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Abstract

Aims A significant proportion of heart failure (HF) patients have HF preserved ejection fraction (HFpEF). The lack of effective
treatments for HFpEF remains a critical unmet need. A key obstacle to therapeutic innovation in HFpEF is the paucity of pre-
clinical models. Although several large animal models have been reported, few demonstrate progression to decompensated
HF. We have established a model of HFpEF by enhancing a porcine model of progressive left ventricular (LV) pressure overload
and characterized HF in this model including advanced cardiometabolic imaging using cardiac magnetic resonance imaging and
hyperpolarized carbon-13 magnetic resonance spectroscopy.
Methods and results Pigs underwent progressive LV pressure overload by means of an inflatable aortic cuff. Pigs developed
LV hypertrophy (50% increase in wall thickness, P < 0.001, and two-fold increase in mass compared to sham control, P <

0.001) with no evidence of LV dilatation but a significant increase in left atrial volume (P = 0.013). Cardiac magnetic resonance
imaging demonstrated T1modified Look-Locker inversion recovery values increased in 16/17 segments compared to sham pigs
(P < 0.05–P < 0.001) indicating global ventricular fibrosis. Mean LV end-diastolic (P = 0.047) and pulmonary capillary wedge
pressures (P = 0.008) were elevated compared with sham control. One-third of the pigs demonstrated clinical signs of frank
decompensated HF, and mean plasma BNP concentrations were raised compared with sham control (P = 0.008). Cardiomet-
abolic imaging with hyperpolarized carbon-13 magnetic resonance spectroscopy agreed with known metabolic changes in the
failing heart with a switch from fatty acid towards glucose substrate utilization.
Conclusions Progressive aortic constriction in growing pigs induces significant LV hypertrophy with cardiac fibrosis associ-
ated with left atrial dilation, raised filling pressures, and an ability to transition to overt HF with raised BNP without reduction
in LVEF. This model replicates many aspects of clinical HFpEF with a predominant background of hypertension and can be used
to advance understanding of underlying pathology and for necessary pre-clinical testing of novel candidate therapies.
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Introduction

Heart failure (HF) is the final common pathway of a myriad of
metabolic and cardiovascular diseases and imposes a signifi-
cant healthcare burden worldwide. Although there have been

significant improvements in clinical management and out-
comes, morbidity and mortality remain high, and there is an
indisputable need for improved treatment options. The path-
ophysiology of HF is complex. Whilst many patients present
clinically as HF with reduced ejection fraction (HFrEF) (≤40%
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EF), a significant proportion of HF patients have preserved EF
(HFpEF) demonstrating a reduced ability of the heart to relax
but with EF above 50%.")[OAurl][?–]>")[OAurl][?–]>1 Our re-
cently reported prospective multi-ethnic study shows that
HFpEF accounts for ~30% of all HF cases in parallel New
Zealand and Singapore cohorts. HFpEF is characterized by
older age, a greater prevalence of females, and predominant
background hypertension (78%) compared with HFrEF.")
[OAurl][?–]>")[OAurl][?–]>2 Two year mortality was lower
than HFrEF but still high at 14% and the composite outcome
of all-cause mortality or HF hospitalization occurring in 35%.

Clinical trials in patients with HFpEF have failed to demon-
strate improvements in mortality. A recent meta-analysis ex-
amining data from 25 trials (>18 000 patients) showed no
beneficial effect from angiotensin-converting enzyme inhibi-
tors, angiotensin receptor blocker, or mineralocorticoid antag-
onists on mortality or HF hospitalization.")[OAurl][?–]>")
[OAurl][?–]>3 The lack of effective treatments for HFpEF re-
mains a critical unmet need. A significant obstacle to therapeu-
tic innovation in HFpEF is the absence of pre-clinical models
including large animal models that, unlike rodent models, per-
mit detailed instrumentation and extensive imaging and sam-
pling protocols.")[OAurl][?–]>")[OAurl][?–]>4 Although
several large animal models have been reported,")[OAurl][?–
]>")[OAurl][?–]>5 none fulfil all the features present in human
disease, and few demonstrate progression to HF. We hypoth-
esized that enhancing a porcine model of progressive left ven-
tricular pressure overload (LVPO)")[OAurl][?–]>")[OAurl][?–]
>6 with greater characterization would demonstrate incipient
HF with some animal progressing to definitive HF confirming
that this model is suitable for ongoing pre-clinical studies of
HFpEF. Accordingly, we established and enhanced this model
of LVPO and characterized HF in this model with clinical obser-
vations, filling pressures and BNP measurements and also ad-
vanced cardiometabolic imaging using cardiac magnetic
resonance imaging (CMRI) and hyperpolarized carbon-13mag-
netic resonance (HP13CMR) spectroscopy.

Materials and methods

The study protocol was approved by the Institutional Animal
Care and Use Committees of National University of
Singapore and Biological Research Centre, Agency for Science,
Technology and Research. We built on a previously reported
progressive LVPO model")[OAurl][?–]>")[OAurl][?–]>6 with
key enhancements to progress pigs to evidence-based HFpEF.
Thirty-nine female Yorkshire × Landrace pigs (18–23 kg) were
housed individually receiving standard care.

For echocardiography and CMRI, pigs were pre-medicated
with intramuscular ketamine (Ceva Animal Health, Glenorie
NSW, Australia) (10 mg/kg), atropine (Atrosite, Troy Labora-
tories, Glendenning NSW, Australia) (0.04 mg/kg), and mid-
azolam (Dormicum, Hoffmann-La Roche, Basel, Switzerland)

(0.6 mg/kg), intubated, ventilated, and maintained with inha-
lation isoflurane (Attane, Piramal Critical Care, Bethlehem,
PA ). Following Day 0 imaging, pigs were switched to total in-
travenous (i.v.) anaesthesia [midazolam 2.5–4 mg/kg/h,
alfentanil (Rapifen, GlaxoSmithKline, Torrile, Italy) 250–400
μg/kg/h, and pancuronium (Rotexmedica, Trittau, Germany)
0.25–0.3 mg/kg/h] for surgical implantation of aortic cuff.
Other medications included oral amiodarone (Cordarone,
Sanofi-Aventis, Paris, France) (200 mg daily), clopidogrel
(Ceruvin Ranbaxy, Kedah, Malaysia) (75–300 mg), and aspirin
(Cardiprin, Reckitt Benckiser Healthcare, Hull, UK) (100 mg
daily). Pigs also received augmentin (SmithKline Beecham,
Worthing, UK) (15 mg/kg i.v. then 312 mg orally for 5 days)
and fentanyl (Durogesic®, Janssen Pharmaceutica, Beerse,
Belgium) transdermal patches (5 μg/h for 4 days). All pigs
underwent left lateral thoracotomy and pericardiotomy to
isolate the aorta. In 33 pigs, an inflatable cuff (Access Tech-
nologies, Skokie, IL, www.norfolkaccess.com) was placed
around the aortic root and connected to an injectable port
tunnelled subcutaneously adjacent to the scapula. Sham pigs
(n = 6) had thoracotomy without cuff placement. Pigs recov-
ered for 1 week prior to commencement of cuff inflation.

Pigs underwent weekly echocardiography prior to progres-
sive cuff inflation over 4 weeks titrated to achieve incremen-
tal trans-constriction pressure gradients (PGs) of 20, 40, 60,
and 80 mmHg (assessed echocardiographically). From week
4, the PG was maintained at 80 mmHg until completion of fi-
nal magnetic resonance imaging (MRI) and HP13CMR mea-
surements after which pigs were terminated. Cardiac left
ventricle (LV) and lungs were excised, weighed, and samples
taken for subsequent histology. Sham pigs underwent identi-
cal procedures. Trans-thoracic and trans-oesophageal echo
were used to acquire standard cardiac structure and function
measures (Philips EPIQ7 machine). Trans-oesophageal echo,
with tissue Doppler imaging, of the aortic root displayed the
cuff-induced aortic constriction and defined PGs enabling
titration of cuff inflation up or down as necessary.

CMRI was performed prior to thoracotomy and repeated
either Day 35 or Day 42 (sham and 2nd half cuff pigs) using
Siemens 3T MRI scanner (MAGNETOM Skyra, Siemens
Healthineers AG, Erlangen, Germany). Standard CMRI protocol
included cine imaging [global and regional LV systolic function
including LV volumes, mass, and LV ejection fraction (LVEF)],
and T1-mapping from Modified Look-Locker Imaging (MOLLI).
MRI analysis was performed using SEGMENT v2.2 R6338 (http://
segment.heiberg.se). A subset of pigs underwent tandem
CMRI and CMRI hyperpolarizer on Day 42.

HP13CMR spectroscopy was performed in the same scan-
ner as CMRI, using 13C TX quadrature volume coil/13C RX
16-channel flex array coil (Rapid Biomedical, Rimpar,
Germany). [1-13C]pyruvate (7.18 mmol/L; Cambridge Isotope
Laboratories) doped with AH111501 (15 mM) was inserted
into polarizer (SPINLab, GE Healthcare, Chicago, IL) for micro-
wave irradiation. The polarized sample was subsequently
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dissoluted yielding a solution of 250 mmol/L [1-13C]pyruvate
(pH = 7.2–7.7) for immediate injection into animals at a dose
of 0.2 mmol/kg body weight. 13C-MRS started just before i.v.
bolus injection of hyperpolarized [1-13C]pyruvate. The build-
up of metabolites was followed for ~2 min after injection,
with spectra sampled every two heartbeats. Quantification
of metabolites was performed using AMARES in the jMRUI soft-
ware package (http://www.jmrui.eu).")[OAurl][?–]>")[OAurl]
[?–]>7,13C-MR spectra were summed over 40 s upon metabo-
lite appearance with peaks fitted for [1-13C]lactate, [1-13C]
pyruvate hydrate, [1-13C]alanine, and [13C]bicarbonate all
normalized to the [1-13C]pyruvate peak.

Ethylenediaminetetraacetic acid blood samples drawn at
baseline and pre-termination were centrifuged, and plasma
was stored at �800C prior to assay for porcine BNP at
Christchurch Heart Institute using a well-validated assay.")
[OAurl][?–]>")[OAurl][?–]>8 A subset of pigs (six sham and
five cuff) underwent invasive pressure monitoring immedi-
ately after final echocardiography. Sheaths were placed in a
jugular vein and carotid artery to allow passing under fluoro-
scopic guidance a Swan Ganz catheter into the pulmonary ar-
tery for measurement of pulmonary capillary wedge pressure
(PCWP) and a fluid-filled catheter into the LV for measure-
ment of end-diastolic pressure (LVEDP). LV tissue harvested
post-mortem was fixed in buffered 10% formaldehyde prior
to paraffin embedding. Picrosirius red staining was performed

by standard methods to allow assessment of myocardial fi-
brosis using automated image analysis (IMAGEJ).

Statistics

Results are expressed as mean + standard error of mean. Pri-
mary analysis was independent t-tests of time-matched data
between the sham and cuff pigs. P < 0.05 was the threshold
for statistical significance.

Results

Studies in sham pigs proceeded as planned with data collec-
tion complete. Among the cuff-implanted pigs, three experi-
enced cuff failure (Days 21–28) and were excluded from
analyses. A further five pigs were excluded due to premature
death (<Day 28) with post-mortems revealing two fatal aor-
tic occlusion deaths (last recorded PG >80mmHg), one aortic
rupture, one with large aortic and LV thrombi, and one pig
died of bacterial pneumonia. A further five pigs successfully
completed the protocol but exhibited no significant increase
in LV mass despite equivalent PGs. Since LV hypertrophy
(LVH) was the primary driver for development of HFpEF,
these pigs were also excluded from further analysis. Twenty

Figure 1 Serial body weight, pressure gradients across aortic arch, left ventricular mass/body weight (LVmass/BW) ratios, and echocardiography de-
rived serial left ventricular dimensions including interventricular septum thickness at diastole, left ventricular posterior wall thickness at diastole
and left ventricular internal diameter at diastole in 20 pigs with progressive inflation of aortic cuff to induce left ventricular hypertrophy (●) and six
sham control (◯) pigs. Values shown are mean + standard error of the mean. Significant differences at time-matched points between the sham and
aortic cuff to induce left ventricular hypertrophy pigs are indicated as follows: *P < 0.05, **P < 0.01 and ***P < 0.001.
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pigs undergoing aortic cuffing completed the full protocol
and developed LVH (cuff-LVH group). Data from this group
are compared to animals undergoing sham procedures.

Both sham and cuff-LVH pigs gained weight throughout
the protocol (Figure ")[OAurl][?–]>")[OAurl][?–]>1). The PG
remained minimal (<6 mmHg) in the sham group but rose
stepwise (in ~20 mmHg increments) over 4 weeks and there-
after remained stable (Figure ")[OAurl][?–]>")[OAurl][?–]>1).

From 2 weeks, LV mass indexed to body weight (LVmass/
BW) increased in the cuff-LVH group to be significantly
(~two-fold) higher than sham controls by the end of the study
(Figure ")[OAurl][?–]>")[OAurl][?–]>1). Measures of LV mass
by echocardiography, CMRI, and direct weighing at post-
mortem correlated well. LV wall dimensions were stable in
sham pigs but increased in the cuff-LVH pigs. Thickness of
both interventricular septums and LV posterior walls in dias-
tole increased in the cuffed pigs to be significantly higher
than sham by Day 21 and eventually ~50% thicker (Figure ")
[OAurl][?–]>")[OAurl][?–]>1). The LV internal diameter

showed some increase in the cuff group, but the dimension
was only greater than sham at Day 35 (Figure ")[OAurl][?–]
>")[OAurl][?–]>1).

LVEF remained stable with values for both sham and LVH-
cuff group remaining in the 60–65% range (Figure ")[OAurl]
[?–]>")[OAurl][?–]>2). There was no significant change in ei-
ther group in LV end-systolic volumes (LVESVs) or LV end-
diastolic volumes (LVEDVs) (Figure ")[OAurl][?–]>")[OAurl][?–
]>2). LV structure and function data measured by CMRI at
baseline and the end of study corroborated changes measured
by echocardiography with no significant changes comparing
cuff-LVH to sham pigs for LVEDV, LVESV, stroke volume, LVEF,
cardiac output, or peak ejection rate (Figure ")[OAurl][?–]>")
[OAurl][?–]>3). In contrast, left atrial end-diastolic volume (P
= 0.013 compared to baseline) and peak filling rate (P < 0.01
compared with sham) increased in the cuff-LVH (Figure ")
[OAurl][?–]>")[OAurl][?–]>3).

Native T1 values derived from MOLLI did not differ signifi-
cantly between sham and cuff-LVH pigs at Day 0 for 16/17
segments of the LV (with the mid-inferior segment the excep-
tion; Figure ")[OAurl][?–]>")[OAurl][?–]>4A). By the end of
study T1 values were significantly higher in the cuff-LVH pigs
compared with sham for 16/17 segments with the apical-
lateral segment the sole exception. Picrosirius red staining
of sections from LV free wall (Figure ")[OAurl][?–]>")[OAurl]
[?–]>4B) showed an increase in both interstitial and
perivascular collagen deposition in the tissue from the cuff-
LVH pig with mean intensities measured under a bright field
showing a trend for difference and under polarized light be-
ing significantly different (P = 0.044) between LVH and sham
groups.

Invasive intra-cardiac pressures (sub-study) showed nor-
mal range pressures in sham pigs, but both PCWP (P =
0.008) and LVEDP (P= 0.047) were raised in cuff-LVH pigs (Fig-
ure ")[OAurl][?–]>")[OAurl][?–]>5). Plasma BNP levels
remained in the normal range in sham control pigs but on av-
erage increased by end of study in the cuff-LVH pigs being sig-
nificantly higher than sham (P = 0.008) and baseline (Day 0)
values (P = 0.02) (Figure ")[OAurl][?–]>")[OAurl][?–]>5). Clini-
cal signs of HF were observed in at least one-third of the pigs
including tachypnea, laboured breathing, cough, lung conges-
tion on auscultation, cyanosis, and lethargy. One pig demon-
strated major falls in arterial oxygen saturation (SPO2 < 40%)
on induction of anaesthesia for Day 35 imaging with extreme
cyanosis and severe pulmonary oedema and pleural effu-
sions. This pig underwent drainage of accumulated pleural
fluid and received additional oxygen therapy and treatment
with 2 mg/kg i.v. frusemide (Furosemide Fresenius Kabi,
Bad Homburg, Germany) before stabilizing and proceeding
to MRI and echo, followed by partial removal of glycerol from
the aortic cuff to stabilize PG. It recovered to survive to end
of the protocol (Day 42).

Representative cardiac 13C-MR spectra after injection of
hyperpolarized [1-13C]pyruvate from a normal (sham) pig

Figure 2 Echocardiography derived serial left ventricular volumes and
ejection fraction in 20 aortic cuff to induce left ventricular hypertrophy
(●) and six sham control (◯) pigs. Values shown are mean + standard er-
ror of the mean.
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Figure 3 Cardiac magnetic resonance imaging derived left ventricular end diastolic volume, end systolic volume, stroke volume, ejection fraction, peak
filling and ejection rates, cardiac output and left atrial end-diastolic (ED) volume in 20 aortic cuff to induce left ventricular hypertrophy (●) and six sham
control (◯) pigs. Values shown are mean + standard error of the mean. Left atrial end-diastolic volume was significantly increased at 42 days compared
with baseline (*P < 0.05) and left ventricular peak filling rate increased in aortic cuff to induce left ventricular hypertrophy pigs compared with sham
(**P < 0.01).
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demonstrates that [1-13C]pyruvate is metabolized into [1-
13C]lactate, [1-13C]alanine, [13C]bicarbonate via lactate de-
hydrogenase, alanine aminotransferase (ALT), and pyruvate
dehydrogenase (PDH), respectively with metabolic products
visible within 2 min (Figure ")[OAurl][?–]>")[OAurl][?–]>6A).

Compared to sham pigs, cuff-LVH pigs showed increases in
[1-13C]alanine (P < 0.01) and [13C]bicarbonate (P < 0.05)
with no increase in [1-13C] lactate representing ~2.6-fold
and ~6-fold increase in ALT and PDH activity, respectively
(Figure ")[OAurl][?–]>")[OAurl][?–]>6B).

Figure 4 Top panel – cardiac MRI T1MOLLI values across 17 segments of the LV at baseline and end of study in 20 cuff-LVH (●) and 6 sham control (◯)
pigs. Bottom panels – examples on picrosirius red staining of sections of the LV free wall and group mean intensities from sham and cuff-LVH pigs
measured under bright field and polarizing light. Values shown are mean + SEM. Significant differences at time-matched points between the sham
and cuff-LVH pigs are indicated as follows: *P< 0.05, †P< 0.01 and ‡P< 0.001.
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Discussion

This porcine HFpEF model demonstrates significant LVH (dou-
bling of LV mass) without LV dilation similar to that previously
reported.")[OAurl][?–]>")[OAurl][?–]>6 Unique features of

our model that document HF include comprehensive serial
imaging (echocardiography and MRI) clearly demonstrating
global ventricular fibrosis by MRI T1 MOLLI, a significant in-
creases in plasma BNP, and significantly elevated PCWP and
LVEDP. Hyperpolarized 13C-MR studies showed increased

Figure 5 Top panels – invasive pulmonary capillary (PC) wedge pressure and LV end diastolic pressure in 5 cuff-LVH (●) and 6 sham control (◯) pigs.
Lower panels – plasma B-type natriuretic peptide (BNP) levels in cuff-LVH (●) and sham control (◯) pigs. Values shown are mean + SEM. Significant
differences at time-matched points between the sham and cuff-LVH pigs are indicated as follows: *P< 0.05 and †P< 0.01.
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ALT and PDH activity in HFpEF pigs. Pigs developed incipient
HF with frequent progression to frank decompensated HFpEF
manifested in clinical symptoms, raised LV filling pressures
and, in some pigs, frank pulmonary oedema. Taken together,
full characterization of this enhanced LVPO model demon-
strates development of incipient HF with some animals
progressing to overt HF confirming that this provides a clini-
cally relevant model suitable for ongoing preclinical studies
of HFpEF.

Our model is based the porcine LVPO model first reported
by Spinale et al.")[OAurl][?–]>")[OAurl][?–]>6 Early develop-
ment was attended by complications that subsequently be-
came infrequent. Most early deaths were incurred in the
early phase of setting up the model. Titration of the cuff

filling was guided by a combination of factors including de-
gree of LVH, measured PG and PG week–week stability, echo-
cardiographic visualization of cuff constriction blood flow
turbulence, and clinical observations of the pig. PG ‘drift’
above 80 mmHg resulted in two early deaths. Subsequently
high PG (>80mmHg) or rapidly drifting PG (>20mmHg incre-
ments from preceding week) triggered partial cuff release.
There was need for daily clinical observations particularly dur-
ing the latter weeks of the protocol with vigilance for leth-
argy, tachypnea, cough, laboured breathing, and cyanosis.
When present, we responded with supportive therapy (e.g.
frusemide) and/or partial cuff release. All pigs that developed
significant LVH over the 5–6 week study period were adjudi-
cated to have pre-clinical, incipient HF with ~one-third de-
compensating to frank HF. This model produces more stable
LVPO-induced HFpEF than our previously published model
in sheep that used an acute onset aortic constriction (supra-
renal) resulting in severe pre-morbid (euthanized) or terminal
HF in all sheep with a variable but short (median 15 days) sur-
vival time.")[OAurl][?–]>")[OAurl][?–]>9

Although CMRI provides superior image resolution, echo-
cardiography is non-invasive and economical. Echocardiog-
raphy was used for frequent serial imaging of changes in
cardiac structure and function. LVmass/BW and LV wall
thickness increased progressively in concert with trans-
constriction PGs. In contrast, LV volumes and LVEF showed
no consistent change, indicating no significant LV dilation
and preserved EF. Comparison of MRI and echocardiogra-
phy generally showed equivalence of measurements. MRI
allowed accurate measurement of left atrial volume, which
increased in the cuff-LVH pigs, and assessment of cardiac fi-
brosis. Myocardial fibrosis impinges adversely on cardiac
structure and function through increased myocardial stiff-
ness and diastolic dysfunction,")[OAurl][?–]>")[OAurl][?–]
>10 impaired LV contraction and systolic dysfunction,")
[OAurl][?–]>")[OAurl][?–]>11 arrhythmias,")[OAurl][?–]>")
[OAurl][?–]>12 and impaired coronary blood flow")[OAurl]
[?–]>")[OAurl][?–]>13 and is a powerful indicator of adverse
outcomes in heart disease.")[OAurl][?–]>")[OAurl][?–]>14,15

Spinale/Zile had previously demonstrated LVH in the LVPO
model is associated with increased myocardial stiffness
(three-fold) and total collagen (1.5-fold).")[OAurl][?–]>")
[OAurl][?–]>6 MRI T1 MOLLI results here clearly demon-
strated global increases fibrosis across 16/17 segments of
the LV. Only the apical lateral segment failed to show a de-
finitive rise in T1 value. Nevertheless, picrosirius red stain-
ing at this site demonstrated significant collagen
deposition (Figure ")[OAurl][?–]>")[OAurl][?–]>6), but rather
than representative, it likely underestimated overall ventric-
ular fibrosis in this model.

Invasive pressures measured in a subset of the LVH-cuff
animals indicated elevations of PCWP and LVEDP to levels
equivalent to those observed in mild–moderate clinical
HF. The BNPs are long established biomarkers for the

Figure 6 Metabolic signals from hyperpolarizing
13
C magnetic resonance

imaging (A) 13C spectra from a normal (sham) pig and (B) metabolite/py-
ruvate signal from 11 aortic cuff to induce left ventricular hypertrophy (●)
and six sham control (◯) pigs. Values shown are mean + standard error of
the mean. The units are in arbitrary units and normalized to the [1-13C]
pyruvate peak amplitude of each animal. Significant differences at time-
matched points between the sham and aortic cuff to induce left ventric-
ular hypertrophy pigs are indicated as follows: *P < 0.05 and **P < 0.01.
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diagnosis and prognosis of HF.")[OAurl][?–]>")[OAurl][?–]>16

We used our well-validated assay for porcine/ovine BNP")
[OAurl][?–]>")[OAurl][?–]>8 to find elevated mean BNP
levels with three samples from three pigs in the mild range
(6–10 pmol/L or 21–35 pg/mL) and five in the moderate–
severe HF range (>10 pmol/L or >~35 pg/mL, range of
39–119 pg/mL). Using the identical assay, sheep with
post-myocardial infarction LV dysfunction have BNP levels
of 10–12 pmol/L (~35–42 pg/mL),")[OAurl][?–]>")[OAurl][?–
]>17 and sheep with LVPO leading to pre-morbid (euthana-
sia) severe HF/death have BNP of 15.3 + 3.6 pmol/L (~53
pg/mL).")[OAurl][?–]>")[OAurl][?–]>9 Thus, levels of BNP
measured in the pigs in this study were indicative of mod-
erate to severe HF.

A highly novel aspect of this study is the HP13CMR imaging.
Advanced cardiometabolic imaging allows detection of novel
structural and metabolic cardiac changes. HP13CMR spectros-
copy allows real-time study of myocardial energetics and sub-
strate utilization to aid in understanding the pathophysiology
of HFpEF and may identify novel therapeutic strategies.
HP13CMR results showed significant increases in
hyperpolarized [1-13C]alanine and [13C]bicarbonate levels in
the cardiac tissue of HFpEF pigs. Because these [13C]labeled
metabolite signals of [1-13C]lactate, [1-13C]alanine, and [13C]
bicarbonate are obtained by conversion from the
hyperpolarized injected [1-13C]pyruvate via lactate dehydro-
genase, ALT, and PDH, respectively, we deduced that ALT
and PDH activity increased in the HFpEF pigs. The failing heart
switches its energy source from fatty acids towards glucose,")
[OAurl][?–]>")[OAurl][?–]>18 directed towards glycolysis,
whilst the change in glucose oxidation associated with PDH
flux is related to the stage and pathogenesis of HF.")[OAurl]
[?–]>")[OAurl][?–]>19 In rats with aortic constriction, glucose
oxidation is initially increased, but eventually decreases as
cardiac systolic dysfunction develops.")[OAurl][?–]>")[OAurl]
[?–]>20 This may explain the increase in PDH flux in our HFpEF
pig model. Others have demonstrated that in 8 weeks, from
pressure-overload LVH non-diabetic rats, more active PDH
complex was extracted compared with healthy hearts.")
[OAurl][?–]>")[OAurl][?–]>21 Increased cardiac glucose oxida-
tion is also observed in spontaneously hypertensive rats")
[OAurl][?–]>")[OAurl][?–]>22 and in dogs with pacing-induced
HF.")[OAurl][?–]>")[OAurl][?–]>23 Concomitantly, increased
ALT activity may reflect increased supply of amino acids and
nucleic acids for hypertrophic growth.")[OAurl][?–]>")[OAurl]
[?–]>20 Mice with LVH induced by aortic constriction show in-
creased activation of anaplerotic pathways.")[OAurl][?–]>")
[OAurl][?–]>24 Taken together, the HP13CMR results indicate
our porcine HFpEF model displays metabolic changes consis-
tent with HF.

The unmet need for models of HFpEF allowing both eluci-
dation of the biology of this syndrome and providing a test
bed for candidate novel therapies has triggered interest in
developing large animal models of HFpEF. Efforts in this

direction have had varying degrees of success. In addition
to the progressive LVPO model,")[OAurl][?–]>")[OAurl][?–]>6

and our previously described sheep model of acute aortic
constriction, which induced rapid deterioration to
HF/death,")[OAurl][?–]>")[OAurl][?–]>9 others have also
employed aortic constriction in pigs. Acute onset aortic con-
striction beyond the carotid bifurcation resulted in rapid in-
duction of LVH with reduced LVEF and acute HF by Day 7
(including death in 4/22 pigs), which then over 7 weeks
evolved into a compensated phase of concentric LVH with re-
stored cardiac function.")[OAurl][?–]>")[OAurl][?–]>25 Thus,
there is need to induce LVPO in a progressive nature as imple-
mented in this study to induce progressive LVH without sys-
tolic dysfunction. Other authors banded ascending aorta of
minipigs (25–30 kg) but showed no significant LVH or change
in left atrial volume or LVEDP over 20 weeks and did not re-
port of plasma BNP. Hence this effort produced no objective
evidence of HF.")[OAurl][?–]>")[OAurl][?–]>26 The Mayo
group showed that renal wrapping of old dogs induced
chronic hypertension with secondary LVH and fibrosis with
impaired LV relaxation but no increase in LV diastolic stiffness
claiming to mimic HFpEF.")[OAurl][?–]>")[OAurl][?–]>27 How-
ever, the requirement for old animals (aged 8–13) makes this
model relatively impractical and expensive.

The traditional rodent deoxy-corticosterone acetate
(DOCA)–salt model has been upscaled to pigs, with variable
results.")[OAurl][?–]>")[OAurl][?–]>28,29 DOCA-salt pigs dem-
onstrated significant increases in LV mass and wall thickness
and also left atrial volumes at rest compared with control
pigs.")[OAurl][?–]>")[OAurl][?–]>28 During dobutamine stress,
changes in LVEF and LVESV demonstrated normal contractile
reserve but there were differences in cardiac index and
LVEDV compared to normal pigs indicating inadequate in-
crease in myocardial perfusion reserve during dobutamine
stress perhaps indicating early-stage HFpEF but there was
no change in T1 mapping of fibrosis.")[OAurl][?–]>")[OAurl]
[?–]>28 When DOCA-induced hypertension is combined with
high salt, fat, cholesterol, and sugar diet, pigs develop con-
centric LVH and left atrial dilation with no change in LVEF or
HF symptoms at rest.")[OAurl][?–]>")[OAurl][?–]>29 Whilst
there was some evidence of pressure volume relationship be-
ing perturbed, LVEDP was not elevated unless pigs were chal-
lenged with pacing plus dobutamine. A recently reported
study took an even more complex approach with multiple co-
morbidities modelled by combining streptozocin-induced dia-
betes, renal artery embolization to induce kidney dysfunction
and hypertension, and a high fat/salt diet in six pigs followed
for 6 months.")[OAurl][?–]>")[OAurl][?–]>30 They docu-
mented evidence of systemic inflammation, coronary endo-
thelial dysfunction, and a rise in reactive oxygen species
with disruption of nitric oxide along with myocardiocyte stiff-
ness and cardiac fibrosis. This model claimed to be a clinically
relevant model LV diastolic dysfunction and a precursor for
HFpEF, but no pigs demonstrated overt HF. Thus, although
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several large animal models have been proposed, none of
these fulfil all the features present in human disease. That be-
ing said, human HFpEF is a complex syndrome with multiple
contributing aetiologies with varying occurrence and severity
of comorbidities. Animal models invariably model some but
not all aspects of pathology, thus, researchers need to select
combinations of pathological features according to the spe-
cific aims of their study. Many of the models noted above
replicate pre-clinical disease with no objective evidence of
HF; thus, they represent early stages of the disease process
and not HFpEF per se.

In conclusion, we have described a steadily progressive,
but sufficiently stable and controllable (via titration of
cuff/constriction) model of LVPO with novel data evidencing
fibrosis based on MRI T1 MOLLI mapping, elevated filling
pressures, metabolic changes, and progression to frank HF
with prolongation of the model. This is a clinically relevant
model of HFpEF on a predominant background of hyperten-
sion with clear utility in advancing knowledge of underlying
pathophysiology of HFpEF and testing novel candidate
therapies.

Acknowledgements

We would like to thank staff of Comparative Medicine, Na-
tional University Singapore, particularly Denise Mathew, for
expert assistance with animal care and procedures. We also
thank Professor Mike Zile and Frank Spinale, University South
Carolina for consultation and advice on set up of the pig
model. We also thank Janise Lalic for help with her assistance
with animal setup at the Singapore Bioimaging Consortium as
well as Ong Sing Yee and Nurul Farhana Salleh for help with
HP C13 preparation.

Conflict of interest

None declared.

Funding

Grant support was provided by the ATTRaCT SPF grant from
Biomedical Research Council of Singapore.

References

1. McMurray JJV, Adamopoulos S, Anker
SD, Auricchio A, Bohm M, Dickstein K,
Falk V, Filippatos G, Foneseca C,
Gomez-Sanchez MA, Jaarsma T, Kober
L, Lip GY, Maggioni AP, Parkhomenko
A, Pieske BM, Popescu BA, Ronnevik
PK, Rutten FH, Schwitter J, Sererovic P,
Stepinska J, Trindade PT, Voors AA,
Zannad F, Zeiher A, ESC Committee for
Practice Guidelines. ESC Guidelines for
the diagnosis and treatment of acute
and chronic heart failure 2012: The task
force for the diagnosis and treatment of
acute and chronic heart failure 2012 of
the European Society of Cardiology. De-
veloped in collaboration with the Heart
Failure Association (HFA) of the ESC.
Eur Heart J 2012; 33: 1787–1847.

2. Lam CSP, Gamble GD, Ling LH, Sim D,
Leong KTG, Yeo PSD, Ong HY,
Jaufeerally F, Ng TP, Cameron VA,
Poppe K, Lund M, Devlin G, Troughton
R, Richards AM, Doughty RN. Mortality
associated with heart failure with pre-
served vs. reduced ejection fraction in a
prospective international multi–ethnic
cohort study. Eur Heart J 2018; 39:
1770–1780.

3. Zheng SL, Chan FT, Nabeebaccus AA,
Shah AM,McDonagh T, Okonko DO, Ayis
S. Drug treatment effects on outcomes in
heart failure with preserved ejection
fraction: a systematic review and meta–
analysis. Heart 2018; 104: 407–415.

4. Roh J, Houstis N, Rosenzweig A. Why
don’t we have proven treatments for
HFpEF. Circ Res 2017; 120: 1243–1245.

5. Conceicao G, Heinonen I, Lourenco AP,
Duncker DJ, Falcao-Pires I. Animal
models of heart failure with preserved
ejection fraction. Neth Heart J 2016;
24: 275–286.

6. Yarbrough WM, Mukherjee R, Stroud
RE, Rivers WT, Oelsen JM, Dixon JA,
Eckhouse SR, Ikonomidis JS, Zile MR,
Spinale FG. Progressive induction of left
ventricular pressure overload in a large
animal model elicits myocardial remod-
eling and a unique matrix signature. J
Thorac Cardiovasc Surg 2012; 143:
215–223.

7. Stefan D, Di Cesare F, Andrasescu A,
Popa E, Lazariev A, Vescovo E, Strbak
O, Williams S, Starcuk Z, Cabanas M,
van Ormondt D, Graveron-Demilly D.
Quantitation of magnetic resonance
spectroscopy signals: the jMRUI soft-
ware package. Measurement Sci Tech
2009; 20: 104035 (9 pp).

8. Pemberton CJ, Yandle TG, Charles CJ,
Rademaker MT, Aitken GD, Espiner EA.
Ovine brain natriuretic peptide in car-
diac tissues and plasma: effects of car-
diac hypertrophy and heart failure on
tissue concentration and molecular
forms. J Endocrinol 1997; 155: 541–550.

9. Charles CJ, Kaaja RJ, Espiner EA,
Nicholls MG, Pemberton CJ, Richards

AM, Yandle TG. Natriuretic peptides in
sheep with pressure overload left ven-
tricular hypertrophy. Clin Exp Hypertens
1996; 18: 1051–1071.

10. Zile MR, Baicu CF, Ikonomidis JS,
Stroud RE, Nietert PJ, Bradshaw AD,
Slater R, Palmer BM, Van Buren P,
Meyer M, Redfield MM, Bull DA,
Granzier HL, LeWinter MM. Myocardial
stiffness in patients with heart failure
and a preserved ejection fraction: contri-
butions of collagen and titin. Circulation
2015; 131: 1247–1259.

11. Querejeta R, López B, González A,
Sanchez E, Larman M, Martinez Ubago
L, Diez J. Increased collagen type I syn-
thesis in patients with heart failure of
hypertensive origin: relation to myocar-
dial fibrosis. Circulation 2004; 110:
1263–1268.

12. Takarada A, Yokota Y, Fukuzaki H. Analy-
sis of ventricular arrhythmias in patients
with dilated cardiomyopathy—relation-
ship between the effects of antiarrhyth-
mic agents and severity of myocardial
lesions. Jpn Circ J 1990; 54: 260–271.

13. Dai Z, Aoki T, Fukumoto Y, Shimokawa
H. Coronary perivascular fibrosis is asso-
ciated with impairment of coronary
blood flow in patients with non–
ischemic heart failure. J Cardiol 2012;
60: 416–421.

14. Azevedo CF, Nigri M, Higuchi ML,
Pomerantzeff PM, Spina GS, Sampaio

10 C.J. Charles et al.

ESC Heart Failure (2019)
DOI: 10.1002/ehf2.12536



RO, Tarasoutchi F, Grinberg M, Rochitte
CE. Prognostic significance of myocar-
dial fibrosis quantification by histopa-
thology and magnetic resonance
imaging in patients with severe aortic
valve disease. JACC 2010; 56: 278–287.

15. Aoki T, Fukumoto Y, Sugimura K,
Oikawa M, Satoh K, Nakano M,
Nakayama M, Shimokawa H. Prognostic
impact of myocardial interstitial fibrosis
in non–ischemic heart failure. Compari-
son between preserved and reduced
ejection fraction heart failure. Circ J
2011; 75: 2605–2613.

16. Richards AM. Future biomarkers in car-
diology: My favourites. Eur Heart J Suppl
2018; 20: G37–G44.

17. Rademaker MT, Cameron VA, Charles
CJ, Espiner EA, Nicholls MG, Pemberton
CJ, Richards AM. Neurohormoes in an
ovine model of compensated
postinfarction left ventricular dysfunc-
tion. Am J Physiol 2000; 278:
H731–H740.

18. Sankaralingam S, Lopaschuk GD. Car-
diac energy metabolic alterations in
pressure overload–induced left and right
heart failure (2013 Grover Conference
Series). Pulm Circ 2015; 5: 15–28.

19. Doenst T, Nguyen TD, Abel ED. Cardiac
metabolism in heart failure: implications
beyond ATP production. Circ Res 2013;
113: 709–724.

20. Doenst T, Pytel G, Schrepper A, Amorim
P, Färber G, Shingu Y, Mohr FW,
Schwarzer M. Decreased rates of sub-
strate oxidation ex vivo predict the onset
of heart failure and contractile dysfunc-
tion in rats with pressure overload.
Cardiovasc Res 2010; 86: 461–470.

21. Lydell CP, Chan CP, Wambolt RB,
Sambandam N, Parsons H, Bondy GP,

Rodrigues B, Popov KM, Harris RA,
Brownsey RW, Allard MF. Pyruvate de-
hydrogenase and the regulation of glu-
cose oxidation in hypertrophied rat
hearts. Cardiovasc Res 2002; 53:
841–851.

22. Dodd MS, Ball DR, Schroeder MA, Le
Page LM, Atherton H, Heather LC, Sey-
mour AM, Ashrafian H, Watkins H,
Clarke K, Tyler DJ. In vivo alterations
in cardiac metabolism and function in
the spontaneously hypertensive rat
heart. Cardiovasc Res 2012; 95: 69–76.

23. Osorio JC, Stanley WC, Linke A,
Castellari M, Diep QN, Panchal AR,
Hintze TH, Lopaschuk GD, Recchia FA.
Impaired myocardial fatty acid oxida-
tion and reduced protein expression of
retinoid X receptor–alpha in pacing–
induced heart failure. Circulation 2002;
106: 606–612.

24. Kolwicz SC Jr, Olsen DP, Marney LC,
Garcia-Menendez L, Synovec RE, Tian
R. Cardiac–specific deletion of acetyl
CoA carboxylase 2 prevents metabolic
remodeling during pressure–overload
hypertrophy. Circ Res 2012; 111:
728–738.

25. Xiong Q, Zhang P, Guo J, Swingen C,
Jang A, Zhang J. Myocardial ATP
hydrolysis rates in vivo: a porcine
model of pressure overload–induced hy-
pertrophy. Am J Physiol 2015; 309:
H450–H458.

26. Hiemstra JA, Liu S, Ahlman MA,
Schuleri KH, Lardo AC, Baines CP,
Dellsperger KC, Bluemke DA, Emter
CA. A new twist on an old idea: a two–
dimensional speckle tracking assess-
ment of cyclosporine as a therapeutic al-
ternative for heart failure with

preserved ejection fraction. Physiol Rep
2013; 1: e10074.

27. Hamdani N, Bishu KG, von Frieling-
Salewsky M, Redfield MM, Linke WA.
Deranged myofilament phosphorylation
and function in experimental heart fail-
ure with preserved ejection fraction.
Cardiovasc Res 2013; 97: 464–471.

28. Reiter U, Reiter G, Manninger M,
Adelsmayr G, Schipke J, Alogna A,
Rajces A, Stalder AF, Greiser A,
Muhlfeld C, Scherr D, Post H, Pieske B,
Fuchsjager M. Early–stage heart failure
with preserved ejection fraction in the
pig: a cardiovascular magnetic reso-
nance study. J Cardiovasc Magn Reson
2016; 18: 63–78.

29. Schwarzl M, Hamdani N, Seiler S,
Alogna A, Manninger M, Reilly S,
Zirngast B, Kirsch A, Steendijk P,
Verderber J, Zweiker D, Eller P, Hoffler
G, Schauer S, Eller K, Maechler H,
Pieske BM, Linke WA, Casadei B, Post
H. A porcine model of hypertensive car-
diomyopathy: implications for heart fail-
ure with preserved ejection fraction. Am
J Physiol 2015; 309: H1407–H1418.

30. Sorop O, Heinonen I, van Kranenburg
M, van de Wouw J, de Beer VJ, Nguyen
ITN, van Duin RWB, Stam K, van Geuns
R-J, Wielopolski PA, Krestin GP, van den
Meiracker AH, Verjans R, van Bilsen M,
Danser AHJ, Paulus WJ, Cheng C, Linke
WA, Joles JA, Verhaar MC, van der
Velden J, Merkus D, Duncker DJ. Multi-
ple common comorbidities produce left
ventricular diastolic dysfunction associ-
ated with coronary microvascular dys-
function, oxidative stress, and
myocardial stiffening. Cardiovasc Res
2018; 114: 954–964.

Porcine model of heart failure with preserved ejection fraction 11

ESC Heart Failure (2019)
DOI: 10.1002/ehf2.12536



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


