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1 Data science contextualization for storytelling and 

creative reuse with Europeana 1914-1918 

1.1 Set up of the project 

In the research project 'Creative Reuse and Storytelling with Europeana 1914-1918', led by dr. Berber 

Hagedoorn (principal investigator, University of Groningen, the Netherlands), a combination of data science 

and qualitative analysis has been used to understand its platform engagement and map out requirements for 

creative reuse and storytelling with the Europeana 1914-1918 thematic collection, offering new 

contextualization of its textual and (audio)visual content. As a result, this study aims to provide insights into 

how Europeana 1914-1918 'affords' creative reuse and storytelling by researchers – both scholars and 

professionals/creators – as platform users, and how its linked (open) data can reveal 'hidden' archival stories, 

i.e. brought forth by cross-collection.  

 

Our main starting point is that the selection of historical sources in a database adds another – more or less 

visible – layer of representation or interpretation (as Hagedoorn also discussed at the ENRS 2019 conference 

'The Making and Re-Making of Europe: 1919-2019' in Paris in May 2019). Often, documentalists or users 

describing an item are more removed in terms of space and time from the personal story or perspective 

present in the historical source, which then leads to descriptions using more 'neutral' language – especially for 

(audio)visual content. Can data science offer opportunities to bring emotion 'back' into these sources? And 

can user analysis help here to better understand the value of such personal narratives in digital(ized) cultural 

heritage for creative reuse, storytelling and research? 

 

In our contemporary media landscape, (audio)visual stories are no 

longer only told via mainstream broadcasting media, but are more 

and more told across different digital media platforms. The goal of 

this research project is to use data science and qualitative 

analysis to map how such storytelling is afforded by Europeana, 

and to develop models suitable for exploring creative reuse of its 

digital collections', taking the 1914-1918 Thematic Collection as a 

case study. Previous Media Studies research has studied how 

makers, together with users and algorithms, shape users' 

interaction with content on different platforms, in terms of 

political economy and platform 'politics' (Van Dijck, Poell and De 

Waal, 2018). We build on and move beyond such research by 

finding methods which offer new interpretations of the Europeana 

platform as a creative storytelling tool – and, hence, new interpretations of Europeana platform engagement 

– and how this engagement is shaped in practice by the interaction of the platform with different users.  

 

'Data science is extracting 

knowledge/insight from data in all 

forms, through data inference and 

exploration' (RUG CIT) 

 

'Linked Open Data is a way of 

publishing structured data that 

allows metadata to be connected 

and enriched and links made 

between related resources' 

(Europeana PRO/Api's) 

 

https://enrs.eu/edition/8th-european-remembrance-symposium
https://enrs.eu/edition/8th-european-remembrance-symposium
https://www.rug.nl/datafederationhub/events-and-news/data-science.pdf
https://pro.europeana.eu/resources/apis
https://pro.europeana.eu/resources/apis
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Creative reuse can be understood as 'the process whereby one or multiple works, or parts thereof, are 

combined into a new work that is original, i.e. a non-obvious extension, interpretation or transformation of 

the source material' (Cheliotis 2007, p. 1). In the context of this project, the concept 'creative reuse' is found 

useful due to the focus it lends on, on the one hand, the creative and personal aspects of search and doing 

research (individual skills, search cultures, information bubbles…) as such self-reflexive elements should be 

emphasized more in doing contemporary research with digital tools (Hagedoorn and Sauer, 2019). And on the 

other hand, reuse as pointing to the fact that the selection of historical sources in a database adds another 

layer of representation or interpretation, as pointed out above. Cheliotis has in this context underscored how 

the practice of reuse is widespread in our society:  

 

[Creative reuse] permeates many otherwise unrelated activities, from industrial manufacturing 

(building complex systems out of simple multi-purpose parts) to software design (code reuse), and from 

scientific publishing (reuse and citation of prior work) to fashion design (reuse of patterns, fabrics and 

designs). (Cheliotis 2007, p. 1) 

 

Creative reuse goes hand in hand with storytelling, which we understand in the broadest sense as narrativizing 

reality (a.o. White 1980) in online and digital contexts, and therefore a reliant on the contextualization of 

representations in a cultural heritage database to make data (re)usable. For instance, reuse by scholars and 

professionals as storytellers when carrying out different phases in their research and search processes (see 

also Hagedoorn and Sauer, 2019). 

 

In order to understand how the thematic collections of Europeana 1914-1918 can be creatively reused for 

(digital) storytelling purposes, we study different ways that users can become engaged with the platform. To 

do so, we focus on the diverse stories that are present on the digital platform and the ways that they can be 

brought to the surface, at the same time offering new contextualization for these (audio)visual sources. This 

project helps in building expertise about the socio-technical practices of media users (principally, researchers) 

in relation to storytelling, search and research –  especially for reuse in creative contexts – and in turn, 

generates knowledge, skills and tools for data science and qualitative analysis around (audio)visual data on 

media platforms, and the translation of interaction on a platform into data (the 'datafied experience').  

 

Digital humanities methods have been incorporated for the analysis of historical resources and artefacts in 

(large-scale) projects, but scholars have gravitated more heavily into crafting archives and databases, instead 

of applying data science methods to existing ones (Manovich, 2016, pp. 2-3). Specifically, this project 

incorporates data science methods and qualitative analysis around linked (open) data on the media platform. 

 

To do so, this project has a mixed-method approach. The principal investigator has developed, tested and 

improved (1) a model for platform analysis using data science, specifically topic modelling and sentiment 

analysis (using machine learning as well as manual annotation) and including (audio)visual sources (= the focus 

of this progress report), and (2) a model for user studies using co-creative labs with different search tasks, 

talk-aloud protocols and post-task questionnaires, for user analysis, visual attention analysis (including an 

experiment with eye-tracking) and search task analysis, as well as questionnaires for survey analysis. By doing 
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so, a number of digital tools have been used and extended. The selected collection of stories in the Europeana 

1914-1918 collection has been annotated, providing more contextual labels than the mere visual can provide. 

Statistics have been generated, and topic modelling and sentiment analysis carried out, along with the 

visualisation of examples of model clusters on the labels that the annotation created. This also included finding 

creative solutions for challenges regarding the study, especially the complex nature of (audio)visual sources 

and sources on the Europeana platform for applying data science methods. 

 

This research has been developed in consultation and feedback sessions with both data science and digital 

humanities experts at the University of Groningen Centre for Information Technology (CIT), as well as with 

Europeana experts in user analysis and communication and the Europeana Research Coordinator. As a result, 

using protocols (methodological step-by-step plans) developed and designed specifically during this project – 

and which, importantly, can be reused in future research studies and for other Europeana collections, see also 

our recommendations for replication under each step in §1.2 – this project offers deeper understandings of 

Europeana as a creative storytelling platform, and models suitable for exploring and contextualizing 

Europeana's digital collections further.  

 

This report before you focuses explicitly on the data science carried out during the project. Hagedoorn also 

employed a user-centred design methodology (Zabed Ahmed et al., 2006; Hagedoorn and Sauer, 2019) to 

analyse platform engagement of 100+ participants with the Europeana 1914-1918 collection, especially how 

users and technologies co-construct meaning. As previously argued: 

 

Digital Humanities centres on humanities questions that are raised by and answered with digital tools. 

At the same time, the DH-field interrogates the value and limitations of digital methods in Humanities' 

disciplines. While it is important to understand how digital technologies can offer new venues for 

Humanities research, it is equally essential to understand and interpret the 'user side' and sociology of 

Digital Humanities (Hagedoorn and Sauer, 2019, p. 3) 

 

These user studies allowed for specific insights into how researchers – humanities scholars, creatives/media 

professionals as well as students – evaluate the role of creative reuse and storytelling when doing research 

into historical events and personal perspectives of World War I with the 1914-1918 collection. It is 

Hagedoorn’s aim to publish the results of these co-creative design sessions in an academic journal publication. 

1.2 Data Science models for exploring Europeana stories and creative 

reuse 

This project delivers a proof of concept based on the following set-up. The data science analysis of the 

Europeana platform is split into several steps: selecting and collecting the data (scraping the site of the 

collection); translation of the descriptions from different languages into English (both automatic and manual); 

conducting sentiment analysis of the items' descriptions; topic modelling (both automatic and manual), and 

finally, annotation using both manual labelling as well as unsupervised machine learning for clustering data 

https://www.viewjournal.eu/articles/abstract/10.0000/2213-0969.2018.jethc159/
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(automated labelling) to offer new labels as contextualization for storytelling and creative reuse with/of the 

collection. Such steps also include some statistical text analyses and visualization of the results. 

 

Using topic modelling and sentiment analysis, keywords and descriptions have been analysed, to answer 

questions about popular subjects and recurring themes. Specific attention is paid to what extent new 

contextualization and descriptions in terms of labels and sentiment detection can be offered by means of this 

approach (as a proof of concept), as well as in this manner offering new keywords and labels (which can 

function as sub collections, filters, or topics for searching the sources in the collection). 

1.2.1 Selecting and scraping data 

1.2.1.1 Methodology: data scraping 

 

We created a dataset with information (metadata) about the items in the Europeana World War I 1914-1918 

collection. The 1914-1918 thematic collection invites users to explore the untold stories and official histories 

of World War I in (currently) 374.715 items from across Europe (=198.641 texts; 172.635 images; 3.054 videos; 

320 3D objects; and 65 sound recordings). These sources are aggregated from Europeana partner libraries, 

archives and museums1, and at present 37.829 items in this total collection consist of so-called 'user generated 

content' contributed by either users online – as the website invites users to contribute their personal stories 

and content relating to World War I – or collected by Europeana during the 'roadshow' community collection 

days across Europe. The objects in the collection are digitized by professional documentalists.2 All user 

generated content may be reused as open data (CC-BY-SA license). Content can also be accessed via 

Europeana's APIs.3 

For collecting the data from Europeana 1914-1918, we used Selenium, the Python open source library for web 

scraping or data scraping (metadata in form of text). According to Rishab Jain and Kaluri (2015), this library 

has many advantages and supports multiple functionalities compared with licensed automation. It allows the 

designed scripts to communicate with the browser directly with the help of native methods.  

For this study, several of the 1914-1918 sub collections or collection categories (called a 'topic' on the 

Europeana platform) are too small and specific, and/or the chances of not useful descriptions – which will not 

give relevant results in data analysis – are higher. Furthermore, in general the code for data scraping needed 

to be modified for every sub collection at least in part. The Europeana platform is quite unstructured, items 

occupy different positions, missing in some sub collections, and/or other issues. This is doable, but it does take 

the researcher more time to write code that is able to handle multiple possible versions of the pages. 

                                                
1 See the full overview of partner libraries, archives and museums on 
https://pro.europeana.eu/project/europeana1914-1918  
2 For further background on the Europeana 1914-1918 project in the Dutch context, see: 
https://www.slideshare.net/Europeana/het-europeana-19141918-project-in-nederland  
3 See https://pro.europeana.eu/resources/apis and https://pro.europeana.eu/what-we-do/creative-industries. 

https://www.europeana.eu/portal/en/collections/world-war-I
https://www.europeana.eu/portal/en/collections/world-war-I
https://selenium-python.readthedocs.io/
https://pro.europeana.eu/project/europeana1914-1918
https://www.slideshare.net/Europeana/het-europeana-19141918-project-in-nederland
https://pro.europeana.eu/resources/apis
https://pro.europeana.eu/what-we-do/creative-industries
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Therefore, a focus was placed on selected items in specific sub collections, for particular experiments within 

the overall project.  

 

When developing the models for data science, a main focus is placed on the sub collections Women in World 

War I (sub collection containing 1.870 items in total) and Films (sub collection containing 2.726 items in total). 

In the first phase of developing models for topic modelling and sentiment analysis, the collections Official 

documents (123 items) and Aerial warfare (45 items) are also included and scraped. As outlined in the data 

science protocol (§1.2), the combined dataset is scraped from the Europeana page and translated, after which 

text-mining techniques will be implemented, such as topic modelling and sentiment analysis. The new stories 

(in terms of new labels and other forms of new contextualization) that might be discovered could be used to 

improve the filtering process and overall make for an improved user experience within the platform. 

 

A portion of our analyses focuses more specifically on (audio)visual sources (such as Films, as well as 

Photographs, to uncover the added value of data science methods in offering new contextualization for 

storytelling with (audio)visual culture in a digital heritage database; since (audio)visual sources often offer 

more complex representations. As a case study, from §1.2.4 onwards, the differences in patterns and topics 

between user generated content and the linked (open) data from various institutions and collections currently 

present on the Women in World War I collection, will be analysed in terms of content, metadata, and 

intention. For the portion of the Photographs dataset (sub collection of 70,391 items) centred around the 

thematic axis of women (= 320 (audio)visual items), statistical analysis is carried out and topic modelling is 

performed on the labels and entities created using Vision API by Google Cloud. Data science methods will be 

incorporated to examine the differences and similarities with textual resources, drawing upon the transcribed 

documents and (audio)visual content of the WWI Diaries and Letters dataset (sub collections of respectively 

846 and 482 items). Furthermore, since Europeana as a media platform supports the inclusion of user 

generated content, this research will also focus on identifying patterns between user generated content and 

linked (open) data from various institutions and collections.  

 

Therefore, the following collections have been selected and scraped: 

 

 Films Women in 

WWI 

WWI 

Diaries 

and 

Letters 

WWI 

Photographs 

WWI 

Official 

Documents 

Aerial 

warfare 

Type of dataset (audio)visual 

sources 

(audio)visual 

and text 

sources 

Text 

sources 

(audio)visual 

sources 

Text 

sources 

(audio)visual 

and text 

sources 

Objects per 

dataset* 

989 920 1400 320 123 45 

 

* = after data scraping, cleaning and testing, final annotated number of items, with per item multiple new 

contextualization, such as sentiment calculation, labelling, etc.  
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We scraped all selected metadata of the selected Europeana 1914-1918 sub collections using Python library 

Selenium. The scraped metadata was stored in a table in CSV format with a separate column for each type of 

content or information.  

1.2.1.2 Results 

 

 Folder containing data science protocol, all datasets and scripts 

 Our Python scripts for scraping 

 

The datasets of this research were extracted using the main Europeana 1914-1918 platform and the 

corresponding transcriptions website, for the WWI diaries and letters. In order to achieve this, multiple 

scrapers have been written, that adhered to the different kinds of data ((audio)visual/textual), as well as pre-

processing techniques to clean and standardize the text data.  

 

As a result, we retrieved a dataset with the following columns: item number; title of item; description of item; 

type; provider (=content provider); institution; creator; first published in Europeana (=date); subject (=list of 

different keywords); language; providing country; item link; linked (open) data YES or NO; and collection 

(=sub collection, e.g. films or Women in WWI). 

1.2.1.3 Our recommendations for replication 

 

It is possible to run our Python scripts for scraping, and subsequently retrieve the Europeana data as csv-files. 

It is also possible to directly download our files here. In order to run the scrapers, you have to install the 

following Python libraries on your PC: Selenium, Urllib, Pandas. For using the scrapers for retrieving data from 

other Europeana collections, you may need to modify them, to change in the scripts the names of HTML-tags 

where metadata is stored. 

1.2.2 Translation: normalizing data into English 

1.2.2.1 Methodology: automatic and manual translation 

 

There are 24 languages in Europeana (Italian, Polish, Czech etcetera) of which the languages in our dataset 

were translated in two ways: using Google API+ Python library 'Google cloud'; and manual translation through 

Google Translate, for normalizing text into the English language. Since a large part of the data scraped was 

presented in different languages, we needed to translate it for our subsequent analyses. We used paid Google 

Cloud API  for automatic translation, which is designed for translating large amounts of data. According to Li 

et al. (2014), Google machine translation lacks in the accuracy in grammar, complex syntactic, semantic and 

pragmatic structures. This results in nonsensical errors in grammar and meaning processing. Some languages 

https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://docs.google.com/spreadsheets/d/15YblScfbIqpZuWYFgf0C8Ehm1e0Plj9-OmYBb8X5wrw/edit?usp=sharing
https://drive.google.com/drive/folders/18DDH39Rx7B_cIkkFWMFuYpxFK2jKMI-9?usp=sharing
https://drive.google.com/drive/folders/1BqgZKmEZ5_4hsXRAJ5ns7slr60nlkyQB?usp=sharing
https://drive.google.com/drive/u/0/folders/1BqgZKmEZ5_4hsXRAJ5ns7slr60nlkyQB
https://drive.google.com/drive/u/0/folders/1Dz56gGGKRpvvdXxsGgX2Fl5BAOaLVkZ0
https://pypi.org/project/google-cloud/
https://pypi.org/project/google-cloud/
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are translated more accurately than others, such as French into English (Shen, 2010) and Italian into English 

(Pecorao, 2012). 

 

In order to translate the content of the platform in English, to be able to perform text-mining techniques, 

normalizing text into English is a necessary step. Even though Google machine translation might not be 

completely accurate in grammar, syntax, and structures, the overall meaning was deemed appropriate enough 

to carry on with machine learning techniques (Li et al., 2014). Importantly, whilst the grammar may not be 

perfect, the feeling remains, which is what is analysed in our next steps. The first part of normalizing texts into 

the English language is done automatically. Since many items contained descriptions in languages other than 

English, we decided to use Google Cloud API for automatic translation (importing it as a Python library), which 

lets websites and programs integrate with Google Cloud Translation programmatically. We implemented the 

following process into the Python script: if the language for the following item in the column 'language' was 

different from English, the description and header were translated into English by using the Google API 

('google.cloud'). The translation was stored in the new column 'translated'.  

 

However, in 600 cases (out of 2000 rows) it did not translate some descriptions due to more payment being 

requested by Python API Google Translate, which charges users for its use. As an output, instead of translated 

text, it gave the same untranslated description. Therefore, for normalizing the rest of the descriptions (which 

were not translated automatically) into the English language, manual translation in combination with Google 

Translate was used. We inserted the description into Google Translate in the original language, copied the 

translation in English (after a manual check) and stored it in the table. 

 

 

Image 1 Example of Europeana 1914-1918 item and description 'The contribution of Cypriot women in the First 

World War'. 

1.2.2.2 Results 

 

 Our Python script for automatic translation 

 Translated datasets 

https://pypi.org/project/google-cloud/
https://translate.google.com/
https://drive.google.com/file/d/1T5SaQmfVj1rZiGhWR1Ld_tk3QJS3xIDI/view?usp=sharing
https://drive.google.com/drive/folders/1Dz56gGGKRpvvdXxsGgX2Fl5BAOaLVkZ0?usp=sharing
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The result was a new column with translations in our table. Part of the translations (600 out of 2000) were 

done manually, supported by Google Translate. Google translate technology is still not perfect, but our manual 

check has revealed that it almost always managed to save the real meaning of the text. This new 

contextualization can be found in the table. 

1.2.2.3 Our recommendations for replication 

 

Both automatic translation, sentiment analysis and noun extraction were done using one Python script, 

preprocessing.py, which can be found here. It demands installation of the following Python libraries: Pandas, 

NumPy, TextBlob, Goslate, OS, Google.cloud. For automatic translation to connect with Google API services, 

users have to set and use Google application credentials. You also have to create a billing account in order to 

pay for the translation. The library which we used for the connection with Google services, was deprecated 

and replaced with another one (the instructions for using it can be found here as well). 

1.2.3 New labels as contextualization for storytelling and creative reuse with the 

collection 

 

...usability is very much bound up with contextualisation. Users might be able to retrieve items, yet 

without context and a framework for interpretation, the cultural and material understanding of 

selected content remains limited. (De Leeuw, 2011) 

 

We used a number of different data science approaches to retrieve, gather and expand information for new 

labels as contextualization for storytelling and creative reuse with/of the collections. For instance, the labels 

we provide, can function as new filters and point to subtopics within a larger topic or collection. In the 

following pages, we offer the approaches we designed that other Europeana users/researchers can reuse, 

using our models (see the links to our datasets and scripts provided in this document). As part of the results, 

we also offer specific recommendations for when such replication should take place, and what researchers 

should take into account when they do so. Importantly, these approaches aid in: 

▪ defining new keywords, including topics which are impossible to find with an 

algorithm, by using a combination with manual approaches such as manual labelling 

(defining new keywords or topics manually and assigning them to items) 

▪ improving the search algorithm in the collection (new keywords; new filters) 

▪ creating meaningful links between items (new sub collections) 

https://translate.google.com/
https://drive.google.com/drive/u/0/folders/1BqgZKmEZ5_4hsXRAJ5ns7slr60nlkyQB
https://cloud.google.com/docs/authentication/production
https://cloud.google.com/billing/docs/how-to/modify-project#enable_billing_for_a_project
https://pypi.org/project/google-cloud-translate/
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▪ this contextualization goes beyond present information in metadata such as 

descriptions 

▪ Our files, scripts and datasets show the distribution of topics and sentiments among 

the items and collections and the variety (e. g. if there is a large difference between 

the lowest and the highest sentiment) 

1.2.3.1 Sentiment analysis 

1.2.3.1.1 Methodology: sentiment calculation 

 

After the translation, we conducted sentiment analysis of the translated data in order to get a sentiment value 

for every description. For this we used Python library TextBlob, which provides 'ready-to-use' tools for 

sentiment calculation or measuring sentiment (Gonçalves et al., 2013). It offers many useful functions for text 

analysis (part-of-speech tagging, noun phrase extraction, sentiment analysis, tokenization, words inflection 

and lemmatization, and spelling correction). The demand for the improvement of affective computing and 

sentiment analysis that extracts people's sentiments from online data, has been on the rise over the last 

decade (Cambria, 2016). Sentiment analysis, which is also known as opinion mining and emotions AI, uses 

natural language processing and text analysis to recognize, extract, assess, and examine affect and information 

that are deemed as subjective. Sentiment analysis has been more used for product reviews, market analysis, 

and marketing strategies, and analysis of trends on social media (Jussi et al., 2012). An essential function of 

sentiment analysis is the classification of the polarity of a body of text, as positive, negative or neutral, by 

looking at emotional and affective states. 

 

Sentiment analysis was carried out using Python library TextBlob. It returns a polarity score, which is a float 

within the range [-1.0, 1.0], where -1 means that the text is 100% negative, and 1 means 100% positive. When 

calculating sentiment for a single word, TextBlob uses a sophisticated technique known as 'averaging'. It finds 

words and phrases it can assign polarity to (examples are 'great' or 'disaster'), and it averages them all together 

for longer text such as sentences. The algorithm for sentiment calculation was already implemented into the 

library, so we could not modify it in any way. It is based on a lexical-based method that makes use of a 

predefined list of words, where each word is associated with a specific sentiment. Lexical methods vary 

according to the context in which they were created. 

 

Because sentiment in most cases was expected to be very low, for testing and evaluation, we ran it both 

without removing items with a 0 sentiment score, as well as with removing the items with a 0 sentiment score, 

as demonstrated in the visualizations of sentiments with and without 0's (for the goal of visualizing only items 

which have sentiment). In these graphs (see Fig. 1 and Fig. 2), the horizontal axis of the plot represents all the 

items' descriptions of the scraped and translated dataset, the vertical sentiment score per item. Based on this 

evaluation, we decided to continue without removing items with a 0 score, as these items also demonstrated 

sentiment as shown in the graph on the next page. 

https://textblob.readthedocs.io/en/dev/
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Fig. 1 Sentiment with 0's 

 
Fig. 2 Sentiment without 0's 
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1.2.3.1.2 Results 

 

 Our Python script for sentiment analysis 

 Overview translated data with sentiment 

 Sentiment calculation Women in World War I  

 Sentiment calculation Films 

 Sentiment calculation Official documents 

 Sentiment calculation Aerial warfare 

 

Following the translation process, sentiment analysis was conducted for the dataset in order for each body of 

text to be assigned a sentiment value.. The Python library TextBlob allows for the processing of textual data. 

It provides an API for examining common natural language processing (NLP) functions, such as noun 

extraction, sentiment analysis, classification, etcetera (Loria, 2018, p. 1). TextBlob returns a polarity score 

within the range [-1.0, 1.0], respectively signifying negative and positive, by identifying words and sentences 

within a body of text and assigning subjective values to them. TextBlob is only one of a variety of such ready-

to-use tools for sentiment calculation (Gonçalves et al., 2013). However, most of them include words from the 

texts with a high-score sentiment words (like tweets or reviews, where people describe their emotions vividly). 

Such software expects the same 'level' of sentiment in the input text. In our case, with descriptions of items 

connected with history, it was mostly detecting neutral or very low sentiment (since they do not contain 

informal words with high sentiment, which people use in tweets or in reviews). This new contextualization can 

be found in the table. 

 

For example the item 'Hyänen der Welt' ('In the face of certain death') with the description: 'Drama in which 

two kidnapped persons, employees of a diamond cutting establishment, chase their kidnappers, a mine owner 

and his lover' offers a sentiment score of -0.6. This specific item itself may not be reused immediately as open 

data (as complex (audio)visual sources such as Films usually have copyright restrictions due to the many 

creatives involved), but contextualization in the form of a sentiment score can (1) support users in emotion 

detection for such items and in sub collections and (2) can provide researchers with an overview of sentiment 

present in certain collections or periods. Such an indication of sentiment present can support users when 

searching and selecting items for research. This is especially the case for creative reuse, when considering 

which items to contact content providers about to request a copy for reuse.  

 

It must be noted that the scraped Europeana dataset offers challenges for sentiment analysis, usually because 

there are too many languages, and too little information in the text. The risk exists that we are just copying 

the data that already exist on the platform without much possibility to add value. Therefore, this approach as 

a proof of concept also works as a demonstration of the current extent of the possibilities of sentiment analysis 

(for researchers using domestic pc's) with the Europeana collection.  

 

https://drive.google.com/file/d/1T5SaQmfVj1rZiGhWR1Ld_tk3QJS3xIDI/view?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://www.europeana.eu/portal/en/record/08614/cat31160.html?q=aangezicht+des+doods#dcId=1561491448936&p=1
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This analysis is followed up by annotation. Especially the manual annotation we carried out (this analysis 

follows in §1.2.3.3) gave us an opportunity to evaluate the results of sentiment analysis using calculation more 

precisely. 

1.2.3.1.3 Our recommendations for replication  

 

The sentiment analysis is running the script preprocessing.py. As an input, it takes csv-files with the data for 

four selected Europeana 1914-1918 sub collections (Women in WWI, Films, Aerial Warfare, Official 

Documents), then merges them in one table and gives a corresponding sentiment score to every item in it. 

The score appears in a new separate column in the table. Based on our tables, searching by sentiment score 

could possibly be implemented as a new search filter (we would recommend to do so in the form of a very 

easy to 'read' Likert scale), as participants during the user studies (uncovered in participant observation with 

talk aloud protocols) on their own initiative tried to search on positivity and negativity in the collection, 

generally to be able to research two different sides of a story (in this instance for the case of propaganda). 

They indicated the usefulness of being able to search on – as well as easy visualization of – positivity and 

negativity (source: focus groups March 14th, 2019 and May 22nd, 2019, at University of Groningen, the 

Netherlands), which a score could offer.  

1.2.3.2 Topic modelling and noun extraction 

1.2.3.2.1 Methodology: Automated topic modelling with LDA; noun extraction with TextBlob 

 

Topic modelling is a machine learning and natural language processing method allowing for the discovery of 

stories in terms of more vague, abstract or 'hidden' topics within a collection. The keywords that are extracted 

from this process are clusters of comparable words. Analysed through a mathematical framework, the 

statistics of each word, can help deduce not only what each topic might be, as well as the overall topic balance 

in the whole collection (Papadimitriou et al., 1998; Blei, 2012). As a first step, we used the Python library 

TextBlob for noun extraction. This noun extraction in TextBlob uses the nouns which were extracted from the 

descriptions. Nouns extracted from every description were stored in a separate column in the table.  

 

'display-case', 'photographs', 'right', 'son', 'brother', 'biplane', 'identity', 'tag', 'end', 'right', 'medal', 'family', 

'disability', 'officer', 'whistle', 'handgun', 'pistol', 'protection', 'county', 'region', 'war', 'family', 'grandson', 

'display-case', 'display', 'city' 

Noun extraction using Python library TextBlob 

 

Our next step was topic modelling – automated detection of a number of topics represented in our dataset. 

There are many ways of automated topic modelling in Python, most of them include machine learning and use 

Latent Dirichlet Allocation (LDA) (Řehůřek and Sojka, 2010; Jacobi et al., 2015), one of the most well-known 

algorithms for topic extraction. LDA is a three-level hierarchical Bayesian model, in which each item of a 

collection is modelled as a finite mixture over an underlying set of topics (Blei, 2003). For our research we 

mainly used the Python library for machine learning Scikit-learn. It has a module which conducts LDA and gives 

https://textblob.readthedocs.io/en/dev/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html


 

 

 

 

 

 

16 

 

 

 

 

 

 

 

a chosen number of topics represented by a chosen number of words as an output. In order to evaluate future 

results of topic modelling, we used some simple approaches for retrieving the most common words in the 

data.  

 

We also used the Gensim library for Python which provides the LDA algorithm. Gensim is a Python library that 

can process raw texts in digital format and extract semantic topics in an automatic manner from them, without 

any human intervention. The algorithms in this library, one of which is Word2Vec, are unsupervised, meaning 

they need no human input in order to function; only text sources. The algorithms semantically detect the body 

of documents by analysing 'statistical co-occurrence patterns within a corpus of training documents' and once 

these patterns are located, any of the raw text documents can be 'queried for topical similarity against other 

documents' (Gensim). 4 In contrast to older text analytic methods where texts were treated as a whole, a much 

newer approach involves creating word representations. Those representations, called embeddings, are 

created using the algorithm Word2Vec, created in 2012 at Google by Mikolov et al. (2013). This involves 

creating high dimensional representations of words by utilizing their context (the window of words around 

the target word). This allows for the search of contextual similarities between words by training a Word2Vec 

model, using the datasets present in this research (for our case study see §1.2.4). 

  

Before doing any analysis of the data it was necessary to remove stop words – words which are frequent in 

the texts but are not interesting for our research. Python library NLTK (Natural Language Toolkit) offers a list 

of such words (prepositions, modal verbs etcetera), but it was not sufficient for our study due to the complex 

nature of the dataset. For instance, many words in topics were representing nationalities and cities (British, 

Dutch, Spanish, Amsterdam, Moscow, etcetera). Therefore, we expanded the stop words list with more words. 

Moreover, for different collections we needed different stop words. For example, for 'Films' we had to exclude 

words such as 'film', 'video', and 'reportage'.  

 

After cleaning data, the next step – creation or visualization of word clouds – was made by using the Python 

library WordCloud. We had to pre-process our descriptions and had to merge them into one large text, which 

was taken as an input by this library. As an output it provides a picture or visualization with many words of 

different sizes according to how often they are presented in our dataset. The second step was a simple 

extraction of the 10 most common words in the dataset and visualisation of them as a plot. Although a word 

cloud offers more words, this approach produces a more structured output. 

1.2.3.2.2 Results 

 

 CSV-file initial topic modelling Women in World War I – for topic modelling of this particular sub 

collection see §1.2.4.1 on discovering hidden stories and themes 

 Our Python script for topic modelling  

 Our Python script for making topics using noun extraction 

 Noun extraction Women in World War I  

                                                
4 For more information, please see: https://radimrehurek.com/gensim/intro.html. 

https://radimrehurek.com/gensim/intro.html
https://radimrehurek.com/gensim/intro.html
https://code.google.com/archive/p/word2vec/
https://pypi.org/project/wordcloud/
https://drive.google.com/file/d/14pSzLorzlxndyV5Ho9pmXkdBA5Wazbfr/view?usp=sharing
https://drive.google.com/drive/folders/1UfEadVAK7iAQ0K_tgRUR3M1v0HzU9v1C?usp=sharing
https://drive.google.com/file/d/1T5SaQmfVj1rZiGhWR1Ld_tk3QJS3xIDI/view?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://radimrehurek.com/gensim/intro.html
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 Noun extraction Films 

 Noun extraction Official documents 

 Noun extraction Aerial warfare 

 

We conducted topic modelling with LDA. First, we defined the number of topics we want and the number of 

words which represent each topic. Then our program converts a collection of text documents to a matrix of 

token counts (to numbers), fit the data and gives the topics as a result. For such new contextualization, 

users/researchers can reuse our scripts in the topic modelling folder.  

 

This analysis is followed up by annotation. Especially the manual annotation we carried out (this analysis 

follows in §1.2.3.3) gave us, as mentioned before for sentiment analysis, a good opportunity to evaluate the 

results of topic modelling more precisely. Some of the topics were not actually topics, but a number of 

frequent words not connected with each other. Sometimes part of the topic was correct, but there could also 

be some words present which did not fit the others. However, sometimes the words very accurately reflected 

the tendencies from the collections. For instance, in the 'Films' collection there are many films present about 

royals, which we see reflected in several topics. 

 

Topic Number Words 

[0] soldiers, general, line, seen, world, people, city, 

mark, corps, new 

[1] soldiers, army, emperor, troops, military, artillery, 

shot, shots, queen, world 

[2] troops, br. general, march, army, field, str, aircraft, 

soldiers, king 

[3] soldiers, column, troops, army, Limburg, horses, 

general, division, prince, king 

[4] story, love, army, Duyken, Pim, world, short, 

director, called, husband 

[5] army, troops, images, soldiers, emperor, shots, 

world, Wilhelm, shows, young 

[6] soldiers, troops, blood, gun, shown, military, gas, 

machine, field, small 

[7] soldiers, shows, army, committee, field, work, 

hospital, prisoners, camp, officers 

[8] world, gun, work, bridge, general, king, Mr, group, 

army, London 

[9] soldiers, hospital, band, London, military, general, 

lord, army, young, march 

 

Fig. 3 Topics Films sub collection 

https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
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Fig. 4 Cloud: Films sub collection (click here for the full visualization) 

 

 

 

 
 

Fig. 5 10 words: Films sub collection (click here for the full visualization) 

https://drive.google.com/drive/folders/1UfEadVAK7iAQ0K_tgRUR3M1v0HzU9v1C?usp=sharing
https://drive.google.com/drive/folders/1UfEadVAK7iAQ0K_tgRUR3M1v0HzU9v1C?usp=sharing
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Fig. 6 Cloud: Women in WWI (click here for the full visualization) 

 

 

 

 
 

Fig. 7 10 words: Women in WWI sub collection (click here for the full visualization) 

https://drive.google.com/drive/folders/1UfEadVAK7iAQ0K_tgRUR3M1v0HzU9v1C?usp=sharing
https://drive.google.com/drive/folders/1UfEadVAK7iAQ0K_tgRUR3M1v0HzU9v1C?usp=sharing
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This topic modelling makes evident which are the main 'hidden' topics or stories in these sub collections, 

which is not evident from the filters on the Europeana portal. For instance, the topics or keywords we provide, 

can function as new filters and point to subtopics within a larger topic or collection. 

1.2.3.2.3 Our recommendations for replication 

 

Nouns are extracted automatically if you use the script preprocessing.py. They are stored in a new column in 

the table. For running topic modelling scripts  it is necessary to install the following Python libraries: Pandas, 

OS, Re, WordCloud, Matplotlib, Scikit-learn, NumPy, Seaborn, Gensim. As an input it expects a csv-file with 

items' descriptions, as an output it gives a graph with 10 most common words, a word cloud and a list of topics 

which contain a number of keywords. Researchers can also change the number of topics and the number of 

keywords per topic (now both of them are set with 10).  

 

If our scripts are applied to different Europeana collections, the list of stop words demands specific attention. 

For each collection it is necessary to create a separate list of stop words according to the topic. For instance, 

for the 'Films' collection we removed the words 'film' and 'movie', but for other collections they can be 

important and should not be removed. 

1.2.3.3 Annotation using manual labelling 

1.2.3.3.1 Methodology: labelling 

 

To offer new keywords eliciting 'hidden meanings' in stories in the selected Europeana collections, and for 

improving user search on Europeana, we have manually annotated the two scraped sub collections, Women 

in World War I and Films.  For this annotation we tried not to use the words which were already presented in 

the description, but either to use new synonyms, generalisation or possible associations to uncover hidden 

stories in linked (open) data. We also tried to assign to each item as many keywords as possible, so some of 

them have a long list of keywords, while others have only one or two. 

1.2.3.3.2 Results 

 

 Annotation using manual labelling Women in World War I  

 Annotation using manual labelling Films 

 

For the creation of such new meaningful keywords we carried out manual annotation (labelling). Our goal was 

to improve the search on the Europeana platform by defining topics which are impossible to find with 

algorithm (like 'domestic life') with manual approaches. Therefore, we tried to choose keywords which 

summarize the description or paraphrase the most important words in the description. For example, if the 

description mentions 'dragoons', we added the keyword 'soldier', which will help the users to get this result 

by searching for this word. The new contextualization can be found in these two tables: Women in World War 

I and Films. They can be used as new labels and keywords on Europeana in the future. 

https://drive.google.com/drive/u/0/folders/1yOglLgduzVGgCBXVw07WGFSMfhqsIV1v
https://drive.google.com/file/d/15f-3AcehpBmxQizeGP4upN0YEzfcoCNV/view?usp=sharing
https://docs.google.com/spreadsheets/d/16Q83_9iA5DO9q1DOxCiK_PVP0TMGsNNtK1RWU3WCi3c/edit?usp=sharing
https://drive.google.com/file/d/15f-3AcehpBmxQizeGP4upN0YEzfcoCNV/view?usp=sharing
https://drive.google.com/file/d/15f-3AcehpBmxQizeGP4upN0YEzfcoCNV/view?usp=sharing
https://docs.google.com/spreadsheets/d/16Q83_9iA5DO9q1DOxCiK_PVP0TMGsNNtK1RWU3WCi3c/edit?usp=sharing
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By using a combination with manual approaches such as manual labelling (defining new keywords/topics 

manually and assigning them to items) we importantly define and elicit topics which are impossible to find 

with an algorithm. An example is the topic 'domestic life', which is a key theme in the Women in World War I 

sub collection, but is currently not available for instance as a filter in search. Therefore, the labels we provide, 

can function as new filters and point to subtopics within a larger topic or collection. 

Examples some of the labels' combinations using manual annotation: 

▪ disabled_people, hope, life_after_war, domestic_life 

▪ health_institutions, medical_research, blood_research, medical_equipment 

▪ domestic_life, separated_family, betrayal, fate 

▪ memories, friendship, united_nations, union 

▪ family, memories, honour, nowadays, descendants 

▪ memories, honour, nowadays, descendants, documents 

▪ family, love, inspire, heroic, defense 

▪ politics, ceremony, traditions 

▪ soldiers, injured_people, victims_of_war, young_people 

▪ war_consequences 

▪ eyewitness, dignitaries, rich people, victory 

▪ politics, ceremony, traditions, family, dignitaries, rich people 

▪ before_the_war, domestic_life, traditions, travel 

▪ family, couple, love, loyalty, fidelity, sacrifice 

▪ marine, ships 

▪ aerial, weapons, technology 

▪ law_violations, cruelty 

▪ before_the_war, politics, domestic_life, development, region 

▪ assault, attack 

▪ love_story, marine, ships, seamen, love 

▪ nature, animals 

▪ hatred, nationalism, nazi_ideology 

▪ criminal, breaking_law 

▪ business, workers, advertising 

▪ excursion, sightseeing, documentary, tourism 

▪ freedom, end_of_war, happiness, triumph, victory 

▪ celebrities, biography 

▪ death, suffer, injured_people, hostages 

▪ affair, money, rich_people, poor_people 

▪ injured_people, war_consequences, politics, food_supply 

▪ destroyed_cities 

▪ entertainment, culture, children 

▪ hunger, food_supply, eyewitness, war_documents, freedom, victory 

▪ industry, business, urban_life 
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1.2.3.3.3 Our recommendations for replication 

 

We offer the following guidelines for manual annotation (labelling) for new contextualization:  

• Do not repeat the words which are already in the description 

• Use synonyms or generalization (e.g. for different items which mention kings, princesses, emperors 

etc. use a keyword 'royal people') 

• Try to use as many synonyms as keywords as possible 

• Try to use the same keywords for items with the same meaning so they can be filtered easily (e.g. not 

to use 'wounded people' for one item and 'injured people' for another item) 

• Add hidden meanings (e.g. if the description states 'Anna had two children - Elisabeth and Jane', we 

can add keywords 'mother, daughter, family') 

• Generalize actions (e.g. if the description states 'She cheated on him and married another man while 

he was in the army', we can add label 'betrayal') 

1.2.3.4 Automated labelling: clustering with unsupervised machine learning 

1.2.3.4.1 Reflection on supervised machine learning 

 

Another goal of our project was to automate annotation or labelling of the items' descriptions with keywords 

(automatically generate keywords for the items). A general approach in case we have an annotated dataset 

would be to use supervised machine learning (Kotsiantis, 2007). For this we have to train the classification 

model on our annotated data and then to apply it to 'unknown' dataset. First, we counted unique 

combinations of keywords in the 'Films' sub collection and retrieved about 700 unique combinations out of 

960 (we tried to be very specific in choosing keywords while annotating, so this was not a surprising outcome). 

Then we cut the number of keywords per item to 1 and got around 200 unique combinations. It was not valid 

for supervised machine learning, because too many keywords were 'outliers' - they were presented only in 1 

or 2 items. Only 24 keywords were presented by more than 10 items. However, even when we cut the dataset 

only to the items which have these 24 most common keywords, we got a low accuracy of 35%. This can also 

be explained by the difference between 'human' and machine classification (Bhowmick, 2010): while 

automated models use exact similarities between the words from the texts with the same label, people just 

use their logic and associations which can give quite a different result.  

1.2.3.4.2 Methodology: clustering (unsupervised machine learning) 

 

After experimenting with the supervised machine learning, we decided that unsupervised machine learning 

would be the most appropriate method to use for this part of our study. Since supervised machine learning 

gave us a low accuracy, even with using small number of keywords, we decided to use another approach: 

clustering with unsupervised machine learning. For this we applied the same Python library as for topic 

modelling, Scikit-learn. The program, which we built in Python, uses the K-means clustering algorithm 

(Kanungo et al., 2002; Wagstaff, 2001). It splits all the data into the specified number of clusters, and in 10 (or 

another specified number) different circles it modifies the sizes of the clusters and fits the data to them in the 

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
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best possible way. After this process, we can extract the keywords which represent each cluster and assign 

them to the particular items. At the beginning, we needed to run some visualization in order to define the best 

number of clusters for our data (this is called 'Elbow plot'). The spots where the line 'breaks' and has a form 

similar to an elbow, are the best for visualization. Then we have to choose the number of clusters we want to 

have and the number of words in each cluster. 

 

First, the program creates the word-document matrix (counts how many times each word is presented in each 

document). Second, it generates another one, with distances between different words (how close are two 

words to each other in each document). it defines k initial 'means', which are randomly generated within the 

data domain. Then it creates k clusters by associating every observation with the nearest mean. After that the 

centroid of each of the k clusters becomes the new mean. It creates new clusters around these means and 

repeats this process until convergence has been reached.  

 

 
Fig. 8 Elbow plot example 

1.2.3.4.3 Results 

 

 Our Python scripts for clustering using unsupervised machine learning 

 CSV-file of Dataset labelled with 81 clusters 

 

As an output of this process we get the number of clusters we specified before. We can look through them 

and eliminate the ones which do not make sense. Then, the program assigns these clusters to corresponding 

items in the dataset and each item is given a number of keywords in the cluster. Our recommendation for use 

is to carry out unsupervised machine learning and clustering data with the different 'topics' or sub collections 

https://drive.google.com/drive/folders/1opkKSQTOR_hshoee1GIRuRpet2-GW1Vp?usp=sharing
https://docs.google.com/spreadsheets/d/1RY4UEBpnRV1Tcw8BGcnEpSp2xFKJdfZpWFnldPnA--I/edit?usp=sharing
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within the larger 1914-1918 collection, because it will help to define subtopics within subtopics and make 

these more organized. We recommend to play with the number of clusters and to see which number gives the 

best result, and also to check the keywords in the resulting file, removing the keywords which do not make 

sense. 

 

As a result, we get a new column in our dataset with keywords representing clusters. However, even after 

eliminating clusters which do not make sense, we often get incorrect results. If we choose 5-10 keywords per 

cluster, it is very likely that some of them will be correct while others will not (but choosing less may lead to 

inaccuracy too). For our project, 5 keywords per cluster gave the best performance. 

 

Two steps can be carried out for improving the result: (1) trying a different number of clusters/keywords and 

choosing the most accurate one, and a (2) manual check of the keywords assigned to the dataset and 

eliminating the ones which are not correct. 

1.2.3.4.4 Our recommendations for replication 

 

The Python scripts for clustering can be found here. First, for defining the clusters the script cluster_prepare.py 

should be run. It will show the plot with the line, which has some more or less recognizable breaks (or 

'elbows'). You should remember the number on the x (horizontal) axis which corresponds to one of the 

'elbows'. This should be a relevant number of clusters for your case. Then the script will ask you which number 

of clusters you prefer and you should enter this number. For running the scripts the following Python libraries 

have to be installed: NLTK, Re, Pandas, Sklearn (Scikit-learn), Numpy, Matplotlib. 

 

At the beginning of the script you will find a list of stop words, which should be replaced by the corresponding 

one according to the collection analysed – we recommend to extend it after the first running of the script, 

after which irrelevant keywords will be clearer. After this you can run cluster_prepare.py again and see how 

removing stop words influences the result.  

 

The script will save the clusters' numerical representations in the file Centroids.npy (researchers do not have 

to do anything with this file, it will be automatically used by another script). Then they should execute another 

script - cluster_run.py. It will read the clusters defined in the first script and ask which of them you would like 

to remove (some of them will not make 'sense'). After that, it will apply the rest of the clusters to your data 

(the file which you give as an input at the beginning) and save it as a csv-file (the example output file is here). 

 

At the end, we recommend to evaluate the results of the clustering. If it is observed that many clusters do not 

correspond with the items they are assigned to, the researcher should try to run all the processes again with 

a different number of clusters and keywords per cluster. After the best possible combination of these numbers 

is found, in order to use these keywords for labelling data we still recommend a manual check and an 

elimination of irrelevant keywords.  

https://drive.google.com/drive/u/0/folders/1opkKSQTOR_hshoee1GIRuRpet2-GW1Vp
https://drive.google.com/drive/u/0/folders/1opkKSQTOR_hshoee1GIRuRpet2-GW1Vp
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1.2.4 Discovering hidden stories and themes in Europeana 1914-1918 using data 

science methodologies: case studies5 

 

Drawing upon and expanding the protocols outlined in §1.2, the following part of the project pays further 

attention to the possibilities for discovering hidden stories and themes in Europeana 1914-1918 using data 

science methodologies, by means of specific case studies. 

1.2.4.1 Implementation of data science methods to discover hidden WW1 stories 

 

Europeana 1914-1918 constitutes a large collection of people's stories and memories, either in (audio)visual 

or textual format, that are presented to users through the mediation of the platform. Therefore, Europeana 

stands as a mediator of stories and memories, for users that might find it inspiring to educate and inform 

themselves about historical happenings and events of the past through words, pictures, and sometimes 

narratives of people that lived at the centre of them. Since it is quite common for people to update their 

knowledge every time they experience something relevant on the matter, almost as if updating a sense of 

prosthetic memory, the browsing of the Europeana pages could potentially lead to the formation of new 

cognitive topics to substitute old, pre-existing ones (Rose, 1992). Therefore, Europeana users might engage in 

a seemingly update-like process, where they often renew their comprehension of historical and cultural events 

of the past. Europeana, as a facilitator of stories and simultaneously a media repository that people use, can 

shape their prosthetic memory in a subconscious manner, functioning hence as an 'active memory tool', 

through technology (van Dijk, 2004, p. 262). Furthermore, Schwarz (2010) posits that the present is in position 

to shape people's understanding of the past to the same extent that the past can influence present behaviour. 

Consequently, it is safe to assume that different people and different cultures can establish different ways of 

remembering and experiencing the past and the present. 

 

Memory work up until the late 1960's was led by and assigned to privileged males, being identified as ''the 

preserve of elite males, the designated carriers of progress' (Gillis, 1994, p. 403). Therefore, this research on 

the contrary focuses on the stories that have been overlooked and erased by the dominance of the male 

centric canon. Hence, the main sub collections that are used to exemplify the formation of the users' cultural 

and public memory in this part, are the Women in World War I collection and a part of the Photos collection 

also centred around women. In order to explore and justify the different patterns between (audio)visual and 

textual resources, a combined dataset of the World War I letters and the World War I diaries of the Europeana 

1914-1918 initiative, is also analysed: 

  

                                                
5 For more see also Tatsi, I. (forthcoming Summer 2019). Reimagining Storytelling: The discovery of hidden stories and 
themes in the Europeana 1914-1918 collection, by making use of data science methodologies. (Unpublished master's 
thesis Digital Humanities). Supervisor: B. Hagedoorn. University of Groningen, the Netherlands. 
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 Women in World War I World War I Diaries 

and World War I 

Letters 

World War I Photographs 

Type of dataset Text and (audio)visual 

sources 

Text sources (audio)visual sources 

Number of objects per 

dataset  

921 1400 320 

 

The Humanities field traditionally regards textual corpora using qualitative methods, whereas digital 

humanities perceive them through various quantitative analyses. Therefore, this research will take advantage 

of various digital humanities methods and digital tools, carried out under a reflexive and a heuristic approach, 

especially since the digital sources of the Europeana 1914-1918 collection, will be used as tools to investigate 

and renegotiate research hypotheses throughout history (Teissier, Quantin and Hervy, 2018). This notion 

aligns closely to the question of the implementation of data science methods to discover stories of the 

historical era of WWI that have been overlooked. Furthermore, by unearthing stories that might not have 

made it into the spotlight before, new information might arise; information that could challenge historical 

events and the perception of the past as it is comprehended today. 

 

As described in the data science protocol, all the sub collections are scraped from the Europeana platform on 

the basis of titles, descriptions, type of digital object, provider, institution, creator, when it was first published, 

individual subject, language, providing country, link to the page, and whether or not the data is available to 

use, and then merged with the respective translations (see §1.2). For analysing user generated content and 

linked open data, the source code for the scraping is further modified, in order to parse another attribute from 

the Europeana page: whether each particular object of the collection was submitted by an individual (user 

generated) or if it belongs to an institution/collection (linked open data by content providers). All of the data 

is stored in individual files, in .csv format.  

 

Each dataset will be following the initial scraping process and translation, as presented in the protocol (§1.2). 

About 20%-30% of the descriptions has not been translated, hence this translation is carried out manually. 

Therefore, a single file in .csv format is produced having the same attributes mentioned above, including the 

collection each individual object belongs to and the translation of its description. 

1.2.4.2 Uncovering hidden stories in the Women in World War I dataset using topic modelling 

 

The Women in World War I collection was scraped from the Europeana 1914-1918 platform using the data 

science protocol (§1.2), which resulted to a .csv file of 997 items. The Google Cloud API was used to 

automatically translate about 70%, the other 30% was manually translated into English, supported by Google 

https://drive.google.com/drive/folders/1Fim9mtaWQXLSaf8cx87V1-kB_yEI4VGA?usp=sharing
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Translate. After cleaning the data and removing duplicates or items with no useful information, the .csv file 

consists of 921 items. 

 

Each item in the Women in World War I collection, is accompanied by a description, which depending on the 

item varied in sizes. Therefore, the first step in the process would be to analyse the descriptions of the items. 

However, as seen below, a data problem arises, concluding that the deviation of the description sizes was too 

big (3-386 words), something that could create problems with using standard text-mining techniques, such as 

topic modelling and clustering. Instead, custom labels were produced (§1.2), after a lengthy manual 

annotating process of the collection, where context and the most concise information from each item were 

extracted by the annotator. 

 

 Descriptions size Labels size 

Mean 104.38 9.95 

Min 3.00 1.00 

Max 386.00 41.00 

Statistics of descriptions and labels size 

 

 

Fig. 9 Word counts of description sizes (x axis: size of descriptions / y axis: frequency) 
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Fig. 10 Word counts of label sizes (x axis: size of labels / y axis: frequency) 

 

After the annotating process, the produced labels allowed for the formation of a more representative and 

concrete dataset, which as seen in overview above ‘Statistics of descriptions and labels size’, has a range of 1-

41 words, small enough to be manageable and concise, while simultaneously diverse enough to provide useful 

information. The representations of the word count of the datasets are also very telling (Fig. 9 and Fig. 10). As 

seen in Fig. 9 with words counts of description sizes, descriptions follow the Poisson distribution (Haight, 

1967), whereas the labels (Fig. 10 with words counts of label sizes), follow the normal distribution, which 

allows for the use of more standardized statistical methods using this particular dataset. 

 

For the following step, a representation of the word frequency in the annotated labels is depicted, for the 30 

most found labels (Fig. 11). As seen in Fig. 11 30 most frequent labels in the Women in WWI collection, the 

most important words are as expected war, soldier, man. However, this is followed by the words woman and 

wife, therefore positioning the female presence well into a male-dominated historical period. The next words 

that follow revolve heavily around death, injury, and soldiers. 
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Fig. 11 30 most frequent labels in the Women in WWI collection 

 

Fig. 12 Coherence score from 2-14 topics 
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Topic modelling is used, in order to extract possible contexts and topics of interest, by using the Gensim library 

for Python. This library provides the LDA algorithm, one of the most well-known for topic extraction. Topic 

modelling is a text-mining technique that enables the discovery of associated words in a text corpus, by 

identifying patterns. In our case, due to the absence of a large text corpus, we used the constructed datasets, 

i.e. the extracted labels, web entities, and the translated diaries and letters. By determining the words that 

most closely relate with each other, we can identify associated topics. In order for the number of topics to be 

produced, a coherence score was incorporated, in order to figure out the possibility of a good topic size. By 

experimenting from 2 to 14 topics, it seemed like the 6 topics might have had a higher coherence score, but 

the 8 topics made more sense to the annotator, so the number decided to remain at 8 topics (Fig. 12). The 

results of the topic modelling algorithm with 8 different topics, can be seen in Fig. 13, along with two examples 

of data visualization for two of the topics; model clusters extracted using LDA (Fig. 14 and Fig. 15).  

1.2.4.2.1 Results 

 

 CSV-files dataset case study Uncovering hidden stories in Women in World War I  

 Scripts case study Uncovering hidden stories in Women in World War I  

 

The topics that were created by topic modelling are quite logical in terms of context. In particular, themes 

such as nurses taking care of injured soldiers, postcards and correspondence between families, as well as the 

bravery of soldiers are mentioned throughout the collection. That bravery often resulted in the award of 

medals and certificates, sometimes issued even posthumously to the widows. However, something that was 

not made clear by topic modelling, but was noted by the annotator of the dataset, is that for many of the 

widows that had their 'stories' present in the platform, it was very hard to be able to acquire pension from the 

government, sometimes even having to fight it legally (Topic [0]). Also, during the correspondence between 

soldiers and families, soldiers were not allowed to disclose either their locations or any military information 

whatsoever, since mailing services were heavily censored. Many times, soldiers had to cunningly hide 

information within their letters, either in coded writing or by writing under the stamp area (Topic [3]). 

Furthermore, one of the topics, mentioned is the involvement of women during the war, either in voluntary 

terms, such as nurses at military hospitals or the Red Cross or in the rarer instance of wealthy women, by 

giving money to charities and organising fundraisers. The word 'gender stereotypes' appears in this cluster, 

which the annotator used in items of the dataset, where the abilities of women to work hard or significantly 

contribute were either underestimated or ignored. For an abundance of items in the dataset, women that 

were left behind in the homeland, while male members of their family fought at the fronts, were usually in 

charge of keeping the household and the members of it afloat. However, what many of them received in return 

were letters and postcards ridden with anxiety, questioning their survival skills (Topic [7]). Moreover, in Topic 

[5], the correspondence between families and soldiers is also mentioned, with the exception that the 

correspondence in this topic includes words of affection, love, family, and were often accompanied by hand 

drawn pictures or handicrafts. This topic could allude to a more affectionate side of these soldiers, more prone 

to vulnerability and sensitivity. It is interesting to note that if these soldiers survived and returned home, they 

never again discussed the war with their families.  

 

https://drive.google.com/drive/folders/1SrVRzCjT0vZRXi_e6SZR-OGQyNOMFiQv?usp=sharing
https://drive.google.com/drive/folders/1W6bdPCx0fecdE0gDYF83SPmX1hGACqbf?usp=sharing
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Consequently, it is rather obvious from the above remarks that machine learning techniques alone are not 

always enough to provide accurate results context-wise. It is very important in order to carry out a complete 

and concrete task in topic modelling, for the domain knowledge of the annotator to be involved. The results 

of the topic modelling algorithm with 8 different topics, can be seen in Fig. 13, followed with two examples of 

data visualization for two of the topics (Fig. 14 and Fig. 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image 2 Left: 'I stand in gloomy midnight!' A field service postcard featured in the Women in WWI collection.  

Image 3 Right: A censored field service postcard featured in the 1914-1918 collection. 

 

 

Topic 

Number 

Words Topics produced 

[0] courage, bravery, honour, medal, 

left_behind, certificate, woman, 

medals, widow, Irish 

Soldiers fought with bravery and courage and either 

received medals upon their returns or their wives 

received their death certificates. 

https://www.europeana.eu/portal/en/record/2020601/contributions_4855.html?q=women#dcId=1561512746657&p=1
http://blog.europeana.eu/2018/10/use-of-propaganda-in-wwi-postcards
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[1] soldiers, active_duty, care, war, 

recovery, nurse, bravery, uniform, 

postcards, military_hospitals 

Brave nurses worked at military hospitals and took 

care of injured soldiers until they recovered. Often, 

they received letters/postcards of gratitude. 

[2] nationalistic, patriotic, sadness, 

symbols, army, educated, training, 

women, young, possible_death 

Many postcards contained patriotic and nationalistic 

symbols, which were often sent by young and 

educated people in the army or by women. 

[3] transfer, horse, family, hospitals, 

hard_work, censorship, hospital, help, 

brothers, doctor 

Families worked hard to sustain themselves and send 

help to soldiers, who sometimes transferred or got 

injured. 

[4] war, soldier, man, injured, family, 

woman, children, correspondence, 

war_life, letters 

Soldiers corresponded with their families, sending 

letters with their news about life at the front. Often, 

they got injured. 

[5] affection, woman, portrait, child, 

album, love, handicrafts, 

no_war_discussion, man, married 

Many postcards featured family portraits of the 

soldiers or crafts on them, containing words of love 

and affection. Usually if more sensitive soldiers 

survived, they never mentioned the war again. 

[6] soldier, wife, death, marriage, man, 

war, letters, survived, worker, war 

Many soldiers were workers before the war and they 

exchanged letters with their partners or got married 

upon their return, provided they survived. 

[7] sister, gender_stereotypes, postcards, 

elegant, photos, irish, red_cross, 

everyday_life, messages, fundraising 

Rich women often helped the war cause by 

fundraising, whereas other volunteered at the Red 

Cross, contributing more than society thought 

possible. 

 

Fig. 13 The results of the LDA algorithm for 8 topics, in Women in World War I sub collection 

 

Fig. 14 and Fig. 15 are two examples of the model clusters extracted using LDA. This graph creates a two-

dimensional representation of discovered topics using the LDA algorithm (from Gensim) and the pyLDAvis 

Python library. The circles represent the extracted topics, and using dimension reduction algorithms it 

transforms them into a 2-dimensional plane. Their size represents the frequency of the times that a topic 

appears in the dataset corpus (the bigger the diameter, the more often a certain topic appears). In addition, 

the right side of the graph shows the most important associated words for the selected topic, as well as the 

number the times (this refers to the frequency of the times that a topic appears in the dataset corpus discussed 

above) appear in that topic compared to the whole corpus. For example: in Fig. 15, the topic [1] is selected, 

and the first, most important term, soldier, appears about 190 times, whereas it appears in the total corpus 

around 400 times. 
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Fig. 14 Model Clusters Extracted Using LDA, Topic [0] 
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Fig. 15 Model Clusters Extracted Using LDA, Topic [1] 
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For the purposes of examining if any differences exist between patterns in user-generated and open linked 

content, another attribute was created within the dataset, one that indicated whether each item was 

submitted by a person or was provided by a cultural institution. However, overall in the dataset there was a 

huge difference in numbers, with the user-generated content reaching 826 items and the linked open data 

reaching only 86. Therefore, before topic modelling is even performed at the two different data frames, it 

seems that it could be quite likely that results are not being as concrete as they would have been, if a more 

equal representation of content was noted. After an examination of the number of topics that made more 

sense to the annotator, the results of topic modelling for user-generated content (Fig. 16) and for linked open 

data (Fig. 17), are presented below. For instance, topic [3] that derives from the topic modelling algorithm for 

the user-generated content, consists of the words: war, soldier, man, death, wife, woman, correspondence, 

and refers to the correspondence between soldiers and their families back home or sometimes the notices of 

death they received. 

 

Topic Number Words 

[0] soldiers, war, medal, patriotic, soldier, postcards, 

wife 

[1] war, soldier, man, wife, letter, woman, family, 

death 

[2] soldier, death, woman, affection, wife, war, 

sadness, husband 

[3] war, soldier, man, death, wife, woman, 

correspondence 

[4] soldiers, care, nurse, woman, active_duty, 

recovery 

[5] war, soldier, man, wife, bravery, honour, death, 

marriage 

 

Fig. 16 The results of the LDA algorithm for 6 topics for user generated content in Women in World War I  

 

Topic Number Words 

[0] man, woman, death, mass, commemoration, 

memorial, portrait, postcard 

[1] war, bravery, soldier, women, honour, active_duty 
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[2] war, soldier, care, active_duty, nurses, letter, 

recovery, soldiers 

[3] woman, war, portrait, soldier, family, death, child, 

wife 

[4] war, family, letters, correspondence, man, wife, 

soldier, worker 

[5] war, woman, soldier, portrait, men, group, women 

 

Fig. 17 The results of the LDA algorithm for 6 topics for linked open data in Women in World War I  

 

It is quite visible from the presentation of the topics above, that they share more similarities than differences. 

Both user generated content and linked open data labels heavily revolve around the correspondence and the 

letters exchanged between families and soldiers on the front. Also, both labels feature the involvement of 

women as nurses -most of the time volunteers- that actively and with a lot of bravery, stepped up to the 

circumstances and risked their lives to take care of injured soldiers. A lot of notices of death are mentioned in 

the user generated content, which is quite logical since families received letters declaring their familiar ones 

injured and then succumbing to their injuries or being instantly killed on the battlefield. Most of these letters 

were accompanied by words of praise about the deceased individual's bravery or they were even awarded 

medals and certificates. Also, the word portrait prevails on the linked open data content, meaning a lot of the 

items, were either portraits of families, soldiers or at times even nurses and medical personnel. Concluding, a 

religious and ceremonious element is visible in the linked open data, with the words, commemoration, mass, 

and memorial featured in one of the topics. 

1.2.4.3 Uncovering hidden stories in the Diaries and Letters in World War I dataset using 

sentiment analysis 

 

This dataset comprises from diaries and letters acquired from the transcribed section of the Europeana 1914-

1918 platform.6 After the initial scraping of the platform, the dataset produced consisted of 1400 items, in 

many European languages, translated following the protocol (§1.2). The tools and libraries used to extract the 

data and analyse the results, are following. 

 

For the next part of the dataset analysis, a set of language modelling and feature learning methods in natural 

language processing (NLP) was implemented, called word embedding. As elaborated previously, Mikolov's 

team at Google, invented Word2Vec, a word embedding tool, which can fast train vector space models 

(Mikolov, et al., 2013). During this process, words and sentences of a body of text are outlined to vectors, 

                                                
6 See: https://transcribathon.com/en/ 

https://transcribathon.com/en/
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meaning that Word2Vec takes the text and outputs work vectors. By creating a vocabulary from the text data 

that is used to train it, the tool consequently learns to represent words as vectors.7 

1.2.4.3.1 Results 

 

 CSV-files dataset case study Uncovering hidden stories in WWI Diaries and Letters 

 Scripts case study Uncovering hidden stories in WWI Diaries and Letters 

 

For the diaries and letters dataset from Europeana 1914-1918 platform, the reason for using word embeddings 

is to incorporate user input and find the closest word to one that is specified every time. The underlying 

assumption of Word2Vec is that two words sharing similar contexts also share a similar meaning and 

consequently a similar vector representation from the model. From this assumption, Word2Vec can be used 

to find out the relations between words in a dataset, compute the similarity between them or use the vector 

representation of those words as input for other applications, such as text classification. The results for the 

words nurse, war, German, and gas are presented in Fig. 18 below, all words relevant to World War I. As is 

made visible, the word associations created by the implementation of word embeddings, are quite relevant 

and sensible context wise. 

 

Words Associations 

nurse charity, lily, nursing, voluntary, room, care, aid, 

red 

war conflict, period, campaign, warrior, he, 

corresponding, battle 

German captured, allies, protection, offensive, troops 

gas lines, fire, shells, subjected, enemy, attacks, 

night, violent, bombardment, attacked  

Fig. 18 Word embeddings associations in the World War I Diaries and Letters collections, where the Word2Vec 

algorithm produces a range of relevant words, based on one word from the user’s input. 

 

As can be seen from Fig. 19, the five most frequent languages present in the Diaries and Letters in World War 

I collections are German, French, English, Dutch, and Greek, whereas the least frequent languages are Serbian, 

Spanish, Luxembourgish, Frisian, and Portuguese. This result is quite logical since the most dominant 

languages were quite involved in World War I and the least dominant originate from either country with small 

populations or countries that weren't actively involved in the Great War. 

 

                                                
7 See: https://code.google.com/archive/p/word2vec/.  

https://drive.google.com/drive/folders/1SrVRzCjT0vZRXi_e6SZR-OGQyNOMFiQv?usp=sharing
https://drive.google.com/drive/folders/1W6bdPCx0fecdE0gDYF83SPmX1hGACqbf?usp=sharing
https://code.google.com/archive/p/word2vec/
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Fig. 19 Distribution of origin in the World War I Diaries and Letters collections 

 

Language memo with Fig. 19: 

de German 

fr French 

en English 

nl Dutch 

el Greek 

ro Romanian 

it Italian 

pl Polish 

sk Slovak 

cs Czech 

sl Slovenian 

hr Croatian 

lv Latvian 

bs Belarusian 

co Colombian 

da Danish 

hu Hungarian 
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pt Portuguese 

fy North Macedonian 

lb Luxembourgish 

es Spanish 

sr Serbian 

 

An applicable methodology that was implemented on this dataset, was sentiment analysis. The Python library 

TextBlob was used, which provides pre-trained models that can quite accurately predict the sentiment of a 

sentence (an array of tokens), in a range of (-1, 1), -1 being the most negative limit, and 1 being the positive 

one. The float range used was [-0.5, +0.8], with -0.5 being 100% negative and 0.8 being 100% positive (Fig. 20). 

From the analysis, some interesting results emerge. First of all, there are no far-negative sentiments, as the 

most negative one is around -0.5, in stark contrast to the positive limit, which is 0.8. It is also quite clear that 

most of the items are found to have no sentiment, and if they do, it is more often than not positive. A visible 

cluster of positive sentiments near 0 (so around 0 - 0.5) could easily be expected in correspondence between 

soldiers and their families or diaries, where emotions such as hope, affection, love, longing, etcetera can occur.  

 

 
 

Fig. 20 Distribution of sentiment in the World War I Diaries and Letters collections (x axis: individual collection 

items and their position on the sentiment scale / y axis: distribution, frequency of appearance).  
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The majority of the items can be found in the middle, having been assigned a neutral value (Fig. 20). This is 

expected since the content of the dataset was tied to history and it probably did not contain high-score 

sentiment words, which can be found in social media content or product reviews. However, the texts that 

contain positive sentiments clearly exceed the negative ones, which could be expected in correspondence 

between soldiers and their families or diaries, where emotions such as hope, affection, love, longing, etcetera 

could be present. 

 

NB: Note that in the figure representing the distribution of sentiments in the extracted documents (Fig. 20), 

the x axis represents the sentiment range, from negative -0.5 to positive +0.8. The bars themselves are just 

distributions that show a general picture of the sentiments inside the diaries and letters. The large bar in the 

middle is the count of the diaries and letters that have no sentiment, or better, the sentiment was not 

identified. It is clear from the graph, that most of the tests had neutral to positive sentiments, as this is obvious 

from the size of the bars on the right of the middle bar. 

 

In reflection, sentiment analysis as a methodology is often used in political contexts, as a measure of public 

opinion, something which could be useful if the Europeana datasets could be explored and clearly annotated 

by domain experts. A political subcategory could provide a significant insight on the subject matter. However, 

the use being made here is subtler, as it is a useful sample of the mean emotional state of the authors, while 

at the same time the topics are explored (as explained in the topic modelling part of this report). 

1.2.4.4 Comparison with Cloud Vision API when using data science methodologies with 

(audio)visual sources 

 

This dataset (the Europeana 1914-18 sub collections: Women in WWI, Diaries, Letters, Photos) contains 

(audio)visual content, including images. Since the previous dataset contained only text documents, it is rather 

interesting to work with images and be able to analyse their content. In order to do that, the Europeana 1914-

1918 platform was scraped using the Gensim Python Library, as to acquire all the photographs that were 

connected to the keyword 'women'. The resulting .csv file contained 339 items, out of which only the 320 were 

usable, these were later uploaded to a pre-trained model, namely Google Vision API. The latter allowed for 

the retrieval of various, diverse information on the images.  

1.2.4.4.1 Results 

 

 CSV-files dataset case study comparison with Cloud Vision API when using data science 

methodologies for (audio)visual sources 

 Scripts case study comparison with Cloud Vision API when using data science 

methodologies for (audio)visual sources 

 

The results that were retrieved from the upload of the images on the Google Vision API, were labels and web 

entities. The labels refer to the context of each image, with examples being vintage clothing, family, art, etc. 

https://drive.google.com/drive/folders/1SrVRzCjT0vZRXi_e6SZR-OGQyNOMFiQv?usp=sharing
https://drive.google.com/drive/folders/1W6bdPCx0fecdE0gDYF83SPmX1hGACqbf?usp=sharing


 

 

 

 

 

 

41 

 

 

 

 

 

 

 

Web entities describe the context around the photograph as an item, i.e. what collections it was found in, such 

as Europeana or other possible websites that the picture might have been found on. By performing statistical 

analyses, two graphics were created, one for the label frequency (Fig. 21) and one for the entity frequency 

(Fig. 22). Furthermore, topic modelling was used to analyse the labels and the entities scraped from the 

dataset, using the Python library Gensim and the algorithm LDA. The results are presented below (Fig. 23 and 

Fig. 24), along with two examples of visualization graphs: two respective model clusters extracted using LDA 

for topic modelling (Fig. 25 and Fig. 26). 

 

 
Fig. 21 Label Frequency of Photographs in World War I dataset 
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Fig. 22 Entity Frequency of Photographs in World War I dataset 

 

Topic modelling was used to analyse the labels and the entities scraped from the dataset, using the Python 

library Gensim and the algorithm LDA. The results are presented below (Fig. 23 and Fig. 24), along with two 

examples of visualization graphs, one for the labels (Fig. 25) and one for the entities (Fig. 26). An example of 

LDA for topic modelling follows. 

 

import gensim 

import gensim.corpora as corpora 

from gensim.utils import simple_preprocess 

from gensim.models import CoherenceModel, LdaModel 

 

import pyLDAvis 

import pyLDAvis.gensim 

 

 

# CHANGE THOSE TO MAKE IT WORK 

DATA = labels # entities / labels 

TOPIC_NR = 6 

WORD_NR = 8 
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data_token_sentences = [e.split() for e in DATA.to_list()] 

dictionary = corpora.Dictionary(data_token_sentences) 

corpus = [dictionary.doc2bow(e) for e in data_token_sentences] 

 

ldamodel = LdaModel(corpus, num_topics=TOPIC_NR, id2word=dictionary, passes=15) 

topics = ldamodel.print_topics(num_words=WORD_NR) 

for topic in topics: 

    print(topic) 

 

Topic Number Labels 

[0] Photography, Photograph, Snapshot, Black-and-

white, Stock_photography, Monochrome, 

Monochrome_photography, Adaptation 

[1] Vintage_clothing, Photograph, Retro_style, 

Snapshot, Lady, History, House, Hairstyle 

[2] People, History, Crowd, Photograph, Troop, 

Photography, Stock_photography, Snapshot 

[3] Paper, Text, Paper_product, Letter, Font, 

Document, Handwriting, Bishop 

[4] Photograph, Uniform, Family, Vintage_clothing, 

Crew, Team, History, People 

[5] Stock_photography, Photograph, Photography, 

History, Adaptation, Snapshot, Tree, Paper_product 

 

Fig. 23 The results of the LDA algorithm for 6 topics for labels  

 

Topic Number Entities 

[0] War, World_War_I, World_war, Soldier, History, 

World 

[1] Landscape, Photograph, Tree, Library, 1918, Winter 

[2] Water, Tellurium, Iodine, Vlorë, Silicon, 

Black_and_White, M 
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[3] Vintage_clothing, Clothing, Troop, Tree, Vehicle, 

Militia 

[4] Stock_photography, Photography, Image, 

Photograph, Getty_Images, Download 

[5] Vintage_clothing, Clothing, Photograph, 

Human_behavior, Human, Behavior 

[6] Tree, Phenomenon, History, Photograph, War, 

Europeana_1914-1918 

[7] Military, Militia, Army_officer, Infantry, Soldier, War 

 

Fig. 24 The results of the LDA algorithm for 8 topics for entities 

 

Although the results in topics make sense, it is clear that the Cloud Vision API (being pre-trained in all kinds of 

images) can only do so much for the purposes of this research. The labels are quite generic and not as useful, 

providing little actual context for the themes presented in each image. It is therefore quite clear that a human 

annotator, especially one with domain knowledge on the subject, can provide labels that are more distinct 

and consequently more useful in creating different categories, topics, and themes for the Photographs in 

World War I dataset centred around women. 

 

In addition, in order to perform sentiment analysis on the Photos Collection, the facial recognition service of 

the Cloud Vision API was implemented. However, while exploring the different photographs, it was noted that 

due to their bad quality, their blurry undertones, as well as the limited size of the dataset, the software could 

not pick out any distinctive emotions or recognize facial expressions. Therefore, the results of the sentiment 

analysis for this comparison part were deemed inconclusive and were not included in the results section. 

 



 

 

 

 

 

 

45 

 

 

 

 

 

 

 

Fig. 25 Model Clusters Extracted Using LDA [labels] 
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Fig. 26 Model Clusters Extracted Using LDA [entities] 
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1.3 Affordances of storytelling and creative reuse with Europeana 1914-

1918: reflections on Europeana as 'an active memory tool'?8 

 

A recurring practice in digital platforms with an educational and research character, over the past few years is 

to ask the public to participate and contribute to the work carried out; something that not only allows the 

curators of the platform to augment the already available heritage collection data, but to also engage with the 

general public in a deeper and a more meaningful level; platforms such as EUscreen or the digital version of 

the Library of Congress.9 Projects that deal with mediated memories, identical or similar to the historical era 

on which the Europeana 1914-1918 revolves around, have also been launched.10 Europeana incorporates a 

Reuse Team that aspires to augment the reuse of Europeana collections, targeting professionals functioning 

within the fields of research, education, as well as the creative industries. In particular, Europeana invests in 

collaborations with selected professionals deriving from the above-mentioned fields who act as mediators in 

order to improve outreach and engagement within the relevant audiences. Europeana's way to achieve this is 

through providing online spaces via Europeana Pro, reliable channels of communications, and most 

importantly access to relevant content, such as via APIs.11 

 

The Europeana 1914-1918 project was developed in partnership with the Oxford University Computing Service 

(OUCS), and while collaborating with the Nationalbibliothek, the project toured eight different cities in 

Germany in 2011, people were asked to come forward with documents and memorabilia, to have them 

digitized on the spot.12 Experts were also present on location, in order to identify authentic military artefacts 

and also talk to the public about their objects. People were also invited to upload digitized scans of their 

possessions online. Since most of the material uploaded online was previously unpublished, the newly-found 

digital collection, was a rich source of information that were available for research, not only on military fronts, 

but also on various European countries during World War I. The main aim of the Europeana 1914-1918 

                                                
8 For more see also Tatsi, I. (forthcoming Summer 2019). Reimagining Storytelling: The discovery of hidden stories and 
themes in the Europeana 1914-1918 collection, by making use of data science methodologies. (Unpublished master's 
thesis Digital Humanities). Supervisor: B. Hagedoorn. University of Groningen, the Netherlands. 
9 See: http://euscreen.eu/ and https://www.loc.gov/film-and-videos/collections/.  
10 For the project Living Legacies, see: https://nigradfair.org/sites/LivingLegacies1914-18/, this project provides 
communities with access to information, expertise and support for projects that explore the impacts that World War One 
had in Britain and Ireland, and the war's continuing legacies today. Furthermore, while striving to explore and analyse 
the casualties of the Great War and its significance for Canada, Antonie et al. (2016), created a methodology that allowed 
them to integrate more than one historical source and extract various results. Therefore, a new dataset with geographical 
data about Canadian soldiers who fought in World War I, was produced. This dataset presented social and history 
researchers with the opportunity to explore, analyse, and create new hypotheses about soldiers and their demographic 
information (p. 192). Finally, another project that implemented digital methods to historical datasets, revolved around 
the presence of Belgian refugees in Wales during World War I. It aimed to not only demonstrate the totality of archival 
records, but most importantly to allow new insights and conclusions to be formed about the local reactions to the largest 
refugee movement of the twentieth century, see also: http://www.walesforpeace.org/wfp/news-article.html?id=48 
11 See: https://pro.europeana.eu/page/re-use-team 
12 See: https://pro.europeana.eu/project/enrich-europeana.  

http://euscreen.eu/
https://www.loc.gov/film-and-videos/collections/
https://nigradfair.org/sites/LivingLegacies1914-18/
http://www.walesforpeace.org/wfp/news-article.html?id=48
https://pro.europeana.eu/page/re-use-team
https://pro.europeana.eu/project/enrich-europeana
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initiative was for the individual, unseen, family stories to take their place next to the official historical sources, 

and significantly contribute to the formation and enhancement of cultural memory (Purday, 2012, p. 8). 

A large part of cultural institutions, tasked with -amongst others- preserving and exhibiting the past, often 

reinforce dominant narratives and power structures with their practices, all the while maintaining and 

memorializing content that associates with power and control. In order to locate and unearth the stories and 

testimonies of people functioning outside these power structures, researchers have turned to alternative 

archives, such as 'visual images, music, ritual and performance, material and popular culture, oral history, and 

silence' (Hirsch and Smith, 2002, p. 12). By allowing users to upload content that they own, that might be 

significant and emotional to them, transforms users from mere consumers of content to agents who engage 

with history and actively contribute to collective, public memory (Owens, 2013, p. 128). Furthermore, in the 

case of Europeana, the engagement with the public can be achieved from a multicultural perspective, since 

the platform is a melting pot of languages and historical sources deriving from all over Europe. This exact 

engagement of 'end-users' and the multicultural element render the narrativization of heritage a rather 

dynamic and volatile process, that manages to establish 'multiplicity' in the quest for discerning the past 

(Rahaman and Tan, 2009, p. 110). 

 

Any Europeana user is allowed to submit digital material for evaluation on the site, which if deemed reliable 

by an expert's team, will find its way to the platform amongst thousands of personal stories and objects, 

contributing thus to a digital tapestry of memories. Europeana hence, functions as a mediator between the 

general public and the stories that find their way in its digital domain, by freely allowing access to its site. 

Therefore, within these 'mediated' memories that appear on site, both media and memory hold key roles 

between the person and the society; with the users being able to intercept the past in their own way and 

adapt this interpretation to their perception of the present (Van Dijk, 2004, p. 262). However, according to 

Van Dijk (2004) individual memory as a supplementary factor to the historical narrative can be easily 

dismissed, with personal memory being perceived as a cultural phenomenon that harms the notion of 

remembering. It could be suggested that personal memories, narratives, and testimonies coming from 

individuals that do not function within academic scholarship, could harm historical integrity and authenticity.  

In order to comprehend what should and should not find its way into the official historical narrative -becoming 

thus a part of public memory- any claim to historical truth should be considered. User generated content such 

as personal stories, even though they allegedly form perceptions of the actual past, could easily adopt myth-

like qualities. For example, people who belong to a larger collective, sometimes they share stories amongst 

them of the people they believe to be (Poole, 2006, pp. 157-158). However, this does not mean that their 

common stories might not accurately represent the historical past, therefore subjecting them to the same 

amounts of criticism as history.  

 

By elaborating on people's stories on the Europeana 1914-1918 collection, a sense of biographical memory is 

created. According to Kuhn (1995), the forging of individuality occurs through autobiographical story forms 

that go on to shape aspects of personal cultural memory. The sub collections of Europeana 1914-1918, offer 

diverse acts of memory to the users, by allowing them to navigate through pictures, albums, documents, and 

at occasion videos, an action of remembering what Kuhn (2000) has coined as 'memory work, ... [an] active 

practice of remembering which takes an inquiring attitude towards the past and the activity of its 
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(re)construction through memory' (p. 286). In particular Kuhn (2000) goes on to suggest photographs to be 

'far from being transparent renderings of a pre-existing reality, embody coded references to, and even help 

construct, realities' (p. 183). On the other hand, Rose (1992) posits that memories are created anew every 

time people remember, and media tools and technologies are so overwhelmingly full of these exact memories, 

that they essentially become inextricable. Hence, the memory process contains also the making of the above 

memory products, a creative process that allows for the establishment of a perpetuity between the past and 

the present; time and memory constantly influencing each other (p. 264). Being able to often reconstruct 

memories, allows each user's individual memory on the Europeana platform to be formatted, while 

simultaneously influencing the collective memory and identity or at least steering it to specific directions. 

 

History in the 21st century is not only more accessible, but also formulated by digital resources. Therefore, 

the challenge expands beyond the primary steps of digitizing archives and resources. Specifically, the challenge 

for researchers translates to being able to implement already existing content for research purposes. In 

academia, this exact furthering of any research is in position to not only allow new approaches to historical 

hypotheses, but also function as the basis for interdisciplinary research, juxtaposing content and information 

from many possible fields, thus enabling researchers to ask new, innovative, and -previously- unattainable 

questions. As mentioned above, Europeana 1914-1918 offers the possibility to its users to upload digitized 

copies of objects they own that are relevant to the Great War. This open-source feature of the platform allows 

for a wide range of possibilities to be engendered within the digital realm of remembering. Most importantly, 

the concept of juxtaposing already established archives with recently emerged digital collections in a hybrid 

form, could function as the point of reference for a new 'scholarly research infrastructure', not just by merging 

together textual resources or textual with (audio)visual ones, but rather introducing new elements and 

'secondary digital outputs', such as data visualizations (Hughes, 2016, p. 226). Socially, the above juxtaposition 

could form the basis not only for discourses on the power and sociocultural credibility of archives, but also 

open up a much wider discussion on digital collection and their influence in the formation of cultural memory. 

 

For the case of the diaries, letters, and photographs in Europeana's 1914-1918 sub collections presage people's 

decision when it comes to how and which memories are deemed preservable. Especially photo albums and 

scrapbooks would fall under what Foucault (1972) would characterise 'normative discursive agencies', 

mechanisms that on some levels shape people's memories or at least steer them a particular way. 

Nevertheless, the above agencies often become censored and filtered according to social contexts and cultural 

norms, something that often, in terms of cultural memory, creates problems in the distinction between the 

personal and the collective and consequently between the personal and the society (van Dijk, 2004, p. 266). 

Therefore, according to Van Alphen (1999), cultural memory lies at the intersection of personal and the 

collective; with memory and culture as concepts, corresponding better to something that people 'create', 

something that allows them to form their individual and collective identities, rather than something that is 

owned (p. 268). 

 

Modern historians, such as Huyssen (1995), distance themselves from the notion of 'representation' when it 

comes to memory. He claims that representation is what follows memory, since the latter is never authentic, 

but rather restrained to be expressed through images, videos, and texts; therefore, stranded in 
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'representation'. Therefore, it is safe to assume that every segment of memory presented in the Europeana 

platform, lies at the intersection of public and private. Van Dijk (2004) when it comes to the representation of 

memory suggested that: 

 

The past is not simply there in memory, but it must be articulated to become memory. The fissure that 

opens up between experiencing an event and remembering it in representation is unavoidable. Rather 

than remembering or ignoring it, this split should be understood as a powerful stimulant for cultural 

and artistic creativity. (Van Dijck 2004, p. 2)  

 

Over the last few years a shift has been noted in the academic world, a shift from the representation of 

memory to the 'mediation' of memory. Online media and sites are historically considered 'collective 

mediations of the past, where authentic or collective experiences are moulded into prefigured technological 

and narrative frames' (van Dijk, 2004, p. 271). A memory that is frozen and expressed through words, is 

considered to be a 'technologized' memory of sorts, usually present in online media, which simultaneously 

assists the human memory, all the while being perceived as a menace to the printed world; a reality which 

purists fear that hurts the concept of remembrance (Ong, 1982). Therefore, media is put in a rather precarious 

position by many, boosting creativity and at the same time contaminating memory. According to Urry (1996), 

the almost exclusively online presence of media, alters the way that images of the past are formed now. 

Instead of depicting the past, contemporary media generate specific memories, that sometimes might serve 

specific social and cultural power structures. With the abundance of digital tools freely available online, it is 

easier than ever to produce images and consequently memories. Therefore, the mediation of memory is not 

a static concept, but it can rather be negotiated constantly and consequently re-formulated. This is a rather 

significant process, especially regarding memories that have been established within problematic frameworks 

and sociocultural contexts that do not correspond to the present era, and therefore need to be interpreted in 

a different light, so as to address problematic interpretations of history. 

 

The juxtaposition of memory and feminist studies assumes that the contemporary is construed by a past that 

often is problematic and impugned. Both fields suggest that the reason to study the past moves away from a 

purist academic worldview and allows for a better interpretation of the present, as well as highlight the 

importance and value of personal memories and experience within a universe of alike-minded ones. As 

mentioned above, more often than not, memories are created within the framework of dominant, power 

structures and social systems rooted on inequality. Therefore, the mediation of those memories in the present, 

leads to a distorted or at times inaccurate interpretation of the past. Hence, active remembering, and – 

especially at the present time – active, digital remembering, is the tool to challenge forgetting, erasure and 

oppression, rendering the proper inquiry of cultural memory to an act of political activism (Hirsch and Smith, 

2002, p. 13). 

 

Feminist scholarship has strived to bring stories that have been silenced or erased from the historical narrative 

to the surface and include them in the hegemonic cultural memory. Therefore, conjecturing cultural memory 

through feminism, allows for the challenging of the 'cultural recall and forgetting' (Hirsch and Smith, 2002, p. 
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11), as well as identifying the political importance and the reason behind the stories that have remained in the 

dark. Hirsch and Smith (2002) when discussing recent academic work on cultural memory, posit that: 

 

… developments in feminism and work on cultural memory demonstrate that the content, sources, and 

experiences that are recalled, forgotten, or suppressed are of profound political significance. What we 

know about the past, and thus our understanding of the present, is shaped by the voices that speak to 

us out of history; relative degrees of power and powerlessness, privilege and disenfranchisement, 

determine the spaces where witnesses and testimony may be heard or ignored (Hirsch and Smith 2002, 

p. 12). 

 

In the case of the Great War, similar to many historical events throughout time, the role of women has been 

considerably minimized, since history was mostly written by men; a strange result if one considers that the 

world has always been equally populated by both. This erasure of women in history and especially during war 

times, results in a 'weird, unreal, uneven' representation (Ferrus, 2010, p. 65). As seen by an initial, tentative 

exploration of the Women in World War I collection from the Europeana 1914-1918 project, women had a 

significant social and cultural role in public spaces, paving the way for the independent modern woman. 

 

Drawing attention once again to the present study, the analysis of resources in a more traditional, textual 

form, but also (audio)visual ones; will have the internet as a space of presenting their full research potential. 

As mentioned above, this project revolves around the notion of discovering hidden stories within the canon 

representation of significant historical periods, such as the Great War. By unearthing the alternative stories 

and social memories that might be facilitated within the sub collections of Europeana 1914-1918, it will also 

be made possible to also unearth the social, political, cultural, and economic contexts, where disparities were 

dominating people's lives. 

1.4 Overall recommendations 

Digital humanities projects that incorporate data science methods in literary or historical corpora have been 

on the centre of attention of many scholars, for the past decades. For example, Stanford University has 

launched a literary lab that juxtaposes an abundance of textual resources with data analysis methods, in order 

to determine the most useful and interesting subsets of different literary waves.13 Coming from the same 

university, the French Revolution Digital Archive (FRDA) is a collaboration of the Stanford University Libraries 

and the Bibliothèque Nationale de France (BnF), in order to engender a digital version of the key research 

sources of the French Revolution; by making them available internationally, scholars are able to explore the 

historical resources using data science methods.14 The present research will be relevant and probably 

interesting as a juxtaposition of methods for digital humanities professionals, as well as individuals functioning 

within the historical and cultural sector. 

                                                
13 See: https://litlab.stanford.edu/LiteraryLabPamphlet8.pdf. 
14 See: https://frda.stanford.edu/. 

https://litlab.stanford.edu/LiteraryLabPamphlet8.pdf
https://frda.stanford.edu/
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For large datasets, such as the ones featured at the Europeana 1914-1918 collection, applying digital 

humanities methods and using digital tools offer possibilities that qualitative methods in the humanities do 

not, with algorithms playing a vital role in people's everyday life. Not only are they able to process an 

immensely wide array of inputs and variables for decision-making, but they also do it with an agility and an 

accuracy that transcends any possible set of human skills, and at a fraction of the cost. In particular, audio 

visual resources and similar kind of interactive media, as well as textual resources offer a solid ground for 

digital analysis within the Europeana platform. A lot of merit could be added in research processes and results 

by not only focusing on the exploration of individual resources, but rather on the analysis of larger patterns 

within the dataset, since algorithms are able to analyse massive amounts of data in a quick, efficient, and 

inexpensive manner (Manovich, 2016, p. 2). 

During the digital turn that has been gaining ground over the past decades, technological and cultural research 

often coexist and are implemented in such a way that the outcomes complement each other. Working with 

big cultural data helps with the continuous challenging of standard methods and approaches in the fields of 

social science and the humanities. Cultural analytics, as an imminent trend of the 21st century is defined as 

the application of computational methods used for the research of big data sets and flows (a.o. Manovich, 

2016) Therefore, using digital tools allows for the juxtaposition of computational techniques and cultural data 

sets with more traditional methodologies within the humanities. However, the developers of said tools should 

make sure that they are mastered 'from the inside out', making any potential biases unequivocal to the public 

(Tenen, 2016). The digitized past along with the 'semantic knowledge representation methods' could allow 

not only for the exploration of the resources, but also for the possible unearthing of hidden histories within 

Europeana's sub collections (Hughes, 2016, p. 225); both aspects being of great use for the purposes of this 

research. 

 

It is important to point out here the value of making a connection to the 'user side' or 'sociology' of digital 

humanities. User-centred design methodology (see e.g. Zabed Ahmed et al 2006) allows for studying 

engagement when using the platform – so studying in interaction and in practice – and thus studying more 

specifically how users and technologies co-construct meaning. This includes but also goes beyond user 

evaluation. For instance, from a critical digital hermeneutic perspective, the provided 'maps' or overviews of 

the data, topics and sentiments in the Europeana 1914-1918 sub collections from the previous section (§1.2) 

will be compared with the participants' answers in Hagedoorn’s user studies, which allows us to deeper 

understand what kind of stories and platform engagement Europeana 1914-1918 affords the most, and how 

this can be built upon.  

 

The value of 'raw' authentic materials to be able to reuse it is emphasized by the users in the study, and that 

for a large portions of the participants, items on the portal need to be better contextualized to make the reuse 

value apparent (as one participant put it for the purpose of the 'validity of source[s], placed in right context of 

time'). This is especially the case for sources of a more audiovisual nature. Especially the audiovisual 

annotation needs to be improved, also in particular for topic modelling (for e.g. filtering). Users also 

would like to see more examples of creative reuse as inspiration. Participants during the user studies' talk 

aloud protocols on their own initiative tried to search on positivity and negativity in the collection, usually to 
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be able to research two different sides of a story. Our data science methodologies offer different avenues to 

offer new forms of contextualization, which can also be used as keywords or filters. The user analysis also 

points to the need to update the filter option: for instance, whilst a large portion of the participants were 

interested in videos or user generated content, it took them quite a while to discover that filters for these 

categories existed (or they did not find them at all).  

 

For the present study, we reached the best results with .CSV-files that we self-annotated. For more efficient 

data analysis in the future we would recommend Europeana to introduce the minimal standard for 

descriptions. For instance, many photos in the World War I collection have only a name of a person and a year 

in the description (especially in the Women in World War I collection). It leads to retrieving names and years 

in topics when we do topic modelling and in clusters when we do clustering. At the same time, we cannot 

retrieve information about what is actually in the picture (e.g. 'young woman with her daughter and husband 

at the beginning of the war'). This can also be achieved by automated image recognition (software which 

recognizes the objects in pictures). 

 

The research can be developed further in several directions. Most of the steps were made for two collections 

– Women in WWI and Films. All of them can be repeated for other sub collections of Europeana 1914-1918 

and for other Europeana collections (but specific attention should be paid to stop words, which must be 

changed for every specific case). Other sub collections can be scraped in the same way (but corresponding 

HTML-tags on web-pages of items from other collections should be changed in the script if they are different 

from the ones used for 'Films', 'Women' and others). The link to the collection specified in the script should 

also be changed. 

 

The authors of Python library TextBlob, which was used for sentiment analysis in our research, do not specify 

the particular algorithm which is executed for scoring sentiment. When calculating sentiment for a single 

word, TextBlob uses a sophisticated technique known as 'averaging'. It finds words and phrases it can assign 

polarity to (examples are 'great' or 'disaster'), and it averages them all together for longer text such as 

sentences. Sometimes the results of this analysis do not seem logical. For instance, the example of sentiment 

analysis in TextBlob tutorial is the sentence 'TextBlob is amazingly simple to use. What great fun!' which is 

very positive. However, it gets a sentiment score 0.39166666666666666 and it is not clear why it is not higher. 

 

However, there are more efficient methods of sentiment analysis by using machine learning (Maas, 2011; 

Gautam, 2014), which can be applied for further development of this research in future. First, these methods 

demand manual annotation of the dataset by humans. Second, one of the existing machine learning models 

can be used to train on this data (the model 'learns' from the data some features of positive, negative or 

neutral sentiment in this particular dataset). Then this trained model can be applied on the new data (which 

was not used for training) and give more representative results than ready-to-use models like TextBlob. 

 

This similar approach was used by Gautam (2014) for the sentiment analysis of Tweets where opinions are 

highly unstructured and are either positive or negative, or somewhere in between these two. For this they 

first pre-processed the dataset, and extracted the adjectives that have some meaning (which is called feature 



 

 

 

 

 

 

54 

 

 

 

 

 

 

 

vector), then selected the feature vector list and thereafter applied machine learning based classification 

algorithms, namely: Naive Bayes, Maximum entropy and SVM along with the Semantic Orientation based 

WordNet which extracts synonyms and similarity for the content feature. 

 

Experiments were conducted using well-known methodologies for the analysis of (audio)visual and textual 

data. The use of state-of-the-art libraries and pre-trained models i.e. Word2Vec, topic modelling, and the 

Google Vision API confirmed the original hypothesis of the study, that it is indeed possible to discover hidden 

patterns, themes, and 'stories' in the data. Both the human-annotated labels and the labels from the pre-

trained models, presented valid clusters of different topics, which could potentially be used in the Europeana 

archives to improve filtering options, recommendations, and search tags. In this manner Europeana connects 

more with the cultural heritage affective turn, for instance through filters and tags related to emotion. It is 

important here to keep the connection with the human annotator, who can recognize emotion whilst 

annotating labels. 

 

It is also quite clear that although the pre-trained models provide a solid foundation for the above-mentioned 

improvements, the use of one or more human annotators (especially ones with domain knowledge on the 

subject) would provide deeper and more comprehensive connections between the items of the datasets. It 

would be well worth it to have two or more annotators to make sure that the produced labels are sensible 

and not conflicting. This can be achieved by implementing some inter-annotator agreement methodologies, 

such as the Kappa score.15 

 

                                                
15 For more information, please see: https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html 

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
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Fig. 27 The Plutchik wheel of emotions.16 

 

There is such a strong need for human annotation because of the missing sentiment in the descriptions, as 

language is very benign and neutral (which makes sense if a documentalist transfers information to a digital 

heritage database). Sentiment analysis can help to get emotion back, but you do need to have a well-trained 

model that is based on a large number of words (as sentiment models are more trained in market research, 

political campaigns, product reviews, etc.). 

 

Another worthwhile investment would be to make greater use of sentiment analysis tools and more 

specifically, examining the usage of the Plutchik Wheel of Emotions (see Fig. 27).17 This methodology greatly 

improves on the basic sentiment analysis algorithms, in the sense that it does not just score texts according to 

the positivity or negativity of the feeling, but provides a wide range of sentiments. By implementing the 

Plutchik wheel of emotions, especially in textual resources, it is easy not only to parse individual opinions, but 

also to be able to assign values to them, which distance themselves from the elementary positive/negative 

distinction. The Sirrocco opinion extraction framework, based on the Plutchik's Wheel of Emotion, is able to 

parse large amounts of text into subjects and opinions.18  

 

This, according to Sokolenko (2017) allows for a triad between author, subject, and opinion to be formed. 

Since most texts, vary in factuality, opinions could either be presented in one sentence or instead be 

elaborated on for several paragraphs. The Sirocco opinion extraction Framework hence, examines individual 

sentences and then proceeds to analyse larger parts of texts, so as to be able to form opinions. In order for 

the subjects to be determined, a 'parsing tree' is used, a tree that represents the syntax of a string, in regard 

to context-free grammar (Chiswell and Hodges, 2007, p. 34). Then, Named Entities and Noun Phrases – usually 

capitalized – are extracted, and grouped together using NLP algorithms, based on their role within the 

sentence (Sokolenko, 2017). Opinions are then sorted into emotions and qualities, using the Plutchik's 

framework on human emotions, which is the core of Sirrocco Opinion Extraction Framework. Plutchik 

elaborated on 8 basic emotions, which can be paired up, therefore, being ideally suited for 'algorithmic 

implementation' (Sokolenko, 2017).  The emotions are: anger, trust, joy, anticipation, fear, disgust, sadness, 

and surprise, with more complex emotions being expressed as combinations of the above. 

 

 

                                                
16 Retrieved from https://www.6seconds.org/2017/04/27/plutchiks-model-of-emotions/ [16.06.2019] 
17 See: https://github.com/NVIDIA/sentiment-discovery 
18 See: https://github.com/datancoffee/sirocco 

https://www.6seconds.org/2017/04/27/plutchiks-model-of-emotions/
https://github.com/NVIDIA/sentiment-discovery
https://github.com/datancoffee/sirocco
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Fig. 28 The Author-Opinion-Subject Triad.19 

We also reached conclusions on the perceived user experience. Europeana is a platform dedicated to the 

European digital cultural heritage, featuring both user generated content and linked open data, deriving from 

many different cultural institutions, such as museums, archives, and libraries throughout Europe. What 

renders the platform quite successful and widely usable amongst different target audiences, is its focus on the 

creative reuse. It is not just a portal that features audio visual and textual content, but rather a structure that 

allows the users to download, share, distribute, and use for academic, educational, and research purposes. 

Also, a major asset in the platform would be the numerous APIs, that allow the users to build applications 

focused on the collections that come from different European cultural institutions. from paintings to 

(audio)visual content. In particular, the SPARQL, the Record and the Entity APIs take advantage of structured 

metadata, and are able to return more specific and detailed results to the user who might be searching for 

something particular or detailed. Moreover, the user has the opportunity to contribute themselves in the 

formation of contextual labels by annotating, using the Annotations API. 

First, from a cultural heritage perspective, within the datasets we annotated, a lack of diversity within the 

European context was noted for the linked (open) data. Whereas the lion's share of the open content came 

from users, something that speaks volume of the work that the platform does for user engagement, the 

volume of the linked open data that came from cultural institutions was comparably quite low. In particular, 

for our Women in World War I dataset, 826 items came from users, whereas only 86 came from museums, 

archives, and libraries. Moreover, Eastern Europe has a rather small representation, compared to Western 

Europe. Most of the linked open data comes from Germany, France, Netherlands, and the UK, whereas 

Southern and Eastern Europe could be represented more. 

                                                
19 Retrieved from https://medium.com/@datancoffee/opinion-analysis-of-text-using-plutchik-5119a80229ea, 
[20.06.2019] 

https://medium.com/@datancoffee/opinion-analysis-of-text-using-plutchik-5119a80229ea
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From a technical perspective, we believe that the filtering processes for the collections that we worked with, 

could be improved, especially where the topics are concerned. By using the Cloud Vision API on collections 

that had previously been scraped, we realised that the sentiment labels that were produced could be 

implemented either as filters for searching purposes or in the form of tags. Whereas users can currently search 

based on topics, places, and people (usually contained in age or gender), emotions are not present in the 

search options. However, most cultural heritage professionals would agree that in the 21st century, museums 

and cultural institutions have taken an affective turn, reinventing their spaces as locations where people go 

to feel while simultaneously have their feelings challenged by featured narratives. This reinforced emotional 

role of the museum can be attributed to empathy; a rather important emotion for many visitors that can be 

triggered not just by following guided tours or reading interpretive material, but also simply by being present 

on location; deriving from that notion.  

Hence, we do not see the reason why a digital space for cultural heritage, such as the Europeana 1914-1918, 

which includes a lot of stories that 'dabble' in emotions, could not adopt this prevailing affective turn. 

Therefore, Europeana could benefit from creating more detailed tags or tags that are based on sentiment and 

not on merely on descriptive practices. This addition could be carried out by either using an API, such as Cloud 

Vision or even better by incorporating human annotators in the process of labelling. Our project provides a 

set-up for this which can be replicated. Moreover, this approach could additionally improve user engagement, 

since by inviting users to create their own story categories based on the topics that the algorithm picked up, 

digital storytelling and creative reuse with the Europeana collection could also be further developed.  
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2 Overview of datasets and scripts 

 

Data scraping 

 Folder containing data science protocol, all datasets and scripts 

 Our Python scripts for scraping 

 

Translation 

 Our Python script for automatic translation 

 Translated datasets 

 

Sentiment analysis 

 CSV-files dataset case study Uncovering hidden stories in WWI Diaries and Letters 

 Scripts case study Uncovering hidden stories in WWI Diaries and Letters 

 Our Python script for sentiment analysis 

 Overview translated data with sentiment 

 Sentiment calculation Women in World War I  

 Sentiment calculation Films 

 Sentiment calculation Official documents 

 Sentiment calculation Aerial warfare 

 

Topic modelling 

 CSV-files dataset case study Uncovering hidden stories in Women in World War I  

 Scripts case study Uncovering hidden stories in Women in World War I  

 CSV-file topic modelling Films  

 CSV-file initial topic modelling Women in World War I 

 Our Python script for topic modelling  

 Our Python script for making topics using noun extraction 

 Noun extraction Women in World War I  

 Noun extraction Films 

 Noun extraction Official documents 

 Noun extraction Aerial warfare 

 

Annotation – manual labelling 

 Annotation using manual labelling Women in World War I  

 Annotation using manual labelling Films 

 

Annotation – automated labelling 

 Our Python scripts for clustering using unsupervised machine learning 

 CSV-file of Dataset labelled with 81 clusters 

 

https://drive.google.com/drive/folders/18DDH39Rx7B_cIkkFWMFuYpxFK2jKMI-9?usp=sharing
https://drive.google.com/drive/folders/1BqgZKmEZ5_4hsXRAJ5ns7slr60nlkyQB?usp=sharing
https://drive.google.com/file/d/1T5SaQmfVj1rZiGhWR1Ld_tk3QJS3xIDI/view?usp=sharing
https://drive.google.com/drive/folders/1Dz56gGGKRpvvdXxsGgX2Fl5BAOaLVkZ0?usp=sharing
https://drive.google.com/drive/folders/1SrVRzCjT0vZRXi_e6SZR-OGQyNOMFiQv?usp=sharing
https://drive.google.com/drive/folders/1W6bdPCx0fecdE0gDYF83SPmX1hGACqbf?usp=sharing
https://drive.google.com/file/d/1T5SaQmfVj1rZiGhWR1Ld_tk3QJS3xIDI/view?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://drive.google.com/drive/folders/1SrVRzCjT0vZRXi_e6SZR-OGQyNOMFiQv?usp=sharing
https://drive.google.com/drive/folders/1W6bdPCx0fecdE0gDYF83SPmX1hGACqbf?usp=sharing
https://drive.google.com/file/d/11L4w99Ko2-cmaA1QMUUgmWreGsTMnA7_/view?usp=sharing
https://drive.google.com/file/d/14pSzLorzlxndyV5Ho9pmXkdBA5Wazbfr/view?usp=sharing
https://drive.google.com/drive/folders/1UfEadVAK7iAQ0K_tgRUR3M1v0HzU9v1C?usp=sharing
https://drive.google.com/file/d/1T5SaQmfVj1rZiGhWR1Ld_tk3QJS3xIDI/view?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1YCLxDfQguV29Y2VImcwMhlEyvifu5tyNVYs1iqztIDQ/edit?usp=sharing
https://drive.google.com/file/d/15f-3AcehpBmxQizeGP4upN0YEzfcoCNV/view?usp=sharing
https://docs.google.com/spreadsheets/d/16Q83_9iA5DO9q1DOxCiK_PVP0TMGsNNtK1RWU3WCi3c/edit?usp=sharing
https://drive.google.com/drive/folders/1opkKSQTOR_hshoee1GIRuRpet2-GW1Vp?usp=sharing
https://docs.google.com/spreadsheets/d/1RY4UEBpnRV1Tcw8BGcnEpSp2xFKJdfZpWFnldPnA--I/edit?usp=sharing
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Cloud Vision API 

 CSV-files dataset case study comparison with Cloud Vision API when using data science methodologies 

for (audio)visual sources 

 Scripts case study comparison with Cloud Vision API when using data science methodologies for 

(audio)visual sources 

 

3 Thank you  
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