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Chapter 11
Antifungal PK/PD in the Critically Ill

Roger J.M. Brüggemann, Dylan W. de Lange, and Jan-Willem C. Alffenaar

11.1  Introduction

Invasive fungal disease (IFD) can be life-threatening. In the past two decades, the 
incidence of these infections has increased significantly, largely because of the 
increasing number of patients at risk [1]. Although IFD can affect people with an 
intact immune systems as well, the vast majority of these infections occur as oppor-
tunistic infections in the immunocompromised host. IFD can be caused by both 
yeasts and filamentous molds. Yeasts are a type of fungi that consist of solitary cells 
that reproduce by budding, whereas molds occur in the form of hyphae: long, tubu-
lar branches with multiple, genetically identical nuclei which grow by apical exten-
sion. The most common forms of IFD in the immunocompromised host include 
invasive candidiasis (yeast) and invasive aspergillosis (mold).

11.2  Invasive Candidiasis

Yeasts such as Candida spp. are part of our normal microbial flora on mucosal sur-
faces (primarily the gut, the oral cavity, and the upper respiratory tract, although the 
skin may also provide a habitat), from where they may translocate into the tissues 
or blood in patients with varying underlying diseases or host factors, causing 
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invasive disease (invasive candidiasis), most often presenting as candidemia [2]. At 
a later stage, candidemia can undergo secondary dissemination to organs (e.g., eyes, 
liver, spleen, bones, heart valves, central nervous system) or present as deep-seated 
candidiasis [2, 3].

The pathogenesis of invasive candidiasis involves three major components: (a) 
increased fungal burden or colonization, mostly resulting from the use of broad- 
spectrum antibiotics; (b) disruption .of normal mucosal barriers induced by disease, 
drugs, trauma, or intravascular catheters; and (c) immune impairment (e.g., neutro-
penia) [4]. Not surprisingly, invasive candidiasis occurs most frequently in immuno-
compromised hosts and critically ill patients, with mortality rates reported to be as 
high as 40%, despite the use of antifungal therapy [2].

11.3  Invasive Aspergillosis

Molds such as Aspergillus spp. are saprophytic filamentous fungi and found widely 
in the environment. They are commonly found in both the outdoor and the indoor 
environment, including hospitals [5, 6]. Invasive aspergillosis, i.e., Aspergillus 
hyphae penetrating the lung tissue and entering the bloodstream via the distal air-
ways and alveolar spaces of the lung [7], is a serious opportunistic infection that 
mainly affects immunocompromised patients, particularly patients with hemato-
logical malignancies (e.g., leukemia), solid-organ and hematopoietic stem cell 
transplant patients, patients on prolonged corticosteroid therapy, and patients suffer-
ing from genetic immunodeficiencies (e.g., chronic granulomatous disease) [8, 9]. 
In addition, prolonged critical illness is now considered an additional risk factor for 
invasive aspergillosis [10]. In these high-risk populations, mortality rates for inva-
sive aspergillosis range from 40 to 90% [8, 11].

Other pathogens besides Candida spp. and Aspergillus spp. that cause IFD in the 
immunocompromised host are Mucorales spp. (zygomycosis), Fusarium, 
Scedosporium spp. (hyalohyphomycosis), Pneumocystis, and Cryptococcus spp. 
Although these infections are less common, specifically in the intensive care unit, 
they are associated with a high mortality rate.

11.4  Antifungal Drugs in Clinical Use

Based on their mode of action (Fig. 11.1), antifungal drugs frequently administered 
for systemic use have been grouped into four classes, namely, triazoles (flucon-
azole, itraconazole, posaconazole, voriconazole, isavuconazole), echinocandins 
(anidulafungin, caspofungin, micafungin), polyenes (lipid complexes of amphoteri-
cin B), and fluoro-pyrimidines (flucytosine [5-FC]).

Triazoles act by targeted inhibition of the cytochrome (CYP) P450 dependent 
enzyme lanosterol demethylase, thereby interrupting the synthesis of ergosterol. 
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This inhibition leads to depletion of ergosterol and the accumulation of sterol pre-
cursors in the fungal cell membrane, causing increased membrane permeability and 
inhibition of fungal growth [12]. Echinocandins act by noncompetitive inhibition of 
β-(1,3)-d-glucan synthase, thereby blocking the synthesis of this major component 
of the fungal cell wall. This compromises cellular structural integrity and morphol-
ogy, ultimately resulting in osmotic lysis of the fungal cell [13].

Amphotericin B acts by binding directly to membrane sterols (especially ergos-
terol) in the fungal cell membrane. Through self-assembly of amphotericin B mol-
ecules, ionic transmembrane channels are formed that cause the fungal cell to leak 
its intracellular contents (e.g., potassium), subsequently leading to cell death [14].

The pyrimidine analog 5-FC itself has no intrinsic antifungal activity, but once it 
has been taken up by fungal cells, it is converted to 5-fluorouracil (5-FU). Metabolites 
of 5-FU act by inhibiting the DNA and RNA synthesis in the nucleus of the fungal 
cell [15].

11.5  Pharmacokinetics of Echinocandins in Critically Ill 
Patients

The pharmacokinetics (PK) of antifungal drugs, much like antimicrobials, can be 
highly variable in critically ill patients due to several physiological factors such as a 
hyperdynamic state, third spacing, hypoalbuminemia, renal dysfunction, hepatic 
dysfunction, and organ support [16, 17]. Furthermore, extracorporeal membrane 
oxygenation (ECMO) can alter the PK of drugs due to the addition of blood 

Phospholipid bilayer
fungal cell membrane

Mannoproteins

Ergosterol

Azoles inhibit CYP-P450 enzyme
responsible for ergosterol synthesis

Polyenes bind to ergosterolFlucytosine interferes with
DNA and RNA synthesis

Echinocandins inhibit
β-(1,3)-glucan synthesis

β-(1,3)-glucan

β-(1,6)-glucan

Glucan synthase

Fig. 11.1 Schematic overview of current antifungal agents and their mechanism of action. 
Adapted from Kartsonis et al. [159]
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products to the circuit and potential binding of drugs to the surface of the ECMO 
circuit [18]. The consequence of these changes in PK is that the echinocandins 
might present lower exposure in critically ill patients.

Echinocandins have been extensively studied in critically ill patients with the 
consequence that many issues around their altered PK in critical illness are now 
more thoroughly understood. There are, however, noticeable differences in PK 
between the three echinocandins including the need for loading doses of anidula-
fungin and caspofungin, the metabolic pathways (hepatic versus non-hepatic or a 
combination of both), and the number and extent of clinically relevant drug–drug 
interactions (see http://www.fungalpharmacology.org for an extensive overview of 
drug–drug interactions with echinocandins). There are no head-to-head compara-
tive efficacy trials in critically ill patients and, at present, the three available echino-
candins are considered equivalent. With such comparable guideline recommendations, 
apart from those in neonates and children, the PK differences are the only aspects 
that may support a specific choice (Table 11.1).

Anidulafungin is given as a 200 mg loading dose on day 1 followed by a 100 mg 
daily maintenance dose. PK in critically ill patients have been fairly well described 
for anidulafungin. Both comparable exposure in critically ill patients and reduced 
exposure (decreases in the area under the concentration time curve [AUC0–24] of 
25% and trough concentrations [Cmin] of 40%) [19–21] have been reported in refer-
ence to healthy volunteers. There is a general tendency to lower exposure of anidu-
lafungin in critically ill patients, but up until today no major dominant factors 
associated with altered PK have been identified. Disease severity scores and albu-
min concentrations appear not to influence anidulafungin PK [19–21]. The pharma-
codynamic goals of anidulafungin are not yet well defined and underdosing looms 
in critically ill patients.

Caspofungin is given as a 70 mg loading dose followed by a 50 mg maintenance 
dose. It is recommended to increase the maintenance dose to 70 mg if body weight 
exceeds 80 kg. Like anidulafungin, PK data for caspofungin in critically ill patients 
are conflicting. In surgical ICU patients, caspofungin Cmin plasma concentrations 
were slightly increased compared to healthy volunteers (2.16 mg/L vs. 1.41 mg/L) 
[22]. Another study in 20 ICU patients with (suspected) invasive candidiasis found 
lower exposure to caspofungin on day 3 compared to historical controls [23]. But in 
a marginally larger cohort of general ICU patients (n = 27), caspofungin AUC was 
comparable to healthy volunteers [24–26]. No factors that might influence the PK 
of caspofungin were identified, although the sample size might have been too low to 
detect significant covariates [24, 25].

Unlike anidulafungin and caspofungin, micafungin does not require a loading 
dose. From day 1 onwards, it is given as a single daily dose of 100 mg. Similar to 
caspofungin, the PK of micafungin has been extensively studied. Critical illness 
appears to impact the exposure to micafungin as ICU patients had lower exposure 
after standard dosages of micafungin compared to healthy controls. Unfortunately, 
this study did not identify any relevant covariates to explain the lower exposure, which 
was potentially caused by the limited number of patients (n = 20). In a second study 
in 100 patients, the micafungin clearance of 1.34 L/min was markedly higher than 
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reported in the literature, and higher than the study reported by Lempers et al. [27]. 
Body weight, albumin, and SOFA score were found to significantly influence the 
interindividual variability in clearance (CL), volume of the central compartment, and 
peripheral compartment. In general, the exposure of critically ill patients to micafun-
gin is potentially lower than healthy controls and dosages should be adjusted upward.

11.6  Use of Echinocandins in Patients with Renal 
Impairment, Renal Replacement Therapy, and ECMO

Patients with varying stages of renal impairment showed no statistical differences in 
PK for anidulafungin and micafungin compared to matched healthy volunteers. 
Therefore, these echinocandins provide an excellent therapeutic option in patients 
with renal failure. The PK of anidulafungin 50 mg and micafungin 100 mg single 
dose was unaffected by renal impairment, as no significant differences in AUC, 
peak concentration (Cmax), CL, volume of distribution (Vd), or half-life were 
observed compared to healthy volunteers [28, 29]. Contrary to anidulafungin and 
micafungin, there are no publications on PK of caspofungin in patients with renal 
failure. The scarce information that is available on caspofungin is derived from the 
medicines authorities [30]. Increases in exposure to caspofungin were seen in 
patients with different degrees of renal impairment (increases in AUC of 31%, 49%, 
and 30% in patients with moderate, severe, and end-stage renal disease, respec-
tively). Whether these higher exposures lead to either toxicity or improved pharma-
codynamics in critically ill patients needs to be investigated.

In the ICU, when native renal function deteriorates precipitously, continuous 
renal replacement therapy (CRRT) is typically provided. Continuous exposure to 
extracorporeal devices (e.g., tubing, catheters, filters) might profoundly alter the PK 
of echinocandins. In this fashion, the PK of anidulafungin in patients dependent on 
chronic intermittent hemodialysis were comparable to healthy volunteers and were 
not influenced by the time of drug administration in relation to the time of dialysis. 
Furthermore, no anidulafungin concentrations were found in dialysate [29]. 
Extended daily dialysis (8 h) did not change PK of anidulafungin, and no measur-
able anidulafungin concentrations were found in the dialysate [31].

Like in intermittent hemodialysis, anidulafungin PK in critically ill patients 
undergoing CRRT were comparable to PK in healthy volunteers, and patients with 
a fungal infection. No accumulation of anidulafungin was seen within 3 days of 
treatment [32, 33]. Similarly effluent samples did not contain measurable levels of 
anidulafungin [32, 33]. Therefore, at present, there is no adjustment of anidulafun-
gin advised for patients on CRRT.

The PK parameters of caspofungin after a single dose and multiple doses during 
CRRT in critically ill patients were, like anidulafungin, unchanged [26, 34]. Small 
differences in pre-filter and post-filter concentrations suggest that there might be 
some adsorption of caspofungin to the hemofilter membranes, but caspofungin PK 
parameters were not significantly influenced [26].
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In critically ill patients undergoing CRRT, the PK of micafungin was similarly 
unaffected [35, 36]. During CRRT, plasma samples from the inlet and outlet of the 
extracorporeal circuit were comparable and no micafungin was detected in effluent 
[35]. No adsorption to or saturation of the polysulfone and polyethersulfone filters 
was reported [36].

Data on caspofungin PK in patients on ECMO therapy is limited and provides 
varying results. Plasma concentrations of caspofungin in surgical ICU patients var-
ied between undetectable or low (1.8 and 3.4 mg/L; single patient two occasions) 
and normal concentrations in comparison to healthy volunteers [18, 37]. 
Anidulafungin has been applied to critically ill patients while on 
ECMO.  Anidulafungin concentrations were not influenced by the oxygenator or 
tubing [38]. Research in adult patients on ECMO receiving micafungin is lacking. 
Micafungin was evaluated in pediatric patients on ECMO and the Vd and CL were 
at the upper limits of normal in comparison to patients not on ECMO [39].

11.7  Use of Echinocandins in Patients with Hepatic 
Insufficiency

No significant changes in the PK of anidulafungin are observed in patients with 
mild and moderate hepatic impairment when compared to healthy volunteers [29]. 
However, patients with severe hepatic impairment show significantly decreased 
AUC and Cmax values compared to healthy volunteers [29]. AUC and Cmax are 
decreased by 33% and 36%, respectively. CL and Vd are increased by 57% and 
78%, respectively, but were not considered clinically relevant by the authors. The 
most likely explanation for this lower exposure is an increase in Vd caused by asci-
tes and edema [29]. However, in a single severely hepatic impaired patient requiring 
albumin dialysis, anidulafungin PK did not appear to be affected [40].

For caspofungin, the AUC0-∞ is increased by 55 and 76% in patients with mild 
and moderate hepatic impairment, respectively. In addition, the Cmin and elimination 
half-life are increased as well in comparison to healthy volunteers [41]. After mul-
tiple dose administration of caspofungin (70 mg loading dose, followed by 35 mg 
OD), moderate PK changes were observed in mild hepatic impairment, but these 
changes were not considered clinically relevant [41]. More specifically, on days 1, 
7, and 14 AUC0–24 increased by 17%, 26%, and 21%, respectively; whereas on 
days 1, 7, and 14 Cmin increased with 50%, 70%, and 44%, respectively. Multiple 
dose administration of caspofungin (70 mg loading dose followed by 35 mg OD) to 
patients with moderate hepatic impairment showed no significant differences in 
AUC0–24 on days 7 and 14 as compared to healthy volunteers receiving the stan-
dard dose; Cmax and Cmin were decreased by 20% and 23% and by 71% and 50% on 
days 7 and 14, respectively [41]. A maintenance dose reduction to 35 mg OD in 
patients with moderate or severe hepatic impairment, as classified by Child Pugh 
score, is advised as caspofungin PK is affected by the degree of hepatic impairment 
[30, 41]. Even though the patient populations in these registration studies were 
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small (6–8 patients for each degree of hepatic impairment), these results were the 
rationale for dose adjustment in patients with moderate and severe hepatic impair-
ment. The differences in caspofungin PK in hepatically impaired patients are pos-
sibly due to decreased clearance mediated by the uptake transporter OATP1B1 in 
hepatocytes [41]. In contrast, case reports and cohort studies with critically ill 
patients with mild to moderate hepatic impairment treated with caspofungin 70 mg 
OD or 50 mg OD showed that dose reductions to 35 mg would possibly have led to 
suboptimal exposure of caspofungin [24, 42–44].

Pediatric patients with hepatic impairment, similar to adult patients, demonstrate 
high variability of caspofungin exposure; PK parameters after a daily dose of 1 mg/
kg range from being comparable to adult patients to less than half of those seen in 
adults (AUC0–24 40–50% Cmax 50% and Cmin 60% of adult values) in combination 
with significant increases in CL and Vd (155% and 218%, respectively) [45].

Micafungin exposure in patients with moderate and severe hepatic impairment is 
decreased in comparison to healthy volunteers (98 mg h/L in patients with moderate 
hepatic impairment versus 126  mg  h/L in healthy volunteers and 100  mg  h/L in 
patients with severe hepatic impairment versus that of 142 mg h/L in healthy volun-
teers, respectively) [28, 46]. There is no change in the unbound fraction of micafungin 
in patients with both moderate and severe hepatic impairment compared to healthy 
volunteers. Interestingly, patients with severe hepatic impairment have higher plasma 
concentrations of the M5 metabolite, compared to healthy volunteers, possibly due to 
reduced clearance of the M5 metabolite (the activity of the M5 metabolite is esti-
mated to be only 1/125th of the parent compound) [46]. For patients with both moder-
ate and severe hepatic impairment, the differences in exposure were not considered to 
be clinically relevant, as a consequence no dose adjustments are advised for patients 
with any grade of hepatic impairment [28, 46]. In accordance, in living donor liver 
transplant recipients, micafungin PK was comparable to healthy subjects [47–49].

11.8  Clinical Pharmacology of Echinocandin Drugs

Only very few studies have investigated the relationship between PK and efficacy or 
toxicity. For echinocandins, the AUC to minimum inhibitory concentration 
(fAUC:MIC) ratio (using free drug concentration) is the index linking PK to PD 
[50–53]. Much like other antimicrobial agents, target concentrations have only been 
defined in animal models or from a single analysis from phase II/III studies. These 
targets must be defined prior to installing a personalized treatment approach using 
therapeutic drug monitoring.

Once these target concentrations are established, they will allow Monte Carlo 
simulations to determine the probability of target attainment (PTA) with specific 
dosing regimes in critically ill patients [24, 27, 50–52, 54].

Echinocandins are generally administered as a fixed dose (with or without a load-
ing dose) and partly adjusted for body weight. Mixed results have been noted in 
several smaller PK studies showing lower but also normal concentrations in critically 
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ill patients compared to non-critically ill patients. Clinical studies that correlate 
exposure with outcome are urgently needed to be able to make definitive recommen-
dations on using TDM with echinocandins [20, 21, 23, 24, 55, 56].

For caspofungin, no clinical target concentrations have been identified. A limita-
tion of the PTA analysis with caspofungin is thus the absence of a human PK/PD 
target. A preclinical target derived from a neutropenic mouse model has been used 
instead [50, 57]. Future studies are warranted to identify the human fAUC:MIC 
ratio of caspofungin associated with better treatment outcomes. This may be per-
formed similar to a previous analysis on the micafungin PK/PD target as proposed 
by Andes et al., in which a large group of patients were evaluated on both PK, sus-
ceptibility pattern of the pathogen and clinical outcome [58]. Their statistical analy-
sis yielded the most probable fAUC:MIC value associated with mycological 
response based on two phase 2/3 studies. Even this analysis had some limitations. 
For instance, “mycological response” was used for treatment outcome. Mycological 
cure was based on “periodic” or weekly mycology laboratory assessment. It is ques-
tionable whether weekly mycology assessment is frequent enough. Moreover, in 
cases of missing information on micafungin exposure, they used population values, 
despite high variability between individual predictions and population predictions 
(precision was about 20%). Such an approach is challenging, as demonstrated by 
Liu et al. [19], where they could not identify a solid fAUC/MIC target for anidula-
fungin, using “mycological cure endpoint” data from phase 2/3 studies. Alternative 
approaches must be found to derive these crucial targets to guide therapy.

An alternative to direct clinical outcome measures such as “mycological cure” or 
“survival” might be the use of surrogate parameters such as B-glucan. Currently, this 
biomarker is a promising early diagnostic screening tool for invasive fungal infections, 
but its role in PK/PD target identification and PD assessment remains to be explored. 
It may prove beneficial to link B-glucan as a PD endpoint to drug concentrations.

11.9  Pharmacokinetics of Azole Drugs in Critically Ill 
Patients

Currently, three azole antifungal drugs are frequently used in the intensive care unit, 
fluconazole, voriconazole, and posaconazole. The use of itraconazole is very lim-
ited due to the lack of an intravenous formulation in many countries. Isavuconazole 
has recently entered the market but data on PK in critically ill patients are lacking 
as well as PK/PD analyses of isavuconazole in this cohort.

Fluconazole, posaconazole, and voriconazole show markedly different PK 
behavior in both healthy volunteers but specifically in critically ill patients. These 
differences between the three azole drugs can be explained by extent of protein 
binding, the metabolic pathways involved in degradation (including variability due 
to genetic mutations), renal clearance, and drug–drug interactions [59–62]. Clearly, 
the variability in clinical condition of the critically ill patient will likely influence 
the PK of azole drugs [16].
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The number of papers on voriconazole PK in critically ill patients is very limited 
and most of the evidence comes from hematological patients [63–66]. Despite the 
lack of intensive PK studies in this population, some similarities with other popula-
tions may be expected. Voriconazole PK is highly variable in all populations due to 
age, liver function, polymorphisms in drug metabolizing enzymes, and drug–drug 
interactions [59]. Recently, an association between clearance of voriconazole and 
inflammation was suggested. The authors demonstrated that higher voriconazole 
concentrations were associated with increased C-reactive protein concentrations 
[67]. Although voriconazole is not extensively bound to plasma proteins, a multi-
variate analysis revealed a significant relationship with plasma protein binding and 
plasma albumin concentrations (P < 0.001), demonstrating higher unbound vori-
conazole concentrations with decreasing albumin levels. Of note, the correlation is 
more pronounced in the presence of elevated bilirubin concentrations [68]. 
Measurement of the unbound voriconazole concentration may help to detect toxic 
unbound drug concentrations, even when the total drug concentration is within the 
therapeutic range [68, 69]. The nonlinear behavior of voriconazole makes it difficult 
to predict the plasma drug concentration and TDM has therefore been recommended 
[63] (Table 11.2).

The number of publications on posaconazole PK in critically ill patients is even 
less abundant than voriconazole [70]. Posaconazole is a highly protein bound, lipo-
philic drug with a very large Vd. This azole was only available as an oral suspension 
until 2015, but has since been manufactured as a solid oral formulation (tablet), as 
well as an intravenous solution. Posaconazole oral solution demonstrated a large 
interindividual and intraindividual variation in bioavailability as pH and food 
affected the absorption of the drug [71–73]. Moreover, administration by nasogas-
tric tube of this formulation further reduced the bioavailability [74]. The use of 
posaconazole oral solution in critically ill patients had substantial drawbacks [70]. 
Data on the new solid oral formulation and the intravenous formulation in critically 
ill patients is completely lacking. Since posaconazole is highly protein bound 
(98%), changes in the unbound fraction in patients with hypoalbuminemia should 
be considered when interpreting measured total concentrations.

Several studies have been performed with fluconazole in critically ill patients. Buijk 
et al., Nicolau et al., and Rosemurgy et al. performed studies to determine the bioavail-
ability of enteral fluconazole compared to intravenous fluconazole in relatively small 

Table 11.2 Contemporary target drug concentrations for voriconazole and posaconazole when 
used in critically ill patients

Triazole Efficacy target (mg/L)
Toxicity target  
(mg/L) Timing of first trough sample

Voriconazole >1–2 <5–6 After 2–5 days
Prophylaxis >1–2 <5–6 (Repeat sampling recommended)
Therapy
Posaconazole >0.7 No recommend Tablet/IV: after 3-5 days
Prophylaxis >1.0 No recommend 3 days: Suspension: 5–7 days*
Therapy

*means that the use of posaconazole suspension is discouraged and that the oral tablet is prefered 
due to the favourable absorption profile
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patient populations (n = 5–14 patients). All showed an increase in Vd compared to 
healthy volunteers. In addition, bioavailability showed significant intrapatient vari-
ability [75–78]. However, results concerning CL and half-life were conflicting. 
Nicolau et al. and Rosemurgy et al. showed an increase in CL, but no effect on half-life 
compared to healthy volunteers, while others showed an increase in half-life without 
an increase in CL compared to healthy volunteers [75, 76]. Fluconazole was also stud-
ied in the multinational study on defining antibiotic levels in the intensive care (DALI) 
and again showed a large interindividual variability with about a third of the patients 
not reaching a therapeutic target concentration [56]. Aoyama and colleagues studied 
covariates that might influence the PK of fluconazole, and found creatinine clearance 
and body weight to key determinants of CL and Vd, respectively [79].

11.10  Use of Azole Drugs in  Patients with Renal 
Impairment, Renal Replacement Therapy, and ECMO

It is well known that significant differences exist between the azole drugs with 
respect to protein binding and renal clearance. This determines whether dosages 
have to be adjusted in patients with deteriorating renal function or in patients already 
on supportive treatment like CRRT or ECMO.

Voriconazole at the licensed dose resulted in highly variable drug concentrations 
in critically ill patients [66]. Despite high interindividual variability in voriconazole 
concentrations, none of the patients experienced deterioration in renal function. 
Several studies have been performed investigating the effect of CRRT on voricon-
azole CL, which was not significant altered. Results were consistent between stud-
ies and standard dosages of voriconazole can be used without dose adjustment in 
patients undergoing CRRT. However, as described earlier, since the voriconazole 
concentration itself was highly variable, monitoring seems required.

In addition, the excipient sulfobutylether-β-cyclodextrin (SBECD) present in the 
parenteral formulation of voriconazole accumulates with renal impairment, and 
therefore intravenous administration of voriconazole to a patient with an estimated 
glomerular filtration rate below 50 mL/min is discouraged by the manufacturer [80]. 
However, critically ill patients often have impaired renal function and require IV 
administration because oral administration is complicated by gastroparesis or mal-
absorption. Therefore several studies have investigated the PK of SBECD and dem-
onstrated it can be safely administered without a further decline in renal function 
[81–84]. In addition, CRRT effectively removed SBECD without a significant risk 
accumulation. Intermittent hemodialysis was able to effectively eliminate SBECD, 
but could not prevent a certain degree of accumulation [81, 85, 86]. Although the 
total number of studied subjects was low to make definite safety recommendations, 
toxicity due to SBECD was not observed.

Being a lipophilic drug, voriconazole showed significant sequestration in the 
ECMO circuit (Mehta et  al. reported a 71% loss of voriconazole), necessitating 
higher doses of the drug to maintain adequate trough concentrations [87]. If this 
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initial loss is not compensated for, voriconazole levels will be subtherapeutic. 
However, later, when the circuit is saturated, voriconazole can accumulate and tox-
icity has been observed by several groups [18, 37, 88]. Confirmation of these find-
ings are needed. In such a scenario, TDM may be helpful in optimizing voriconazole 
concentrations.

Posaconazole PK was studied in subjects with varying degrees of renal impair-
ment including dialysis. No correlation was observed between posaconazole clear-
ance and mild to moderate renal disease. In addition, posaconazole clearance was 
unaffected by dialysis which could be explained by the high protein binding (>98%). 
Dose adjustments were therefore not considered relevant.

Approximately 80% of fluconazole is eliminated unchanged via the kidneys. Renal 
function therefore impacts the PK of fluconazole; half-life is increased from 30 to 
96 h in patients with a GFR <20 mL/min [89]. As such, the product information of 
fluconazole advises dose adjustments for patients with a GFR ≤50  mL/min [90]. 
Unfortunately, patients with impaired renal function (and impaired hepatic function) 
were excluded from studies on fluconazole PK by Buijk et al., Nicolau et al., and 
Rosemurgy et  al. [75–77], such that the PK parameters in renally impaired ICU 
patients are lacking. As such, dose reductions are recommended in patients with renal 
insufficiency after the standard loading dose is administrated. However, cut-off values 
for renal function range from a GFR 10–50 mL/min. Once renal replacement therapy 
is indicated, the dose has to be increased again because clearance of fluconazole by 
CRRT is significant [91–94]. A daily dose of 800 mg may be required to reach thera-
peutic concentrations, and should be guided by monitoring of drug concentrations.

Fluconazole was not affected by ECMO as shown in an ex-vivo circuit [95]. 
However, in children, it was shown that it took much longer to reach comparable 
concentrations compared to children not on ECMO [96, 97]. Clearly, the additional 
volume had a more distinct effect in children than in adults. Watt et al. recommend 
a fluconazole loading dose of 25 mg/kg to overcome this problem [96, 97].

11.11  Use of Azole Drugs in Patients with Hepatic 
Insufficiency

Voriconazole is extensively metabolized by cytochrome P450 enzymes (2C19, 3A4, 
and 2C9). It is recommended to maintain the loading dose but to reduce the mainte-
nance dose by 50% for Child-Pugh A and B cirrhosis [80]. In this context, the half- 
life of voriconazole is extended in patients with hepatic impairment [98]. 
Furthermore, higher voriconazole concentrations have been associated with a dete-
rioration in liver function tests, but a clear cut-off concentration has not been estab-
lished [99]. A concentration above 4 mg/L has been proposed as a risk factor for 
hepatotoxicity [100].

In a single dose study of posaconazole in patients with hepatic impairment, no 
clear difference was observed in drug exposure between different groups [101]. In a 
pooled analysis, a modest increase in exposure was observed in subjects with 
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impaired hepatic function compared to healthy volunteers. Although there is no 
clear need to adjust the dose in patients with hepatic impairment, TDM may be used 
to assure that toxic concentrations are not occurring.

In patients with mild to moderate hepatic impairment, no statistically significant 
effect on fluconazole PK parameters was observed [102]. This can be explained by 
predominant renal excretion of the unchanged compound.

11.12  Clinical Pharmacology of Azole Drugs

In general, drugs used for life-threatening diseases with a proven PK/PD relation-
ship, narrow therapeutic range, large interindividual variation in PK, and severe 
adverse effects are particularly good candidates for TDM [103, 104]. In this fashion, 
PK/PD relationships need to be well defined. In the clinical setting, there are obser-
vational data suggesting that achieving plasma concentrations above a certain 
threshold may confer greater efficacy for voriconazole, posaconazole, and itracon-
azole [15, 105–111], although this has yet to be shown in prospective trials.

It should be noted that robust data on PK/PD relationships in critically ill patients 
are currently lacking. Most of the evidence collected is from hematology patients. 
Thus extrapolations from this population to the ICU population must be made. This 
should be done with caution as the course of disease, immune response, and drug 
behavior will be different in ICU patients compared to hematology patients.

The importance of TDM for these antifungals is acknowledged, although trials to 
evaluate this practice have not been performed, and data are not yet conclusive 
enough to support its routine use [108].

11.12.1  Voriconazole

It has been widely reported in the literature that the PK/PD index for triazole anti-
fungal drugs is the AUC/MIC ratio [112–114]. Trough concentrations correlate well 
with AUC [109, 115] and are therefore used as surrogate markers for total exposure. 
Several retrospective studies have identified a relationship between voriconazole 
trough concentrations and clinical outcomes during prophylaxis or treatment [116–
118]. Moreover, several prospective clinical trials have demonstrated an association 
between plasma trough concentrations and efficacy and toxicity during treatment of 
invasive fungal infections, whereas others had too few patients [105, 119–123]. 
New research points us towards a possible role for galactomannan as it appears to 
be a very elegant surrogate marker that can help guide therapy [124, 125].

Both retrospective and prospective clinical studies have shown that trough con-
centrations ≥1.0–2.0 mg/L were associated with optimal clinical response in treat-
ment of invasive fungal infections [108, 121, 123]. A prospective clinical trial 
validated the breakpoint of voriconazole and demonstrated the added value of TDM 
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during voriconazole treatment, by demonstrating a more favorable response in the 
TDM group, compared to the non-TDM group [108]. Furthermore, a retrospective 
study suggested that patients receiving prophylactic therapy with voriconazole con-
centrations >2 mg/L had a lower risk of obtaining an invasive fungal infection [117].

There is lively discussion on the relationship between voriconazole trough con-
centrations and the risk of toxicity. Trough concentrations ≥4.5–6 mg/L have been 
associated with a higher risk of voriconazole-associated neurotoxicity (visual and 
auditory hallucinations, encephalopathy) but the relationship with liver dysfunction 
is not as clear [99, 119, 123]. No reliable upper “cut-off” concentration can be iden-
tified to minimize risk of hepatotoxic effects with the possible exception of Japanese 
patients where hepatotoxicity was more common if voriconazole trough concentra-
tions ≥3.9 mg/L [126, 127].

In summary, TDM is advised during treatment and also prophylaxis in critically 
ill patients prescribed voriconazole. Trough samples should be taken after about 
2 days, and a range of 2–6 mg/L should be used as a reference.

11.12.2  Posaconazole

For posaconazole, evidence is accumulating as to the benefits of TDM [107, 128–
130]. The likelihood of encountering low exposure was typically seen with the older 
pharmaceutical formulation (suspension) [72]. With the development of the new 
solid oral tablet formulation, as well as the intravenous formulation, new debate has 
arisen on the benefits of TDM, as erratic absorption seems less of a problem and 
most patients will attain target concentrations [131–133]. One of the most important 
recommendations is therefore to use these new formulations to ascertain that high 
exposure is achieved specifically for the ICU patient. The downside of higher expo-
sure is obviously the increased probability of encountering side effects. 
Concentration-dependent side effects of posaconazole include liver function test 
abnormalities, QT prolongation, and electrolyte disturbances.

Data on posaconazole TDM in critical illness are absent, and one must rely on 
that from hematology patients. Several clinical studies have reported a concentra-
tion–response relationship between posaconazole plasma trough concentrations and 
the risk of breakthrough infections, where Cmin > 0.7 mg/L is suggested to result in 
optimal prophylactic efficacy [107, 130, 134–137]. For the treatment of invasive 
aspergillosis, a target trough concentration of >1 mg/L is suggested [128]. There is 
no upper limit for posaconazole exposure defined as yet, although the scientific 
discussion at the European Medicines Agency points towards an upper target of 
3.75 mg/L [European Medicine Agency. Assessment report: Noxafil. 2014. Available 
at: http://www.ema.europa.eu/ema/]. There are unfortunately no clinical published 
data to substantiate this target.

The first assessment of trough concentrations is generally recommended on day 
5. In the prophylactic setting, this is acceptable but in the setting of treatment this 
might be too late. Specific algorithms are proposed in literature to interpret earlier 
samples using nomograms [107, 138].

R.J.M. Brüggemann et al.

http://www.ema.europa.eu/ema


227

11.12.3  Fluconazole

In general, TDM of fluconazole is not required as long as current dose recommenda-
tions are followed and renal function is closely monitored. However, in critically ill 
patients, stable conditions are seldom and situations may arise in which the mea-
surement of fluconazole concentration can be highly informative. Augmented renal 
clearance, administration of high volumes of fluids, or infections in sanctuary sites 
may prevent reaching therapeutic targets in situations with higher MIC values and 
may require TDM. Moreover, the place of fluconazole to treat Candida infections in 
children is still substantial and TDM may be of added value [139]. As fluconazole 
is often included in multi-analyte antifungal assays and the information can be criti-
cal in specific situations, one should always consider obtaining these levels [140].

Based on the variation in absorption, bioavailability, Vd, and drug–drug interac-
tions, the predictability of fluconazole concentration in critically ill patients is ques-
tionable. TDM on a regular basis (e.g., twice weekly) is strongly advised. Trough 
levels of 25–50 mg/L are associated with an adequate AUC:MIC, although proper 
dose-outcome studies in critically ill patients still need to be performed.

Finally, reports have emerged on resistance of Aspergillus to azole drugs, par-
ticularly in the setting of critically ill patients [141–145]. One must keep in mind 
that the presented breakpoints are valid for susceptible Aspergillus spp. But higher 
concentrations may be needed when a patient is infected with a species with a higher 
MIC [115]. Specific guidance on the management of disease caused by azole- 
resistant species has recently been published and can be used a starting point for 
treatment [146].

11.13  Pharmacokinetics of Liposomal Amphotericin B 
in Critically Ill Patients

Conventional amphotericin B deoxycholate has historically been considered the 
“gold standard” in the treatment of invasive fungal infections, although it has largely 
been abandoned in modern practice. In order to attenuate its toxicity and increase 
the therapeutic potential, alternative formulations of amphotericin B have been 
developed. The molecular structure of amphotericin B deoxycholate makes the drug 
an ideal candidate for incorporation into lipid-based preparations. The use of lipid 
formulations is associated with good fungicidal activity, low emergence of resis-
tance and specifically fewer adverse effects, in particular nephrotoxicity, with no 
difference in efficacy. Liposomal amphotericin B (AmBisome) is an intravenous 
liposomal formulation that differs from other lipid-associated amphotericin B prod-
ucts in its uniform, small, spherical size, and the fact that it is a stable, lyophilized 
product. These liposomes are small unilamellar vesicles composed of molecules of 
amphotericin B intercalated into a phospholipid bilayer. The diameter of these lipo-
somes is less than 100 nm. Liposomes provide a unique delivery system, which 
enhances delivery to fungal cells while reducing drug-associated toxicities.
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Liposomal amphotericin B has a broad spectrum of activity, including against 
Candida species (with the exception of Candida lusitaniae and Candida guillier-
mondii), Mucor species, Aspergillus spp. (with reduced efficacy against Aspergillus 
flavus and Aspergillus terreus), and Cryptococcus spp. The development of resis-
tance to amphotericin B is rare.

11.14  General Pharmacokinetics of Liposomal Amphotericin 
B in ICU Patients

Despite the fact that liposomal amphotericin B has been licensed and marketed for 
many years, the PK of this drug is poorly understood. Multiple PK analyses studying 
a wide variety of dosages have been conducted in immunocompromised (pediatric) 
patients [147], although ICU patients are underrepresented. A study in critically ill 
patients gave liposomal amphotericin B at doses ranging from 1.2 to 4.2  mg/kg 
[148]. There was considerable variability in exposure in the 10 patients that received 
the most commonly used dosages (2.8–3.0 mg/kg). The apparent Vd was compara-
tively small with a median value of 0.42 liters/kg, and the median terminal elimina-
tion half-life was 13.05 h (range 8.7–41.4 h). There was no correlation, also in the 
other dosage groups, between dose and exposure nor between dose and Cmax. These 
data corroborate with the data from previous studies with regard to large intra- and 
intersubject variability. Cmax concentrations in ICU patients were comparable to 
those reported in other groups of patients with similar dosages [149–152].

Yet, differences were also noted. For instance, in 17 hematology patients receiv-
ing dosages ranging from 2.67 to 3.46 mg/kg (average 3.0 mg/kg) [147], the termi-
nal half-life of 54.3  h was substantially longer in this cohort than in the ICU 
population. The authors argued that the observed difference in half-life might be 
due to differences in the uptake of the liposomal carrier with bound drug into non- 
blood compartments or in the dissolution of the drug from the liposomal carriers 
with consequences for its disposition in the blood; additional potential factors 
include differences in disease status and inflammatory molecules, the composition 
of plasma proteins, and solutions used for concomitant parenteral nutrition.

11.15  Use of Liposomal Amphotericin B in Patients 
with Renal Impairment, Renal Replacement Therapy, 
and ECMO

As PK information on liposomal amphotericin B is scarce, robust data on drug han-
dling in patients with deteriorating renal function or while receiving extracorporeal 
support is even more limited. According to the product information and the renal 
drug handbook [available via https://kdpnet.kdp.louisville.edu/drugbook/adult/], no 
dose adjustment is needed for patients with renal failure.
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A previously reported study in critically ill patients had a subpopulation of 
patients also receiving hemodialysis. It appears that liposomal amphotericin B is not 
removed by this modality, but more data are needed to confirm this in a larger cohort 
of patients and other forms of dialysis [148]. At present, there are no publications on 
the PK of various formulations of amphotericin B and ECMO. Given the fact that 
all formulations of amphotericin B are lipophilic, adsorption to the ECMO tubing 
can be expected.

11.16  Use of Liposomal Amphotericin B in Patients 
with Hepatic Insufficiency

Hepatic side effects of liposomal amphotericin B have been reported in literature and 
these side effects are also listed in the product information. However, it is unknown 
whether changes in hepatic function have an impact on the clearance of liposomal 
amphotericin B. No formal recommendations are given for dose adaptations of lipo-
somal amphotericin B in patients with varying degrees of hepatic impairment.

11.17  Clinical Pharmacology of Amphotericin B

A relationship between the PK profile of liposomal amphotericin B and its antifun-
gal effect has been demonstrated in several in vitro studies but no study has been 
conducted to validate an optimal PK/PD index for liposomal amphotericin B in 
humans. In a population-PK analysis in nine patients with proven fungal infection, 
eight patients treated with liposomal amphotericin B manifest a clinical response 
(either complete or partial). In patients with a complete response, the steady-state 
Cmax/MIC ratio was significantly higher than in patients with a partial response 
(P  =  0.021), while no significant correlation was found between AUC/MIC and 
response [153]. Obviously, this study is not powered to derive a final breakpoint and 
only guides us towards the fact that based on these data it appears that exposure 
(especially Cmax) to liposomal amphotericin B is the intermediate link between the 
doses administered and their clinical effects.
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