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In the context of ghost-free, infinite derivative gravity, we provide a quantum mechanical framework in
which we can describe astrophysical objects devoid of curvature singularity and event horizon. In order to
avoid ghosts and singularity, the gravitational interaction has to be nonlocal; therefore, we call these objects
nonlocal stars. Quantum mechanically a nonlocal star is a self-gravitational bound system of many
gravitons interacting nonlocally. Outside the nonlocal star the spacetime is well described by the
Schwarzschild metric, while inside we have a nonvacuum spacetime metric which tends to be conformally
flat at the origin. Remarkably, in the most compact scenario the radius of a nonlocal star is of the same order
of the Buchdahl limit, therefore slightly larger than the Schwarzschild radius, such that there can exist a
photosphere. These objects live longer than a Schwarzschild blackhole and they are very good absorbers,
due to the fact that the number of available states is larger than that of a blackhole. As a result nonlocal stars
can not only be excellent blackhole mimickers, but can also be considered as dark matter candidates. In
particular, nonlocal stars with masses below 1014 g can be made stable compared to the age of the Universe.

DOI: 10.1103/PhysRevD.100.024031

I. INTRODUCTION

Einstein’s general relativity (GR) has given the best
mathematical description of the gravitational interaction
and its predictions have been tested to a very high precision
in the infrared (IR) regime, i.e., at large distances and late
times [1,2]. Despite these great achievements, there are still
open questions regarding short distances and small time
scales, i.e., the ultraviolet (UV) regime, where the gravi-
tational interaction is least known. From an experimental
point of view, Newton’s inverse square law has been tested
up to roughly 5 micrometers [3], which translates to
roughly 0.001 eV. Beyond these energies, the gravitational
interaction has been hardly constrained so far with direct
experiments.
From a conceptual point of view, Einstein’s GR suffers

from the presence of classical (blackhole and cosmological)
singularities [4], and at a quantum level it turns out to be
nonrenormalizable beyond one loop, thus lacking predict-
ability at high energies [5]. Moreover, one of the most
important feature of blackholes in GR is the presence of
event horizons, which has lead to many confusions and
paradoxes, i.e., Hawking’s information loss paradox [6].
An interesting observation was made in Ref. [7] that by

extending the Einstein-Hilbert action with the addition of
quadratic curvature invariants, the renormalizability issue
can be solved, but it was also shown that such a theory
possesses a spin-2 massive ghost, which causes Hamiltonian
instabilities at the classical level and unitarity violation at the

quantum level. Furthermore, such finite derivative theories
still harbor cosmological and blackhole singularities.
Recently, it has been pointed out that a possible way to

ameliorate the issue of ghost is to go beyond finite order
derivative theories, and to modify the action by introducing
differential operators made up of infinite order covariant
derivatives. Such an action indeed gives rise to nonlocal
graviton interactions. Already in the early fifties, it was
realized that the UV behavior of loop integrals in quantum
field theory could be ameliorated by working with nonlocal
actions [8], in particular, generalizing local theories by
introducing exponentials of entire functions in the action.
These nonlocal models were also studied from an axiomatic
point of view; see Ref. [9].
First applications of this kind of nonlocal operator in the

context of gauge theories and gravity were considered in
Refs. [10,11], respectively. Subsequently, such theories were
rediscovered in Refs. [12,13] where it was shown that higher
derivative gauge theories can be made ghost free. In the
gravitational context the same class of nonlocal actions
was useful to obtain ghost-free nonsingular cosmological
[14–18] and blackhole [19–33] solutions. Such nonlocal
models were also applied in the framework of inflationary
cosmology [34], and thermal field theory [35–37].
Field theoretical studies aimed to understand the UV

behavior and to prove perturbative unitarity of ghost-free
nonlocal field theories were made in Refs. [20,38–45] and
in Refs. [46–49], respectively. Very interestingly, the same
kind of form factors also appear in the context of string field
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theory [50–53], where the cubic vertex of the open string
tachyon field is nonlocal and given by ðe□=M2

sϕÞ3, and in
p-adic string [54] where the kinetic operator is given by
e□=M2

s , with □ being the d’Alembertian operator and Ms
denoting the string scale or, in other words, the scale of
nonlocality.
The aim of this paper is to provide a quantum description

of a massive, nonsingular, horizonless compact astrophysi-
cal object in the context of a ghost-free, infinite derivative
theory of gravity. In Ref. [26] it was already pointed out
that an interesting possibility arises, where in order to
preserve the area law of gravitational entropy, the scale of
nonlocality may transmute towards the IR regime. This has
recently been checked at a quantum level by studying the
scattering diagram of a system of N gravitons interacting
nonlocally, and forming a bound system very similar to
a Bose-Einstein condensate [55]. In this paper, for the first
time we provide the spacetime metric of such a self-
gravitating system, which we call here a nonlocal star. For
such an object, we compute the lifetime, the entropy, and the
number of Bekenstein states, and study the phenomenologi-
cal consequences for astrophysics and cosmology.
The paper is organized as follows. In Sec. II, we provide

a quantum mechanical treatment of nonlocal gravitational
interaction. In particular, we study the properties of a
condensate made up of N (scalar) gravitons and show the
existence of a complementarity relation between the total
mass of a nonlocal condensate and the effective scale of
nonlocality, which is the key for the absence of a horizon.
In Sec. III, we make a qualitative estimation of important
classical and quantum physical quantities such as compact-
ness, lifetime, entropy, absorption, and reflection coeffi-
cients of a nonlocal star. In Sec. IV, we discuss the outlook
and draw the conclusions.

II. QUANTUM ASPECTS OF NONLOCAL
GRAVITATIONAL INTERACTION

A. Infinite derivative gravitational action

The most general quadratic action in four dimensions,
which is parity invariant and torsion free is given by [19,56]1

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p fRþ βðRF 1ð□sÞR

þRμνF 2ð□sÞRμν þRμνρσF 3ð□sÞRμνρσÞg; ð1Þ

where μ, ν ¼ 0, 1, 2, 3; we work mostly with positive
signature ð−þþþÞ. Moreover, we use the physical units in

which c ¼ 1, but ℏ ≠ 1, so that classical and quantum
aspects can be explicitly distinguished; thus G ¼ ℏ=M2

p ¼
L2
p=ℏ is theNewton constant andβ ¼ L2

s=2 ¼ ℏ2=ð2M2
sÞ is a

dimensionful coupling, withMs being the fundamental scale
of nonlocality, which in the context of string theory corre-
sponds to the string scale. The threegravitational form factors
F ið□sÞ are covariant functions of the d’Alembertian and can
be uniquely determined around the Minkowski background
[19,21]. By setting F 3ð□sÞ ¼ 0, for simplicity and without
any loss of generality up to quadratic order in the metric
perturbation around flat background, we can keep the
massless spin-2 graviton as the only dynamical degree of
freedom by imposing the following condition2: 2F 1ð□sÞ ¼
−F 2ð□sÞ as shown in Ref. [19] around the Minkowski
background. By expanding around Minkowski,

gμν ¼ ημν þ κhμν;

with κ ≔
ffiffiffiffiffiffiffiffiffi
8πG

p
, we obtain

S ¼ 1

4

Z
d4xhμνð1 − F 1ð□sÞ□sÞOμνρσhρσ þOðκh3Þ; ð2Þ

where Oðκh3Þ takes into account higher order terms in the
perturbation, while the four-rank operator Oμνρσ is totally
symmetric in all its indices and defined as

Oμνρσ ≔
1

4
ðημρηνσþημσηνρÞ□−

1

2
ημνηρσ□

þ1

2
ðημν∂ρ∂σþηρσ∂μ∂ν−ημρ∂ν∂σ −ημσ∂ν∂ρÞ: ð3Þ

By inverting the kinetic operator we obtain the graviton
propagator around the Minkowski background, and its
saturated and gauge independent part is given by [19,65]

ΠμνρσðkÞ ¼
1

1þ F 1ðkÞk2=M2
s

�
P2

μνρσ

k2
−
P0

s;μνρσ

2k2

�
; ð4Þ

where P2=k2 − P0
s=2k2 is the graviton propagator of

Einstein’s GR, while P2 and P0
s are two spin projection

operators projecting along the spin-2 and spin-0 components,
respectively; see Refs. [65,66] for further details. Note that in
order not to introduce any extra dynamical degrees of
freedom other than the massless spin-2 graviton, we need
to require that the function 1þ F 1ðkÞk2=M2

s does not have
any 0’s, i.e., that it is an exponential of an entire function,

1þ F 1ðkÞ
k2

M2
s
¼ eγðk2=M2

sÞ; ð5Þ1It is worthwhile to mention that the most general quadratic
gravitational action which contains torsion and generalizes the
Poincaré gravity has been constructed recently in Ref. [57]. In
[19,56] the quadratic curvature action was constructed system-
atically based on diffeomorphism invariance and preserving the
ghost-free conditions. See also Ref. [58] for a three-dimensional
version of the gravitational action in Eq. (1).

2In this paper we only consider analytic form factors. However,
it is worth mentioning that nonlocal models with nonanalytic
differential operators have been investigated by many authors;
see, e.g., Refs. [59–64].
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where the γðk2=M2
sÞ is an entire function. We mainly work

with the simplest choice γðk2Þ ¼ k2=M2
s , but we discuss

other kinds of entire functions as well in the Appendix; see
also Ref. [22] for other examples of entire functions.

B. Cubic graviton interaction in infinite derivative
gravity

We study the gravitational interaction, up to cubic order in
the metric perturbation hμν. Because of the complicated
structure of the graviton vertices in the infinite derivative
gravity, for simplicity we work only with the scalar compo-
nent of the graviton, i.e., with the trace field h, and consider
interaction vertices up to Oðκh3Þ. All possible interaction
terms that can be constructed are the following [42]:

Sð3Þh ∼ κ

Z
d4xðah∂μh∂μhþ bh∂μhe−□=M2

s∂μh

þch□he−□=M2
s hÞ; ð6Þ

where a, b, c are three constant parameters that need to be
fixed. In Ref. [42], they were fixed to a ¼ b ¼ −c ¼ 1=4 by
demanding the action around the Minkowski vacuum to be
invariant under the infinitesimal scaling transformation:
gμν → ð1þ εÞgμν that translates into h → ð1þ εÞhþ ε.
We emphasize that in this manuscript we consider the

gravitons composing a condensate confined in a bound
state by their own self-gravity; this means that such
gravitons are not the ones with þ2 and −2 helicity that
propagate on shell; rather, they are off shell. An off-shell
graviton has six degrees of freedom coming from a spin 2
(five components) and a spin 0 (one component); see for
instance Eq. (4). Therefore, the use of only the scalar
component of the propagator, as a simpler case, is still good
enough to understand which are the main implications due
to nonlocality.

C. N gravitons interacting nonlocally

Classically, Ms (or Ls) is a fundamental parameter, but
quantummechanically this becomes a dynamical quantity as
it has been recently shown inRef. [55]. Itwas realized that for
a system of N scalar gravitons interacting nonlocally, the
nonlocal energy scale can transmute to lower energies. For
instance, for an N-point scattering amplitude in the limit
N ≫ 1, it was shown the following behavior [55]3:

MN ∼
e−N

3k2=M2
s

k2N
¼ e−K

2=M2
eff

k2N
; ð7Þ

where we have neglected constant factors for simplicity.
FromEq. (7), by definingK ¼ Nk to be the total momentum
(energy), it is clear that theN-point amplitude depends on the
following effective nonlocal scale [55]:

Meff ¼
Msffiffiffiffi
N

p ; or Leff ¼ ℏM−1
eff ¼

ffiffiffiffi
N

p
Ls; ð8Þ

meaning that the scale at which the nonlocal effects become
relevant is not fixed, but dynamical, and depends on the
number N of interacting scalar gravitons. In terms of length
scales, this means that the higher the number is of interacting
quanta, the larger the nonlocal region is on which the
interaction happens. Note that a similar scaling behavior
was also obtained in Ref. [26] from a different point of view
by demanding that the gravitational entropy of a self-
gravitating system preserves the area law [26].
The behavior in Eq. (7) refers to amplitudes with zero-

external momenta, which correspond to bound systems
whose constituents can be seen as weakly interacting off-
shell quanta. In fact, a Bose-Einstein condensate is a system
of weakly coupled bosons whose number can be very large,
but still allowing all the constituents to live in the ground
state. There is no external interaction (external legs) that
can excite the condensate in such a way that quanta can
escape from the ground state, but only internal interactions
among the constituents. Moreover, it is well known that a
condensate exhibits a collective behavior where all the
constituents have a wavelength of the order of the size of
the system, which in our case is Leff ¼ ℏM−1

eff .

III. THE NONLOCAL STAR AS
A CONDENSATE OF GRAVITONS

In this section we study some of the quantum properties
of a Bose-Einstein condensate made up of gravitons
interacting nonlocally. Note that condensates of attractive
bosons and their phase transitions were first studied in
Ref. [67], while a pioneering application to the case of
gravitons and blackhole physics was worked out in
Ref. [68]. In this paper we generalize their treatment to
the case of a system of N gravitons interacting nonlocally,
which physically represent a new astrophysical object
called a nonlocal star.
Let us assume that each quantum (graviton) brings an

energy (or effective mass), Eg, and so a wavelength

λg ¼
ℏ
Eg

: ð9Þ

Each individual graviton feels nonlocal interaction if and
only λg ∼ Ls, while for wavelengths λg > Ls the self-
graviton interaction is just local. Therefore, a nonlocal
graviton is characterized by a wavelength of the order of the
fundamental scale of nonlocality,

λg ∼ Ls ∼ ℏM−1
s ; or equivalently; Eg ∼Ms: ð10Þ

Given a weakly interacting system, we can define a
dimensionless quantum self-coupling for gravitons as
follows:3See the Appendix for more details.
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αg ¼
ℏG
λ2g

¼ L2
p

L2
s
¼ M2

s

M2
p
< 1; ð11Þ

where the inequality always holds true, since Ms < Mp

(or Ls > Lp).
For a gravitational system of N nonlocal gravitons, the

interaction happens on a region of size λ ∼ R ∼ Leff ¼
ℏM−1

eff and a collective quantum coupling can be defined as
follows4:

Nαg ¼ N
L2
p

L2
eff

¼ L2
p

L2
s
¼ M2

s

M2
p
< 1; ð12Þ

which is still less than 1. From the inequalities in Eqs. (11)
and (12) it is evident that at the quantum level nonlocality
weakens the strength of the gravitational interaction as the
quantum coupling turns out to be less than 1. Very
interestingly, by making a comparison with the quantum
blackhole picture in Einstein’s GR, see Ref. [68], a non-
local star never reaches the critical point Nαg ¼ 1. This
feature is a crucial point in order to avoid the formation of
any horizon, as we discuss below.

A. Mass of a nonlocal star

Given N nonlocal gravitons of energy Eg ∼Ms, the total
mass of a gravitational system is given by

m ¼ NEg: ð13Þ

We now know that the wavelength of each nonlocal
graviton becomes larger due to the collective behavior of
the condensate, as described in Eq. (8), so that the
following scaling behavior for each quanta holds:

λg ∼
ffiffiffiffi
N

p
Ls ∼ Leff : ð14Þ

In terms of the mass/energy, each graviton becomes softer,

Eg ∼
Msffiffiffiffi
N

p : ð15Þ

Note that the quantity in Eq. (14) corresponds to the size of
the system, which is approximatively given by

Leff ¼
ffiffiffiffi
N

p
Ls. From Eq. (15) we can now understand that

the total mass of the graviton condensate in Eq. (13) reads

m ¼ NEg ∼ N
Msffiffiffiffi
N

p ¼
ffiffiffiffi
N

p
Ms: ð16Þ

B. Gravitational potential of a nonlocal star

We wish to understand what the gravitational potential is
inside and outside a nonlocal star. We have learned that all
the constituents of the condensate feel a nonlocal inter-
action at the effective scale Meff (or Leff ). Therefore, by
working in a static regime, k2 ≃ k⃗2, we can compute the
gravitational potential felt at a point inside the system, due
to each individual graviton described by the stress-energy
tensor Tμν

1 ∼ Egδ
μ
0δ

ν
0δ

ð3Þðr⃗0iÞ, with i ¼ 1;…; N. We can
compute it by using the tree-level scattering amplitude
technique, between N sources T1 and the source of unit
mass Tμν

2 ∼ δμ0δ
ν
0δ

ð3Þðr⃗Þ, where r0 and r are constrained to be
inside the region of nonlocality, i.e., r ∼ rNL,

ΦðrÞ ¼
XN
i¼1

Φðr⃗ − r⃗0iÞ

≈ −κ2
XN
i¼1

Z
d3jk⃗j
ð2πÞ3 T

00
1 ðkÞΠ0000ðkÞT00

2 ð−kÞeik⃗·ðr⃗−r⃗0iÞ

¼ −
κ2Eg

2

XN
i¼1

Z
d3jk⃗j
ð2πÞ3

e−k⃗
2=M2

eff

k⃗2
eik⃗·ðr⃗−r⃗0iÞ; ð17Þ

which, by assuming that each graviton contributes equally
to the total gravitational potential at r, becomes

ΦðrÞ ≈ −
κ2NEg

2

Z
d3jk⃗j
ð2πÞ3

e−k⃗
2=M2

eff

k⃗2
eik⃗·r⃗

¼ −
Gm
r

Erf

�
Meffr
2ℏ

�
¼ −

Gm
r

Erf

�
r

2Leff

�
: ð18Þ

Outside the nonlocal star, we have a vacuum, and the
spacetime is well described by the Schwarzschild metric,
where Φ ∼ −Gm=r. In fact, outside the nonlocal region the
scale of nonlocality is given by Ms ¼ ℏL−1

s , and for any
point r ≫ Ls, we have practically GR as an excellent
approximation; see also Ref. [22].

C. Radius of a nonlocal star

From the result in Eq. (18), we can also understand that
the linear regime holds true as long as the gravitational
metric potential satisfies the inequality κh00 ¼ −2Φ < 1

for any r, which also means 2Gm=ð ffiffiffi
π

p
LeffÞ < 1. By

defining the radius of the nonlocal star as rNL ¼ 2Leff ,
the previous inequality can be also be recast as follows:

4A local version of this graviton condensate was applied to
blackholes by the authors in Refs. [68], and further studied in
many other works; see e.g., Refs. [69–78]. In this case, a
blackhole is assumed to be a leaky Bose-Einstein condensate
of attractive off-shell longitudinal gravitons stuck at the critical
point of a phase transition, and all the physical properties can be
uniquely determined once the number N of gravitons is given. In
the quantum blackhole picture we have R ∼ rsch; therefore for N
gravitons we obtain λ2g ∼ NL2

p, in such a way that the collective
quantum coupling is always equal to 1, Nαg ¼ 1, which means
that the gravitational system is stuck at its critical point [69].
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rNL ∼ 2Leff ¼ rschð1þ ϵÞ≳ 2Gm
2ffiffiffi
π

p ; ð19Þ

where rsch ¼ 2Gm, and

ϵ≳ 0.128; ð20Þ

which is saturated in the most compact scenario, i.e.,
ϵ ≃ 0.128. From the inequality in Eq. (19), we can under-
stand that the radius of a nonlocal star always engulfs the
Schwarzschild radius, which implies that there is no
horizon. In this respect there is no Hawking entangled
pair production near 2Gm, since the spacetime near rsch is
not sufficiently stretched [6], and the light cone structure
does not alter anywhere in the spacetime region. A similar
situation arises in the fuzz-ball scenario, which has been
constructed in a stringy scenario; for a review see
Refs. [79,80].
In fact, lack of horizon and singularity is true for any

range of masses for the nonlocal star, provided the inequal-
ity in Eq. (19) is satisfied. By knowing the expressions of
the total mass and the effective nonlocal scale, see Eqs. (16)
and (8), we find that the 2jΦj < 1, always holds true.
Indeed, we have

mMeff ∼
ffiffiffiffi
N

p
Ms

Msffiffiffiffi
N

p ¼ M2
s < M2

p: ð21Þ

Increasing the mass of a gravitational system also means
increasing the number of interacting gravitons, which in
turn means shifting the nonlocal scale towards the infrared
regime, in such a way that the inequality in Eq. (19) is
always satisfied for any value of the mass. This should be
seen as a complementary principle for nonlocal systems.5

Furthermore, note that the inequality in Eq. (19) is
saturated for the most compact nonlocal star. However,
depending onMs and N, the radius of the nonlocal star can
be made larger than this value. In the latter case, the
nonlocal star can swell up even beyond 3Gm, where the
photosphere of a Schwarzschild blackhole is. We discuss
this situation below.

D. Metric of a nonlocal star

The spacetime metric for the nonlocal star can be
modeled as follows. We have seen that the inside of the
star is a nonvacuum region in which nonlocal interactions
among the constituents take place, in such a way that the

overall metric potential 2jϕj remains bounded by one.
While, outside we have a vacuum region whose spacetime
geometry is well described by the Schwarzschild metric.
Therefore, we can construct the metric for a nonlocal star as
follows [26,29],

ds2 ¼ −ð1þ 2ΦÞdt2 þ dr2

1þ 2ΨðrÞ þ r2dΩ2; ð22Þ

where6

ΦðrÞ ¼
(
− Gm

r Erf
�

r
rNL

�
; r≲ rNL;

− Gm
r ; r > rNL;

ð23Þ

and

ΨðrÞ ¼
8<
:− Gm

r Erf
�

r
rNL

�
þ 2Gme−r

2=r2
NLffiffi

π
p

rNL
; r≲ rNL;

− Gm
r ; r > rNL:

ð24Þ

For such a metric all curvature invariants are nonsingular,
and it approaches conformal flatness in the limit r ⟶ 0
[27,29],

ds2 ≈ −dτ2 þ dr2 þ r2dΩ2; τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A

p
t; ð25Þ

with 2A ¼ 4Gm=ð ffiffiffi
π

p
rNLÞ < 1. Moreover, for the inside

metric the Birkhoff thereom is violeted, Φ ≠ Ψ. Note that
the metric potential Φ is nonvanishing at r ¼ 0 meaning a
net distinction between the nonlocal star and gravastar
[81,82] metrics; indeed the latter has a de Sitter core.
The nonlocal star is very similar to a blackhole in terms

of an equation of state parameter. The object is held purely
due to the energy density; the pressure component is 0 in
our case, i.e., p ¼ 0, which is very different from a boson
star [83], or a neutron star [84]. However, there might be an
effective pressure not related to the matter sector but
coming from the modification to the spacetime geometry
induced by nonlocality. There is some resemblance of these
objects with noncommutative geometry, see [85,86], in
terms of resolving the blackhole singularity problem.

5It is worthwhile to mention that in order to avoid the horizon,
a necessary condition is given by the relation in Eq. (12) for the
collective quantum coupling. Indeed, the blackhole picture in
GR, given by Ref. [68], yields Nαg ¼ 1 and, in our case, this can
be recovered whenMs ¼ Mp, which implies that the inequality in
Eq. (19) cannot be satisfied anymore, meaning that κh00 ¼ 1; i.e.,
gravity becomes strong enough to form a trapped surface, and
eventually an event horizon.

6Note that the metric potentials in Eqs. (23) and (24) are
discontinuous at r ¼ rNL. However, there is no sharp boundary
between nonlocal and local regimes, but the metric has to be
smooth all the way from r ¼ ∞ to r ¼ 0; therefore, a more
rigorous description should be able to take into account this issue
in such a way that there exist two metric potentials that
continuously interpolate between the inner and outer regions.
One way to model the above metric as a continuous function of
the radial coordinate is to introduce two normalization constants
in the denominators of the two metric potentials. Indeed, by
writing Φ → Φ=a and Ψ → Ψ=b for r ≲ rNL, where a≡ Erfð1Þ
and b≡ Erfð1Þ − 1=ð ffiffiffi

π
p

eÞ, the metric can be made continuous at
r ¼ rNL. Modeling the metric in this fashion might be helpful for
numerical computations.
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E. Nonlocal star with or without a photosphere

Let us define the following function,

μ ≔ 1 −
rsch
rNL

¼ ϵ

1þ ϵ
; ð26Þ

which measures the compactness of a nonlocal star. For a
blackhole we have ϵ ¼ 0, which implies μbh ¼ 0. While, in
the case of the most compact nonlocal star, i.e., ϵ ≃ 0.128,
the compactness parameter is equal to μNL ≃ 0.11, or in
other words rsch=rNL ≃

ffiffiffi
π

p
=2 ≃ 0.886…. A very intriguing

fact is that the compactness of a nonlocal star is of the same
order of the Buchdahl limit [87,88], which is 8=9 ≃
0.888… and was derived by Buchdahl by assuming a
constant density interior. Indeed, in the nonlocal star when
we take the limit r → 0, the metric approaches conformal
flatness with constant metric potentials or, equivalently, the
effective Gaussian density source becomes constant in
good approximation close to the origin.

(i) Nonlocal star as an ultracompact object: For a
sufficiently compact nonlocal star we can have

rNL ¼ 2Gmð1þ ϵÞ< 3Gm; 0.128≲ϵ≲0.5; ð27Þ

which means that it can possess a photosphere, and
can be seen as a new kind of ultracompact object. In
this case, the properties of a nonlocal star can be
probed by studying the ringdown phase. Indeed,
after the merging process of two sufficiently com-
pact objects there is a fraction of waves that will be
able to cross the photosphere, but there will also be a
fraction of them that will interact with the photo-
sphere and travel back towards the central object.
Since there is no horizon the waves can interact with
the surface and travel back. This periodic behavior
of a small fraction of gravitational waves would
produce echoes in the wave-form signal [89–92].

(ii) Echoes after ringdown phase: In Ref. [90], an
interesting distinction was made in the class of
ultracompact objects, by distinguishing the so-called
clean photospheres (ClePhOs) from the non-Cle-
PhOs. The main difference between these two kinds
of objects is that for the former echoes are produced
at later times, and can be more easily distinguished
by the rest of the wave form by future LIGO/VIRGO
observatories. ClePhOs have a radius

R ¼ rschð1þ ϵÞ; ϵ≲ 0.0165:

From Eqs. (19) and (20), we can now understand
that the nonlocal star is a particular class of ultra-
compact object that does not belong to the class of
ClePhOs, since in its most compact case we
have ϵ ¼ 0.128 > 0.01665.

(iii) Shadow of a nonlocal star: Moreover, since the
object is sufficiently compact for Eq. (27), it is
possible to test and constrain the nonlocal star
scenario by experimental data coming from the
presence of a shadow [93]. In particular, we are
able to put constraints on the compactness parameter
introduced in Eq. (26) or, in other words, on the size
of the object; see Refs. [90,92] for discussions on
phenomenological aspects of astrophysical horizon-
less objects beyond GR.

(iv) Nonlocal star as a dark giant star: When

ϵ > 0.5;

the radius of the nonlocal star is such that it engulfs
the photosphere, i.e., rNL > 3Gm, so that no light
ring is present. Such a gravitationally bound system
would be very similar to a dark giant star and it
hardly radiates, which becomes evident when dis-
cussing the lifetime of a nonlocal star and the
number of quantum states such an object possesses;
see below. In terms of compactness, they will be
very similar to a neutron [84], or a boson star [83],
but with an equation of state p ¼ 0.

F. Lifetime of a nonlocal star

We now compute the lifetime of a nonlocal star. As a first
step we need to find an expression for the escape energy
and escape wavelength of a graviton, so that we can
understand under which conditions a graviton escapes
from the condensate. By following the procedure in
Ref. [68], for a nonlocal condensate of N weakly interact-
ing quanta, we can define the following collective inter-
action strength: ℏNαg ¼ ℏNL2

p=L2
eff , so that each graviton

feels the following collective binding potential, which
coincides with the escape energy,

Eesc ∼
ℏNαg
Leff

∼
�
Lp

Ls

�
2 ℏffiffiffiffi

N
p

Ls

; ð28Þ

where we have taken r ∼ rNL. Therefore, a graviton can
escape from the condensate if its energy exceeds the escape
energy in Eq. (28). We can also find the escape wavelength
through the relation

Eesc ¼
ℏ
λesc

: ð29Þ

Indeed, by equating Eqs. (28) and (29), we obtain

λesc ∼
�
Ls

Lp

�
2 ffiffiffiffi

N
p

Ls: ð30Þ

It is clear that the easiest way for a graviton to escape is
through a 2 → 2 scattering process, in which the energy of
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one of the two gravitons exceeds the threshold given by the
binding potential Eesc. We can also estimate the escape rate,
Γ, for such a process, which is approximatively given by
the product of the collective coupling squared, α2g, of the
characteristic energy scale, Eesc, and of the combinatoric
factor, NðN − 1Þ, which in the limit N ≫ 1 can be well
approximated by N2,

Γ ∼ α2gN2Eesc ∼
�
Lp

Ls

�
6 ℏffiffiffiffi

N
p

Ls

; ð31Þ

while the corresponding timescale of the process is
given by

Δt ¼ ℏ
Γ
∼
�
Ls

Lp

�
6 ffiffiffiffi

N
p

Ls: ð32Þ

We can now study how the mass of the nonlocal star
changes in time, namely, its time variation, which is
given by

dm
dt

¼ −
Eesc

Δt
¼ −

Γ
λesc

∼ −
�
Lp

Ls

�
8 ℏ
NL2

s
; ð33Þ

or by using Eq. (16), we obtain the time variation of N,

dN
dt

∼ −
�
Lp

Ls

�
8 1ffiffiffiffi

N
p

Ls

: ð34Þ

By imposing dN=dt ∼ −N=τ, we can obtain an estimation
for the lifetime of the nonlocal star,

τ ∼
�
Ls

Lp

�
8

N3=2Ls ∼
�
Ls

Lp

�
8 L4

s

ℏ3
m3; ð35Þ

from which it is clear that, given N gravitons, the lifetime
of a nonlocal star is always larger than the lifetime of
a Schwarzschild blackhole, τbh ¼ N3=2Lp [68]; indeed
we have

τ ¼
�
Ls

Lp

�
9

τbh ¼
�
Mp

Ms

�
9

τbh: ð36Þ

The Hawking evaporation time for a Schwarzschild black-
hole was computed for the first time by Don Page in
Ref. [94] and is given by τbh ¼ 8.66 × 10−27ðm=gramÞ3 s.
It is clear that nonlocal stars are even more stable as
compared to Schwarzschild blackholes. Indeed, in order to
have a lifetime larger than the age of the Universe, 1017 s,
from Eq. (36) we obtain the following bound on the mass:

m > 1014
�
Ms

Mp

�
3

g: ð37Þ

ForMs ∼ 1016 GeV, nonlocal stars with massesm > 105 g
would live up to the age of the Universe > 1017 s, which
explicitly shows that nonlocal stars can live longer than a
Schwarzschild blackhole of same mass.
The above analysis also suggests that nonlocal stars are

very efficient for storing information. There is no Hawking
information loss paradox, due to the absence of a horizon,
but the information can be kept inside for a long time, until
the nonlocal star starts losing a sufficient amount of its
initial mass. The end stage of the evaporation will not cause
any remnant like in the case of a Schwarzschild blackhole,
due to the absence of any event horizon.
Note that nonlocal stars do open up a new parameter

space for a stable compact object. After primordial inflation
(for a review see [95]), the inflationary perturbations can
create primordial blackholes [96] (for a recent review see
[97,98]), which can live long enough to act as a dark matter
candidate; in particular, for a value of the mass larger than
1014 g they can live longer than the age of the Universe; see
Refs. [98,99] for various astrophysical constraints for
masses above 1014 g [98,99]. Very interestingly, the non-
local stars ameliorate this strict bound on 1014 g; in fact a
smaller massive nonlocal star (smaller than 1014 g) can live
even longer than the age of the Universe depending of the
fundamental scale of nonlocality. Future investigation is
needed along this direction.

G. Gravitational entropy

One of the prime reasons why the evaporation rate of a
nonlocal star is smaller than the one of a Schwarzschild
blackhole is related to the number of available Bekenstein
states [100]. The key role is played by the fact that the
number of states that can be stored in a nonlocal condensate
is always larger than the corresponding number in the case
of a blackhole, as we explain below. We only make a rough
estimation of the entropy and of the number of available
states in the nonlocal star.
Let us introduce a characteristic length scale L such that

dx ∼ L and ∂x ∼ 1=L, so that the classical action in Eq. (1)
can be recast as

S ¼ ℏ
L2
p

Z
d4x

ffiffiffiffiffiffi
−g

p fRþ βRF 1ð□sÞRþ � � �g

∼ ℏ

�
L2

L2
p
þ L2

s

L2
p

�
: ð38Þ

The first piece is the Einstein-Hilbert term, while the
quadratic curvature contribution is given by ðMp=MsÞ2 ¼
ðLs=LpÞ2. Note that the quadratic part of the action is scale
invariant in the sense that it does not depend on the
characteristic scale L.
Let us consider a nonlocal star with mass m, in the

quantum framework introduced above. If we take
the Schwarzschild radius as the characteristic scale,
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L ∼ 2Gm, the form of the action in Eq. (38) as a function of
N gravitons reads

S ∼ ℏ

�
4G2m2

L2
p

þ r2NL
L2
p

�
≡ ℏs; ð39Þ

where s is the entropy of the gravitational system. Note that,
if rNL < 2Gm the contribution from the Einstein-Hilbert
term dominates, and we recover the usual Bekenstein
entropy of a Schwarzschild blackhole, sbh ∼G2m2=L2

p.
When rNL > 2Gm the quadratic part of the action domi-
nates, and then we obtain

s ∼
L2
eff

L2
p
¼ N

L2
s

L2
p
¼ N

M2
p

M2
s
: ð40Þ

Note that an area law for the gravitational entropy still holds,
s ∼ Area=4G [101], but now the area is given by 4πr2NL.
As a consistency check, note that if we set Ms ¼ Mp,
we recover the Bekenstein entropy, sbh ∼ N ∼Gm2, con-
sistently with the quantum corpuscular picture of a
Schwarzschild blackhole [68].
The entropy of a nonlocal star turns out to be larger than

the entropy of a Schwarzschild blackhole, s > sbh. As a
consequence the number of available states contained in a
nonlocal star is larger than the one in the blackhole case;
indeed we have

N ∼ eNðLs=LpÞ2 ¼ eNðMp=MsÞ2 ; ð41Þ

which is always larger than N bh ∼ eN .
Having a larger number of states means that the

probability for a graviton to escape from the condensate
is lower, as the phase space of all possible configurations
that can be realized is larger than that of the blackhole case.
Therefore, we can now understand why a nonlocal star can
live longer than a blackhole. Although nonlocality makes
the gravitational interaction weaker and the collective
quantum coupling always smaller than 1, Eq. (12), a
gravitational bound state can be formed and a nonlocal
star can live for a sufficiently long time, due to the fact that
the number of states that can be occupied by the N
gravitons is sufficiently large. The same reason makes it
also an almost perfect absorber. Suppose, a high energy
particle is absorbed by the nonlocal star; then the energy of
the particle gets distributed amongst all the Bekenstein
states, very similar to any blackbody system.

H. Absorption coefficient

We wish to obtain an estimation of the absorption
coefficient of a nonlocal star in the most compact case,
ϵ ≃ 0.128. We can do it by studying the dynamics of the
system composed by the compact object and the accretion
disk; see [102], and using the experimental bounds on the

exchanged fluxes of energies _Mdisk and _E. The former
describes the amount of infalling matter coming from the
accretion disk and going inside the central object per unit
time, while the latter corresponds to the emitted energy
from the compact object per unit of time. We can
immediately notice that a classical blackhole is character-
ized by _Ebh ¼ 0, as nothing can escape outside beyond the
horizon.
First, note that one can compute which is the solid

angle ΔΩ under which particles coming out of the compact
object can escape at infinity, and it is proportional to the
parameter ϵ, see [91],

ΔΩ
2π

¼ 27

8
ϵþOðϵ2Þ: ð42Þ

The last equation tells us that the more compact the object
is, the more deflected the geodesics are, i.e., the more black
the central object appears. This result is crucial in order to
study the scenario in which a compact object is surrounded
by an accretion disk.
Let us now introduce the following fundamental

quantities for a nonlocal star:
(i) κ is the absorption coefficient and measures the

amount of energy that is lost inside the nonlocal star.
(ii) γ is the elastic reflection coefficient, which measures

the fraction of energy that reaches and interact
elastically with the surface of the nonlocal star,
and then is reflected back.

(iii) γ̃ is the inelastic reflection coefficient, which mea-
sures the fraction of energy that is reflected after
inelastic interaction with the surface, i.e., the portion
of energy that goes inside the nonlocal star and
subsequently is reemitted.

Note that the following relation holds: γ̃ ¼ 1 − κ − γ. For a
classical blackhole we have κbh ¼ 1, γbh ¼ γ̃bh ¼ 0. See
also Ref. [92], for the definition of other fundamental
parameters characterizing compact objects.
In the case of a compact object the flux of emitted energy

can be nonvanishing; indeed the following relation holds
true [92]:

_E
_Mdisk

≃
ð1 − κ − γÞð1 − γÞΔΩ=2π
κ þ ð1 − κ − γÞΔΩ=2π : ð43Þ

Very interestingly, the quantity in Eq. (43) can be
constrained through astronomical observations; indeed,
one can put the following upper bound [92,103–105]:

ð1 − κ − γÞð1 − γÞΔΩ=2π
κ þ ð1 − κ − γÞΔΩ=2π ≲Oð10−2Þ: ð44Þ

We are mainly interested in obtaining a direct bound on the
absorption coefficient, but the way Eq. (44) is written
would only allow us to constrain the combination of the
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two parameters κ and γ. However, we still have to use one
of the main features due to nonlocality: any particle falling
into the nonlocal star gets lost for a long time, due to the
fact that the number of states is exponentially large; see
Eq. (41). This means that a nonlocal star does not have a
hard surface, and the corresponding elastic reflection
coefficient is basically 0, γ ≈ 0. However, there is still a
nonvanishing inelastic reflection coefficient that measures
the fraction of infalling quanta that can come out again and
escape from the nonlocal star, but we expect it to be very
small by virtue of our previous results.
Therefore, for a nonlocal star Eq. (44) becomes

ð1 − κÞΔΩ=2π
κ þ ð1 − κÞΔΩ=2π ≲Oð10−2Þ; ð45Þ

from which, by using the formula Eq. (42) and working in
the most compact case, ϵ ≃ 0.128, we get a direct bound on
the absorption coefficient,

0.977≲ κ ≲ 1: ð46Þ

This result is consistent with the discussions on lifetime,
entropy, and number of states made above; indeed as
expected the value of the absorption coefficient of a
nonlocal star is very close to unity. As a consequence,
since γ ≈ 0, we also obtain an upper bound on the inelastic
reflection coefficient,

0≲ γ̃ ≲ 0.023; ð47Þ

which turns out to be very small, consistently with our
expectations.

IV. CONCLUSIONS

We have provided a quantum mechanical framework
where we have described a nonsingular, horizonless non-
local star, for which the gravitational potential is always
bounded below unity. The graviton interaction weakens due
to the presence of nonlocal form factors made up of infinite
order covariant derivatives. For the simplest choice of an
entire function, which appears in the graviton propagator, it
is possible to avoid the curvature singularity and the event
horizon, provided that the complementarity principle holds,
mMeff ∼M2

s < M2
p. In our case, the radius of the most

compact nonlocal star is given by Eq. (19), i.e.,
rNL ¼ rschð1þ ϵÞ, where ϵ ≃ 0.128, and such astrophysical

objects can be excellent blackhole mimickers. Indeed, if
ϵ < 0.5, there is still a photosphere and echoes can be
produced; therefore, their detection can allow one to
constraint the compactness parameter, which in turn would
directly constrain the radius rNL. In this respect nonlocal
stars can also be compared with fuzz balls constructed via
string states [79]; see Ref. [106] for a recent discussion.
If the ϵ > 0.5, then nonlocal stars could be compared

with neutron and/or boson stars. However, the main differ-
ence is that now the equation of state parameter is
characterized by a zero matter pressure, i.e., p ¼ 0,
but there could still be an effective pressure component
coming from the gravity sector and related to the nonlocal
geometry.
Nonlocal stars are very efficient absorbers and their

lifetime is even longer than the one of a Schwarzschild
blackhole, i.e., τ=τbh ∼ ðLs=LpÞ9. This is mainly due to the
fact that the number of available states for a nonlocal star is
much larger than the corresponding number in the
Schwarzschild blackhole case. It is this huge number of
available states that compensates the weakness of the
graviton interaction. A nonlocal star does not have a hard
surface, so that no particles can be elastically backscattered.
Moreover, by using experimental data related to the
dynamics of the accretion disk surrounding a compact
object, we have been able to put a lower bound on the
absorption coefficient, 0.977≲ κ ≲ 1. See Table I, for a
summary and the comparisons between a classical black-
hole and the most compact nonlocal star.
Finally, we emphasize that we have only worked with the

trace part of the cubic graviton action; see Eq. (6).
Nevertheless, we believe that the quantitative picture would
still hold true even when the full tensorial structure, i.e., the
interactions derived from the tensor part, is taken into
account. Both the scalar and the tensor part of the graviton
share the same exponentially suppressed propagator in the
UV; therefore most of our results would still hold true for
the spin-2 mode as well. Nevertheless, it would be desirable
to study the interactions of both spin-2 and spin-0 compo-
nents in full glory and study their quantum behavior to
complete the picture of the nonlocal star. Further inves-
tigations will be the subject of future works.
Furthermore, from a physical point of view it is very

important to repeat a similar study in the case of rotating
nonsingular compact objects in infinite derivative gravity.
Such kinds of metric solutions have been studied [31], but
the quantum properties and the compactness are yet to be
discussed in the literature.

TABLE I. Blackhole vs the most compact nonlocal star (ϵ ≃ 0.128).

Radius Horizon Photosphere μ Absorption Lifetime

Blackhole 2Gm Yes Yes 0 1 L4
p
m3

ℏ3

Nonlocal star 2Gmð1þ ϵÞ No Yes 0.11 0.977≲ κ ≲ 1 ðLs
Lp
Þ8L4

s
m3

ℏ3
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APPENDIX: SHIFTING THE SCALE
OF NONLOCALITY

In this Appendix we review how the fundamental scale
of nonlocality Ms can shift towards the IR regime as a
function of the number of interacting particles N [55]. Let
us work in Euclidean space and consider the following
scalar action that can mimic the trace part of the graviton
action up to order Oðκh3Þ [42]:

S ¼
Z

d4x

�
1

2
hðxÞeð−□=M2

sÞn□hðxÞ

þ λ

4
hðxÞ∂μhðxÞ∂μhðxÞ

þ λ

4
hðxÞ□hðxÞeð−□=M2

sÞnhðxÞ

−
λ

4
hðxÞ∂μhðxÞeð−□=M2

sÞn∂μhðxÞ
�
; ðA1Þ

where λ is a coupling constant with inverse energy
dimension. The propagator for this action is given by

ΠðkÞ ¼ e−ðk2=M2
sÞn

k2
; ðA2Þ

while the interaction vertex reads [42,107]

Vðk1; k2; k3Þ ¼
λ

4
ðk21 þ k22 þ k23Þðek

2n
1
=M2n

s þ ek
2n
2
=M2n

s

þ ek
2n
3
=M2n

s − 1Þ: ðA3Þ

One can show that both propagator and vertex become
exponentially suppressed once they are dressed by taking
into account quantum corrections [42,44,55,107].
We now compute anN-point scattering amplitude, which

is in one-to-one correspondence with the physics of a Bose-
Einstein condensate; in particular, as an example, we can
consider a tree-level amplitude, made up of N external legs,
N − 2 vertices and N − 3 internal propagators, which we

assume to be dressed. By taking the limit N ≫ 1 one can
notice that such an N-point amplitude has the following
behavior [55]:

Mring;N ∼
e−N

2nþ1k2=M2
s

k2N
¼ e−K

2=M2
eff

k2N
; ðA4Þ

where we have neglected constant factors and used the
relations

p1 þ p2 þ � � � þ pN−2 ¼ pN−1 þ pN; ðA5Þ

jpiþpiþ1j≡ jpj; p⃗i¼−p⃗iþ1; i¼1;…;N−3; ðA6Þ

and

2j2p2 ≫ ðp4
2jþ1Þ2; 2p4

2jþ1jp: ðA7Þ

From Eq. (A4), by defining the total momentum (energy)
thrown into the system as K ¼ Nk, it is clear that the
fundamental scale of nonlocality effectively transmutes to
lower energies,

Meff ¼
Ms

N
1
2n

: ðA8Þ

In this paper, we have constructed a model of nonlocal star
for n ¼ 1, which corresponds to Meff ¼ Ms=

ffiffiffiffi
N

p
. We

mention that for any other positive integer n > 1, the same
procedure does not work as the horizon may be still formed.
In fact, if we had considered the general entire function

eγð□sÞ ¼ eð−□sÞn ; ðA9Þ

with n > 0, we would have obtained Meff ¼ Ms=N1=2n, or
Leff ¼ N1=2nLs. Furthermore, the total mass of an object
with N gravitons would scale as M ∼ Nð2n−1Þ=ð2nÞMs, and
the complementarity relation between mass and scale of
nonlocality would have been modified by MMeff ∼
Nðn−1Þ=ðnÞM2

s . As a consequence, the collective quantum
coupling of N scalar gravitons would read Nαg ¼
NL2

p=L2
eff ¼ Nðn−1Þ=nðLp=LsÞ2, which means that, for a

sufficiently large N, it can assume a value equal to or larger
than 1, for any n > 1. Therefore, the only power of □n that
does not violate the inequalities in Eqs. (19) [or equivalently
Eq. (21)], and can always prevent the formation of an event
horizon, is n ¼ 1.
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