

University of Groningen

Target-Controlled Infusion of Cefepime in Critically III Patients

Jonckheere, Stijn; De Neve, Nikolaas; Verbeke, Jan; De Decker, Koen; Brandt, Inger; Boel, An; Van Bocxlaer, Jan; Struys, Michel M. R. F.; Colin, Pieter J.

Published in: Antimicrobial Agents and Chemotherapy

DOI: 10.1128/AAC.01552-19

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Final author's version (accepted by publisher, after peer review)

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Jonckheere, S., De Neve, N., Verbeke, J., De Decker, K., Brandt, I., Boel, A., Van Bocxlaer, J., Struys, M. M. R. F., & Colin, P. J. (2020). Target-Controlled Infusion of Cefepime in Critically III Patients: single center experience. Antimicrobial Agents and Chemotherapy, 64(1), [ARTN e01552-19]. https://doi.org/10.1128/AAC.01552-19

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

AAC

Antimicrobial Agents and Chemotherapy

1 TITLE PAGE

2	Title: Target Controlled Infusion of cefepime in critically ill patients: single center experience		
3			
4	Stijn Jonckheere, PharmD ^{1,2,3} , Nikolaas De Neve, MD ⁴ , Jan Verbeke, MD ⁴ , Koen De Decker, MD ⁴ , Inger		
5	Brandt, PhD, PharmD ¹ , An Boel, PharmD ¹ , Jan Van Bocxlaer, PhD, PharmD ³ , Michel M.R.F. Struys, PhD,		
6	MD ^{2,5} , Pieter J. Colin, PhD, PharmD ^{2,3}		
7			
8	¹ Department of Clinical Microbiology, OLV Hospital Aalst (Belgium); ² Department of Anesthesiology,		
9	University Medical Center Groningen, University of Groningen (The Netherlands); ³ Laboratory for Medical		
10	Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University (Belgium);		
11	⁴ Department of Anesthesiology and Intensive Care Medicine, OLV Hospital Aalst (Belgium); ⁵ Department of		
12	Basic and Applied Medical Sciences, Ghent University (Belgium)		
13			
14	Corresponding author: stijn.jonckheere@yperman.net, Tel: +3257357327, Fax: +3257357329, Address:		
15	Department of Clinical Microbiology, OLV Hospital Aalst, Moorselbaan 164, 9300 Aalst, Belgium.		
16			
17	Trial registration: Belgium registration number: B126201626975. ClinicalTrials.gov database: NCT02688582		
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			

AAC

31 ABSTRACT

32	Attainment of appropriate pharmacokinetic-pharmacodynamic (PK-PD) targets for antimicrobial treatment is
33	challenging in critically ill patients, particularly for cefepime, which exhibits a relative narrow therapeutic-toxic
34	window compared to other beta-lactam antibiotics. Target Controlled Infusion (TCI) systems, which deliver
35	drugs to achieve specific target drug concentrations, have successfully been implemented for improved dosing of
36	sedatives and analgesics in anesthesia. We conducted a clinical trial in the Intensive Care Unit (ICU) to
37	investigate the performance of TCI for adequate target attainment of cefepime. Twenty-one patients treated per
38	standard of care with cefepime were included. Cefepime was administered through continuous infusion using
39	TCI for a median duration of 4.5 days. TCI was based on a previously developed population PK model
40	incorporating the estimated creatinine clearance based on the Cockcroft-Gault formula as input variable to
41	calculate cefepime clearance. A cefepime blood concentration of 16 mg/L was targeted. To evaluate the
42	measured versus predicted plasma concentrations, blood samples were taken (median of 10 samples per patient)
43	and total cefepime concentrations were measured using UPLC-MS/MS. Performance of the TCI system was
44	evaluated using the Varvel criteria. Half (50.3%) of measured cefepime concentrations were within \pm 30%
45	around the target value of 16 mg L^{-1} . The wobble was 11.4%, median prediction error (MdPE) was 21.1%,
46	median absolute prediction error (MdAPE) was 32.0%, and divergence was -3.72%.h ⁻¹ . Based on these results
47	we conclude that TCI is useful for dose optimization of cefepime in ICU patients.
48	
49	KEYWORDS: Target Controlled Infusion, drug infusion system, cefepime, pharmacokinetics, Intensive Care
50	Unit
51	
52	
53	
54	
55	
56	
57	
58	
59	

Antimicrobial Agents and Chemotherapy

60 INTRODUCTION

61	Inappropriate dosing of antibiotics is a driver for antimicrobial resistance development (1), acute		
62	toxicity (2,3) and poor clinical outcome (4-5). This is particularly true for cefepime, a fourth generation		
63	cephalosporin, which has shown to exhibit a narrow therapeutic-toxic window (2-3,6). Defining adequate dosing		
64	regimens in critically ill patients is challenging as pharmacokinetics (PK) in these patients are known to vary		
65	considerably (7-14) and these patients are more likely to be infected by less susceptible bacteria (12).		
66	Traditionally, dosing of antibiotics is based on nomograms which define a dosing regimen based on one		
67	or a limited set of patient covariates. In the critically ill, these nomogram-based dosing regimens frequently		
68	result in a significant proportion of patients not achieving the therapeutic target (13). Hence, treatment should be		
69	individualized using therapeutic drug monitoring and/or population PK (PopPK) models. In recent years several		
70	software packages were developed that allow model-based treatment individualization (14). Whilst therapeutic		
71	drug monitoring (TDM) linked with Bayesian forecasting provides a powerful opportunity for delivering		
72	individualized care for patients (15), several issues in current strategies for dose optimization of antimicrobials		
73	have hindered clinical implementation in most ICU's (16,17).		
74	Target-controlled infusion (TCI) is a technique of continuously infusing intravenous drugs and is		
75	mainly known in the field of anesthetics (18). TCI allows the clinician to target a predefined concentration in a		
76	specific body compartment or tissue of interest. The computer then calculates the optimal infusion rate required		
77	to achieve this user-defined target concentration as fast as possible without overshooting the target, based on a		
78	PopPK model and patient specific covariates (e.g. age, weight, serum creatinine, etc.) which are integrated in the		
79	model. An on-line coupled infusion pump then delivers this optimal infusion regimen to the patient. In		
80	comparison to the aforementioned manually controlled infusions, TCI systems might provide a more convenient		
81	and performant alternative. Treatment individualization is made easy as the PopPK model and associated		
82	covariates are embedded in the TCI devices. Dose adaptations are not limited to practicable changes in infusion		
83	rates, dose strengths, dosing intervals, etc. but TCI continuously calculates and adjust the infusion rate to exactly		
84	match the distribution and elimination kinetics of the drug during treatment.		
85	In this prospective pharmacokinetic study, we evaluated the performance of a cefepime TCI system in a		
86	cohort of critically ill patients. Furthermore, the additional PK data was used to update the earlier presented		
87	PopPK model for cefepime (19).		

88

AAC

117

89 90	RESULTS Twenty-one critically ill patients were included in this study. Patients received cefepime for the
91	following indications: suspected or documented respiratory infection (18 of 21; 86%), abdominal infection (1 of
92	21; 5%), combined respiratory and abdominal infection (1 of 21; 5%) or infection of unknown origin (1 of 21;
93	5%). Microbiological samples taken before cefepime treatment identified in 16 of 21 (76%) patients one or more
94	pathogens: Klebsiella spp. (n = 8), Escherichia coli (n = 6), Citrobacter spp. (n = 2), Proteus mirabilis (n = 1),
95	Pseudomonas aeruginosa (n = 1), Morganella morganii (n = 1) and Enterobacter cloacae (n = 1),
96	Staphylococcus aureus (n = 1) and Haemophilus influenzae (n = 1). MIC values for cefepime ranged from ≤ 1
97	mg L^{-1} to 4 mg L^{-1} (75 th percentile: $\leq 1 \text{ mg } L^{-1}$). Table 1 shows a the clinical characteristics of the study patients.
98	The median treatment duration with TCI was 4.0 days (IQR: $2.0 - 5.0$ days) and daily cefepime dose
99	was 1.8 g (IQR: 1.6 – 2.5 g) at day 1, 1.3 g (IQR: 1.1 – 2.2 g) at day 2, 1.3 g (IQR: 1.1 – 2.0 g) at day 3 and 1.3 g
100	(IQR: 1.1 - 1.9 g) at day 4. During treatment, a median of 10 blood samples were taken per patient $(IQR: 9 - 11)$
101	leading to a total of 201 samples. The median of the measured cefepime plasma concentrations was 19.2 mg L^{-1}
102	with an inter-quartile range of 15.3 to 23.3 mg L^{-1} (the mean and SD were 19.5 and 6.36 mg L^{-1} , respectively).
103	The percentage of measured concentrations within ± 10 , 20, 30, 40 and 50% of the 16 mg L ⁻¹ target were 20.7,
104	36.2, 50.3, 66.3 and 77.7%, respectively. Figure 1 shows the measured cefepime concentrations and the
105	predicted concentrations according to the TCI system. The average performance metrics (Varvel criteria) in this
106	patient cohort were: MdAPE: 28.7 %, MdPE: 20.3 %, Wobble: 12.2 %, Divergence: -0.13 % h ⁻¹ . As seen from
107	Figure 1 performance varies with MdAPEs on an individual basis ranging between 4.1% and 64.2%. Similar
108	variability was found for the other performance metrics; MdPE (range): -25.6% to 64.2%, Wobble (range): 2.12
109	% to 30.3 % and Divergence (range): -4.43 % h^{-1} to 0.68 % h^{-1} .
110	By combining the data from this study with the study previously published by our group (19), we were
111	able to improve the PopPK model for cefepime. The following modifications led to a significant improvement in
112	the goodness-of-fit: (i) the implementation of eCrCL as time-varying covariate on CL_{renal} , (ΔOFV : -75.3) and (ii)
113	the addition of between-subject variability (BSV) on the non-renal CL (CL_{other}) (ΔOFV : -54.0). Finally, we made
114	two modifications that slightly worsened goodness-of-fit: a power parameterization for the eCrCL effect on CL
115	instead of the original linear relationship (ΔOFV : +2.2) and scaling of all PK parameters with body weight
116	according to allometric theory (ΔOFV : +2.3) (20). The former was added to the model to avoid the prediction of

negative CL_{renal} at very low eCrCL values whereas the latter was included to ascertain sensible behavior of a TCI

4

AAC

Antimicrobial Agents and Chemotherapy

120 protein (CRP)) were found significant. Parameter estimates and associated relative standard errors for the final 121 model are shown in Table 2. The covariate structure for the final model (for a non-dialysis patient) is shown in equations 1-4. Goodness-of-fit plots for the final PopPK model are provided as supplemental material (Fig. S1). 122

123
$$CL (L h^{-1}) = \left(2.29 \cdot \left(\frac{eCrCL (mL min^{-1})}{60}\right)^{0.943} + 0.795\right) \cdot \left(\frac{weight (kg)}{70}\right)^{0.75}$$
Eq.1

124
$$V1(L) = 10.7 \cdot \left(\frac{weight(kg)}{70}\right)^1$$
 Eq.2

125
$$V2(L) = 12.2 \cdot \left(\frac{weight(kg)}{70}\right)^1$$
 Eq.3

126
$$Q2 (L h^{-1}) = 11.0 \cdot \left(\frac{weight (kg)}{70}\right)^{0.75}$$
 Eq.4

127

128

DISCUSSION 129

130	In this study we describe for the first time the use of TCI for the administration of antibiotics in
131	critically ill patients. PK-PD optimized dosing regimens and target attainment are pivotal for effective
132	antimicrobial treatment (4-5). As a result, different approaches to personalized antibiotic dosing have been
133	attempted (15,21-24). TCI systems accomplish this individualization via embedded PopPK models and might
134	therefore become a convenient bedside alternative to other approaches. Our prototype TCI system delivers
135	50.3% of measured cefepime concentrations within \pm 30% around the target value of 16 mg L ⁻¹ . MdPE and
136	MdAPE in this study were 20.3 % and 28.7 %, respectively. This performance is in line with the performance of
137	current PK models used in TCI pumps in anaesthesia (25).
138	Cefepime was selected as study drug because it is widely used as broad spectrum antibiotic in ICU
139	patients and individualized TCI dosing has a potential benefit given the relatively small therapeutic-toxic
140	window, compared to other beta-lactam antibiotics. It is important to note that there exist no clinically validated
141	target cefepime concentration for continuous infusion. We choose a target (total) cefepime concentration of 16
142	mg L^{-1} for all patients in our study, which is a compromise between potential toxicity and achieving adequate
143	PKPD targets. The chosen target concentration is well below the recently advocated threshold for cefepime
144	toxicity of 35 mg L^{-1} (6) and is sufficient to achieve free drug above the EUCAST clinical susceptibility
145	breakpoint for the suspected pathogens (e.g. $MIC = 1 \text{ mg } L^{-1}$ for <i>Enterobacterales</i> and $MIC = 8 \text{ mg } L^{-1}$ for
146	Pseudomonas spp.) (http://www.eucast.org). The target resembles the clinical use of cefepime when
147	microbiology results are absent, such as e.g. when used empirically or when cultures remain negative throughout
148	the treatment period (26,27). In these situations population-level assumptions are made about the most likely
	5

149 organism causing the infection and the distribution of MICs in this population. To achieve true individualization 150 of antibiotic therapy, it might also be necessary to individualize the targeted PKPD index (i.e. more aggressive 151 PKPD targets such as $f_{T_{>2.1 \text{ MIC}}}(28)$ or $T_{>4.3 \text{ MIC}}(29)$) and to account for the susceptibility of the infecting 152 pathogen (once isolated). TCI systems facilitate the use of a patient-tailored target by reducing the complex 153 dose-concentration relationship via the embedded PopPK models to the selection of an appropriate plasma 154 concentration target. In our opinion, this practicable flexibility could drive the wide-spread implementation of 155 model-informed precision dosing for antibiotics in the ICU. The use of TCI is not limited to cefepime, but the 156 concept could also be applied to administer any drug that can be give as continuous infusion. 157 The additional PK data from this study enabled us to update the PopPK model used in our prototype 158 TCI system. From the pooled data analysis V1 was estimated to be 10.7 L and not 18.3 L, as published earlier by 159 our group (19). As a result, loading doses administered by the current version of the TCI system are too high, 160 resulting in an overshoot of the target in the first hour of treatment (as seen from Figure 1). Furthermore, our 161 analysis indicated that within-individual changes in cefepime clearance are (partly) explained by temporal 162 changes in eCrCL. We hypothesize that an updated version of the TCI system based on the new PopPK model 163 and with eCrCL as a control variable to accommodate within-subject variability in CL will perform better than 164 the system evaluated in this study. 165 The theoretical lower limit for the performance of this new system depends on the magnitude of the 166 unknown BSV in the PopPK model. When targeting a steady-state plasma concentration and assuming that the 167 PopPK model in the TCI system is unbiased, target attainment is limited by the BSV in CL. In our model CL 168 consists of CL_{renal} with a BSV of 24.6% and CL_{other} with a BSV of 69.4%. Consequently, when targeting 16 mg 169 L⁻¹ 95% of patients are expected to reach a steady-state concentration between 9.16 and 24.6 mg L⁻¹ (based on 170 simulations for a population with an average eCrCL of 60 mL min⁻¹). This translates to a MdAPE of 21.5%, 171 which is, as expected, lower than the MdAPE reported in this study (28.7%). This shows that it is possible to 172 improve the performance of the current TCI system by updating the embedded PopPK model. 173 Another useful approach for further refining the accuracy of the system is to use model-based feedback-174 control based on Bayesian forecasting of PK parameters . Open-loop TCI systems (or adaptive TCI systems) (30) 175 where feedback from TDM is used as a control variable in the TCI system are interesting in that respect. Neely 176 et al. (21), Matthews et al. (23) and Pea et al. (24) have shown for aminoglycosides and vancomycin that TDM 177 and Bayesian forecasting of PK parameters results in improved dosing accuracy over conventional dosing

178 strategies. Hence, a TCI system based on the same principles might be advantageous when a higher accuracy is

Downloaded from http://aac.asm.org/ on November 22, 2019 at University of Groningen

179 needed. The lower limit for the performance of such a system is not depending on the BSV in the PK but is 180 governed by the residual variability of the PopPK model, which incorporates both the inaccuracy in the drug 181 assay and model misspecification. For the updated model this would result in a MdAPE of 12.8%. Nevertheless, 182 timely availability of appropriate antimicrobial assays could be problematic as TDM programs for cefepime or 183 other beta-lactam antibiotics are not yet widespread. To this end, biosensor technology could offer an alternative 184 by providing real-time monitoring of antimicrobials in a minimally invasive fashion (31).

185

186 There are some limitations to the research presented here: firstly, the small number of patients examined 187 and the fact that all patients originate from only one ICU site. Although patient inclusion was not restricted to 188 any medical condition and all patients receiving cefepime with a eGFR > 15 mL/min were eligible, extrapolation 189 of the results to specific subgroup of patients may not be appropriate. For instance, only few patients with 190 augmented renal clearance were included. Secondly, the model by Jonckheere et al. (19) uses only eCrCL to 191 individualize cefepime dosing. A more sophisticated PopPK model, also including patient covariates on the 192 volume of distribution, would have likely resulted in better treatment individualization and potentially better 193 performance. Finally, the TCI performance might be overestimated because the PopPK model which was 194 integrated in the TCI was developed in the same ICU. 195 In conclusion, novel systems are urgently required to individualize antimicrobial therapy, to address the 196 wide variations in PK currently observed across a range of patient populations, and to minimize the occurrence 197 of sub-optimal dosing. We demonstrated that cefepime TCI is able to deliver antibiotic concentrations within the 198 expected range around the targeted plasma concentrations in a cohort of critically ill ICU patients. In our 199 opinion, TCI offers exciting possibilities for the individualization of antibiotic treatment in ICU patients and 200 could drive the wide-spread implementation of model-informed precision dosing in this vulnerable patient 201 population. Further research is needed to confirm that target attainment is superior and to demonstrate increased 202 clinical efficacy in terms of clinical outcome. The role of TDM in an adaptive TCI approach also requires further 203 investigation. 204 205

208

206 207

209 MATERIALS AND METHODS

210 Patient inclusion & research ethics. Patients requiring cefepime according to local treatment protocols 211 were included between May 2016 and August 2017. Patients with an estimated glomerular filtration rate (eGFR) 212 (according to CKD-EPI formula) less than 15 mL/min and patients that were on hemodialysis were excluded. 213 This trial was conducted at the Intensive Care department of the OLV Hospital Aalst, Belgium, in accordance 214 with the Declaration of Helsinki and in compliance with Good Clinical Practice and the applicable regulatory 215 requirements. Ethical approval was obtained from the Institution Review Board of the hospital (Belgium 216 registration number: B126201626975). The study was registered in the ClinicalTrials.gov database 217 (NCT02688582) and was monitored by an independent Quality Specialist. 218 Drug administration. Patients received cefepime i.v. using a TCI system based on a previously 219 developed PopPK model by Jonckheere et al. (19). In this model, the estimated creatinine clearance (eCrCl) 220 based on the Cockcroft-Gault formula measured the day of inclusion was used as only input variable and a 221 cefepime blood concentration of 16 mg/L was targeted. There were no adaptations based on changes in eCrCl or 222 measured cefepime concentrations during treatment. Cefepime (20 mg/mL, Fresenius Kabi®, USA) was 223 administered by a syringe pump (Orchestra® Module DPS, Fresenius Kabi®, USA) controlled by RUGLOOPII 224 software (Demed®, Temse, Belgium) on a personal computer. Maximum infusion rate was set to 4 gram of 225 cefepime per hour. 226 Descriptive statistics. The administered daily cefepime dose was extracted from the case report forms 227 or the RUGLOOPII files. CRP measurements were summarized according to 24h intervals. Measurements up to 228 24h before inclusion into the study were grouped as baseline measurements. Daily doses of cefepime and CRP 229 levels were analysed for the first 4 days of therapy only, afterwards the number of patients treated was too low to 230 calculate meaningful summary measures. Length-of-stay in ICU/Hospital and mortality are competing risks (i.e. 231 very sick patients who die would have likely had a very long stay in ICU/Hospital), hence the length-of-stay was 232 calculated by replacing length-of-stay for patients who died by the maximum length-of-stay in that patient cohort 233 (32). Presence of neurotoxicity was based on clinical assessment. 234 Arterial blood and urine sampling and laboratory procedures. Arterial blood was sampled at 0.5, 1, 235 3, 6, 12, 24, 36, 48, 72, 96 and 120 h after the start of the infusion. The exact timing of blood samples was 236 recorded in the case report form. Samples were collected in lithium heparin tubes, transported immediately to the 237 laboratory and centrifuged at 1000 xg for 5 min at 4°C. Subsequently, plasma samples were stored below -70°C

238 until analysis. Urine was collected daily from a urinary catheter over a 12 hour interval. The quantification of

239 cefepime levels was based on a validated solid phase extraction - liquid chromatography electrospray - tandem 240 mass spectrometry method (33). using a ${}^{13}C_{12}$ - ${}^{2}H_{3}$ -labeled cefepime isotope as internal standard (AlsaChim, Illkirch, France). The range of the analytical method was 0.15 mg L^{-1} to 15 mg L^{-1} with an average bias and 241 242 imprecision of +5.9 % and 8.6 CV%. Plasma samples were diluted 1/5 in blank human plasma whereas urine 243 samples were diluted 1/50 in blank human plasma prior to analysis. All samples were measured in duplicate. 244 Microbiological samples were taken as per standard of care and analyzed using standard culture procedures. 245 Identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 246 (MALDI-TOF MS) (Bruker Daltonik GmbH, Germany) and antimicrobial susceptibility testing was performed 247 using the Phoenix system (Becton Dickinson, USA) according manufacturer's instructions.

Calculation of predictive performance. In line with studies on the performance of TCI systems in
 anesthesia, we used the "Varvel criteria" to evaluate the performance of our TCI system (34). For this, the
 performance error (PE) is calculated for all samples (j) for the different patients (i) according to equation 5.

251

252
$$PEij = \frac{(Cmeas \, ij - Cpred \, ij)}{Cpred \, ij} \ge 100\%$$
 Eq 5.

253

254 In this equation $C_{\text{meas }ii}$ and $C_{\text{pred }ii}$ are the measured and predicted plasma cefepime concentrations, respectively. 255 Subsequently, the PEs are used to calculate the median PE (MDPE), median absolute PE (MDAPE), wobble, and 256 divergence for each patient. MDPE provides a measure of bias whereas the MDAPE reflects the precision of the 257 system. Wobble is a measure of intra-subject variation in PEs and the divergence quantifies any time-related 258 changes in the imprecision of the TCI system. 259 Update of previously published population pharmacokinetic model. The plasma and urine cefepime 260 concentration versus time data were fitted using the FOCE-I estimation algorithm in NONMEM® (Version 7.3; 261 GloboMax LLC, Hanover, MD, USA). The "tidyverse" package (Version 1.1.1.; Wickham H. 2017) in R® (R 262 foundation for statistical computing, Vienna, Austria) was used to graphically assess the goodness-of-fit. As a 263 starting point, the model previously published by our group (19), which was used as PopPK model in the 264 presented TCI system, was fitted to the combined dataset (PK data from the pilot study (19) and additional PK 265 data from this TCI study). Modifications to the model were accepted if they resulted in a decrease in the

266 objective function value (OFV). A decrease in OFV was judged statistically significant if inclusion of an

additional parameter decreased the OFV with more than 3.84 points.

268

9

Downloaded from http://aac.asm.org/ on November 22, 2019 at University of Groningen

Accepted Manuscript Posted Online

Antimicrobial Agents and Chemotherapy

il Agents and therapy	
Antimicrobic Chemo	

269 **REFERENCES**

270	1.	Tam VH, Chang KT, Zhou J, Ledesma KR, Phe K, Gao S, Van Bambeke F, Sánchez-Díaz AM,
271		Zamorano L, Oliver A, Cantón R. 2017. Determining β -lactam exposure threshold to suppress
272		resistance development in Gram-negative bacteria. J Antimicrob Chemother 72:1421-1428.
273	2.	Lamoth F, Buclin T, Pascual A, Vora S, Bolay S, Decosterd LA, Calandra T, Marchetti O. 2010. High
274		cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients with mild
275		impairment of renal function. Anitimicrob Agents Chemother 54:4360-4367.
276	3.	Huwyler T, Lenggenhager L, Abbas M, Ing Lorenzini K, Hughes S, Huttner B, Karmime A, Uçkay I,
277		von Dach E, Lescuyer P, Harbarth S, Huttner A. 2017. Cefepime plasma concentrations and clinical
278		toxicity: a retrospective cohort study. Clin Microbiol Infect 23:454-459.
279	4.	Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D,
280		Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J; DALI Study. 2014. DALI:
281		defining antibiotic levels in intensive care unit patients: are current β -lactam antibiotic doses sufficient
282		for critically ill patients? Clin Infect Dis 58:1072-1083.
283	5.	Abdul-Aziz MH, Lipman J, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Dulhunty J, Kaukonen
284		KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Roberts JA; DALI
285		Study Group. 2016. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill
286		patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An
287		observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J
288		Antimicrob Chemother 71:196-207.
289	6.	Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, Fraser GL. 2017. Cefepime-induced
290		neurotoxicity: a systematic review. Crit Care 21:276.
291	7.	Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. 2011. The effects of hypoalbuminaemia
292		on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50:99–110.
293	8.	Udy AA, Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R, Gomersall C, Shirwadkar C,
294		Eastwood GM, Myburgh J, Paterson DL, Starr T, Paul SK, Lipman J; BLING-II Investigators; ANZICS
295		Clinical Trials Group. 2017. Association between augmented renal clearance and clinical outcomes in
296		patients receiving β-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort
297		study of the BLING-II randomised, placebo-controlled, clinical trial. Int J Antimicrob Agents 49:624-
298		630.

299

9.

300	prescriptions in the intensive care unit: principles of individualized dosing using pharmacokinetics and
301	pharmacodynamics. Int J Antimicrob Agents 39:187–192.
302	10. Tsai D, Lipman J, Roberts JA. 2015. Pharmacokinetic/pharmacodynamic considerations for the
303	optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care 21:412-420.
304	11. Veiga RP, Paiva JA. 2018. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of
305	beta-lactam antibiotics in critically ill patients. Crit Care 22:233.
306	12. De Waele JJ, Akova M, Antonelli M, Canton R, Carlet J, De Backer D, Dimopoulos G, Garnacho-
307	Montero J, Kesecioglu J, Lipman J, Mer M, Paiva JA, Poljak M, Roberts JA, Rodriguez Bano J, Timsit
308	JF, Zahar JR, Bassetti M. 2018. Antimicrobial resistance and antibiotic stewardship programs in the
309	ICU: insistence and persistence in the fight against resistance. A position statement from
310	ESICM/ESCMID/WAAAR round table on multi-drug resistance. Intensive Care Med 44:189-196.
311	13. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D,
312	Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J; DALI Study. 2014. DALI:
313	defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient
314	for critically ill patients? Clin Infect Dis 58:1072-1083.
315	14. Tasa T, Metsvaht T, Kalamees R, Vilo J, Lutsar I. 2017. DosOpt: a tool for personalized Bayesian dose
316	adjustment of vancomycin in neonates. Ther Drug Monit 39:604-613.
317	15. Felton TW, Roberts JA, Lodise TP, Van Guilder M, Boselli E, Neely MN, Hope WW. 2014.
318	Individualization of piperacillin dosing for critically ill patients: dosing software to optimize
319	antimicrobial therapy. Antimicrob Agents Chemother 58:4094-4102.
320	16. Wong G, Brinkman A, Benefield RJ, Carlier M, De Waele JJ, El Helali N, Frey O, Harbarth S, Huttner
321	A, McWhinney B, Misset B, Pea F, Preisenberger J, Roberts MS, Robertson TA, Roehr A, Sime FB,
322	Taccone FS, Ungerer JP, Lipman J, Roberts JA. 2014. An international, multicentre survey of β -lactam
323	antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother
324	69:1416-1423.
325	17. Tabah A, De Waele J, Lipman J, Zahar JR, Cotta MO, Barton G, Timsit JF, Roberts JA; Working
326	Group for Antimicrobial Use in the ICU within the Infection Section of the European Society of
327	Intensive Care Medicine (ESICM). 2015. The ADMIN-ICU survey: a survey on antimicrobial dosing
328	and monitoring in ICUs. J Antimicrob Chemother 70:2671-2677.

Roberts JA, Joynt GM, Choi GY, Gomersall CD, Lipman J. 2012. How to optimise antimicrobial

Antimicrobial Agents and Chemotherapy

AAC

329

330	Target-Controlled Infusion. Anesth Analg 122:56-69.
331	19. Jonckheere S, De Neve N, De Beenhouwer H, Berth M, Vermeulen A, Van Bocxlaer J, Colin P. 2016.
332	A model based analysis of the predictive performance of different renal function markers for cefepime
333	in the intensive care unit. J Antimicrob Chemother 71:2538-2546.
334	20. West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in
335	biology. Science 276:122-126.
336	21. Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, Schumitzky A, Yamada W, Jones B,
337	Minejima E. 2018. Prospective trial on the use of trough concentration versus area under the curve to
338	determine therapeutic vancomycin dosing. Antimicrob Agents Chemother 62:e02042-17.
339	22. De Waele JJ, Carrette S, Carlier M, Stove V, Boelens J, Claeys G, Leroux-Roels I, Hoste E, Depuydt P,
340	Decruyenaere J, Verstraete AG. 2014. Therapeutic drug monitoring-based dose optimisation of
341	piperacillin and meropenem: a randomised controlled trial. Intensive Care Med 40:380-387.
342	23. Matthews I, Kirkpatrick C, Holford N. 2004. Quantitative justification for target concentration
343	intervention-parameter variability and predictive performance using population pharmacokinetic
344	models for aminoglycosides. Br J Clin Pharmacol 58:18-19.
345	24. Pea F, Furlanut M, Negri C, Pavan F, Crapis M, Cristini F, Viale P. 2009. Prospectively validated
346	dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous
347	infusion in critically ill patients. Antimicrob Agents Chemother 53:1863-1867.
348	25. Glass PS, Shafer S, Reves JG. 2005. Intravenous Drug Delivery Systems. In: Miller R (ed) Miller's
349	Anesthesia, 1. 6 edn. Elsevier, Philadelphia, PA, USA, pp 439-480.
350	26. Phua J, Ngerng W, See K, Tay C, Kiong T, Lim H, Chew M, Yip H, Tan A, Khalizah H, Capistrano R,
351	Lee K, Mukhopadhyay A. 2013. Characteristics and outcomes of culture negative versus culture-
352	positive severe sepsis. Crit Care 17: R202.
353	27. Zarb P, Goossens H. 2011. European Surveillance of Antimicrobial Consumption (ESAC): value of a
354	point-prevalence survey of antimicrobial use across Europe. Drugs 71:745-755.
355	28. Aitken SL, Altshuler J, Guervil DJ, Hirsch EB, Ostrosky-Zeichner LL, Ericsson CD, Tam VH. 2015.
356	Cefepime free minimum concentration to minimum inhibitory concentration (fCmin/MIC) ratio predicts
357	clinical failure in patients with Gram-negative bacterial pneumonia. Int J Antimicrob Agents 45:541-
358	544.

18. Struys MMRF, De Smet T, Glen JI, Vereecke HE, Absalom AR, Schnider TW. 2016. The History of

Antimicrobial Agents and Chemotherapy

AAC

patients with Gram-negative infections. J Antimicrob Chemother 50:425-428. 30. Colin PJ, Jonckheere S, Struys MMRF. 2018. Target-controlled continuous infusion for antibiotic dosing: Proof-of-principle in an in silico vancomycin trial in intensive care patients. Clin Pharmacokinet 57:1435-1447. 31. Rawson TM, O'Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, Roberts JA, Gordon AC, Hope W, Georgiou P, Cass AEG, Holmes AH. 2018. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother 73:835-843. 32. Brock GN, Barnes C, Ramirez JA, Myers J. 2011. How to handle mortality when investigating length of hospital stay and time to clinical stability. BMC Med Res Methodol 11:144. 33. Colin P, De Bock L, T'jollyn H, Boussery K, Van Bocxlaer J. 2013. Development and validation of a fast and uniform approach to quantify b-lactam antibiotics in human plasma by solid phase extractionliquid chromatography-electrospray-tandem mass spectrometry. Talanta 103:285-293. 34. Varvel JR, Donoho DL, Shafer SL. 1992. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm 20:63-94.

29. Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. 2002. Pharmacodynamics of cefepime in

Chemotherapy

Downloaded from http://aac.asm.org/ on November 22, 2019 at University of Groningen

- 389 COI: Michel M. R. F. Struys and Ghent University have a financial interest in RUGLOOP II, a software
- 390 program for target-controlled infusion. His research group/department received grants and funding from The
- 391 Medicines Company (Parsippany, NJ, USA), Masimo (Irvine, CA, USA), Fresenius (Bad Homburg, Germany),
- 392 Acacia Design (Maastricht, The Netherlands), Medtronic (Dublin, Ireland), Paion (Aachen, Germany), PRA
- 393 (Groningen, The Netherlands) and honoraria from The Medicines Company (Parsippany, NJ, USA), Masimo
- 394 (Irvine, CA, USA), Fresenius (Bad Homburg, Germany), Baxter (Deerfield, IL, USA), Medtronic (Dublin,
- 395 Ireland), Becton Dickinson (San Diego, CA, USA) and Demed Medical (Temse, Belgium).
- All other authors: none to declare.
- Funding: This study was supported by internal funding.

- Antimicrobial Agents and Chemotherapy

416 FIGURE LEGENDS

- 417 FIG 1 Measured cefepime concentrations (black dots) with non-parametric smoother (blue line) and target
- 418 window of 16 mg/L of the 21 included patients. Black line represents expected plasma concentrations based on
- 419 TCI model. Median absolute prediction error (MdAPE) is presented for each patient.

Table 1 Clinical characteristics	of study	patients	(n=21).
----------------------------------	----------	----------	---------

Clinical outcome	n (%) or median (IQR)
Age	76 (72 – 78)
Male/female	16 (76) / 5 (24)
Body weight (kg)	76 (67 – 86)
BMI (kg/m ²)	26.3 (23.5 - 27.8)
Body surface area (m ²)	1.88 (1.77 – 2.03)
SOFA score at inclusion	7 (3 - 8)
Patients on mechanical ventilation at inclusion	7 (33)
Serum creatinine (mg/dL)	1.49 (0.66 – 2.14)
Cockcroft-Gault (mL/min)	50.4 (29.1 - 100)
MDRD (mL/min/1.73 m ²)	42.3 (30.1 - 106)
CKD-EPI (mL/min/1.73 m ²)	38.8 (26.8 - 83.3)
CRP (mg L ⁻¹)	
At study inclusion	197 (95.7 – 287)
0 – 24 h	189 (115 – 282)
24 – 48 h	133 (92.6 - 195)
48 – 72 h	89.2 (62.5 - 122)
72 – 96 h	69.0 (46.7 - 88)
Length of stay in ICU (days) ^a	7 (5 – 10)
Length of stay in hospital (days) ^a	21 (13 – 28)
In hospital mortality	5 (24)
Event of neurotoxicity	0 (0)

^a mortality-corrected length of stay

 Table 2 Parameter estimates and associated relative standard errors (RSE%) for the final population PK model derived from simultaneously fitting the data from our previous study (19) (STDY1) and the data from this study (STDY2). Between-subject variability associated with the typical parameters is expressed as CV%. eCrCL was according to Cockcroft-Gault and was interpolated using constant backward interpolation.

PK Parameter	Estimate (RSE%)
CL _{renal} (L h ⁻¹ 70 kg ⁻¹)	$\theta_1 \cdot \left(\frac{eCrCL \ (mL \cdot min^{-1})}{60}\right)^{\theta_2}$
θ_1	2.29 (5.4)
θ_2	0.943 (9.6)
CL _{other} (L h ⁻¹ 70 kg ⁻¹)	0.795 (9.0)
V1 (L 70 kg ⁻¹)	10.7 (8.1)
V2 (L 70 kg ⁻¹)	12.2 (7.2)
Q2 (L h ⁻¹ 70 kg ⁻¹)	11.0 (14)
$CL_{dialysis}$ (L h^{-1})	4.48 (8.1)
Between-subject variability $(CV\%^{a})$	
CL _{renal}	24.6 (28)
V1	45.7 (31)
CLother	69.4 (32)
Residual unexplained variability $(\mathrm{CV}\%)$	
Plasma _{STDY1}	31.8 (17)
Plasma _{STDY2}	12.8 (25)
Urine _{STDY1}	32.5 (27)
Urine _{STDY2}	33.3 (42)

V1, volume of distribution of the central compartment; V2, volume of distribution of the peripheral compartment; Q2, inter-compartmental clearance between V1 and V2; CLrenal, renal clearance; CLdialysis, clearance during intermittent haemodialysis; CLother, non-renal clearance. Separate clearance terms are integrated in the model describing renal clearance, non-renal clearance and clearance during haemodialysis. For patients on HID, we assumed that renal clearance was absent.

^a CV (%) is calculated according to: $\sqrt{\omega^2} * 100\%$ where ω^2 is the estimated variance in NONMEM

