sufficient diversity in the
dataset, future data collection programs are needed to further investigate the
predictive potential of high frequency bio-signals for early detection of sepsis
induced deterioration.

Future studies could focus on any of the following points for improvement.
A more complete analysis of the feature extraction methods should be carried
out: new strategies should be tested, and all strategies should be used together
to produce feature vectors containing all features for each bio-signal segment.
An analysis of which features contribute the most to the classification would
then reveal the features that are most relevant towards the early detection of
sepsis induced deterioration. Furthermore, different classifiers should be tested.
Obvious candidates are Recurrent Neural Networks such as LSTMs, widely used
on time series data, which nevertheless require large amounts of data for effective
training, and which as such would depend on a new data collection program.
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