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Abstract and Keywords

This article focuses on agent-based computational (ABC) modeling of social interaction. It 
begins with an overview of ABC modeling as a computational implementation of ‘method
ological individualism’, the search for the microfoundations of social life in the actions of 
intentional agents. It then considers how the ABC method differs from an earlier genera
tion of modeling approaches, including game theory, equation-based models of computer 
simulation (such as system dynamics), and multivariate linear models. It also discusses 
potential weaknesses of ABC modeling and proposes research strategies to address them. 
The article suggests that ABC modeling will lead to significant advances in the bottom-up 
approach to the study of social dynamics.

Keywords: agent-based computational modeling, social interaction, social order, agents, methodological individu
alism, social life, game theory, computer simulation, system dynamics, social dynamics

Introduction
THE ‘Hobbesian problem of order’ is a fundamental question across the social sciences. 
The problem arises because individuals are interdependent yet also autonomous. If there 
were a ‘group mind,’ ‘collective conscience,’ ‘managerial elite,’ or ‘bureaucratic hierar
chy’ that directed individual behavior like cogs in (p. 246) a vast machine, then the expla
nation of order might appear less problematic. Nevertheless, a growing number of social 
scientists recognize that social life is a complex system—more like an improvisational jazz 
ensemble than a symphony orchestra. People are not simply incumbents of social roles; 
we each chart our own course on the fly. How then is social order possible? The problem 
is compounded by scale. In a small jazz ensemble, each musician is aware of everyone 
else and knows that everyone else is aware of her. But imagine an improvisational group 
with thousands of members, each of whom is only aware of her immediate neighbors. If 
every player is an interdependent yet autonomous decision maker, why do we not end up 
with a nasty and brutish cacophony, a noisy war of all against all?
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This chapter will describe a new approach to formal theory that can help find the answer: 
agent-based computational (ABC) modeling. We begin, in Section 11.1, by introducing 
ABC modeling as a computational implementation of ‘methodological individualism,’ the 
search for the microfoundations of social life in the actions of intentional agents. Section 

11.2 then shows how the method differs from an earlier generation of modeling approach
es. On the one side, ABC modeling differs from game theory in relaxing the behavioral 
and structural assumptions required for mathematical tractability. On the other, it differs 
from equation-based methods of computer simulation (such as system dynamics) in mod
eling population behavior not as resulting from a unified system but as an emergent prop
erty of local interaction among adaptive agents. In Section 11.3 we offer an overview and 
conclusion that addresses potential weaknesses of ABC modeling and proposes research 
strategies to cope with them.

11.1 The Microfoundations of Social Life
ABC modeling originated in computer science and artificial intelligence to study complex 
adaptive systems composed of large numbers of autonomous but interdependent units. 
Agent models of self-organized behavior have been applied with impressive success in 
disciplines ranging from biology to physics to understand how spontaneous coordination 
can arise in domains as diverse as computer networks, bird flocks, and chemical oscilla
tors. Increasingly, social scientists are using this same methodology to better understand 
the self-organization of social life as well.

These models are agent-based because they take these individual units as the theoretical 
starting point. Each agent can perform its own computations and have its own local 
knowledge, but they exchange information with and react to input (p. 247) from other 
agents. The method is computational because the individual agents and their behavioral 
rules are formally represented and encoded in a computer program, such that the dynam
ics of the model can be generated through step-by-step iteration from given starting con
ditions.

Despite their technical origin, agents are inherently social. Agents have both a cognitive 
and a social architecture (Wooldridge and Jennings 1995; Gilbert and Troitzsch 1999). 
Cognitively, agents are heuristic and adaptive. Socially, agents are autonomous, interde
pendent, heterogeneous, and embedded. Heuristic means that agents follow simple be
havioral rules, not unlike those that guide much of human behavior, such as habits, ritu
als, routines, norms, and the like (Simon 1982). Adaptive means that actions have conse
quences that alter the probability that the action will recur, as agents respond to feed
back from their environment through learning and evolution. Autonomous agents have 
control over their own goals, behaviors, and internal states and take initiative to change 
aspects of their environment in order to attain those goals. Autonomy is constrained by 
behavioral and strategic interdependence. Behavioral interdependence means agents in
fluence their neighbors in response to the local influence that they receive. More precise
ly, each agent’s actions depend on a configuration of inputs that correspond to what the 
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agent perceives in its local environment, and these actions in turn have consequences, or 
outputs, that alter the agent’s environment. Strategic interdependence means that the 
payoffs of a player’s strategy depend in part on the strategies of other players. Hetero
geneity relaxes the assumption common to most game-theoretic and system-dynamics 
models that populations are composed of representative agents.

Finally, and perhaps most importantly, agents are embedded in networks, such that popu
lation dynamics are an emergent property of local interaction. This does not preclude the 
possibility that each agent has every other agent as a neighbor, but this is a special case. 
Agent models also allow for the possibility that agents change structural locations or 
break off relations with some neighbors and seek out others.

ABC models have been applied to the emergence and dynamics of social segregation (Fos
sett and Warren 2005), cultural differentiation (Axelrod 1997; Mark 2003), political polar
ization (Baldassarri and Bearman 2007), network structures (Stokman and Zeggelink 
1996; Eguíluz et al. 2005), collective action (Heckathorn 1990; Macy 1990), informal so
cial control (Centola, Willer, and Macy 2005), and the emergence of cooperation through 
evolution (Axelrod 1984) and learning (Macy and Flache 2002). Some recent overviews 
and assessments of this work are Macy and Willer (2002), Moretti (2002), and Sawyer 
(2003). Growing interest among sociologists is reflected in a recent special issue of the 

American Journal of Sociology devoted to ‘Social Science Computation’ (Gilbert and Ab
bott 2005).

Although ABC models can also be used to generate predictions that can be empirically 
tested, it is the application to theoretical modeling that is most relevant for a handbook 
on analytical sociology. Agent models use a dynamic or processual understanding of cau
sation based on the analytical requirement that causes and (p. 248) effects must be linked 
by mechanisms, not just correlations. This link is primarily located in the actions of 
agents and their consequences. Thus, the agent-based approach replaces a single inte
grated model of the population with a population of models, each corresponding to an au
tonomous decision maker. This reflects the core methodological-individualist interest in 
the emergence of population dynamics out of local interaction. Although methodological 
individualism is older by many decades, ABC modeling can be characterized as its fullest 
formal representation. Yet ABC modeling has also fundamentally altered the explanatory 
strategy in methodological individualism, as we elaborate below.

11.1.1 Methodological individualism and ABC modeling

Methodological individualism is most closely identified with Schumpeter and Hayek, but 
can be traced back to classical social thinkers like Hume and Smith, and later to Max 
Weber’s interpretative method. Weber summarized the core idea, that ‘in sociological 
work … collectivities must be treated as solely the resultants and modes of organization 
of the particular acts of individual persons, since these alone can be treated as agents in 
a course of subjectively understandable action’ (1968: 13). There are two key ideas here: 
(1) the bottom-up idea that macrosocial patterns must be understood as the outcome of 
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processes at the microsocial level, and (2) the action principle that what aggregate up 
from micro to macro are not attributes of individuals but consequential decisions.

These two principles of methodological individualism are illustrated by a wide range of 
paradoxical phenomena where individual intentions produce unexpected aggregate re
sults:

• ‘Rational herding,’ in which everyone crowds into an inferior restaurant because 
each assumes that the food must be superior if so many people want in

• The ‘free rider problem,’ in which collective action fails because everyone assumes 
that it will succeed without them

• The ‘bystander problem,’ in which everyone observing cries for help assumes that 
someone else will respond, despite the trivial cost of helping and the dire conse
quences when no one does

• Residential segregation that emerges in a population that prefers diversity

• An arms race among countries who each prefer to spend on health and education but 
respond with fear to the escalating armament of their neighbors

• A spiral of retaliatory sectarian, ethnic, or clan violence between groups who once in
termarried and lived and worked together peacefully

• Self-destructive adolescent behaviors, such as substance abuse, in response to peer 
pressures that increase with the rate of compliance

(p. 249) Models based on methodological individualism fall into two broad classes, de
pending on how they specify the mechanisms by which local interactions generate popu
lation dynamics. Expected-utility theory posits a forward-looking deductive mechanism, 
while evolution and learning provide a backward-looking experiential link (Heath 1976). 
That is the Janus face of methodological individualism. In much of economics and game 
theory Janus is facing forward—actions are consciously directed toward their future con
sequences, based on the ability to predict outcomes through the exercise of rationality. It 
is this expectation that explains the action, not the actual consequences, which need not 
even occur (Heath 1976: 3; Scott 2000).

11.1.2 Backward-looking rationality

In ABC models, in contrast, Janus sometimes faces backward, for example in models 
based on evolution (Axelrod 1984) or learning (Macy and Flache 2002). Backward-looking 
models replace choices with rules, and intention with repetition. ‘Choice’ refers to an in
strumental, case-specific comparison of alternative courses of action. In contrast, ‘rules’ 
are behavioral routines that ‘provide standard solutions to recurrent choice 
problems’ (Vanberg 1994: 19). These rules are structured as input–output functions, 
where the input is a set of conditions of varying complexity and the output is an action. 
‘The primary mental activity involved in this process,’ according to Prelec (1991), ‘is the 
exploration of analogies and distinctions between the current situation and other canoni
cal choice situations in which a single rule or principle unambiguously applies.’ This cog
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nitive process contrasts with the forward-looking evaluation of the utility that may be de
rived from alternative choices.

Backward-looking problem solvers may act as if with deliberate and purposeful intention, 
but they look forward by rehearsing the lessons of the past. In backward-looking models 

repetition, not prediction, brings the future to bear on the present, by recycling the 
lessons of the past. Through repeated exposure to a recurrent problem, the consequences 
of alternative courses of action can be iteratively explored, by the individual actor (learn
ing) or by a population (evolution), in which positive outcomes increase the probability 
that the associated rule will be followed, while negative outcomes reduce it.

Evolution alters the frequency distribution of rules carried by individuals competing for 
survival and reproduction. Biological evolution involves genetically hardwired rules that 
spread via replication, based on how well the carrier is adapted to survive and reproduce. 
Social and cultural rules are usually not encoded genetically but are instead ‘softwired,’ 
in the form of norms, customs, conventions, rituals, protocols, and routines that propa
gate via role-modeling, formal training, social influence, imitation, and persuasion.

(p. 250) A classic example of an agent-based evolutionary model is Axelrod’s Evolution of 
Cooperation (1984). Axelrod explored whether cooperation based on reciprocity can flour
ish in a repeated prisoner’s dilemma game played in the ‘shadow of the future.’ In his 
computational tournament, the winner was a simple strategy of conditional cooperation 
named ‘tit for tat.’ Axelrod’s work was highly influential far beyond the game-theory com
munity (Etzioni 2001) and has triggered a number of follow-up studies that have support
ed and extended his findings (e.g. Gotts, Polhill, and Law 2003).

Nevertheless, critics such as Binmore (1998) have pointed out that the performance of 
any strategy in Axelrod’s artificial evolutionary competition might have been very differ
ent had the strategy faced another set of contestants or another initial distribution. Rec
ognizing this limitation, Axelrod ran a follow-up tournament using a genetic algorithm 
(1997: 14–29). The genetic algorithm opens up the set of strategies that are allowed to 
compete by allowing ‘nature’ to generate entirely new strategies, including some that 
might never have occurred to any game theorist. Genetic algorithms are strings of com
puter code that can mate with other strings to produce entirely new and potentially supe
rior programs by building on partial solutions. Each strategy in a population consists of a 
string of symbols that code behavioral instructions, analogous to a chromosome contain
ing multiple genes. A set of one or more bits that contains a specific instruction is analo
gous to a single gene. The values of the bits and bit combinations are analogous to the al
leles of the gene. A gene’s instructions, when followed, produce an outcome (or payoff) 
that affects the agent’s reproductive fitness relative to other players in the computational 
ecology. Relative fitness determines the probability that each strategy will propagate. 
Propagation occurs when two mated strategies recombine. If two different rules are both 
effective, but in different ways, recombination allows them to create an entirely new 
strategy that may integrate the best abilities of each ‘parent,’ making the new strategy 
superior to either contributor. If so, then the new rule may go on to eventually displace 
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both parent rules in the population of strategies. In addition, the new strings may contain 
random copying errors. These mutations restore the heterogeneity of the population, 
counteracting selection pressures that tend to reduce it.

Critics of genetic algorithms have raised probing questions about modeling cultural evo
lution as a genetic analog (Chattoe 1998). What is the mechanism that eliminates poor 
performers from the population and allows others to propagate? ‘Imitation of the fittest’ 
may be more applicable than starvation and reproduction but, unlike survival of the 
fittest, mimetic selection replicates only observed behavior and does not copy the under
lying (unobservable) rules. Biological analogs paper over the importance of this distinc
tion.

Concerns about the looseness of the evolutionary metaphor have prompted growing inter
est in relocating the evolutionary selection mechanism from the population level to the 
cognitive level. Reinforcement learning assumes that actors (p. 251) tend to repeat suc
cessful actions and avoid those that were not. Hence, the more successful the strategy, 
the more likely it will be used in the future. This closely parallels the logic of evolution
ary-selection at the population level, in which successful strategies are more likely to be 
replicated (via higher chances to survive and reproduce or by greater social influence as 
a role model). However, this similarity need not imply that adaptive actors will learn the 
strategies favored by evolutionary-selection pressures (Fudenberg and Levine 1998; Sch
lag and Pollock 1999). The selection mechanisms are not the same. Learning operates 
through processes like stochastic reinforcement, Bayesian updating, best reply with finite 
memory, or the back-propagation of error in artificial neural networks. Like a genetic al
gorithm, an artificial neural network is a self-programmable device, but instead of using 
recombinant reproduction, it strengthens and weakens network pathways to discover 
through reinforcement learning the optimal response to a given configuration of inputs. 
In contrast to evolutionary models, the selection process operates within the individuals 
that carry them, not between them. Learning models operate on the local probability dis
tribution of strategies within the repertoire of each individual member, while evolutionary 
models explore changes in the global frequency distribution of strategies across a popula
tion.

Whether selection operates at the individual or population level, the units of adaptation 
need not be limited to human actors but may include larger entities such as firms or orga
nizations that adapt their behavior in response to environmental feedback. For example, a 
firm’s problem-solving strategies improve over time through exposure to recurrent choic
es, under the relentless selection pressure of market competition, as inferior routines are 
removed from the population by bankruptcy and takeover. The outcomes may not be opti
mal, but we are often left with well-crafted routines that make their bearers look much 
more calculating than they really are (or need to be), like a veteran outfielder who catch
es a fly ball as if she had computed its trajectory.
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11.2 ABC Modeling, Game Theory, and System 
Dynamics
ABC modeling can be located relative to an earlier generation of approaches to formal so
cial theory. It differs on the one side from forward-looking game-theoretic models, al
though both are methodologically individualist. On the other side, it also differs from 
macrosocial system-dynamics modeling, although both are computational.

(p. 252) 11.2.1 Game theory

Like ABC modeling, game theory is a formal method that deduces in a systematic and rig
orous way macrosocial implications from assumptions about microsocial behavior. Based 
on these assumptions, game theory has identified conditions in which social order can 
emerge out of individually rational actions. These include the opportunity for ongoing in
teraction and the opportunity to learn about the reputation of a stranger (Binmore 2007).

The game paradigm obtains its theoretical leverage by modeling the social fabric as a ma
trix of interconnected autonomous agents guided by outcomes of their interaction with 
others, where the actions of each depend on, as well as shape, the behavior of those with 
whom they are linked. Viewed with that lens, game theory appears to be especially rele
vant to sociology, the social science that has been most reluctant to embrace it. This re
luctance reflects in part a set of behavioral and structural assumptions that sociologists 
find empirically implausible. ABC models allow these assumptions to be greatly relaxed, 
while preserving the formalism and logical precision of game theory.

Behavioral assumptions
Orthodox game theory typically relies on two controversial behavioral assumptions—un
limited calculating ability and unlimited access to information. These assumptions were 
imposed not because they are empirically plausible but as simplifications that can aid in 
identifying equilibrium outcomes. Nevertheless, game theory confronts a growing num
ber of laboratory experiments that reveal systematic violations of those behavioral as
sumptions (Camerer 2003). These studies suggest that decision-making may be best de
scribed by a set of behavioral heuristics that may change across decision contexts (Van
berg 2002; Todd and Gigerenzer 2003) and frames (Tversky and Kahneman 1981) and do 
not necessarily maximize individual decision outcomes (Fehr and Gächter 2000).

These empirical discrepancies have been excused on the grounds that backward-looking 
adaptive mechanisms like learning and evolution can be expected to constrain actors to 
behave ‘as if’ they were fully rational decision makers with unlimited calculating power 
and perfect information. In short, we do not need to worry about the plausibility of the be
havioral assumptions so long as the population predictions are accurate. Unfortunately, 
the ‘as if’ principle has not held up well. Laboratory studies of human decision-making 
have revealed widespread deviations not only from the behavioral postulates but also 

https://global.oup.com/privacy
https://www.oxfordhandbooks.com/page/legal-notice


Social Dynamics from the Bottom Up: Agent-Based Models of Social Inter
action

Page 8 of 24

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: University of Groningen; date: 20 February 2020

from the predictions, suggesting the very real possibility that the errors do not necessari
ly cancel out in the aggregate.

Moreover, even when the predictions are identical across models with different behav
ioral assumptions, we cannot be sure that the causal mechanisms are the same. For ex
ample, both forward-looking and backward-looking models (p. 253) predict higher levels of 
cooperation when the prisoner’s dilemma game is played repeatedly in small densely 
clustered neighborhoods rather than large random networks where two strangers might 
never meet again. However, the mechanisms are very different, depending on the behav
ioral assumptions. In a prisoner’s dilemma played by forward-looking game theorists, the 
mechanism is the concern for reputation and the prospect of cumulative payoffs in future 
interaction with neighbors. Thus, cooperation becomes more likely as the expectation of 
future encounters increases. However, in agent-based learning models the mechanism is 
the coordination complexity for random walk from a self-limiting noncooperative equilibri
um into a self-reinforcing cooperative equilibrium (Macy and Flache 2002). And in agent- 
based evolutionary games the mechanism is the probability that a strategy of conditional 
cooperation will encounter like-minded others (Cohen, Riolo, and Axelrod 2001). In short, 
generalizing results obtained under different simplifying assumptions can be highly mis
leading, even when the predictions are robust as the behavioral assumptions are relaxed.

Concerns about robustness of equilibrium solutions to variation in behavioral assump
tions have motivated efforts to develop more cognitively realistic models of the actors 
(Boudon 1996; Lindenberg 2001). Recent advances in evolutionary game theory (e.g. Ben
dor and Swistak 2001), formal theories of learning in strategic interaction (e.g. Fuden
berg and Levine 1998), stochastic evolutionary models (Young 1998) and sociophysics 
(e.g. Helbing and Huberman 1998) have successfully incorporated backward-looking deci
sion heuristics into game-theoretic equilibrium analysis. Despite the advances, these ap
proaches retain the requirement of mathematical tractability, imposing restrictive as
sumptions in both the model of behavior and the model of social structure that they em
ploy.

ABC models extend the effort to relax restrictive behavioral assumptions. With computa
tional solutions it is possible to use backward-looking models of boundedly rational adap
tive actors, based on learning and evolution. Rationality can be bounded in two ways: in
complete information, and limited cognitive ability to process the information. Adaptive 
agents typically have some capacity for gradient search, through processes like reinforce
ment learning or evolutionary selection, but without the assumption that they will always 
arrive at the global maximum. Agents can also be entirely nonpurposive, based on expres
sive or normative rules that are responses to environmental conditions, including behav
iors of others. Information can be limited by memory, perceptual constraints, and decep
tion. Agents can also be limited to local information by the structure of social and physi
cal networks, the problem to which we now turn.
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Structural assumptions
Closed-form mathematical solutions also require simplifying assumptions about the struc
ture of networks in which games are played. Game theorists generally (p. 254) assume in
teraction occurs within randomly or completely connected networks. These structures are 
much more amenable to mathematical solutions than the complex networks observed in 
most empirical studies. More complex structures, including ‘small world’ (Watts 1999) 
and ‘scale free’ (Barabasi 2002) networks, pose formidable challenges to equilibrium 
analysis that have discouraged efforts to relax the structural assumptions in most game- 
theoretic models.

The problem is compounded by the need to assume that networks are static. Fixed net
works are a reasonable assumption for communication, transportation, and power grids, 
but in most social networks the nodes can decide with whom to interact or whether to 
move to a new location and change all their neighbors in a single stroke. There has been 
recent progress in modeling dynamic networks as equilibrium strategies among actors 
seeking to maximize utility by making and breaking ties (Jackson 2004). However, in re
laxing the assumptions of fixed networks, these studies bring back in the behavioral as
sumptions of orthodox game theory.

Moreover, in theorizing network structure as a Nash (1950) equilibrium, the network re
mains static. Nash equilibrium is the fundamental solution concept in game theory and 
refers to a configuration of strategies such that no player has an incentive to deviate uni
laterally. Once the equilibrium obtains, the population remains there forever. This applies 
not just to equilibrium models of network structure but to the strategy profile for any 
game. Nash equilibrium tells us which strategic configurations are stable, but, as Au
mann argues (1987; see also Epstein 2006: ch. 3), this does not tell us whether the equi
librium will ever be reached, or with what probability. And when there are multiple equi
libria, we do not know the probability distribution over possible states or the transition 
probabilities should the system be perturbed. Further still, there are almost no games 
with a unique equilibrium, and in games involving ongoing interactions the number may 
be infinite, which means game theory can tell us little more than that almost any outcome 
might persist, should it ever obtain.1

As a consequence of these behavioral and structural limitations, the need for a more pow
erful modeling tool was growing at the same time that advances in computational tech
nology were making one widely available. ABC modeling offers the possibility to relax the 
restrictive behavioral assumptions of classical game theory, provides a dynamic alterna
tive to static Nash-equilibrium analysis, and extends network analysis to heterogeneous 
populations embedded in complex and dynamic networks. This allows agent models to ex
tend the reach of game theory while retaining the power to model social order as it 
emerges out of local interactions—but carried out by agents following nonlinear behav
ioral heuristics, who are embedded in complex network structures. ABC models make it 
possible to relax not only the forward-looking behavioral assumptions but also the 
macrosocial assumptions of random mixing, fixed network structures, and static equilibri
um. Agents can decide heuristically not only how to act but also with whom they want to 
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do it, within (p. 255) the constraints of a complex and dynamic network structure. These 
decisions can then aggregate to create a wide range of population-level regularities, in
cluding Nash equilibrium, punctuated equilibrium, saddle points, homeostasis, as well as 
complex landscapes with attractor basins of varying depth and location.

11.2.2 Equation-based models

ABC also differs from an earlier generation of equation-based models. These models be
gin with a set of assumptions about the functional relationships among variables charac
terizing population-level distributions, based on parameters that are estimated from em
pirical observations or posited from theoretical assumptions. From this set of equations 
we can then derive predictions, such as the equilibrium of the population dynamics or the 
expected change in the distribution of some attribute, given changes in the distributions 
of others.

In the 1960s the first wave of innovation used computers to simulate control and feed
back processes in organizations, industries, cities, and even global populations. With 
roots in structural functionalism, ‘system dynamics’ models typically consisted of sets of 
differential equations that predicted a population distribution of interest as a function of 
other system-level processes. Applications included the flow of raw materials in a factory, 
inventory control in a warehouse, state legitimacy and imperialist policy, urban traffic, 
migration, disease transmission, demographic changes in a world system, and ecological 
limits to growth (Meadows et al. 1974; Forrester 1988; Hanneman, Collins, and Mordt 
1995).

Equation-based models often assume individuals are representative agents who interact 
with everyone else with equal probability. For example, in the original Kermack and McK
endrick (1927) SIR model, an epidemic is modeled as a system of three coupled nonlinear 
ordinary differential equations, by assigning representative actors to classes of ‘suscepti
bles,’ ‘infectives,’ and ‘removed’ who randomly mix and move from one class to another 
based on probabilities of transmission, death, and recovery. Moreover, the models assume 
that awareness of a deadly epidemic does not change population behavior, such as fleeing 
to uninfected areas or moving the family to the basement. Instead, people continue to go 
about their normal behavior, randomly mixing with everyone else.

Agent-based modeling replaces a single unified model of the population with a population 
of models, each of which is a separately functioning autonomous entity. These entities can 
be embedded in any network structure, and the structure itself can change, through 
processes like homophily, structural balance, or third-party information about the trust
worthiness of a partner. Interactions among these agents then generate the system dy
namics from the bottom up, shifting the focus to the relationships among actors instead of 
the relationships among factors, like education and social liberalism, the problem to 
which we now turn.
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(p. 256) 11.2.3 Multivariate linear models

Equation-based approaches are also used for statistical modeling, in which population pa
rameters are estimated from the distribution of empirically measured individual attribut
es. For example, a multivariate regression model of social liberalism might include survey 
responses to a battery of items measuring attitudes like ethnic tolerance, abortion rights, 
and gay marriage, along with measures of demographic attributes like age, education, 
and income. The model can then be used to estimate the extent to which college gradu
ates are more socially liberal, and, if so, whether this difference is a direct effect of expo
sure to liberal ideas in the classroom, an indirect effect via greater access to a ‘self-di
rected occupation’ (Kohn 1969), or a spurious effect of differences in social background 
(e.g. growing up in a liberal household with parents who are college grads).

A key difference between this approach and an ABC model is that the regression model 
assumes that observations are independent. The problem is that ‘politically correct’ opin
ions are likely to be influenced by the attitudes and beliefs of peers, violating the indepen
dence assumption.

A simple ABC model illustrates the problem. Consider a population of N agents, half of 
whom are college graduates. Each agent has opinions on a variety of social issues rang
ing continuously from −1 (indicating strong conservative views) to +1 (indicating strong 
liberal views). Using this model, we can manipulate social influence to find out what hap
pens when the independence assumption is unwarranted. In the ‘baseline’ condition all 
opinions are randomly distributed at the outset and never change. Hence, there is no 
peer influence and no ideological difference between grads and non-grads. In the ‘inde
pendent observations’ condition (as assumed in regression and structural-equations mod
els) there is also no peer influence. Instead we assume college grads are more liberal on 
social issues, implemented as a parameter p which is the proportion of grads whose opin
ions on all issues are always liberal, no matter what views are held by others. In the ‘so
cial influence’ condition, college grads do not have a liberal bias (p = 0). Instead agents 
adjust their opinions to be similar to the opinions of those whom they admire or whose 
approval they desire, and they distance themselves from those regarded as politically in
correct. A fourth condition is a hybrid: it is identical to the influence condition, but in ad
dition there is also a small ideological effect of attending college (p > 0).

As assumed in most influence models with continuous opinions (e.g. French 1956; Abel
son 1964), we assume agents shift their opinion on each issue in the direction of a weight
ed average of the opinions of others on that issue. Technically,2

(1)
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(p. 257) where k refers to the kth issue (e.g. abortion rights) and oik, t is agent i’s opinion 
on k at time t,−1 ≤ oik, t ≤ 1. The weight wij corresponds to the social distance between i 
and j, where distance is measured in the D-dimensional state space consisting of demo
graphic attributes (like education, age, ethnicity, etc.) and opinion attributes. The dis
tance between two agents i and j is zero if they are identical on all D dimensions, and the 
distance is 2 if they differ on all dimensions. The weight wij is then simply 1 minus the dis
tance; hence −1 ≤ wi j ≤ 1. A positive weight means i is attracted to j and thus seeks to re
duce the distance from j in the opinion space. A negative weight means i seeks to increase 
the distance by differentiating from j. Equation 2 formalizes the weight for the case 
where education (e = ±1) is the sole demographic attribute and there are K opinions 
(hence D = K + 1):

(2)

For purposes of illustration, we chose one of the simplest versions of this model, with only 
a single demographic attribute (college education) and only K = 2 opinions. (With more 
demographic or opinion dimensions to the state space the qualitative results we report 
for the simpler version can still be obtained for a large range of initial distributions of 
opinions and demographic attributes.) We imposed no exogenous restrictions on who may 
influence whom—the network structure is entirely determined by the interaction prefer
ences of the agents. We initialized the model by randomly distributing opinions and col
lege degrees, and then set initial weights according to equation 2. Opinions and weights 
were updated in discrete time steps. In every time step an agent i was randomly selected 
to update either i’s opinions or weights. Updating continued until the population reached 
equilibrium. We then measured ‘social liberalism’ by averaging the measures on each of 
the two opinions to get a composite score.

The simplified model with social influence and p = 0 allows analytical identification of the 
possible equilibrium states. The simplest equilibrium is agreement by all agents on all is
sues, at which point there is zero pressure on anyone to change. At this equilibrium, lin
ear regression will show zero correlation between education and social liberalism, since 
there is no variance in either attribute. With p = 0, zero correlation is the correct result. 
So far so good. There is also an equilibrium with some large number of profiles. To simpli
fy the exposition, let us assume that everyone ends up with strong views to the left or 
right (close to ±1). Using GLL to refer to a consistently liberal college grad and NCC to 
refer to a consistently conservative non-grad, there could be an equilibrium in which the 
population self-organizes into eight profiles: GLL, GLC, GCL, GCC, NLL, NLC, NCL, and 
NCC. If each profile has sufficient membership, the positive ties within each profile will 
outweigh any imbalance in the relative influence from incumbents of other profiles. 
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(p. 258) At this equilibrium, education will still be uncorrelated with social liberalism 
when p = 0, hence peer influence will not create a spurious association.

So far, we have considered an equilibrium with only one group, and equilibria with a 
large number of groups. There is also an equilibrium in which the population polarizes in
to two opposing camps, one liberal on both social issues and one conservative, and each 
camp has the same number of college grads. The fact that a liberal and a conservative 
have the same education (hence they are identical on one dimension out of three) is not 
sufficient to overcome their ideological hostility (maximal disagreement on the other two 
dimensions). And the fact that two agents with identical opinions differ in education 
(hence they are similar on two dimensions out of three) is not sufficient to drive them 
apart ideologically. Thus, the population stabilizes, again with a zero correlation between 
education and social liberalism—as it should be. With all these possible equilibria consid
ered so far, there is still no problem with the assumption that the observations are inde
pendent, even though the assumption is wrong.

The problem arises if the population splits into two opposing camps with different num
bers of college grads in each camp. For example, suppose everyone in one camp is a grad 
and there are no grads in the other. At this equilibrium there is a perfect correlation be
tween education and social liberalism, even though education has no effect on opinion. 
However, this is an extreme case. From a random start, if the population ends up with 
everyone in agreement, or ends up with a large number of camps of about equal size, or 
ends up in two camps with about the same number of grads in each camp, there will be 
no problem. A regression model that assumes independent observations will give the cor
rect result—zero correlation between education and liberalism—even though the indepen
dence assumption is violated. The regression result will be incorrect only if there are two 
camps and the two camps differ sharply in the number of grads. Given our assumption 
that education has no effect on liberalism, how likely is it that such a difference might ob
tain at equilibrium?

To find out, we ran fifty realizations from a random start, in which opinions were subject 
to peer influence but education had no effect on opinion (p = 0). Each realization pro
ceeded until equilibrium obtained. We then measured the magnitude of the correlation 
between education and social liberalism (regardless of sign) at each equilibrium and aver
aged these results over all fifty realizations. The undirected-magnitude measure tests 
whether education appears to cause changes in social liberalism in any direction (left or 
right). We also measured the direction of the correlation, to see if education appears to 
increase social liberalism. The directed measure can be zero even if education is highly 
correlated with opinion, so long as the correlation is as likely to be strongly positive as 
strongly negative.

Note that our purpose here is not to explain how people become socially liberal, and our 
results do not do that. On the contrary, we could relabel the ‘social liberalism’ opinions to 
refer instead to musical preferences or table manners or any arbitrary attribute that can 
be influenced by others. And we could relabel (p. 259)
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Table 11.1How peer influence affects the association between educa
tion and social liberalism

Peer in
fluence

Proportion of 
grads with liberal 
bias

Directed 
correlation

Undirected 
correlation

No 0 0.002 0.08

No 0.1 0.052 0.088

No 0.2 0.108 0.122

Yes 0 −0.031 0.709

Yes 0.1 0.292 0.860

Yes 0.2 0.696 0.915

‘education’ to be gender or eye color or any attribute that cannot be influenced by others. 
The effect of education on social liberalism is simply an illustration of the possible danger 
of linear statistical models that assume independence of the observations.

The results reported in Table 11.1 reveal this danger very dramatically.3 When p = 0, col
lege grads are not assigned a liberal bias. Thus, the observed correlation between educa
tion and liberalism should be zero, and indeed it is very close to that (r = 0.08) when the 
statistical assumption of independent observations is realized in the model by precluding 
peer influence. However, when we allowed peer influence, in violation of the indepen
dence assumption, the magnitude of the correlation soars, to r = 0.709. This very strong 
correlation is entirely an artifact of the self-organization of the population into liberal and 
conservative camps with unequal numbers of college grads. Although there are many oth
er possible equilibria in which the correlation would remain close to zero, the population 
dynamics strongly favor the polarized outcome with unequal numbers of college grads in 
each camp—even though the model assumes that education has no effect on beliefs. The 
0.709 correlation is thus entirely spurious.

The imbalance is highly stable—once a population tips in one direction, it never tips back 

—but when p = 0 tipping is equally likely in either direction. The population dynamics of 
peer influence then make college graduates highly liberal or highly conservative (the 
undirected correlation is r = 0.709), but with equal probability (the directed correlation is 

r = −0.031). In some populations grads will be much more liberal, and in others much 
more conservative, but it will be hard to find a population in which grads and non-grads 
have similar opinions.
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When p > 0 the population will tend to tip toward social liberalism among college grads. 
For example, p = 0.2 biases college grads such that the correlation between education 
and opinion is r = 0.108 in the absence of social influence, and the effect is almost always 
in the same direction (hence the directed and undirected measures are nearly identical). 
At this level of liberal bias, education explains only 1 percent of the variance in opinion. 
Yet even this relatively weak nonspurious effect is sufficient to tip the population into 
what appears (incorrectly) to be a powerful (p. 260) effect of education, with r = 0.696. 
The population will now consistently tip toward social liberalism among college grads, 
and the correlation is so strong that this one binary variable alone can explain half the 
variance in social liberalism. That is because peer influences have greatly exaggerated 
what is in fact a very weak liberal bias among grads. By assuming independence of obser
vations, a regression model attributes all this effect of peer influence to differences in ed
ucation.

Of course, a multiple-regression model could show that these educational differences 
were spurious, due to the prior effects of social background (e.g. grads’ children may be 
more likely to attend college and already liberal before they enter). Ironically, this result 
—showing that the ideological effects of education were spurious—would itself be spuri
ous! Peer influences can greatly exaggerate the effects of all demographic (fixed) attrib
utes, whether these are causally prior to educational attainment (e.g. parents’ education) 
or causally subsequent (e.g. occupational self-direction). One can only wonder how many 
published regression results are largely an artifact of social-influence processes that were 
assumed away by the statistical requirement for independence of the observations.

ABC modeling makes it possible to see how peer influences can interact with the effects 
of individual experience in shaping behavior. To assess from empirical data how much 
variation in behavior can be accounted for by influences from peers and how much can be 
attributed to individuals’ sociodemographic characteristics, a modeling tool is needed 
that can handle the mutual interdependency of behaviors of multiple socially intercon
nected actors. Moreover, the model needs to take into account that actors may make or 
break social relationships, depending on their own and others’ behavior. For example, an 
observed association between opinion similarity and the presence of friendship relations 
in an empirical network can be attributed to contagion (friends influence each other) or 
selection (similar people become friends) or both. Stochastic actor-oriented models pro
posed by Snijders (2001) and implemented in the SIENA4 toolkit are a class of ABC mod
els that allow investigators to disentangle statistically these simultaneous mechanisms, 
using longitudinal data about the change of network relations and of actors’ behaviors or 
attributes. For example, in the problem just considered, if we entered panel data on indi
vidual opinions, educational attainment, and network structure, SIENA could tell us 
whether college grads were more socially liberal, and, if so, the extent to which this dif
ference was due to peer influence, network structure, or a liberal bias among college 
graduates.

https://global.oup.com/privacy
https://www.oxfordhandbooks.com/page/legal-notice


Social Dynamics from the Bottom Up: Agent-Based Models of Social Inter
action

Page 16 of 24

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). © Oxford University Press, 2018. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy and Legal Notice).

Subscriber: University of Groningen; date: 20 February 2020

Stochastic actor-oriented models combine ABC modeling with statistical estimation and 
testing of the mechanisms assumed by the modeler. The general model assumes that 
agents choose their social ties and their behavior by myopically optimizing a random utili
ty function. The modeler specifies which ‘effects’ are assumed to drive the decision-mak
ing of agents. In our example we assumed that agents are influenced by friends, and that 
they tend to establish positive social ties to those who agree with them. To test this in an 
actor-oriented stochastic model we would (p. 261) include in the submodel of the opinion 
dynamics the effect of the number of friends one agrees with after having changed an 
opinion on the likelihood that the corresponding opinion change can be observed. Corre
spondingly, we would include in the submodel of the network dynamics the same effect on 
the likelihood that an agent establishes or breaks a particular network tie. The statistical 
estimation and test of the corresponding parameters is based on computer simulation of 
the specified agent-based model. Broadly, SIENA finds the parameters for the effects 
specified by the modeler by simulating the distribution of the networks and actor attribut
es for a range of selected parameter values. The program then selects the set of parame
ters for which the simulation yields the best match with the observed dynamics of net
work and behavior.

11.3 Methodological Principles
‘If you didn’t grow it, you didn’t explain it.’ Joshua Epstein calls this ‘the bumper sticker 
reduction of the agent-based computational model.’ Epstein is one of the founders of ABC 
modeling, and his ‘bumper sticker’ challenges social scientists to raise the bar for what 
constitutes an explanation of social change. Structural equations and system-dynamics 
models, even with longitudinal data, are not sufficient, because they tell us only about the 
interactions among the attributes of the actors but not the actors themselves, who are 
typically assumed to be fully independent. Nor are game-theoretic models sufficient, be
cause the Nash equilibrium only explains why a population pattern persists, and not how 
it obtains or changes.

Nor, even, are ABC models sufficient for an explanation, according to Epstein, for three 
related reasons. First, there may be alternative specifications that can generate the same 
observed population dynamics. This limitation closely parallels the multiple-equilibrium 
problem in game theory. ‘Growing’ the pattern shows that an explanation is possible but 
does not tell us how much confidence to place in it or how many other explanations may 
also be possible. Second, even when there is only one way that can be found to generate 
the population pattern, the necessary behavioral assumptions may be highly implausible. 
Third, even if there is only one model that can generate an empirical pattern, and the 
model is sensible, if it is overly complicated we may be unable to uncover the underlying 
causal process. This is an important disadvantage of computational modeling compared 
with game theory. A deductive proof of equilibrium requires knowledge of the causal 
process, which is not required to generate a pattern computationally. Unlike game-theo
retic models, in which the causal mechanisms are necessarily explicit, computational 
models (p. 262) generate input–output patterns in which the causal linkages cannot be de
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rived from inspection of the source code but must instead be unraveled through close ob
servation of events as they unfold. It is not enough to show which parameter values are 
responsible for the outcome, we need to know the sequence of actions that are responsi
ble. Without this, we cannot rule out the possibility that the results are nothing more than 
artifacts of particular modeling technologies or even bugs in the source code.

In sum, the ability to generate a population pattern from the bottom up is a necessary 
step, but it is not sufficient. The most we can say is that ABC models can take us well be
yond what we can know using discursive models based on theoretical intuition or statisti
cal models of interactions among variables or mathematical models of interactions in a 
static equilibrium.

How far ABC models can take us depends decisively on two things: the macro-social com
plexity and the microsocial simplicity. Generally speaking, highly complex and nonlinear 
population patterns can be very difficult to generate from the bottom up, which makes 
any model that succeeds worthy of attention. The more complex the target pattern—such 
as a population dynamic characterized by phase transitions, nonmonotonicity, or punctu
ated equilbrium—the harder it becomes to find a relatively simple model that can gener
ate the pattern, and thus the more compelling it becomes when we succeed.

At the micro level it is the other way around. The simpler the set of assumptions about 
agent behavior, the less likely that the results depend on theoretically arbitrary parame
ters whose effects are poorly understood, and the more likely we can identify the underly
ing causal mechanism. Suppose we can generate a complex population pattern with a rel
atively simple agent model. We have now identified a set of conditions that are sufficient 
to produce the pattern, and we can test which conditions are necessary by systematically 
exploring the parameter space, but we do not know why these conditions are necessary or 
sufficient. What is the mechanism that explains how the conclusions follow from the as
sumptions and why the conclusions follow from some sets of assumptions but not from 
others?

Schelling’s (1978) classic ABC model of residential segregation illustrates the importance 
of keeping things as simple as possible. The model generates an equilibrium that can also 
be generated by models with ‘top-down’ assumptions about mortgage bank redlining and 
institutional racism. Nevertheless, because the model is highly transparent, it provides in
sight into a tipping process that was not previously apparent to researchers. The model is 
therefore useful, despite the inability to rule out alternative explanations, because it re
veals a heretofore hidden mechanism that may account for the persistence of segregation 
forty years after passage of the Fair Housing Act and despite pronounced increases in 
ethnic tolerance. In short, the goal is to generate a complex population pattern, using a 
simple and transparent model with a small number of assumptions about local interac
tion.

(p. 263) This goal poses a dilemma. Like statistical modelers trying to boost the explained 
variance by throwing in more variables, computational modelers may be tempted to im
prove the empirical fit by adding new assumptions, leading to models that are too com
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plex to be understood independently from their particular implementation. While game- 
theoretic models may sometimes be too simple to explain the dynamics of a complex sys
tem, ABC models can easily become too complex to explain the dynamics of a simple sys
tem. Little is gained by reliance on multivariate regression to see which of the model’s 
many parameter combinations have the most effect on population behavior. The primary 
benefit of ABC modeling is that it allows us to identify the causal processes that underlie 
observed correlations. That benefit is lost when it becomes as difficult to explain the pat
terns generated by the model as it is to explain the corresponding patterns observed in 
nature. Simply put, Epstein’s bumper sticker is fine for the front of the car, but we need a 
different one for the back: ‘If you don’t know how you grew it, you didn’t explain it.’

The ‘kitchen sink’ temptation in ABC modeling not only obscures causal mechanisms but 
also limits the ability to test the numerical robustness. Unlike the deductive conclusions 
in closed-form mathematical models, the results of ABC models depend on numerical val
ues. The number of numerical combinations explodes as the number of parameters in
creases, making a full exploration of the parameter space impractical. To make matters 
worse, when the model is stochastic, it is also necessary to test robustness over many re
alizations, no two of which may be identical, and for which none may resemble the mean 
of the distribution. Unlike experimental manipulations, where results are expected to 
change with the parameters, a sensitivity analysis is used to demonstrate the stability of 
the results and to rule out the possibility that the results of the experimental manipula
tions are nothing more than an artifact of arbitrary parameter combinations or an idio
syncratic random seed (see Saam 1999; Chattoe, Saam, and Möhring 2000). Models that 
are designed to make accurate predictions are likely to have so many parameters that rig
orous sensitivity-testing is simply not possible, even with very fast computers.

We recognize that models can also be too simple. For example, critics might regard our 
reinforcement learning model as overly simplistic in its behavioral assumptions, prefer
ring instead more elaborate models of human cognitive processes (Conte et al. 2001) with 
situation-specific modes of cognition, such as repetition, imitation, deliberation, and so
cial comparison (Jager et al. 2000). Here again the enormous speed and power of modern 
computers reinforces the temptation to make models that are cognitively and/or behav
iorally realistic. For example, Younger (2004) models hunter-gatherer societies that in
clude such intricacies as when the agents fall asleep and what it takes to get them to 
wake up. When models become so complicated that researchers can only report input– 

output covariance with a long list of parameters, the value of experimental methods is 
largely undermined.

(p. 264) In contrast, analysis of very simple and abstract models can reveal new theoreti
cal insights that have broad applicability, beyond the stylized models that produced them. 
While important discoveries can be made by open-ended exploration of theoretical possi
bilities, researchers need to resist the temptation to become freewheeling adventurers in 
artificial worlds. Careful, systematic mapping of a parameter space may be less engaging, 
but it makes for better science. This requires theoretically motivated manipulation of pa
rameters, based on careful review of current theoretical and empirical knowledge, and a 
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clear statement of the hypotheses that guided the experimental design. Models should 
start out simple, and complications should be added one at a time, making sure that the 
dynamics are fully understood before proceeding. Coleman (1990) advises modelers to be
gin with observable relationships between well-specified macrosocial phenomena, such as 
the relationship between network clustering and the rate at which an innovation diffuses. 
Computational experiments can then be used to test hypotheses about the microsocial 
causal mechanism that underlies the macrosocial relationship.

In conclusion, agent-based computational modeling combines the rigor of formal model- 
building with behavioral and structural complexity that would not be mathematically 
tractable with orthodox game theory. ABC models provide an ideal test bed for deriving 
testable implications for macrosocial dynamics of behavioral principles such as social ra
tionality (Lindenberg 2001) and ‘fast and frugal’ decision heuristics (Todd and Gigerenzer 
2003). Agent-based models can also be used to perform computational experiments that 
test the effects of structural conditions such as network topology, including networks that 
evolve as actors seek more attractive neighbors. With the adoption of a standard method
ology, we believe that agent-based computational modeling will lead to significant ad
vances in the bottom-up approach to the study of social order and change.
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Notes:

(*) This chapter builds on and extends Macy and Willer (2002), Centola and Macy (2005), 
Flache and Macy (2006), and Macy and van de Rijt (2006). We wish to acknowledge their 
many contributions to the ongoing research program on which this chapter is based. We 
thank the National Science Foundation (SBR-241657 and SES-432917, and SES-433086) 
and Netherlands Organization for Scientific Research (NWO-VIDI-452-04-351) for sup
port during the time that this research was conducted.

(1.) Game theorists have responded to the problem by proposing procedures that can win
now the set of possible equilibria. For example, the solution set can be narrowed by iden
tifying equilibria that are risk-dominant (which eliminates any equilibrium that does not 
pay at least the maximin), Pareto-dominant (which eliminates any equilibrium that is less 
preferred by at least one player), trembling-hand-perfect (strategies must remain in equi
librium even if one player should accidentally deviate from equilibrium behavior), and 
subgame-perfect (the strategy profile constitutes a Nash equilibrium in every subgame). 
However, these equilibrium selection methods are theoretically arbitrary (e.g. there is no 
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a priori basis for risk-dominant behavior) and they often disagree about which equilibri
um should be selected (e.g. in assurance, Pareto dominance and subgame perfection iden
tify mutual cooperation while risk dominance points to mutual defection).

(2.) We limit opinions to the unit interval in absolute value (−1 ≤ oik ≤ 1) by truncating at 
±1. Assuming a smoother approach to the interval limits would not result in qualitatively 
different model behavior.

(3.) For simplicity, we illustrate the effects of the independence assumption using zero-or
der product-moment correlation instead of multiple regression. Both methods assume in
dependence and both give misleading results for these data when the assumption is vio
lated.

(4.) SIENA (for ‘simulation investigation for empirical-network analysis’) is a computer 
program for statistical estimation of models of the evolution of social networks, based on 
Snijders’ stochastic actor-oriented model (2001).
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