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A B S T R A C T

The use of time series of Normalized Difference Vegetation Index (NDVI), obtained from satellite sensors has
become frequent in studies for land degradation assessment and monitoring. Linear trends of NDVI are usually
considered as indicators of vegetation dynamics and widely used as proxies for land degradation. Yet, long-term
trends of NDVI often exhibit unidirectional (monotonic) but also cyclic (non-monotonic) dynamics, including
mid-term oscillations, both of which are poorly captured by linear trends. Trend-cycle is a time series analysis
that represents a smoothed version of a seasonally adjusted time series, which provides information on long-term
movements while including changes in direction underlying the series. We assessed NDVI trend-cycles in
Patagonia (Argentina) as proxies for land dynamics, integrating trend and medium-term cycles (> 4 years). We
used MODIS images between years 2000 and mid-2018; trend-cycles were analysed using the Basis Pursuit
method. We observed that trend-cycles explained a significant portion of total temporal variability (reaching
almost 20%), from which most patterns were explained by non-monotonic behaviour. We identified five major
patterns in vegetation dynamics: decreasing (0.1% of area), increasing (0.6%), recovery (48.8%), relapsing
(36.8%) and no trend-cycle (13.8%). Contrary to what is generally seen in the literature, monotonic patterns and
particularly decreasing trend-cycles were marginally recorded in the last 18 years of NDVI records in Patagonia.
Instead, the greater proportion of the area was classified as initial or advanced recovery and initial relapsing
patterns, which refer to phases of a cyclic behaviour. We call for the need to revisit the conceptualization of land
degradation assessment by means of remote sensing, and to critically review the ability of linear trends to reflect
vegetation dynamics. Finally, we discuss the potential use of trend-cycle as a tool to monitor land dynamics and
progress towards land degradation neutrality.

1. Introduction

Land degradation and desertification are among the most significant
environmental problems in most arid and semi-arid regions worldwide
(MEA, 2005). Monitoring systems are at the centre of demand to sup-
port decision-making and for impact assessment of intervention pro-
grams (Vogt et al., 2011), such as the Land Degradation Neutrality
(LDN; Grainger, 2015). In particular, there is a need for relevant in-
dicators for monitoring LDN as part of the Sustainable Development
Goals (Hák et al., 2016). Current methodologies to monitor land de-
gradation are under debate and efforts are increasingly oriented to-
wards the development of accurate operative tools aimed at large areas

in arid and semi-arid regions (Liu et al., 2015). Notwithstanding large
and long-term regime shifts in ecosystem functioning, which are of high
interest due to the relationship with degradation processes (Scheffer
and Carpenter, 2003), arid rangeland dynamics exhibit also cyclic or
periodic behaviour at different spatiotemporal scales, which are just too
complex to be analysed with simple trend metrics (Peters et al., 2006).
Rigorous and systematic approaches to addressing the complex, non-
linear and large-scale dynamics of arid and semi-arid rangelands are
still missing. In Patagonia, as in many other arid environments world-
wide, there has not been any rigorous monitoring system of desertifi-
cation processes during the last century. A recent proposal aimed at
starting a regional field monitoring system named MARAS (Monitoreo
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Ambiental para Regiones Áridas y Semiáridas, in Spanish) provided a
baseline with preliminary results (Oliva et al., 2019), which serves for
future assessments of degradation and recovery processes at a land-
scape level. However, whereas these recent efforts are key to better
tackling the problem in the future, there is a lack of regional informa-
tion aimed at informing the magnitude, severity and rate of the process
in the recent past.

Remote sensing provides opportunities to go back in the past to
study ecological processes for which ground-based data were not re-
corded or were costly to obtain (Liu et al., 2015). The use of remote
sensing data to monitor land degradation has several advantages such
as a high resolution in space and time, spatiotemporal coverage, no
extrapolation of data, low cost, permanent update and easy availability
of data. Land degradation is usually defined as a long-term decline in
ecosystem functioning and productivity loss caused by the interaction
of human and environmental disturbances. Whereas it is a complex
process, which should involve the assessment of different biophysical
dimensions, productivity loss can be tackled by analysing trends of
spectral indexes such as the Normalized Difference Vegetation Index
(NDVI) estimated with satellite-sensed data series (Tucker, 1979). Most
studies to date, however, use monotonic trends in NDVI as proxies for
land degradation (Wessels et al., 2007; Bai et al., 2008; Metternicht
et al., 2010). Indeed, several authors argued that land degradation
trends can be adequately explained by monotonic functions such as
linear trends (Eklundh and Olsson, 2003; Anyamba and Tucker, 2005;
Vlek et al., 2008; de Jong et al., 2011; Beck et al., 2011; Omuto et al.,
2014; Miao et al., 2012; Yin et al., 2012; Fensholt et al., 2012; Saha
et al., 2015; Gaitán et al., 2015; Eckert et al., 2015; Luo et al., 2016;
Zoungrana et al., 2018).

Recent research emphasizes some limitations of monotonic methods
and trend analyses based on remotely sensed NDVI data for the detec-
tion of land degradation (de Jong et al., 2011; Wessels et al., 2012).
Monotonic approaches do not consider neither states at dynamic
equilibrium with a range of fluctuation nor hysteresis, two major lim-
itations to assess long-term vegetation dynamics. A consequence of this
methodological pitfall is the proliferation of alarmist conclusions as-
sociated with apparent regime shifts. Desertification as measured by
significant negative linear NDVI slopes, or greening patterns by positive
linear slopes, may be only apparent when contrasted against ground
data or assessed through more complex trend analysis methods (cf.
Easdale et al., 2018). There is a need to move forward in the analysis of
non-linear vegetation change (Jamali et al., 2014). In particular,
methods to assess land degradation through NDVI trends should be able
to capture complex system dynamics by emphasizing the possibility of
cyclic behaviours, and not only unidirectional processes.

The wavelet auto-regressive method (WARM) was recently pro-
posed to classify NDVI trends (Easdale et al., 2018). This method was
sensitive to capture both monotonic changes as potential references to
regime shifts and non-monotonic changes depicted by cyclic dynamics,
which can refer to different phases. Trend-Cycle Analysis (TCA) re-
presents a smoothed version of a seasonally adjusted time series. Trend-
cycles are frequently used by economists since they provide information
on long-term movements, which includes changes in direction under-
lying the series. In macro-economic studies, one of the main aims is to
distinguish between the forces that cause long-term growth and those
that cause temporary fluctuations such as recessions (Nelson, 2010). In
the field of land dynamics assessment, we propose trend-cycle as the
combination of two distinct components: i) the trend, which accounts
for long-term changes such as desertification, and ii) the cycle, which is
a sequence of smoother fluctuations around the longer-term trend, in
part characterized by alternating periods of expansion and contraction
that refer to the phases of a cycle, such as wet and drought periods,
respectively.

2. Desertification in Patagonia

The main process of land degradation that takes place in the arid
and semiarid environments of Patagonia is termed desertification
(MEA, 2005), which is a combination of soil erosion, loss of water
bodies, vegetation, wildlife and human livelihoods. Notwithstanding
the role of climatic factors in driving vegetation dynamics (Jobbágy and
Sala, 2000), economic activities based on the exploitation of the natural
resources such as hydrocarbons, mining and livestock production are at
the core of the debates around land degradation in the region (Mazzoni
and Vazquez, 2009). The regional severity of desertification in Pata-
gonia was recorded in the past (del Valle et al., 1998). These authors
estimated that 75.8% of Patagonia was affected by moderate to severe
desertification. Other studies recorded degradation processes at plant
community level (Aguiar et al. 1996; Oñatibia and Aguiar 2016),
landscape (Verón and Paruelo, 2010) and regional scales (Gaitán et al
2013). During this period, a long-lasting drought affected most parts of
the arid and semiarid region of Patagonia (varying spatially between
2008 and 2013; Villagra et al., 2008; Easdale et al., 2014), followed by
above average annual rainfalls between 2014 and 2018. On the other
hand, several volcanic eruptions generated ash fallout over different
places and with varying magnitudes of ash deposits. The main events
occurred in Northwest Patagonia: the Chaitén eruption in 2008 (Watt
et al., 2009), Puyehue-Cordón Caulle Volcanic Complex eruption that
generated the largest spatial ash deposits in 2011 (Collini et al., 2013),
and the Calbuco eruption in 2015 (Van Eaton et al., 2016). These en-
vironmental circumstances and events were the main drivers of vege-
tation dynamics in Patagonia in the last two decades. We aimed at
assessing NDVI trend-cycles in Patagonia (Argentina), as a method that
integrates long-term trends and medium-term inter-annual cycles of
vegetation dynamics. We apply the WARM model to NDVI time series
for the period 2000 to mid-2018, obtained from MODIS images. Im-
plications for large scale monitoring of land degradation processes are
discussed.

3. Materials and methods

3.1. Study area

Patagonia is located between latitude 35° and 55° S. The extra-
Andean Patagonia region is the largest arid and semiarid region of the
southernmost portion of the American continent, which covers an area
of approximately 550,000 km2. There is a W-E biophysical gradient in
terms of altitude (from 2000 to 400m.a.s.l.) and rainfall (from 1000 to
200mm yr−1), which define 13 biozones (Paruelo et al., 1992; León
et al., 1998). Whereas the Andean region is dominated by rainforest
(Nothofagus spp.), the extra-Andean region is mostly dominated by
grass-shrub and shrub steppes (Fig. 1; Bran et al., 2005). The largest
biozones are the Central Plateau and Western Hills & Plateau steppes
(51% of Patagonia) dominated by low shrubs and grasses, and the
Monte shrublands (23%) (Fig. 1). Wetlands with very high productivity
are frequent towards the Western sector, where they are used for li-
vestock production, but they represent less than 3% of the total area
(Bran et al., 2005). Smallholder pastoralism dominates in the North,
with mixed herding of goat, sheep and cattle (Easdale et al. 2009),
while larger ranches of sheep production dominate in the South.

3.2. Data source and processing

We used the 16–day composite MODIS images (MODIS13Q1 pro-
duct) for the series February 2000–July 2018 obtained from the USGS
Earth Resources Observation and Science (EROS) Data Centre. The se-
quences of clipped MODIS images (Hunter, 2007) were piled up into a
space–time cube, from which the temporal sequence for each pixel
along the last dimension of that matrix was obtained (i.e. time).

NDVI was derived from MODIS images, which was calculated with
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the following equation (Rouse et al., 1973):

= − +NDVI ρNIR ρR ρNIR ρR( )/( ) (1)

where ρNIR and ρR are the surface reflectances centered at 858 nm
(near-infrared) and 648 nm (visible) portions of the electromagnetic
spectrum, respectively.

We assumed that the NDVI error followed a logit-normal distribu-
tion (i.e. a statistical distribution whose logit transform follows a
normal distribution; Ashton, 1972).

Before fitting the NDVI time series, data were logit-transformed in
order to use a normal likelihood function. We treated NDVI values as a
proportion between 0 and 1, using a normal function due to its simple
interpretation and to avoid dealing with values larger than 1 or lower
than zero. Then, we centred the series by removing the mean. Values
lower than zero were treated as missing values because they are related
to snow cover, clouds, water, rocks or non-vegetated ground. An ad-
ditional criterion was that each pixel in the data stack consisting of xy
NDVI layers that contained more than 20 negative values was discarded
from the analysis. Most of the discarded pixels after performing this
procedure corresponded to borders of water bodies and top of the
mountains.

3.3. Trend-cycle estimations

We estimated NDVI-trend cycles at pixel level using an adaptive
wavelet transform via the Matching Pursuit procedure. The Basis
Pursuit algorithm decomposes a time series into an optimal weighted

sum of time–frequency dictionaries based on the fewer coefficients
norm (Chen et al., 2001), which most frequently are Gabor atoms
(Demanet and Ying, 2007). A Gabor atom is a trigonometric function
multiplied by a Gaussian window (Gabor, 1946):

= −
−( )g acos πf t u e(2 ( ))t

t u
σ( )

2

(2)

where t is the time, a is the amplitude, f is the frequency of the trigo-
nometric function, u is the centre of the atom, and σ is the standard
deviation of the Gaussian window. By using a cosine, the periodic
function was centred in the Gaussian window, so that the maximum of
the window coincided with the maximum of the cosine (or minimum,
depending on the amplitude sign). Then, any time series can be de-
composed into a sum of these functions (Mallat, 1999). Information is
compressed into optimal dictionary components, named Basis Pursuit.
The main strength is that it combines the explanatory power of con-
tinuous wavelet transform (CWT) with a parsimonious representation,
facilitating the interpretation and analysis of results.

The parameter u of the Gabor atoms was restricted to a range be-
tween 2000 (the beginning of NDVI time series) and 2019 (the end),
whereas the frequency (f) was limited between positive and negative
extremes by the nyquist frequency (23/2 year−1) (Fig. 2).

At a pixel level and following the Basis Pursuit procedure, we used
nonlinear regression via the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm (Fletcher, 1987) to calculate the parameters of the atoms.
They were stepwise selected using the Corrected Akaike Information
Criterion (AICc) (Hurvich and Tsai, 1989), as an acceptance versus
rejection rule. The AICc was chosen because it corrects overfitting when
the quotient between parameters (k) and number of data (n) is less than
40 (n/k < 40), and thus is an adequate decision rule for short time
series. The atoms were progressively added until the AICc started in-
creasing or 20 atoms was reached.

The sequence of atoms thus obtained was filtered, by means of the
elimination of the atoms whose frequency was greater than 1/4 years.
Then, the series were reconstructed with the remaining atoms, resulting
in a low-pass filtering for which the high frequencies were eliminated,
keeping only medium and long-term variability. The filtering and re-
construction of the series was done with the gpu_pursuit software ver-
sion 0.02 (Bruzzone and Easdale, 2018), which implements the Basis
Pursuit algorithm in a Graphical Processing Unit (GPU), by im-
plementing the in crowd version of this algorithm (Gill et al., 2011) and
allows fast calculations for large areas.

Trend-cycle atoms contained a periodic function, because we re-
stricted the centre to be located within the span of the time series. Then,
each function had at least one minimum and one maximum value
within the span of the time series. Hence, the trend-cycle can represent
both monotonic and non-monotonic functions, since its minimums and/

Fig. 1. Study area: Biozones of Patagonia, Argentina (Bran et al., 2005).

Fig. 2. Example of a Gabor atom centred in year 2010, with parameters f= 0.5
(two years wavelength) and σ=2 years (see Eq. (2)).
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or maximums can be found anywhere in the time series. In order to
classify different kinds of trend-cycles, we used as a rule the location of
the maximum value with respect to the location of the minimum value
in the time series (Fig. 3).

We defined seven classes of NDVI trend-cycles based on the position
of minimum and maximum values in the series, as follows (Table 1):
Increasing, Initial Relapsing, Advanced Relapsing, Decreasing, Initial
Recovery and Advanced Recovery, No Trend-Cycle. A schematic re-
presentation of NDVI trend-cycles is shown in Fig. 3.

For the purpose of this paper, Increasing and Decreasing patterns
were treated as monotonic trend-cycles, whereas the different types of
recovering and relapsing trend-cycles were considered as non-mono-
tonic functions, which described different positions of cyclic phases. We
defined a framework of cyclic phases and transitions based on these
non-monotonic functions, following the logic of sequencing among
different trend-cycles (Fig. 4). Cyclic phases are represented, on the one
hand, by the Positive phase, comprised by Advanced Recovery and
Initial Relapsing trend-cycles, which refer to positive entry and de-
parture stages, respectively. On the other hand, the Negative phase is
comprised by Advanced Relapsing and Initial Recovery trend-cycles,
which refer to negative entry and departure stages, respectively.
Transition phases are represented by the Positive transition, comprised

by Initial and Advanced Recovery trend-cycles, which refer to a positive
early stage and a positive consolidated stage, respectively. The Negative
transition is comprised by Initial and Advanced Relapsing trend-cycles,
which refer to a negative early stage and a negative consolidated stage,
respectively. The proportion of pixels (and area) classified by these
different phases described the trend-cycles for Patagonia and its dif-
ferent biozones.

4. Results

Trend-cycle explained a significant portion of NDVI temporal
variability, reaching almost 20% for Patagonia. Monotonic patterns
were marginally recorded (< 1% of Patagonian area), highlighting that
linear shifts were not dominant in the last 18 years of NDVI records. On
the other hand, non-monotonic patterns or cyclic movements domi-
nated vegetation dynamics (86% of total area), whereas areas with No
Trend-Cycles accounted for almost 14% (Table 2).

Most frequent NDVI trend-cycles in Patagonia were Initial Relapsing
(36%) Initial Recovery (30%), and Advanced Recovery (19%) (Table 2,
Fig. 5). This means that Patagonian vegetation dynamics were mostly
dominated by a changing phase that accounted for minimum NDVI
values in the midsection of the time series, followed by increasing

Fig. 3. Schematic representation of the classes of NDVI Trend-Cycles. Colour of the arrows represent the colours used in the map to identify pixels with different
trend-cycles.

Table 1
Classes of NDVI trend-cycles, colour in the map (Fig. 4) and description of main features.

Class Colour Description

Increasing Blue The maximum value occurred after the minimum value, and maximum was located at the end of the time series
Initial Relapsing Light blue Increasing time series whose maximum occurred at least one year before the end of the time series, and after the maximum a change in the

trend direction occurred. This class represent initial stages of change in the direction from expansion towards retraction, suggesting a potential
forwarding change to another phase

Advanced Relapsing Yellow Increasing time series whose maximum occurred at least one year before the end of the time series, and after the maximum a change in the
trend direction occurred, followed by minimum values at the end of the time series. This class represent a consolidated change from a phase of
expansion or growth that occurred in the middle of the series, towards a phase of retraction or contraction

Decreasing Red Decreasing time series, where the minimum value occurred after the maximum value, and minimum was located at the end of the time series
Initial Recovery Orange Decreasing time series whose minimum occurred at least one year before the end of the time series, and after that minimum, a change in the

trend direction occurred. This class represent initial stages of change in the direction from retraction to expansion, suggesting a potential
forwarding change to another phase

Advanced Recovery Green Increasing time series whose minimum values occurred at least one year before the end of the time series, and after the minimum a change in
the trend direction occurred, followed by maximum values at the end of the time series. This class represent a consolidated change from a
phase of retraction or contraction that occurred in the middle of the series, towards a phase of expansion or growth

No Trend-Cycle White Time series with not significant trend-cycle
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values at the end of the time series (Fig. 6C, D). This was evidenced in
the high proportion of the total area that recorded a positive trend-cycle
(with highest proportions in San Jorge Gulf shrublands, Austral and
Eastern Monte biozones, Fig. 5) and predominantly in a Departure stage
(98%) from the negative phase (Table 2). A complementary inter-
pretation of this scenario is that almost half of Patagonian area is si-
tuated in an Early stage (98%) of a negative transition, which may
reference a potential future downward movement. On the other hand,
Initial Recovery was mostly recorded in Valdes Peninsula and Western
Hills and Plateaus Steppes biozones, which registered the highest pro-
portions of area in Early stage (> 70%) of a positive transition. This
scenario is explained by the strong disturbance originated by the in-
teraction between drought and ash fallout from the Puyehue-Cordón
Caulle Volcanic Complex eruption in 2011 in North Patagonia, which
significantly affected vegetation productivity dynamics and a delayed
recovery (Easdale and Bruzzone, 2018).

5. Discussion

We assessed NDVI trend-cycles as proxies for land dynamics in
Patagonia, Argentina. NDVI trend-cycle explained a significant portion
of temporal variability, reaching almost 20% of time series information.
This proportion of explained information was at least 6-fold higher than
previous studies that considered only NDVI trends using wavelets
(Easdale et al. 2018). Monotonic patterns and particularly decreasing
trend-cycles were marginally recorded, indicating that a negative re-
gime shift was not a dominant pattern in the last 18 years of NDVI re-
cords and contradicting current wisdom on land assessment in dryland
Patagonia (e.g., Gaitán et al., 2015). Moreover, most patterns identified
referred to different cycle phases as measured by non-monotonic
functions (Table 2). These results suggest that trend-cycle is a sensitive
method in capturing medium term oscillations around a long-term
movement of land dynamics, as measured by NDVI time series. For
instance, most trend-cycles were classified as Initial or Advanced Re-
covery and Initial Relapsing, which are different positions within a
positive phase or pulse of a recent increase in primary productivity of
rangelands in Patagonia. These situations can be synthesized in two
main interpretations of the same phenomenon, mainly driven by cli-
mate as recorded in other regions worldwide (Nemani et al., 2003).

Dryland Patagonia is experiencing a changing phase from minimum
NDVI values that occurred in the midsection of the time series (e.g.
spatially varying between years 2009 and 2016, Fig. 6), followed by
increasing NDVI values towards the end of the 18-years series. En-
vironmental drivers such as a long-lasting drought that affected Pata-
gonia between 2008 and 2013 may explain differences in the magni-
tude and duration of the fall in the time series (Fig. 6A, D; Easdale and
Rosso 2010). As well, the interaction between drought and volcanic ash
deposits from the Puyehue-Cordón Caulle Volcanic Complex eruption in
2011 caused a major disturbance in a large area of North Patagonia
(Figs. 5 and 6B; Collini et al., 2013; Easdale and Bruzzone 2018). On the
other hand, a positive pulse was evident from the year 2014 onward,
which may be explained by higher regional rainfalls. These results of
trend-cycle analysis can inform how ecological systems change during
short and long term disturbances or environmental changes (Pettorelli
et al., 2005; Nimmo et al., 2015). The relationship between explanatory
factors and trend-cycles needs more study. However, these results are
encouraging as a step towards the development of a tool for regional
land monitoring.

Global tools to monitor land degradation in drylands is one of the
main challenges of international agreements (Grainger, 2015). One of
the current methods mostly used to evaluate the interplay between
Sustainable Land Management (SLM) and indicators obtained from
satellite-based earth observation, is based on indicators derived from
annual integrals of NDVI (such as Trends.Earth). A recent assessment
concluded that only technologies with more than 10 years since im-
plementation showed statistically significant improvements (Gonzalez-
Roglich et al., 2019). We acknowledge the long time needed to record
evidence of positive changes in land productivity indicators as a result
of SLM practices. However, two main methodological limitations are
that trends explain a marginal portion of the variability in NDVI series,
and that medium-term changes cannot be identified with monotonic,
linear trends derived from annual integrals of NDVI (Easdale et al.,
2018). Trend-cycle can be an alternative method to overcome these
limitations. In particular, the main strength relies in its sensitivity to
capture medium-term fluctuations around the long-term movement of
NDVI temporal dynamics. Then, it can provide scenario information
using all available time series data with high opportunities to identify
medium-term changes (i.e. four or five years’ phases) in the light of

Fig. 4. Trend-Cycle phases as defined by: A)
Cyclic phases: Positive phase (Advanced
Recovery and Initial Relapsing), and
Negative phase (Advanced Relapsing and
Initial Recovery), and B) Transitions:
Positive transition (Initial Recovery and
Advanced Recovery), and Negative transi-
tion (Initial Relapsing and Advanced
Relapsing).
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long-term monotonic and non-monotonic trends (> 10 years). More
research is needed to assess the capacity as a monitoring system to
capture the interaction between the impact of SLM practices on primary
productivity and environmental changes at finer spatial and temporal
scales (Gonzalez-Roglich et al., 2019).

Trend-cycle analysis may also function as an early warning tool to
inform decision-makers at a coarser scale and support adaptive land
management as strategies for SLM at a regional scale. For example,
areas with Initial Relapsing patterns refer to a near-maximum NDVI
values and a shift in the direction of the medium-term movement, from
increasing to decreasing. Whereas the future behaviour should be clo-
sely monitored, a scenario of Advanced Relapsing can follow this shift
(Fig. 4), which may confirm a negative transition phase for the up-
coming years. Regional pastoral livestock farmers, which strongly rely

on rangeland productivity, should be aware of this scenario. In parti-
cular, public policy and farm management should be modified from a
position dominated by “managing the abundance” towards a position
that prioritizes “anticipating the impact” of a drier or negative phase,
depicted by a forthcoming reduction of rangeland productivity and
forage (e.g. a potential future scenario for the Monte shrublands,
Table 2). In other words, decisions should be oriented at preventing or
minimizing a future livestock productivity loss or even a decapitaliza-
tion process (i.e. if livestock die), and the subsequent socio-economic
impacts (Oba, 2001). On the other hand, areas with Initial Recovery
patterns refer to a recent near-minimum NDVI values (which reflect a
perturbation impact such as drought, e.g. Easdale and Rosso, 2010),
with an initial shift towards a positive pulse or phase in rangeland
productivity dynamics (Fig. 6B). In these cases, farm management

Fig. 5. NDVI Trend-cycles classification for Patagonia, Argentina: i) Increasing (blue), ii) Initial Relapsing (light blue), iii) Advanced Relapsing (yellow), iv)
Advanced Recovery (green), v) Initial Recovery (orange), vi) Decreasing (red), vii) No Trend-Cycle (white). Black lines identify the boundaries of biozones (Fig. 1).
Data source: MODIS images for the time series between 2000-mid-2018.
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should prioritize rangeland recovery (Ares, 2007) and public policy be
oriented at helping rural households in fostering their social-ecological
resilience instead of promoting a rapid restocking (Domptail et al.,
2013). Trend-cycle approach can also complement SLM in providing a
full description of rangeland dynamics, exceeding the annual cycle as
the main productive period. For instant, management adaptations
based on varying stocking rates, strategic supplementary feeding (i.e.
for some animal categories or key moments such as pre-lambing), water
reservoirs and rotational rangeland management can be defined con-
sidering both annual plans and a trend-cycle approach to include
medium-term scenarios.

This regional monitoring tool can be used to complement other
sources of information such as meteorological and field data. For in-
stance, vegetation and soil data gathered every five years with a field
monitoring tool (Oliva et al., 2019), can be better interpreted in the
light of trend-cycle class of each monitor, at the moment of sampling.
However, we emphasize that further research is needed to separate
NDVI time series into other different components, which were not
tackled with trend-cycle, such as high and other low frequency domains
as measures of periodic components, stochastic components and white
noise (Jakubauskas et al., 2001; Hird and McDermid, 2009; Verbesselt
et al., 2010).

6. Conclusions

Trend-cycle is a sensitive method to capture medium-term fluctua-
tions around the long-term movement of temporal dynamics such as
NDVI time series. Its performance was tested in a large and hetero-
geneous region such as Patagonia, Argentina. From our findings, trend-
cycle may contribute to overcome two main limitations of current
dominant NDVI trend analysis. First, to increase the marginal ex-
planatory capacity provided by trends in relation to the total temporal

information of NDVI time series. Second, to include medium-term
changes and oscillations associated to ecosystem cyclic phases or per-
turbations that influence the long-term behaviour, but which cannot be
identified with linear trends derived from annual integrals of NDVI.
Given the width of the temporal window of remote sensing data, the
integration of trend and inter-annual cycles seems to be more adequate
to better capturing medium to long-term land dynamics. Whereas
trend-cycle needs more research, it has potential as a tool to monitor
land dynamics and progress towards land degradation neutrality.
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