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Predicting Resilience Losses in Dyadic Team 
Performance 
Yannick Hill,1 Ruud J. R. Den Hartigh, Ralf F. A. Cox, Peter De 
Jonge, and Nico W. Van Yperen, University of Groningen, The 
Netherlands 
Abstract: In the current study, we applied the dynamical systems approach to 
obtain novel insights into resilience losses. Dyads (n = 42) performed a lateral 
rhythmical pointing (Fitts) task. To induce resilience losses and transitions in 
performance, dyads were exposed to ascending and descending scoring 
scenarios. To assess changes in the complexity of the dyadic pointing 
performance, reflecting their resilience, we performed cross-recurrence 
quantification analyses. Then, we tested for temporal patterns indicating 
resilience losses. We applied lag 1 autocorrelations to assess critical slowing 
down and mean squared successive differences (MSSD) to assess critical 
fluctuations. Although we did not find evidence that scoring scenarios produce 
performance transitions across individuals, we did observe transitions in each 
condition. Contrary to the lag 1 autocorrelations, our results suggest that 
transitions in human performance are signaled by increases in the MSSD. 
Specifically, both positive and negative performance transitions were 
accompanied with increased fluctuations in performance. Furthermore, negative 
performance transitions were accompanied with increased fluctuations of 
complexity, signaling resilience losses. On the other hand, complexity remained 
stable for positive performance transitions. Together, these results suggest that 
combining information of critical fluctuations in performance and complexity can 
predict both positive and negative transitions in dyadic team performance.  
Key Words: complexity, critical slowing down, cross-recurrence quantification 
analysis, dynamical systems, transitions 

INTRODUCTION 
In virtually any domain in which humans strive for optimal performance, 

encountering setbacks such as errors, injuries, or being outperformed by others, is 
unavoidable. These setbacks need to be overcome in order to reach top 
performance, which means that individuals need to be able to adapt to adverse 
events in order to be successful. In the psychological literature, this positive 
adaptation to adverse events is defined as resilience (Fletcher & Sarkar, 2012, 
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2013; Galli & Gonzalez, 2015; Hill, Den Hartigh, Meijer, De Jonge, & Van 
Yperen, 2018a). In the resilience literature, researchers tend to focus on 
identifying individual traits and psychological characteristics, which predict 
whether or not an individual is able to adapt to an adverse event (e.g., Connor & 
Davidson, 2003; Fletcher & Sarkar, 2013; Galli & Vealey, 2008; Mummery, 
Schofield, & Perry, 2004; Rutter, 1985). However, several studies have also 
pointed out that resilience is determined by a dynamic interplay between a person 
and a changing environment (Egeland, Carlson, & Sroufe, 1993; Fletcher & 
Sarkar, 2012; Galli & Vealey, 2008). Indeed, resilience is a complex process that 
cannot be reduced to a single (set of) more or less fixed factor(s) (Davydov, 
Stewart, Ritchie, & Chaudieu, 2010; Hill 2018a; Pincus & Metten, 2010; Pincus, 
Kiefer, & Beyer, 2018; Tusaie & Dyer, 2004).  

To capture the inherent dynamics of resilience and how it changes over 
time, a recent target article by Hill and colleagues (2018a) opened the discussion 
on studying the temporal process of resilience. The authors proposed a dynamical 
systems approach to map out how individuals adapt after experiencing an adverse 
event and make temporal predictions about changes in resilience. For instance, 
when the performance of an individual starts to fluctuate, or an individual takes 
increasing amounts of time to recover from an adverse event, a negative shift in 
performance may occur (see also Pincus & Metten, 2010; Scheffer et al., 2012, 
2018). Although previous studies have utilized temporal processes to capture 
resilience in motor behavior, such as changes in electromyography data from 
vertical jumps following neuromuscular training (Kiefer & Myer, 2015), studies 
on predicting breakdowns of resilience during human (motor) performance is 
currently lacking. As a consequence, there is no empirical evidence for patterns 
in performance that may predict how individuals adapt to adverse events over 
time. Therefore, we designed an experiment to test how resilience in individuals 
dynamically changes, and whether a loss of resilience can be predicted by 
applying analytical tools of the complex dynamical systems approach.  

Resilience in Dynamical Systems 
Resilience is a complex process, which describes how a dynamical, bio-

psychosocial system adapts to perturbations over time (Hill et al., 2018b). In order 
to understand resilience, it is therefore essential to quantify the iterative states of 
the system while performing and being perturbed. However, it is impossible to 
measure all underlying processes of a dynamical system individually. Neverthe-
less, according to Takens’ embedding theorem (1981), a dynamical system’s state 
can be reconstructed from time-serial observations (i.e., dense repeated measure-
ments) of a single variable produced by the system. In this way, by measuring 
time-serial data of a single representative variable, a researcher can assess the 
dynamical organization of the system and how it reacts to perturbations.  

In line with this, recent research suggests that particular patterns in time-
series data can inform about the adaptability of a system (Delignières, Fortes, & 
Ninot, 2004; Den Hartigh, Cox, Gernigon, Van Yperen, & Van Geert, 2015; 
Goldberger et al., 2002; Manor et al., 2010). Specifically, it is assumed that a 
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system’s complexity reflects an optimal blend of stability and flexibility as can be 
derived from patterns in time-series (Davids, Glazier, Araújo, & Bartlett, 2003; 
Delignières & Marmelat, 2012, 2013; Den Hartigh et al., 2015; Kiefer & Myer, 
2015; Manor et al., 2010; Pincus & Metten, 2010). The blend of flexibility and 
stability enables a system to adapt behavioral patterns in response to perturbations 
(i.e., flexibility), while maintaining its global level of functioning (i.e., stability). 
This means that when a system becomes too rigid (i.e., too little complexity), it 
may not be able to develop new behavioral patterns required for optimal 
adaptation to the environment (Kiefer, Silva, Harrison, & Araújo, 2018; Hill et al. 
2020). On the other hand, when a system is too instable (i.e., too much 
complexity), the system does not attain a usefully stable state, meaning that even 
a minor perturbation may cause the system to shift into a different (possibly 
undesired) state. Therefore, the direction of the deviation from a system’s 
complexity does not necessarily indicate a resilience loss. For example, some 
studies show that a reduction of complexity is associated with negative health 
outcomes in cardiovascular systems (Goldberger et al., 2002), but increased 
resilience in human motor systems (Kiefer & Myer, 2015). Similarly, losses of 
resilience can be associated with both increases and decreases in complexity 
(Pincus et al., 2014). Instead, the functional interplay of rigidity and stability may 
determine a system’s resilience (Harrison & Stergiou, 2015; Pincus, 2014; Pincus, 
Cadsky, Berardi, Asuncion, & Wann, 2019). This suggests that resilience in a 
system, which resides in a desired state, may be reflected by stable levels of its 
complexity.  

Based on this line of research, when (critical) changes in a system’s 
complexity occur, it may indicate a loss of resilience. In other words, the system 
would lose the ability to positively adapt to adverse events. This can lead to an 
undesirable transition in the level of functioning, when being exposed to a 
perturbation (Dai, Vorselen, Korolev, & Gore, 2012; Hill et al., 2018a; Scheffer 
et al., 2009, 2012; Van de Leemput et al., 2014). Recent research suggests that 
such transitions typically occur when a system is exposed to a series of 
perturbations within a relatively short timeframe. For example, in humans, a 
major depressive episode does not usually follow a major negative life event, but 
rather develops from a history of many negative events occurring in close 
temporal proximity. By mapping out the system’s states over time, researchers 
found that prior to a transition (e.g., the onset of a major depression) the system 
takes increasingly more time to adapt to the series of perturbations (probably 
reflecting an increased rigidity in the system), a period called “critical slowing 
down” (Dai et al., 2012; Scheffer et al., 2012, 2018; Van de Leemput et al., 2014). 
The increase in the amount of time a system needs to adapt to a perturbation 
reflects a loss of the system’s resilience. By deriving the system’s complexity 
from such time-serial data, researchers may be able to explicitly link the loss of 
resilience to changes of the system’s complexity.  

Another warning signal for transitions in dynamical systems derived 
from time-serial data comes from the long line of research related to the HKB 
model (Haken, Kelso, & Bunz, 1985; Kelso, 1995). This model maintains that 
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repeated perturbations cause the system to lose stability, which results in 
increasing fluctuations in the order parameter (i.e., a macroscopic variable 
characterizing the behavior of the system). The emerging critical fluctuations have 
been shown to precede transitions in a variety of forms of human behavior, such 
as interlimb coordination (Frank, Peper, Daffertshofer, & Beek, 2006), 
intermanual coordination (Kelso, Scholz, & Schöner, 1986), and arm curling 
(Hristovski & Balagué, 2010). However, critical fluctuations do not only signal 
undesired transitions, such as fatigue in arm curling (Hristovski & Balagué, 2010). 
Indeed, transitions in human development are also marked by an increase in 
fluctuations before the system manifests itself in a new (improved) state (Van 
Geert, 1997). For example, the (positive) effect of therapy for aggressive behavior 
in children has been shown to be indicated by increases in fluctuations 
(Lichtwarck-Aschoff, Hasselman, Cox, Depler, & Granic, 2012). Furthermore, 
dynamical systems are capable of demonstrating transitions to a higher level of 
functioning after being exposed to perturbations (e.g., Agathokleous, Kitao, & 
Calabrese, 2018; Calabrese 2005a, 2005b; Kiefer et al., 2018). However, it is 
important to note that in contrast to undesirable transitions in behavior, these 
positive transitions to higher levels of functioning are not associated with losses 
of resilience as indicated by critical changes in complexity. This means that 
transitions to both more and less desirable states are marked by increases in 
critical fluctuations in a system’s behavior. On the other hand, only undesirable 
transitions to a lower level of functioning may be accompanied by critical changes 
in a system’s complexity (resilience losses, cf. Pincus, 2014; Pincus et al., 2019), 
whereas complexity during positive transitions may remain stable.  

Time-Series Analyses Techniques for Complex Dynamical Systems 
A particular index that has been applied to predict the occurrence of 

transitions following critical slowing down, is the lag 1 autocorrelation (e.g., 
Clements & Ozgul, 2016; Dai et al., 2012; Scheffer et al., 2012; Van de Leemput 
et al., 2014). According to Scheffer and colleagues (2009), the autocorrelation 
increases before the system reaches the transition point, signaling a “slowing” 
within the system. An increase in the autocorrelation can therefore be used as an 
early warning signal of undesirable transitions. However, recent research has 
shown that this technique may not work as a reliable warning signal in systems 
that produce high levels of noise (Liu, Chen, Aihara, & Chen, 2015). Such 
fluctuations in signals are naturally occurring in complex dynamical systems and 
an important source of information rather than being undesirable noise (Kelso, 
2010; Liu et al., 2015). As a consequence, although empirical evidence is still 
marginal, the autocorrelation may best be suited for systems producing low levels 
of natural fluctuations.  

Critical fluctuations in a time-series are indicated by an increase in 
instability of subsequent time points within the series. An index that captures the 
(in)stability of a time-series is the mean square of successive differences (MSSD; 
Von Neumann, Kent, Bellinson, & Hart, 1941). An increase in the MSSD over 
time signals an increase in fluctuations in the signal (i.e., an increase in 
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instability). Thus, if a system is approaching a transition preceded by critical 
fluctuations, the MSSD increases prior to the transition. 

In order to test whether transitions in performance can be predicted based 
on changes in the system’s resilience, the complexity of the system needs to be 
determined. Recurrence quantification analysis (RQA) is a method to assess the 
complexity of dynamical systems. It captures the presence and absence of recur-
ring patterns in a nonlinear time-series produced by complex dynamical systems 
(Marwan, Romano, Thiel, & Kurths, 2007), and has been successfully applied to, 
amongst others, muscle activation dynamics (Kiefer & Myer, 2015), sports per-
formance (Stöckl, 2015; Stöckl et al., 2017), and rhythmical aiming movements 
(Wijnants, Bosman, Hasselman, Cox, & Van Orden, 2009; Wijnants, Hasselman, 
Cox, Bosman, & Van Orden, 2012). The recurring patterns are obtained by 
analyzing time-delayed copies of the time-series within a multidimensional phase 
space in accordance with Takens’ embedding theorem (1981). Based on the 
resulting recurring structures various measures can be derived. One measure that 
can be derived from the RQA to assess a system’s complexity is the Shannon 
entropy of the distribution of diagonal lines in the recurrence plot, which is linked 
to the amount of repetitive information in the signal (Shannon, 1948). This 
repetitive information determines the underlying complexity of a given system. If 
a system is low in complexity, subsequent time points in a series do not convey 
any new information about the system’s behavior, yielding an entropy value 
approaching 0. This would reflect a simple deterministic system, which involves 
no randomness, and which evolves in a predictable way given certain initial 
conditions. A random system, which evolves in a completely unpredictable way 
due to a purely stochastic dynamics, would yield new information with every new 
time point. The continuous addition of new information would yield maximum 
entropy values. A complex system resides between these extremes displaying an 
optimal blend of rigidity and flexibility, also yielding relatively high entropy 
values (Davids et al., 2003; Delignières & Marmelat, 2012, 2013; Den Hartigh et 
al., 2015; Kiefer & Myer, 2015; Manor et al., 2010; Pincus & Metten, 2010). Thus, 
entropy can indicate the complexity of a system by indicating the rigidness and 
flexibility of the system (Marwan et al., 2007). 

RQA can also be extended to studying the temporal organization of two 
coupled systems (i.e., cross-recurrence quantification analysis, CRQA; Shockley, 
Butwill, Zbilut, & Webber, 2002) such as dyadic performance. More specifically, 
the CRQA can assess the complexity of a system that consists of two interacting 
(or coupled) individuals. However, in order to assess early warning signals like 
critical fluctuations or critical slowing down in the behavior of a system, a time-
series mapping how the entropy within the system changes over a longer time 
frame needs to be established. To do so, the time-serial data can be split into 
shorter successive segments (or windows). These segments are then analyzed by 
the CRQA individually, creating a windowed analysis. The resulting time-series 
of the windowed analysis thereby maps the changes of the entropy over time, 
which can be used to assess early warning signals. Specifically, critical fluctua-
tions in the entropy values could signal losses of resilience of the system, which 
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leaves it vulnerable to perturbations, and could in turn lead to potentially lead to 
undesirable transitions in the system.  

The Current Study 
The current study provides a first empirical investigation of losses in 

resilience from a complex dynamical systems perspective in human (motor) 
performance, using a lateral rhythmical pointing (i.e., Fitts) task. Thereby, we are 
zooming into the signatures of performance, complexity, critical slowing down, 
and critical fluctuations while dyads are exposed to externally induced 
perturbations. Specifically, we examined whether negative transitions in 
performance are signaled by a loss in a system’s resilience, indicated by critical 
slowing down or critical fluctuations. These undesirable transitions reflect change 
in a behavioral pattern, which yields lower scores during the lateral pointing task, 
while a positive performance transition would mark an increase in scoring. We 
were also interested in whether these negative performance transitions can be 
provoked by externally imposed perturbations that are induced regularly during 
the performance. In sports and gaming contexts, scoring scenarios are often used 
for this purpose, in which an athlete or player gradually moves away from their 
goal by winning or losing points (cf. Briki, Den Hartigh, Markman, Micallef, & 
Gernigon, 2013; Den Hartigh & Gernigon, 2018; Den Hartigh, Gernigon, Van 
Yperen, Marin, & Van Geert, 2014; Den Hartigh, Van der Sluis, & Zaal, 2018; 
Vallerand, Colavecchio, & Pelletier, 1988). In dyadic rowing performance, Den 
Hartigh and colleagues (2014) found that such descending scoring scenarios (i.e., 
falling behind or losing a lead) lead to less stable performance patterns in a dyadic 
rowing task compared to ascending scoring scenarios (i.e., catching up to an 
opponent or extending a lead). Furthermore, transitions in performance are 
especially likely to occur when a system is performing in a relatively unstable 
state that is difficult to sustain, such as antiphase (i.e., opposite oscillation) 
relative to in-phase (i.e., same oscillation) coordination patterns (e.g., Cuijpers, 
Den Hartigh, Zaal, & De Poel, 2019; Cuijpers, Zaal, & De Poel, 2015; Haken et 
al., 1985; Kelso et al., 1986; Meerhoff & De Poel, 2014; Richardson, Marsh, 
Isenhower, Goodman, & Schmidt, 2007). Therefore, from a complex dynamical 
systems perspective, when attempting to perform in a relatively unstable state 
(such as antiphase coordination), repeated exposure to external perturbations in 
the form of a descending scoring scenario, may cause transitions to an undesirable 
state during performance (scoring fewer points than before). In this study, we 
designed a lateral movement task, during which dyads were instructed to perform 
in an antiphase coordination pattern, while being exposed to either an ascending 
or descending scoring scenario.  

Hypothesis 1: When performing a dyadic task, negative performance 
transitions occur more frequently across individuals when being exposed to a 
series of external perturbations induced by a descending scoring scenario than in 
an ascending scoring scenario. 

 
When a complex dynamical system loses resilience, it reveals early 
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warning signals indicating that a transition is approached. These warning signals 
(i.e., critical slowing down and critical fluctuations) are considered as indications 
that a system is losing complexity and therefore becomes less able to adapt to the 
induced perturbations. Therefore, a loss of complexity in a system is expected to 
precede transitions to lower scoring behavior.  

Hypothesis 2: Early warning signals of resilience losses within 
individuals – critical slowing down and critical fluctuations – derived from time-
series of performance and system’s complexity indicate the occurrence of a 
negative performance transition in performance. 

 
Complex dynamical systems can also undergo positive transitions in 

performance due to external perturbations (e.g., Agathokleous et al., 2018; 
Calabrese 2005a, 2005b; Kiefer et al., 2018). Such positive transitions are also 
marked by periods of instability (i.e., critical fluctuations) in performance (cf. Van 
Geert, 1997; Lichtwark-Aschoff et al., 2012). As these transitions are not due to 
a loss in resilience, it is likely that the system does not lose complexity prior to 
their occurrence. Therefore, critical fluctuations in system’s performance as such 
may not yield a reliable early warning signal for undesirable transitions, because 
they also indicate positive transitions.   

Hypothesis 3: Positive transitions in a system’s performance are 
preceded by critical fluctuations in performance while complexity remains stable 
prior to positive transitions. 

 
If all three hypotheses are supported, we conclude that negative and 

positive performance transitions follow similar “warning signals” at the 
behavioral level, but can be distinguished on fluctuations in the complexity of the 
system, which reflects its resilience. Specifically, resilience losses as indicated by 
critical changes in the system’s complexity (Pincus, 2014; Pincus et al., 2014; 
Pincus et al., 2019) would be indicative of negative performance transitions, 
whereas stable levels of complexity (and therefore stable levels of resilience) 
would be indicative of positive or the absence of performance transitions.  

METHOD 
Participants 

Our sample consisted of 84 international first year psychology students 
(29 male, 55 female; 40.48% Dutch, 39.29% German, and 20.24% other 
nationalities), who were randomly sorted into a total of 46 dyads. The mean age 
of the participants was 20.2 years (SD = 2.4) and the dyads consisted of male-
male (7), female-female (20), and male-female (15) dyads.  

Experimental Design & Procedure 
After receiving the approval of the local ethical committee of 

Psychology, the study was conducted within the research facilities of the 
University. Upon entering the room, the participants were asked to fill in the 
informed consent sheet. Following the completion of the questionnaires, the parti-
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cipants completed a computerized Fitts task. The task involved two Nintendo Wii 
remotes that were connected via Bluetooth to a computer, which ran the software 
displaying the Fitts task on a large (1080 x 1920 pixels) television screen. The 
targets of the Fitts task were two static bars (300 pixels in size) located close to 
both the left- and right-hand side (1100 pixels distance) of the screen (see Fig. 1). 
Each participant was able to move one out of two cursors (50 pixels in size) 
projected on the screen using the Wii remote. The motion sensor for the Nintendo 
Wii remotes, tracking the cursor positions by pixel at a frequency of 100 Hz, was 
attached to the bottom of the screen. The index of difficulty (Fitts & Peterson, 
1964) determined by the following formula: 

ID = log2 (2D / W) 

where D corresponds to the distance between targets and W to the targets’ widths, 
yielded 3.22. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Figure of the computerized Fitts task. The grey areas at the left-hand side 
and the right-hand sand of the screen (black rectangle) represent the targets. The 
participants, facing the screen while sitting next to each other, controlled either a 
(green) circle or a (purple) square as the cursor. The current score was indicated 
by an orange number appearing in the top center of the screen. 

Practice Trials 
Before the actual data collection, each participant received a total of three 

practice trials. For every trial and the final assessment, the participants were asked 
take a seat on a table standing on a fixed position, marked on the floor in order to 
control for the possible confound of the distance to the motion sensor of the 
Nintendo Wii. Thereby, the two participants were sitting right next to each other 
facing and operating on the same screen. The first practice trial involved a visual 
search task lasting 180 seconds to become familiar with the sensitivity of the Wii 
remote. During the second practice trail each participant practiced the Fitts task 
on their own for another 180 seconds. In the final practice trial, the dyad practiced 
the Fitts task together with the instruction not to verbally communicate with each 
other during the task. For this trial, the participants were instructed to create an 
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antiphase movement pattern (oscillating in the opposite direction) as this was the 
aim for the final task. This means that when person A hits the target on the right-
hand side of the screen, person B should hit the left-hand side. Then, the pattern 
reverses as A moves to the left and B to the right. 

Competitive Fitts Task  
After the practice was completed, the actual data collection began. The 

participants were told that their performance (i.e., amount of accurate, coordinated 
hits in a given time) was compared to the performance of their peer norm group 
as predicted by Fitts law. An accurate hit was achieved when the cursors hit the 
opposite targets on the screen at the same time (i.e., minimally one point in the 
time-series of the position data during which the cursors resided in the opposite 
targets), alternating their movements from side to side (antiphase coordination). 
Therefore, points could only be collected if the participants maintained their 
coordination structure. Furthermore, the participants were asked not to verbally 
communicate with each other during the task, and they were told that their score 
was compared to the norm value at a 20 second interval. If they collected more 
accurate hits, they would win a point and if they achieved fewer, they would lose 
a point. The competition was set to end if the dyad was either 10 points ahead, 10 
points behind, or a total of 10 minutes had passed. The scores were manipulated 
to induce either ascending or descending scoring sequence (see Table 1) and 
appeared in the middle of the screen (cf. Den Hartigh et al., 2014, Den Hartigh et 
al., 2018; Den Hartigh, Van Geert, Van Yperen, Cox, & Gernigon, 2016). After 
the competitive Fitts task was completed, the participants filled in a final 
questionnaire consisting of the assessment of demographics, the Brief Resilience 
Scale (Smith et al., 2008), the manipulation check assessing how hard the 
participants tried to win the competition, and other possible confounding 
variables, such as experience of video games. 
Table 1. Standardized Feedback in the Positive and Negative Scoring Conditions. 

 Positive PM Negative PM 
Neutral Phase 1  0  -1  0 1  0  -1  0
Starting Phase -1  -2  -3  -4  -5  -6  -7  -8 1  2  3  4  5  6  7  8
Phase Under Study -7  -6  -5  -4  -3  -2  -1  0  

1  2  3  4  5  6  7  8  9  10
7  6  5  4  3  2  1  0  -1  -2    
-3  -4  -5  -6  -7  -8  -9  -10 

Measures 
Position Data 

The position of each cursor was quantified for horizontal movements 
along an x-axis. Numerical values correspond to the number of the pixel of the 
screen where the center of the cursor is currently located. These positions were 
assessed 100 times per second (100 Hz), yielding a continuous time-series of the 
participants’ behavioral output. The oscillation movement of the participants 
translate into continuous cyclic movement data, which unfolded over time 
resemble a sinusoid (wave-like) function. 
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Data Analysis 
In the first step of the analysis, we computed the running outcome 

measures for complexity based on the x-axis position data of the dyads. 
Complexity was determined by the entropy measure of the CRQA, carried out 
using the crp-toolbox (Marwan et al., 2007). The details of the mathematical 
underpinnings of the CRQA are discussed elaborately elsewhere (e.g., Marwan et 
al., 2007; Riley & Van Orden, 2005; Shockley et al., 2002; Webber & Zbilut, 
2005; Wijnants et al., 2012). Because the CRQA for continuous data analyzes 
recurring patterns in a time-series with delayed copies of itself in a 
multidimensional phase space, three parameters need to be determined.  

First, in order to conduct the necessary phase space reconstruction, the 
embedding delay (tau) for the copies of the time-series is established. In the 
current study, the choice for the embedding delay for each dyad was based on the 
average mutual information function. The mutual information indicates the 
predictability of X(t+x) given the time-series X(t) over a range of possible delay 
choices (Fraser & Swinney, 1986). The smaller the values of the average mutual 
information function, the more new information is provided about the dynamics 
at the according delay. The optimal delay allows for the analysis of the most 
information, thus representing the smallest value in the mutual information 
function. In this particular case, as the optimal delay in a cyclic movement pattern 
represents 1/4 of the movement cycle, it strongly depends on the movement 
frequency (i.e., oscillation speed) of each dyad (Richardson, Schmidt, & Kay, 
2007). Therefore, the optimal delay is unique for each dyad, so we computed tau 
for each dyad rather than choosing a common value for the entire dataset.  

Second, the embedding dimension (m), specifying the number of 
dimensions necessary for the phase space reconstruction, was determined by 
global False Nearest Neighbors analyses for each dyad based on their embedding 
delay (Kennel, Brown, & Abarbanel, 1992). Furthermore, the global False Nearest 
Neighbor analyses were based on the Euclidean distance norms. Moving the time-
series to a higher dimensional space serves to account for the “false recurrence” 
that may be observed in lower dimensional spaces by recreating the system’s 
attractor in the appropriate space. The majority of dyads (n = 26) in our study 
yielded an optimal embedding of 6 dimensions. However, some dyads (n = 16) 
required an additional dimension to be added in order to reduce the assessment of 
false recurrence. The use of higher dimensional spaces is not a drawback as the 
higher the number of dimensions the more conservative the analysis becomes by 
reducing the amount of false recurrence (Wijnants et al., 2012).  

Third, the recurrence threshold or radius (ε) determines which distance 
two time-points in the m-dimensional reconstructed phase space may maximally 
display in order to be considered as recurring. Thus, the higher the radius, the 
more points will be considered recurrent. Upon inspection of the recurrence plots, 
ε was set to 2 using the Euclidean norm for all dyads.  

To assess the change of recurring patterns within the systems over time, 
a windowed CRQA was applied. The windowed analysis requires the 
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specification of the window size (WS; i.e., amount of data points to be analyzed) 
and the window step (SS; i.e., distance between starting values of each analysis). 
As for the phase space reconstruction the amount of data points should be at least 
larger than m times tau, we chose for this minimal amount of data points for the 
analysis and added one full movement cycle (4 times tau) to provide a proper 
amount of data points for the analysis to be carried out. Therefore, the window 
size (WS) is determined by 

WS = m * tau + 4 * tau = (m + 4) * tau 

For the window step (SS), we decided to move from one full cycle to the next full 
cycle, thus yielding 

SS = 4 * tau  

For each window the amount of recurring points minimally required to yield a 
diagonal line, which serves as the basis for the entropy calculation was set to 1/4 
movement cycle (i.e., tau).  

In the second step of the analysis, we calculated performance of the 
dyads also in windows to determine the change in performance over time based 
on the position data. Performance of the dyads was quantified as the amount of 
accurate hits they produced in antiphase coordination. As explained to the 
participants an accurate hit was achieved when the two cursors were present in 
the target areas at the opposite end at the same time. Therefore, when dyads 
deviated strongly from the antiphase coordination pattern, they were unable to 
collect any accurate hits.  

In order to optimize comparisons between the two outcome variables of 
complexity and performance, the window sizes and the according window steps 
for the performance analysis were matched to the values used for CRQA. 
Therefore, both performance and CRQA were calculated from the same raw data 
and yield time-series of the exact same length. 

After the outcome measure time-series of performance and complexity 
were established, we examined the performance time-series of each dyad for 
transition points. These were located by assessing the point in time where 
differences between the mean of the time-series up until this point and the mean 
of the time-series following this point was the largest (see Table 2). This was 
obtained by calculating the largest absolute difference between every pair of 
means prior and following a given time-point, while including a minimum of 25 
data points for a mean calculation on both sides of the change point. The resulting 
transitions were then categorized into positive and negative performance 
transitions based on the direction of change in the means prior to the change point 
and following it. A positive performance transition represented a positive change 
in means following a change point and a negative performance transition 
represented a negative change in means. For the group-level analysis of whether 
negative performance transitions occurred more frequently in descending scoring 
scenarios (Hypothesis 1), we conducted a chi-square test assessing whether the 
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distribution of transitions was randomly distributed across the different scoring 
scenarios.  
Table 2. Calculation Table for Largest Change in Means for a Performance Scores 
Time-Series of Length i and a Minimum of 25 Data Points for Each Mean. 
 

Time 
Point 

Mean1 
Range 

Mean 2
Range

Change
Direction

Change
Strength

25 [n1, n25] [n26, ni] Sign (M1 – M2) | M1 – M2 | 
26 [n1, n26] [n27, ni] Sign (M1 – M2) | M1 – M2 | 

… … … … …
n-26 [n1, ni-26] [ni-25, ni] Sign (M1 – M2) | M1 – M2 | 
 
To test for the early warning signals of negative (Hypothesis 2) and 

positive performance transitions (Hypothesis 3), the time-series were further 
analyzed on an individual level. As the change point analysis requires at least 25 
data points following the transition point to be calculated, the warning signal 
patterns were assessed in a similar window of 25 data points prior to and following 
the change point. All dyads were analyzed for early warning signals around their 
respective transition point. Dyads with a negative performance transition (Hy-
pothesis 2) were assessed for both critical slowing down and critical fluctuations 
in the time-series for both outcome measures, performance (i.e., accurate hits) and 
complexity (i.e., entropy). Critical slowing down was assessed by applying a 
running lag 1 autocorrelation, while critical fluctuations were assessed by a run-
ning MSSD (window size = 25, window step = 1 for both running measures). 
Dyads demonstrating a positive transition (Hypothesis 3) were assessed for 
critical fluctuations, using a running MSSD (window size = 25, window step = 1) 
only. The resulting running measures were plotted and inspected for increases 
around the transition point in a window of 25 data points in each direction. Finally, 
the proportion of dyads exhibiting the expected patterns were tested against the 
proportion of dyads exhibiting different patterns around the transition points. We 
used a chi-square test in order to assess whether the patterns in positive and 
negative transitions are due to chance alone. 

RESULTS 
Preliminary Analyses 

Prior to the analyses, we tested for significant differences in potentially 
confounding variables between the two conditions: Competitiveness, resilience, 
experience in video games, cooperation, and whether or not the participants used 
to engage in team sports. No significant differences were found between the 
groups (ps > .21). Furthermore, the participants indicated they did their best to 
win the competition (M = 4.05 on a 5-point Likert scale).  
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Effect of Repeated External Perturbations 
The chi-square test for the frequency distribution of positive and 

negative performance transitions did not yield a significant effect (X2 (1, N = 42) 
= 0.429, p = .513, φ = 0.101). Therefore, we did not find a significant association 
between scoring scenarios and transitions in performance.  

Warning Signals for Negative Performance Transitions in Team 
Performance 

Fourteen dyads in total demonstrated a negative transition in 
performance. In order to test for critical slowing down prior to transitions, we 
computed the lag 1 autocorrelation for performance (i.e., accurate hits) and 
complexity (i.e., entropy). However, the expected pattern of a steady increase in 
the autocorrelation when a system is approaching a negative performance 
transition was found in either entropy or accurate hits in three of the dyads only 
(see Fig. 2, for an example). Therefore, in this study, the lag 1 autocorrelation 
does not reflect a reliable early warning signal for negative performance 
transitions in dyadic task performance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. A dyad’s produced amount of accurate hits (A) and entropy (C) over time 
and their according lag 1 autocorrelation (B and D respectively). The horizontal 
black line (A and C) represents the mean of the time-series alongside the standard 
deviation indicated by the dotted lines. The vertical black line represents the time 
point where the change of mean in the accurate hits time-series is the largest (i.e., 
transition point in performance). The white areas surrounding the orange line in B 
and D represent the area inspected for increases in warning signals. The example 
dyad demonstrates a negative transition in performance accompanied by 
increases in lag 1 autocorrelations in both accurate hits and entropy. 

The test for critical fluctuations as an early warning signals assessed the 
changes of stability in the in the performance and entropy measures using a 
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running MSSD. Similar to the lag 1 autocorrelation, we expected an increase in 
fluctuations (i.e., increase in MSSD) around the transition in performance. Indeed, 
we found that 78.6% (11 out of 14) of the dyads demonstrated increases in 
fluctuations surrounding the transition point in both accurate hits and entropy (see 
Fig. 3 for a representative example). The chi-square test for the frequency 
distribution of accurate and inaccurate predictions yielded a significant effect with 
a large effect size (X2 (1, N = 14) = 4.571, p = .033, φ = 0.583). Of the three dyads 
that did not exhibit the expected patterns, one dyad demonstrated no increase in 
fluctuations in performance, one dyad demonstrated no increase in entropy 
fluctuations, and one dyad demonstrated no increase in either performance or 
entropy fluctuations around the transition point. This supports that transitions in 
performance are preceded by increases in fluctuations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A dyad’s produced amount of accurate hits (A) and entropy (C) over time 
and their windowed (n = 25) MSSDs (B and D respectively). The horizontal black 
line (A and C) represent the mean of the time-series alongside the standard 
deviation indicated by the dotted lines. The vertical black line represents the time 
point where the change of mean in the accurate hits time-series is the largest (i.e., 
transition point in performance). The white areas surrounding the vertical black line 
in B and D represent the area inspected for increases in warning signals. 

Predicting Positive Transitions in Performance  
The change point analysis yielded a total of 28 dyads demonstrating a 

positive transition. We found that positive transitions in performance in 19 of the 
28 (67.9%) dyads were accompanied by increases in the running MSSD of 
accurate hits, while entropy remained stable (see Fig. 4 for a representative 
example). The chi-square test for the frequency distribution of accurate and 
inaccurate predictions approached significance and yielded a medium effect size 
(X2 (1, N = 28) = 3.571, p = .059, φ = 0.357). Of the remaining nine dyads that did 
not exhibit the expected patterns, two dyads demonstrated only slight increases of 
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fluctuations in accurate hits while stable entropy. Six dyads showed an increase 
in fluctuations of both accurate hits and entropy, and one dyad demonstrated no 
increases in either performance or entropy fluctuations. Taken together, negative 
transitions in system’s performance appear to be preceded by an increase in 
instability of both performance and complexity, whereas positive transitions are 
indicated by increases in instability of performance only. However, some dyads 
demonstrating a positive transition (21.4%) resembled the expected patterns of 
negative transitions. The analyses for both positive and negative performance 
transitions were also conducted with percent determinism (i.e., an alternative 
measure from CRQA related to the predictability of the system) and yield highly 
similar results. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Example of a dyad displaying a positive transition in performance. The 
amount of accurate hits (A) and entropy (C) over time with their corresponding 
running MSSD (B and D, respectively). The horizontal black line (A and C) 
represent the mean of the time-series alongside the standard deviation indicated 
by the dotted lines. The vertical black line represents the time point where the 
change of mean in the accurate hits time-series is the largest (i.e., transition point 
in performance). The white areas surrounding the vertical black line in B and D 
represent the area inspected for increases in warning signals. 

The previous analyses revealed two issues in the pattern identification. 
First, it may be difficult to identify meaningful patterns of change when a change 
point occurs very early in the time-series because of an absent baseline stability 
level (the running MSSD and lag 1 autocorrelation were based on bins of 25 data 
points, cf. Cabrieto, Tuerlinckx, Kuppens, Bobála, & Ceulemans, 2018). This 
means that early changes can lead to misinterpretations due to the scaling of the 
running statistics. For example, a system may demonstrate high levels of 
variability prior to a transition and low levels of variability following the 
transition. Without sufficient information about the system prior to the transition 
point, a high level of variability may be interpreted as an indication of critical 



 
 
 
 
 
 
 
 
342  NDPLS, 24(3), Hill et al. 

fluctuations. However, it cannot be determined whether these fluctuations are a 
result of the system’s prior state or whether they truly reflect critical fluctuations. 
Second, dyads that demonstrate high levels of noise throughout the time-serial 
data may cause fluctuation changes to be interpreted as meaningful patterns, when 
they actually reflect random variation. Thus, random noise may be misinterpreted 
as meaningful indications of transitions. Therefore, we conducted a follow-up 
analysis for early warning signals (i.e., Hypothesis 2 and Hypothesis 3), in which 
we excluded all dyads demonstrating the transition very early (n < 100 data points, 
see Figure 5A for example) and high levels of noise throughout the entire time-
series (overall MSSD > 0.4, see Fig. 5B for example).  
 
 
 
 
 
 

 

Fig. 5. Example of a time-series demonstrating an early transition indicated by the 
black, vertical line (A) and high levels of overall noise (B), which were excluded 
from further analyses. The horizontal, black line represents the mean of the time-
series in the individual sections and the dashed lines the according standard 
deviation.  

Follow-up Analysis  
Of the 14 dyads demonstrating negative performance transitions four 

(28.6%) met the eligibility criteria. Of these four, only one dyad demonstrated 
increase in the lag 1 autocorrelations for performance and entropy. However, all 
four demonstrated increases in fluctuations in both entropy and performance in 
proximity to the transition point. For dyads demonstrating positive transitions, 
twelve out of 28 (42.9%) met the eligibility criteria. In these twelve dyads, nine 
transitions (75%) were accompanied by increases in the running MSSD of 
accurate hits, while entropy remained stable (see Fig. 5 for a representative 
example). One dyad demonstrated only slight increases of fluctuations in accurate 
hits while stable entropy. The other two dyads deviating from the common pattern 
showed an increase in fluctuations of both accurate hits and entropy. Taken 
together, the follow-up analyses strengthened the initial findings that both positive 
and negative transitions are indicated by fluctuations in performance, but only 
negative transitions are associated with fluctuations in complexity, while 
complexity remains stable in positive transitions. 
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DISCUSSION 
The basic assumption of the present research is that resilience is a 

complex process that cannot be reduced to a single (set of) factor(s) (e.g., 
Davydov et al., 2010; Hill, 2018a; Pincus & Metten, 2010; Pincus et al., 2018; 
Tusaie & Dyer, 2004). To capture this complexity, Hill and colleagues (2018a, 
2018b) suggested to study how the process of resilience unfolds over time 
applying a dynamical systems approach. The aim of the current study was to 
provide a first empirical investigation of changes in resilience during human 
(motor) performance from a complex dynamical systems perspective, using a 
lateral rhythmical pointing (i.e., Fitts) task. That is, we examined whether time-
serial patterns, such as critical slowing down and critical fluctuations, can predict 
resilience losses within a system leading to negative transitions in performance 
(Dai et al., 2012; Kelso, 2010; Scheffer et al., 2009, 2012, 2018; Van de Leemput 
et al., 2014), or predict positive transitions to higher performance (e.g., 
Agathokleous et al., 2018; Calabrese 2005a, 2005b; Kiefer et al., 2018). In order 
to trigger transitions, we induced external perturbations while the dyads were 
performing. To test whether repeated external perturbations lead to negative 
transitions in performance, we compared dyadic performance in a Fitts task in 
descending scoring scenarios to performance in ascending scoring scenarios. 
Unexpectedly, the results indicate no significant differences in the amount of 
negative performance transitions in ascending and descending scoring sequences. 
Thus, we did not find evidence to support the notion that repeated perturbations 
cause undesired transitions in systems (Dai et al., 2012, Scheffer et al., 2012, 
2018; Van de Leemput et al., 2014).  

The absence of a clear indication that the resulting transitions were 
induced externally may be due to the fact that systems do not only change in 
response to external events. Indeed, systems are constantly undergoing change as 
a result of the dynamic interactions among the components that constitute a 
system. Theoretically speaking, a system develops future states based on its 
current states through a self-organizing iterative process (e.g., Den Hartigh, Van 
Dijk, Steenbeek, & Van Geert, 2016; Gernigon, Vallacher, Nowak, & Conroy, 
2015; Nowak & Vallacher, 1998; Vallacher, Van Geert, & Nowak, 2015; Van 
Geert, 1991, 2009). These internal processes can also lead to nonlinear changes 
or transitions, both positive and negative, to a new state where the system 
stabilizes (Nowak & Vallacher, 1998; Van Geert, 1997). For example, 
Richardson, Marsh, and colleagues (2007) demonstrated that movement patterns 
in dyads become rhythmically coupled without verbal communication due to self-
organizing processes within the system. In other words, the new state of the 
system (i.e., rhythmic coordination) emerged from the ongoing interactions 
between the two actors. Therefore, the failure of the manipulation of the study to 
induce transitions may be due to the fact that they were not sufficiently stressful 
to override the natural changes occurring by intrinsic dynamics of the system.  

On an individual dyadic level, we examined when the dyads 
demonstrated the largest change in performance and whether the change was 
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positive or negative. Dyads demonstrating a negative performance transition were 
tested for critical slowing down and critical fluctuations around the transition 
point. The results yielded that critical slowing down as indicated by the lag 1 
autocorrelation did not signal the occurrence of negative performance transitions. 
The absence of the expected pattern in the time-series may be due to the high ratio 
of noise compared to the signal length, which interferes with the results from the 
autocorrelations (Clements, Drake, Griffiths, & Ozgul, 2015; Clements, 
McCarthy, & Blanchard, 2019; Hastings & Wysham, 2010; Liu et al., 2015). 
However, note that the absence of the expected patterns does not indicate an 
absence of critical slowing down in the system, but merely that the statistical 
analysis does not detect it. The results of the critical fluctuation analyses revealed 
that negative performance transitions were indeed accompanied by increased 
fluctuations in both performance and complexity. As anticipated, this suggests 
that negative performance transitions follow a loss of resilience within the system, 
indicated by critical fluctuations in complexity. 

The notion that critical fluctuations in complexity indicate negative 
performance transitions is further supported by the pattern of fluctuations in 
positive transitions. We found a tendency that positive transitions were marked 
by increases in fluctuations of performance only, while the system’s complexity 
remained stable over time. Therefore, critical fluctuations in performance 
accompanied by losses of resilience are associated with undesirable transitions in 
performance, whereas positive transitions are not marked by resilience losses. An 
interesting observation was that six dyads exhibited the expected warning signals 
of negative transitions while experiencing a positive transition. That is, the dyads 
showed instabilities in their performance accompanied with instabilities in their 
complexity. Because the complexity measure in this study is derived from the 
temporal patterns of the movements by the dyads, it could be concluded that 
resilience losses are associated with breakdowns in the system’s structural 
organization. It may be speculated that these dyads have been approaching a 
negative transition, but that the structural changes in the system’s organization 
allowed it to adapt positively, instead (Pincus & Metten, 2010; Kiefer et al., 2018). 
This might be an explanation for why the expected signs of structural breakdowns 
in the systems did not indicate negative transitions in each case. However, more 
research is needed to specifically address this type of transition.  

The observed patterns of critical fluctuations are in line with the HKB 
model, which maintains that variability is an essential source of flexibility and 
adaptability, rather than a source of undesirable noise (Kelso, 2010). According 
to the HKB model, internal and external perturbations cause a system to lose 
stability, which in turn leads to increasing fluctuations when being exposed to 
perturbations (Kelso et al., 1986). Therefore, transitions are inherently marked by 
increasing noise (i.e., fluctuations). The presented findings suggest that both 
positive and negative performance transitions are marked by increasing 
fluctuations in performance. However, only negative performance transitions 
result from a loss in resilience marked by increasing fluctuations in complexity. 
As increasing noise levels have been shown to interfere with the analysis 
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techniques for critical slowing down (Clements et al., 2015, 2019; Hastings & 
Wysham, 2010; Liu et al., 2015), the current findings suggest that critical 
fluctuations may be a more reliable indicator of transitions in human performance 
than critical slowing down.  

LIMITATIONS AND FUTURE DIRECTIONS 
The results of the current study need to be interpreted with caution due 

to the relatively small sample size. Although the dynamical systems approach 
places an emphasis on individual-level analyses, the observed patterns need to be 
validated on a larger scale using a variety of tasks, measures, and individuals. 
Furthermore, the current findings are based on a lab study utilizing a rather artifi-
cial task design. In order to generalize the current findings to natural human per-
formance scenarios, the observed patterns preceding positive and negative 
performance transitions need to be replicated with research designs high in 
ecological validity (cf., Davids, Araújo, Vilar, Renshaw, & Pinder, 2013). This 
means that study designs should reflect the real-world performance as closely as 
possible and capture the information in the environment to which humans 
constantly need to attune. For example, to test resilience losses in soccer matches, 
an ideal design would include natural (moving) teammates and opponents, instead 
of static obstacles on the field.  

Another limitation of the current study that we did not manipulate the 
index of difficulty of the Fitts task (Fitts & Peterson, 1964). The index of difficulty 
we chose may not have been sufficiently and equally challenging for every dyad. 
Kiefer and colleagues (2018) point out that performers, who reach the same 
maximum performance level, may adapt differently to varying task-demands. 
Therefore, the manipulation of the changing scoring patterns may not have 
produced the desired effects because the task was not sufficiently challenging for 
some participants. In line with this, previous research has shown that the 
movement dynamics change when the index of difficulty is systematically varied 
during a Fitts paradigm (Huys, Knol, Sleimen-Malkoun, Temprado, & Jirsa, 
2015). This means that transitions in performance may be evoked by systematic 
manipulation of the index of difficulty. Although such manipulations were beyond 
the scope of the present study, we recommend that future studies utilizing this 
paradigm should (also) include systematic variations in the task difficulty. 

Finally, because the current study did not find a significant relationship 
between the induced external perturbations and the resulting transitions in 
performance, future research should focus on the circumstances under which 
external perturbations can lead to resilience losses for different individuals. A 
promising approach for optimizing performance in response to perturbations, in 
line with the complex dynamical systems approach, comes from research on 
complex biological systems. In toxicology, the concept of hormesis describes that 
low doses of perturbations (i.e., chemical and physical agents in toxicology) 
induce beneficial outcomes of a system, while drastic negative effects occur when 
a certain threshold in dosage is exceeded. According to Kiefer and colleagues 
(2018), these principles can be applied to human (athletic) performance as well, 
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using time-serial performance data. In response to being exposed to (controlled) 
increasing amount of environmental perturbations this time-serial data can inform 
about the optimal perturbation load an athlete should be exposed to for optimal 
growth. Thereby, specific predictions about the impact of perturbations can be 
tailored to the individual-level.  

CONCLUSION 
In conclusion, the current study provides a first empirical account on the 

complexity of the temporal resilience process in human performance. We applied 
a complex dynamical systems approach to analyze time-series of dyadic 
performance and derive the system’s complexity. Given that we found that 
negative performance transitions occur when performance and complexity both 
demonstrate increases in fluctuations, whereas positive transitions appeared to be 
marked by stable levels of complexity within the system, we conclude that 
complexity is a likely indicator of a system’s adaptability in response to 
perturbations (cf., Davids et al., 2003; Delignières & Marmelat, 2012, 2013; Den 
Hartigh, et al., 2015; Kiefer & Myer, 2015; Manor et al., 2010; Pincus & Metten, 
2010). This supports the assumption that a stable blend between stability and 
flexibility (i.e., complexity) within a system causes a system to be able to adapt 
to perturbations while maintain its overall level of functioning. Therefore, 
combining information on critical fluctuations in both performance and 
complexity potentially provides a reliable tool to predict both positive and 
negative performance transitions, and prevent the latter from occurring. 
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