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Chapter 15
Modeling of Infectious Diseases: A Core
Research Topic for the Next Hundred Years

I Gede Nyoman Mindra Jaya, Henk Folmer, Budi Nurani Ruchjana,
Farah Kristiani, and Yudhie Andriyana

15.1 Introduction

Incidence of disease is an under-researched topic in regional science. This is
unfortunate because it frequently has far-reaching welfare impacts at household,
regional, national, and even international levels. For the individual, health problems
may range from minor nuisance to death. However, not only the victims but also
their family members are affected if they fall ill (e.g., because of an increase in their
household tasks or loss of income). Other, mainly financial, implications are related
to seeing a doctor or buying medicine. Incidence of disease may also lead to loss of
leisure or school days. Another nuisance is restriction of the movement of people to
prevent the spread of a disease.
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Regional impacts of disease incidence consist in the first place of the impacts on
the households that are directly or indirectly affected. However, in addition, there
are costs caused by precautionary actions and production losses. In the case of
epidemics, such as the Ebola virus disease, a regional system may be paralyzed.
Given its welfare impacts and soaring incidence, inter alia, because of climate
change, increasing population density, higher mobility, and increasing immunity
to several common medicines, the incidence and spread of diseases should become
regular research topics in regional science. For recent studies in regional science
devoted to the topics, we refer to Ando and Baylis (2013) and Congdon (2013).

Methodological reasons also explain why regional scientists should pay (more)
attention to the analysis of the incidence of diseases and its consequences. Although
both regional science and epidemiology analyze the spatial distributions of their
research topics and apply spatial analytical techniques, interesting methodological
differences between them open possibilities for cross-fertilization. Whereas the
units of analysis in regional science usually are administrative entities, such as the
US states or counties with “large” populations, the spatial units in epidemiology
are “small,” such as neighborhoods, as required by the effective application of
prevention or control measures. Given that the interest in regional science in small
region phenomena, such as crime or the development of housing prices at the
neighborhood level, is growing, the methods applied in epidemiology may turn out
to be applicable in regional science as well. On the other hand, spatial spillover,
which is a core issue in regional science for which a large variety of econometric
approaches has been developed, has played a less significant role in epidemiology.
Considering that infectious diseases tend to spatially spill over, epidemiology may
benefit from the spatial spillover models and econometric approaches in regional
science.

An important step in the analysis of regional impacts of a disease is the prediction
of its incidence. The main objective of this study is to present an overview of the
most common statistical methods to predict incidence of infectious diseases, to
outline their pros and cons and the conditions under which they can be applied.
The paper is restricted to infectious diseases. Typical for this type of diseases
is that they are transmitted in space (see Sect 15.2). The key concepts in the
analysis and prediction of the incidence of an infectious disease are the standardized
mortality/morbidity ratio (SMR) and its standard error. In the paper, we discuss
three types of approaches that have been used to estimate the key parameters of
infectious disease incidence: maximum likelihood (ML), Bayesian methods, and
nonparametric methods.

The paper is organized as follows: In Sect. 15.2, we discuss the types of infectious
diseases and the basic model used to describe their occurrence. In Sect. 15.3,
we discuss the main estimators that have been developed and applied to model
the incidence of infectious diseases, i.e., ML, Bayesian smoothing, nonparametric
methods, and econometric methods). In Sect. 15.4, we summarize the main findings
and present conclusions, including a research agenda.
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15.2 Basic Characteristics of Infectious Diseases

Infectious or transmissible diseases are caused by pathogenic microorganisms and
transmitted from person to person by direct or indirect contact. Bacteria, viruses, or
fungus are examples of the pathogenic agents.

Based on incidence, four types of infectious diseases are usually distinguished. A
disease that occurs occasionally in a population is classified as sporadic; if it occurs
constantly, it is endemic; if a large number of victims are infected in a short period,
it is epidemic; and if it occurs worldwide in a short period, it is pandemic.

Infectious diseases have three transmission mechanisms: contact, vehicle, and
vector transmission. In the first mechanism, the transmission is by direct person-to-
person contact or indirect by contact with nonliving objects (such as contaminated
soils) or by mucus droplets in coughing, sneezing, laughing, or talking. In the
second mechanism, media, such as air (airborne), food (food-borne), or water
(waterborne), are the transmitting agents. Finally, a vector is a mechanism that
transports infectious agents from an infected person or animal to susceptible
individuals. Vectors consist of two types: biological and mechanical. In the case
of a biological vector, the agent reproduces in the vector’s body that carries it to the
susceptible person. Examples of biological vectors are mosquitoes, ticks, and bugs.
Amechanical vector picks up and transports the agent outside of its body. The vector
itself is not infected by the agent. An example is a housefly. Vector transmission is
the most common transmission mechanism. For more details about transmission and
its mechanisms, we refer to, e.g., Chen et al. (2015).

15.3 Infectious Disease Modeling

The basic concept in modeling the relative risk of an infectious disease is the SMR.
It is used to identify high-risk regions. It is defined as follows: assume yi and
ei are the observed and expected number of cases in region i, (iD 1, 2, 3, : : : ,N),
respectively. The SMR is then defined as follows:

SMRi D yi
ei
; (15.1)

where ei defined as

ei D Ni �
Pn

iD1 yiPn
iD1 Ni

; (15.2)

and Ni is the size of the population at risk in region i. A larger than one (15.1) SMR
means that the region concerned has a larger actual incidence than its expectation;
such region is classified as a high-risk region. By contrast, a region with a smaller
than one (15.1) SMR is a low-risk region (Tango 2010).
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15.3.1 ML

The traditional estimator of relative risk is ML (Shaddick and Zidek 2016). For
count data and yi, a “small” non-negative, discrete number, the Poisson distribution
is typically chosen to model infectious disease incidence. With mean and variance
ei� i respectively, where � i is the relative risk parameter in region i, the following is
obtained:

yi
ˇ
ˇ
ˇei� i � Poisson .ei� i/ : (15.3)

The simplest model assumes no covariate and random term in the model. The
ML estimator of � i is

b�
ML

i D yi
ei
; (15.4)

which is unbiased. The variance is

3

V

�

b�
ML

i

�

D
b�
ML

i

ei
: (15.5)

For small ei, (15.4) and (15.5) are “large” which leads to imprecise estimation of
relative risk. For example, two similar regions, A and B, have the same population
at risk, that is, they have the same expected number of cases, ei. Suppose that ei
is 0.1 and that in region A one case is found and in B, zero. Hence,b�

ML

i in region

A is 10 and in region B, zero. Region A has extreme b�
ML

i compared with region
B, while the number of cases differs by 1 only. It follows that the ML-estimated
relative risk may be very unstable and lead to wrong conclusions (Pringle 1996).
Consequently, more appropriate methods for disease modeling and mapping are
required. One class of such methods is smoothing. Smoothing techniques exploit
information from neighboring regions to adjust the estimate for a given region. The
basic principle is shrinkage. That is, ML estimates with small expected rates or
high variances will be “shrunk” toward the overall mean, whereas those with small
variances will essentially remain unchanged. Smoothing thus decreases the mean
squared error (Anselin et al. 2006). Bayesian and nonparametric techniques are two
popular smoothing methods used in disease modeling and mapping.

15.3.2 Bayesian Smoothing

Bayesian smoothing methods are statistical approaches to update unknown
parameters using information from observations. As a first step, prior information
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on the parameter of interest is specified in terms of a probability distribution. Next,
empirical evidence (data) is obtained and combined with the prior information
using Bayes’ theorem, which leads to a posterior probability distribution of the
parameters. The posterior becomes the basis for statistical inference (Congdon
2010). Specifically, the observed data yD (y1, : : : , yn)T is assumed to be
generated from a probability distribution f (yij � i) with unknown parameters
� D (�1, : : : , �n)T . The unknown parameters � , in turn, are assumed to be random
variables with prior f (� ij �) with unknown hyperparameter � D (�1, : : : , � k)T . The
posterior density of � i, given the data yi, the conditional density f (yij � i), and the
conditional density f (� ij �), is

f .�ijyi;�/ D f .yij�i/ � f .�ij�/
f .yij�/ ; (15.6)

where f (yij �) is the marginal likelihood of the data given hyperparameter � . To
ensure that the posterior distribution, f (� ij yi), is a proper density, the marginal
likelihood, f (yij �), is taken as a normalizing constant, which is found by integrating
the likelihood, f (yij � i), over the joint prior density:

f .yij�/ D
Z

f .yij�i/ � f .�ij�/ d�i: (15.7)

Based on the above mentioned description, (15.6) can be written as follows:

f .�ijyi;�/ / f .yij�i/ � f .�ij�/ : (15.8)

The estimated posterior density f .�ijyi;b�/ is used to make inferences about � i,
whereb� is an estimate of � .

Bayesian approaches are composed of two classes: empirical Bayes (EB) and full
Bayes (FB). Each is made up of several types. In the case of EB, parameters � are
replaced by point estimates of hyperparameter based on the marginal distribution
of yi. In the case of FB, a prior distribution f (�1) , . . , f (� k), is specified for the
hyperparameter � (Hog et al. 2005).

A typical example of each case is presented below.

15.3.2.1 Empirical Bayes Poisson-Lognormal Model1

The empirical Bayes Poisson-lognormal (EBPLN) model was introduced by Clay-
ton and Kaldor (1987). It can be summarized as follows: The prior distribution of
the relative risk, � , is assumed to have a multivariate lognormal distribution. That

1Other EB models are the Poisson-Gamma model and the linear empirical Bayes model. See, e.g.,
Clayton and Kaldor (1987) and Lawson et al. (2000) for details.
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is, the log of the relative risk, � D log (�) ; � D (�1, .., �n)T ,is assumed to follow a
multivariate normal distribution with mean �and covariance matrix †. Hence, the
density function of � is as follows:

f .�j�;†/ D .2�/�
1
2n .�1 : : : �n/

�1j†j� 1
2 exp

�

�1
2
.log� � �/0†�1 .log� � �/

�

:

(15.9)

The EB estimator is obtained from the expectation of the relative risk � given y,
E(� j y). However, the posterior distribution of the Poisson-lognormal is not a closed
form, that is, it has no analytical solution for E(� j y). As a way out, Clayton and
Kaldor (1987) proposed a quadratic approximation by substituting � i for exp(� i) to
construct the Poisson likelihood � given y. The likelihood thus is

L .�jy/ D
nY

iD1
f .yij�i/ D

nY

iD1

�
exp .�eiexp .�i// .eiexp .�i//

yi

yiŠ

�

: (15.10)

The EB estimator using the quadratic approximation requires the estimate of
the vector of parameters �. Clayton and Kaldor (1987) proposed ML to estimate

�. The ML estimator of
�
� i D log

�
yi
ei

�
:However, this solution does not hold for

yi D 0. Therefore, Clayton and Kaldor (1987) suggested to add the constant 0.50 to
yi, that is,

�
� i D log

�
yi C 0:5

ei

�

: (15.11)

Equation (15.11) is an explicit solution of the EB estimate of � based on quadratic
approximation.However, the solution is not based on the expectation of the posterior
distribution of the Poisson-lognormal model, f (�j y ,� ,†). With the quadratic
approximation of the likelihood function over the lognormal prior, the posterior
distribution of � given the data y is

f .�jy;�;†/ / f .yj�/ f .�j�;†/ ; (15.12)

which follows a multivariate normal with mean � and variance † (Leonard 1975;
see Clayton and Kaldor 1987, for details). Estimating � and † is thus necessary to
obtain an explicit solution for � based on f (�j y ,� ,˙ ). The EM algorithm can be
used for this purpose. In the simplest case, the � i are taken as i . i . d N(�, �2). Given

that the distribution of the � i has two parameters, � and �2, the EBPLN,b�
EBPLN

i ,
becomes (Meza 2003):

b�
EBPLN

i D b�Cb�2 .yi C 0:5/
�
� i � 0:5b�2

1Cb�2 .yi C 0:5/
; (15.13)
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with

b� D 1

n

nX

iD1
b�

EBPLN

i ; (15.14)

b�2 D 1

n

 

b�2
nX

iD1

h
1Cb�2 .yi C 0:5/

i�1 C
nX

iD1

�
b�

EBPLN

i �b�
�2
!

: (15.15)

The EBPLN estimator of the relative risk isb�
EBPLN

i D exp
�
b�

EBPLN

i

�
.

The EM algorithm to (iteratively) obtain the estimates of � and �2 using
Equations (15.13), (15.14), and (15.15) is as follows:

(1) Obtain the initial values of
n
b� i,b�;b�

2
o
:

(a) b� i D log
�
yiC0:5

ei

�

(b) b� D 1
n

Pn
iD1b�

(c) b�2 D 1
n

Pn
iD1
�
b� �b�

�2

(2) Expectation (E) Step: Estimate the relative risk using Equation (15.13).
(3) Maximization (M) Step: Update the parameter estimates b� and b�2 using

Equations (15.14) and (15.15).

(4) Repeat Steps 2–3 until a predetermined precision is obtained, e.g.,jb� EBLN.tC1/i �
b�

EBLN.t/

i

ˇ
ˇ
ˇ � 1e � k, with k a positive integer.

15.3.2.2 Full Bayesian Poisson-Lognormal Model2

Full Bayesian (FB) estimation is more widely used in Bayesian disease modeling
than EB because it is more flexible in defining the prior hyperparameter
� D (�1, : : : , � k)T , and because it can provide a measure of uncertainty of the
estimates of relative risks (Maiti 1998). The quality of the FB estimates depends on
the accuracy in determining a hyperprior distribution.

In FB, the posterior parameters can be estimated using Markov chain Monte
Carlo (MCMC) simulation, such as the Gibbs sampler and Metropolis-Hastings (M-
H) or integrated nested Laplace approximation (INLA). The procedure is as follows:
As in the case of EBPLN, FBPLN assumes the log relative risk, � i, to follow a
normal distribution, that is, � i � i . i . d Normal(�,�2).

2Another FB model is the Poisson Gamma model. See, e.g. Lawson (2006) for an overview.
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The basic FBPLN model may be written as follows (Meza 2003):

(i) yi
ˇ
ˇ
ˇ�i

iid
�Poisson .ei�i/

(ii) �i D log .�i/
ˇ
ˇ
ˇ�; �2

iid
�N

�
�; �2

	

(iii)
f
�
�; �2

	 / f .�/ f
�
�2
	
with

f .�/ / 1I ��2 � Gamma .a; b/ I a � 0; b > 0

Commonly, the prior parameters (a,b) are assumed to be known. Obtaining the
posterior distribution of � ijyi involves high-dimensional integrals that are difficult
to sample directly from. However, sampling from the full conditional distribution
of each parameter is often easy. The Gibbs sampler can be used to estimate the
posterior distribute on (Maiti 1998). The full conditional distribution to implement
Gibbs sampling can be written as follows:

(i) f
�
�ij�; �2; yi

	 / �
yi�1
i exp

h
�ei�i � 1

2�2
.�i � �/2

i

(ii)


�j�i; �2; yi

� � N
�
1
n

P
i�i;

�2

m

�

(iii)


�2j�i; �; yi

� � G
�
n
2

C a; 1
2

P
i.�i � �/2 C b

�

MCMC samples can be directly generated from (ii) and (iii) using the M-H
algorithm. Several software programs can be used to estimate the FBPLN. The
WinBUGS software program is generally used.

For computational purposes, � i is decomposed into two components, ˇ0 and ui.
ˇ0 is the overall level of the log relative risk, whereas ui is the residual.

log .�i/ D ˇ0 C ui; (15.16)

ui � i:i:d Normal
�
0; �2u

	
:

The parameters ˇ0 and ui have a hyperprior distribution as follows:

ˇ0 � i:i:d Normal
�
0; �2ˇ0

�
;

1=�2u � Gamma .a; b/ :

Using noninformative prior, the value of �2ˇ0 is usually replaced by a large number,

for example, �2ˇ0 D 105 and for aD 0.5 and bD 0.0005 (Tango 2010).
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15.4 The Besag, York, and Mollie (BYM) FB Model

ML and the traditional Bayesian approaches do not accommodate spatial trend,
covariates, and spatially uncorrelated and spatially correlated heterogeneity. The
FBPLN model can be extended to include those components. To consider spatially
correlated heterogeneity, Clayton and Kaldor (1987) proposed the conditional
autoregressive (CAR) model for the log relative risk. The CAR model is defined
as follows:

E
�
�ij�j.j¤i/

	 D �i C �
X

j

wij
�
�j � �j

	

Var
�
�ij�j.j¤i/

	 D �2; (15.17)

where wijis an element of the spatial weights matrix W. To simplify computations,
�i is assumed to be equal to �.

The “complete” FBLN model to estimate the relative risk was developed by
Besag et al. (1991), denoted BYM. Considering its “completeness”, it has become a
popular model in Bayesian disease modeling and mapping, especially of infectious
diseases. The BYM model reads as follows (Lawson et al. 2000):

log .�i/ D ti C ui C vi; (15.18)

where ti denotes the spatial trend and covariates, ui denotes the spatially uncorre-
lated heterogeneity, and vi denotes the spatially correlated heterogeneity (Lawson et
al. 2000). A typical spatial trend regression model reads as follows:

ti D
HX

hD1

�
ahx

h
i C bhy

h
i

	C
KX

kD1
ckzk; (15.19)

where f(xi, yi)g are the centroids of the i-th region,H is the degree of the trend (e.g.,
hD 1: linear trend; hD 2:quadratic trend), K is the number of covariates, and z is
the vector of covariates.

In the case of count data, over-dispersion frequently occurs, that is, the variance
observed is greater than the mean. Over-dispersion has two types: spatially uncorre-
lated and spatially correlated heterogeneity (Lawson 2006). Spatially uncorrelated
heterogeneity occurs because of observationswith small or zero cases, differences in
the number of subpopulation, and omitted environmental or ecological factors, such
as pollution, rainfall, humidity, temperature, and radiation. Spatially uncorrelated
heterogeneity is accommodated by defining a non-informative prior3 for ui, usually

3A noninformative prior is used to denote lack of information about the parameter of interest
(Lawson 2013).
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the normal distribution (Lawson et al. 2003):

ui � i:i:d Normal
�
0; �2u

	
: (15.20)

Spatially correlated heterogeneity, vi, occurs because of spatial clustering or
spatial autocorrelation (Lawson 2006). It can be considered using information
relating to adjacent regions, based on the assumption that adjacent regions with
similar spatial characteristics have similar relative risks.

A conditional autoregressive (CAR) prior is usually used to capture spatially
correlated heterogeneity. Besag et al. (1991) proposed the following CAR prior:

vi

ˇ
ˇ
ˇvj¤i � Normal

 P
j wijvj
P

j wij
;
�2vP
j wij

!

; (15.21)

where wij denotes spatial dependence between regions i and j.
A limitation of the Besag prior is that it is only appropriate for strong spatial

autocorrelation. If weak spatial autocorrelation exists, the CAR prior produces
random effects that are overly smooth (Lee 2013). To overcome this limitation,
spatially uncorrelated heterogeneity ui should be used. To accommodate varying
strengths of spatial autocorrelation, Leroux et al. (1999) and Stern and Cressie
(1999) proposed alternative CAR priors. The Leroux et al. (1999) CAR prior reads
as follows:

vi

ˇ
ˇ
ˇvj¤i � N

 
�
P

jwijvj

�
P

jwij C 1 � �
;

�2v
�
P

jwij C 1 � �

!

; (15.22)

The Stern and Cressie (1999) CAR prior is as follows:

vi

ˇ
ˇ
ˇvj¤i � N

 
�
P

jwijvj

�
P

jwij
;

�2v
�
P

jwij

!

: (15.23)

In both cases, � is the spatial autocorrelation parameter. Using the Leroux or
Stern and Cressie prior renders spatially uncorrelated heterogeneity uiredundant.

The FBPLN model, including spatial effects, may be written as follows (Rao
2003):

(i) yij� i � Poisson (ei� i)

(ii) �i
ˇ
ˇ
ˇ�j.j¤i/; �; �

2 � N
�
�C �

P
il wil .�l � �/ ; �2

	

(iii)
f
�
�; �2; �

	 / f .�/ f
�
�2
	
f .�/ with

f .�/ / 1I ��2 � Gamma .a; b/ I a � 0; b > 0; � � U .0; �0/



15 Modeling of Infectious Diseases: A Core Research Topic for the Next. . . 249

where �0 denotes the maximum value of � in the CAR model and WD (wil) is the
“adjacency”matrix. Maiti (1998) proposed Gibbs sampling combined with the M-H
algorithm to estimate the model.

The BYM model can be summarized as follows:

	i D ˇ0 C XT
i ˇ C ui C vi; (15.24)

where 	i D log (� i), ˇ0is the overall relative risk, XT
i D .Xi1; ::;XiK/ is a vector

covariates, ˇ D (ˇ1, ..,ˇK)T is a vector regression coefficients, and ui and videnote
are spatially uncorrelated and spatially correlated heterogeneity, respectively. The
following hyperparameter distributions of ˇ0, ui and vi are usually applied:

ˇ0; ˇ1; ::; ˇk � i:i:dNormal
�
0; �2ˇ

�
;

1=�2u � Gamma .a; b/ ;

1=�2v � Gamma .a; b/ :

As a non-informative prior, large values for �2ˇ are usually taken, for example,

�2ˇ D 105 and for aD 0.5 and bD 0.0005 (Tango 2010).
The above-mentionedmodel only accounts for the spatial pattern of diseases but

does not incorporate temporal variation. A model that includes temporal variation
is a spatio-temporal model. Spatio-temporal modeling has been widely applied to
analyze the spatial distribution of disease incidence and its trend, notably to detect
hotspots (Lawson 2014). The most common approach is based on the assumption
that a log-linear relationship exists between the relative risk and the calendar time
within regions, that is, that the time trend varies from region to region (Lawson
2014). Thus

yit
ˇ
ˇ
ˇeit™it � Poisson .eit™it/ ;

˜it D “0 C XT
it“ C ui C vi C ¨t C §t C ¥it; (15.25)

where 	it D log (� it)ui and vi denote spatially uncorrelated and spatially corre-
lated heterogeneity, respectively; !j and  t denote temporally uncorrelated and
temporally-correlated heterogeneity, and 
 ij is a spatio-temporal interaction effect.
This model varies based on the structure of the space-time structure. Model (15.25)
is commonly estimated using Bayesian techniques.
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15.4.1 Nonparametric Estimation

The most popular nonparametric smoothing technique is the Nadaraya-Watson
kernel smoother. It is defined as the weighted average of the ML estimates of the
other regions (Lawson et al. 2000):

�NPi D
nX

j¤i

!j�
ML
j ; (15.26)

with !j weights for values of neighboring regions defined as follows:

!j D
K
��
�ML
i � �ML

j

�
=h
�

Pn
i K

��
�ML
i � �ML

j

�
=h
� ; (15.27)

where K(.) is a zero mean, radially symmetric probability density function, usually
the standard Gaussian distribution:

K.z/ D .2�/�1=2exp
�

� z2

2

�

; (15.28)

with h the bandwidth based on the minimum value of the least squares cross-
validation criteria (Simonoff 1999):

CV.h/ D 1

n

nX

iD1

�
b�
NP

i � O�ML
.�i/

�2
; (15.29)

Where O�ML
.�i/ denotes the average relative risk estimate using ML without the ith

observation.
For an application to relative risk estimation, see Kesall and Diggle (1998).

The nonparametric model can be extended to include time variation and spatial
dependence as follows:

log .�itjyit/ D log .nit/C log.m/C S0.t/C ˛i C Si.t/; (15.30)

where �it is a mean of Poisson distribution; nit is the population count for the region
i in year t; m is the overall mean of the relative risk; S0(t) is the fixed global of the
relative risk trend; ˛i is the random spatial effect, which may be spatially correlated;
and Si(t) is the random temporal effect for the region i (MacNab and Dean 2002).
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15.4.2 Spatial Econometric Models

The models discussed in the previous sections (explicitly) do not consider spatial
dependence even though spatial spillovers are typical for infectious diseases.
Particularly, the response variable in one region usually depends on the values of
the response variable in neighboring regions (Lawson 2014; Chen et al. 2015), as in
the case of dengue fever. Similarly, the status of covariates (e.g., vegetation or water
quality) in one region may affect the response variable not only in that region but
also in neighboring regions. Finally, spatial dependence may occur among the error
terms.

One of the reasons that spatial econometric models have received little attention
in epidemiology is that these models have been developed for continuous data
rather than count data, especially with respect to the dependent variable. Following
Lambert et al. (2010) and Bivand et al. (2014), we specify the spatially lagged
(SL) mixed Poisson regression model of relative risk for count data with spatially
lagged dependent variable, spatially uncorrelated (ui) and spatially correlated
(vi) heterogeneity as components of the error term ("i), as follows:

� D �LagW� C ˇ01n C Xˇ C " (15.31)

where � D (	1, .., 	n)T with 	i D log (� i), ˇ0 is the overall relative risk, 1n is a unit
vector of length n, X is a matrix of covariates of size (nxK), ˇ D (ˇ1, ..,ˇk)T is a
vector of coefficients, and W is a symmetric adjacency matrix with zero diagonal
elements, �Lag is the spatial lag parameter that measures infectious disease spillover
among regions.

Amore generalmodel with wider applicability is the spatial Durbin-Poisson (SD-
Poisson) model that allows for spatial spillovers of the covariates in addition to a
spatially lagged dependent variable. The SD-Poisson model reads as follows:

� D �LagW� C ˇ01n C Xˇ C WXı C "; (15.32)

where ı D (ı1, : : : , ıK)T denotes a vector of coefficients for the spatially lagged
covariatesWX (Bivand et al. 2014).

Frommodels (15.31) and (15.32), the direct and indirect (spillover) effects can be
calculated. To estimate the SL-Poisson model, Lambert et al. (2010) proposed two-
step limited information maximum likelihood, and Bivand et al. (2014) developed a
Bayesian estimator using INLA.

15.5 Summary and Research Recommendations

Incidences of infectious diseases have been soaring. According to the World Health
Organization (2005), climate change, extreme weather, and environmental factors,
such as lack of access to clean water and poor sanitation facilities, have contributed
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to the outbreaks. Socioeconomic conditions, including income, employment, educa-
tion, and health behavior, are also important factors that influence the transmission
of infectious diseases. Increasing urbanization, higher population density, higher
mobility, and increasing resistance to several common medicines accelerate the
transmission from one location to another because of more contacts between
infected and susceptible people (Fong 2013).

Infectious diseases often have serious direct and indirect effects at the individual,
household, and regional levels ranging from increased morbidity and mortality
to the paralysis of an entire region or even a country. Early identification of an
endemic is an important first step to prevent its transmission and to reduce its
effects. Implementation of such early warning systems (EWSs), including roadmaps
to prevent or restrict the spread of an infectious disease, is still in its infancy in
most (developing) countries (Lowe et al. 2011). Therefore, the development and
implementation of EWSs based on information about when and where outbreaks
will occur and what factors influence transmission is a high-priority research topic.
A related research topic is how to use EWS information in taking appropriate and
efficient actions to manage transmission and to prevent epidemics. The development
and implementation of an EWS requires intensive interaction between natural and
social regional scientists.

An important component of an EWS is the identification of high-risk regions
and spatial clustering. For this purpose, predictive models are required (Chen
et al. 2015). In this paper, an overview of the most common approaches in
disease incidence modeling has been presented. Four types of approaches have
been discussed, namely, ML, Bayesian smoothing, nonparametric smoothing, and
spatial econometric methods. An important conclusion that emerges from the
overview presented in Sect. 15.3 is that the first three types of models do not
adequately account for the basic characteristic of infectious diseases, i.e., spatial
spillover. Admittedly, several of the approaches that have been commonly applied
in infectious disease modeling account for similarities among spatial units, notably
climate and environmental conditions, which significantly affect habitat suitability
and distribution of vectors. However, this is not the same as accounting for spatial
spillover. Spatial spillover means that the sheer presence of an infectious disease
in one region, at present or in the past, increases the likelihood of occurrence in
neighboring regions. Another type of spatial dependence relates to the covariates in
that covariates in one region affect the response variable not only in that region but
also in neighboring regions.

A major research topic for the immediate future is the development of models
that can explain and predict the spatio-temporal distribution of infectious diseases.
For that purpose, epidemiological and spatio-temporal econometric models could
be combined. The basic structure of such a model that links the log of the relative
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risk to its predictors is as follows:

	it D ˇ0 C �1

nX

jD1
wij	jt C �2

nX

jD1
wij	jt�1 C �3	it�1 C

KX

kD1
ˇ1kXkit C

KX

kD1
ˇ2kXkit�1

C
KX

kD1
ˇ3k

nX

jD1
wijXkjt C

KX

kD1
ˇ4k

nX

jD1
wijXkjt�1 C ui C vi C !t C  t C 
it;

(15.33)

where 	it D log (� it); �1 and �2 denote the spatial lag coefficients of the log relative
risk without and with time lag, respectively; �3 denotes a temporal lag coefficient of
the log relative risk; ˇ1k and ˇ2k denote the regression coefficients with and without
temporal lag of the kth covariates, respectively; ˇ3k and ˇ4k denote the spatial lag
coefficients of the covariates with and without temporal lag, respectively; ui and
vi denote spatially uncorrelated and spatially correlated heterogeneity, respectively;
!j and  t denote temporally uncorrelated and temporally correlated heterogeneity
and 
 it is a spatio-temporal interaction effect. Correlated heterogeneity is variability
that occurs because of spatial or temporal dependence; uncorrelated heterogeneity
is variability that occurs because of random spatial or temporal variation (Lawson
2006; Bernardinelli et al. 1995).

Model (15.33) is a complex model with a discrete (Poisson distributed) depen-
dent variable, involves many covariates, and is influenced by location and time
heterogeneity. Spatial panel econometrics comes to mind to estimate model (15.33).
However, spatial panel econometrics has been developed for continuous response
variables, while epidemiological data are commonly measured in count format.
Therefore, models such as (15.33) cannot be estimated by conventional approaches.
The development of appropriate estimators of such models is an important topic
for further research. We expect that Bayesian statistics will be increasingly used in
epidemiology and regional science models of count data (see also Congdon 2013).
For complex models, such as the spatio-temporal varying coefficient model, the
calculation of the likelihood function, alongwith the problem of identifiability of the
parameters, is very difficult. The Bayesian method can solve this problem (Martinez
and Achcar 2014).

We also expect the random effect generalized linear mixed model and Bayesian
inference with INLA to become popular in infectious disease modeling. INLA is a
relatively new approach to Bayesian statistical inference for latent Gaussian Markov
random fields. The main advantage of the INLA approach over MCMC is that it can
compute significantly faster (Rue et al. 2007).
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