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Abstract In this paper we intend to establish fast numerical approaches to solve a class
of initial-boundary problem of time-space fractional convection–diffusion equations. We
present a new unconditionally stable implicit difference method, which is derived from the
weighted and shifted Grünwald formula, and converges with the second-order accuracy in
both time and space variables. Then, we show that the discretizations lead to Toeplitz-like
systems of linear equations that can be efficiently solved by Krylov subspace solvers with
suitable circulant preconditioners. Each time level of these methods reduces the memory
requirement of the proposed implicit difference scheme from O(N 2) to O(N ) and the com-
putational complexity from O(N 3) to O(N log N ) in each iterative step, where N is the
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number of grid nodes. Extensive numerical examples are reported to support our theoretical
findings and show the utility of these methods over traditional direct solvers of the implicit
difference method, in terms of computational cost and memory requirements.

Keywords Fractional convection–diffusion equation · Shifted Grünwald discretization ·
Toeplitz matrix · Fast Fourier transform ·Circulant preconditioner ·Krylov subspace method

Mathematics Subject Classification 65F15 · 65H18 · 15A51

1 Introduction

Recent years have been a growing body of knowledge in the theory of fractional calculus and
fractional differential equations (FDEs) with applications to modelling practical scientific
problems arising in engineering, physics, chemistry and other applied sciences. For exam-
ple, diffusion with an additional velocity field and diffusion under the influence of a constant
external force field are, in the Brownian case, both modelled by the convection–dispersion
equation. In the case of anomalous diffusion this is no longer true, i.e., the fractional gen-
eralization may be different for the advection case and the transport in external force field
[4]. We point the reader to, e.g., Podlubny [1], Samko et al. [2] and Kilbas et al. [3] for some
history and for a comprehensive treatment of this subject. In the present study, we consider in
particular a fast and stable numerical approach for solving the initial-boundary value problem
of the time-space fractional convection–diffusion equation (TSFCDE) [5,6]:

⎧
⎪⎨

⎪⎩

∂α
0,t u(x, t) = γ (t) ∂u(x,t)

∂x + d+(t)aD
β
x u(x, t) + d−(t)x D

β
b u(x, t) + f (x, t),

u(x, 0) = φ(x), a ≤ x ≤ b,

u(a, t) = u(b, t) = 0, 0 < t ≤ T,

(1.1)

where α ∈ (0, 1], β ∈ (1, 2], a < x < b, and 0 < t ≤ T . Here, the parameters α and β

appearing in (1.1) denote the order of the TSFCDE, f (x, t) is the source term, and diffusion
coefficient functions d±(t) are non-negative under the assumption that the flow is from left
to right. Moreover, the coefficients γ (t) represents the velocity, which is depend upon the
time t , of the flow.

The TSFCDE (1.1) can be regarded as a generalization of classical convection–diffusion
equations where the first-order time derivative is replaced by the Caputo fractional derivative
of order α ∈ (0, 1], and the second-order space derivative is replaced by the two-sided
Riemann–Liouville fractional derivative of order β ∈ (1, 2]. Specifically, the time fractional
derivative in (1.1) is the Caputo fractional derivative of order α [1] denoted by

∂α
0,t u(x, t) = 1

�(1 − α)

∫ t

0

∂u(x, ξ)

∂ξ

dξ

(t − ξ)α
, (1.2)

and the left-handed (aD
β
x ) and the right-handed (x D

β
b ) space fractional derivatives in (1.1)

are the Riemann–Liouville fractional derivatives of order β [2,3] which are defined as

aD
β
x u(x, t) = 1

�(2 − β)

∂2

∂x2

∫ x

a

u(η, t)dη

(x − η)β−1 (1.3)

and

x D
β
b u(x, t) = 1

�(2 − β)

∂2

∂x2

∫ b

x

u(η, t)dη

(η − x)β−1 , (1.4)
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�(·) denoting the Gamma function. Note that the above equation reduces to the classical
convection–diffusion equation (CDE) for α = 1 and β = 2.

Many research studies in the last two decades have shown that fractional CDEs can be a
valuable theoretical tool for modelling transport dynamics in complex systems governed by
anomalous diffusion and non-exponential relaxation patterns, see e.g., [4,5]. Moreover, the
fractional CDE is also popular in groundwater hydrology research to model the transport of
passive tracers carried by fluid flow in a porous medium [7,8].

Despite the growing body of development of analytic approaches based on the Fourier
transform method, the Laplace transform method, and the Mellin transform method for
seeking closed-form solutions of FDEs [1,6,9,10], to date the overwhelming majority of
FDEsof practical interest in computational science do not have solutions that can be expressed
in terms of simple function. Therefore, we must rely on numerical methods that produce
approximations to the desired solutions; refer, e.g., to [11–16] and references therein for the
description of some approaches.

Most of the early established numerical methods for fractional convection–diffusion equa-
tions were developed for solving either the space factional CDE or the time fractional CDE.
For space fractional CDE, many of the available numerical schemes are based on the con-
ventional shifted Grünwald discretization [17] and the implicit Euler (or Crank–Nicolson)
time-stepping discretization for two-sided Riemann–Liouville fractional derivatives and the
first-order time derivative, respectively; see for example [8,17–25] and references therein
for details. By combining the second-order spatial discretization and the Crank–Nicolson
temporal discretization, Chen and Deng have produced the second-order accurate numerical
methods, which achieve the second-order accuracy in both time and space for space fractional
CDE [26,27]. Even Chen and Deng and Qu et al. separately designed the fast computational
techniques, which can also reduce the required algorithmic storage, for implementing the
above mentioned second-order numerical scheme; see [27,28] for details. Additionally, there
are also some other interesting numerical methods for the space fractional CDE, refer, e.g.,
to [29–33] for a discussion of these issues.

On the other hand, many of the early developed implicit methods for time fractional
CDEs are derived by combining the L1 approximate formula [34] for Caputo fractional
derivative with the first/second-order spatial discretization. These numerical methods are
unconditionally convergent with the accuracy of O(τ 2−α + h) or O(τ 2−α + h2), where
τ and h are the time-stepping size and the spatial grid size, respectively; see for example
[35] and reference therein for details. It is remarkable that Cui [36,37] and Mohebbi and
Abbaszadeh [38] have proposed two compact exponential methods and a compact finite
differencemethod that achieve fourth-order spatial accuracy for a time fractional convection–
subdiffusion equation. The analyses in [36,38] are derived for the equations with constant
coefficients; specifically, the diffusion and convection coefficients are assumed to be one
in [38]. We point the reader to [39–44] for some numerical approaches for handling the time
fractional CDE.

In contrast, although the numerical methods for space (or time) fractional CDE are exten-
sively investigated in the past research, the work about numerically handling the TSFCDE is
not too much. Firstly, Zhang [45,46], Shao and Ma [47], Qin and Zhang [48] and Liu et al.
[24] have worked out a series of studies about constructing the implicit difference scheme
(IDS) for TSFCDE, however all these numerical schemes can achieve the convergence with
first-order accuracy in both space and time from both the theoretical and numerical perspec-
tives. Moreover, Liu et al. [24,49], Zhao et al. [50] and Shen et al. [51] had considered to
solve the more general form of TSFCDE, in which the first-order space derivative is replaced
by the two-sided Riemann–Liouville fractional derivative of order ν ∈ (0, 1). Again, their
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numerical methods cannot enjoy the convergence with second-order accuracy in both space
and time. In addition, some other efficient approaches are also developed for dealing with
TSFCDE numerically. Moreover, most of these numerical methods have no complete theo-
retical analysis for both convergence and stability; e.g., refer to [31,52–58] for details.

One problem in the development of efficient numerical schemes for solving FDEs is that
conventional methods tend to generate fully populated systems whose solutions incurO(N 3)

arithmetic operations andO(N 2) storage requirement, N denoting the number of grid points
[8,28]. To optimize this huge cost, Meerschaert and Tadjeran have proposed to approximate
the space fractional CDEby a shiftedGrünwald discretization scheme,which is unconditional
stability [17]. Later, Wang and Wang made the important observation that the linear system
arising from this discretization has a special Toeplitz-like coefficient matrix, more precisely,
this coefficient matrix can be expressed as a sum of diagonal–multiply–Toeplitz matrices
[8]. Exploting this structure the storage requirement can be reduced from O(N 2) to O(N ),
and the fast Fourier transform (FFT) [59] can be used to carry out the matrix–vector product
in only O(N log N ) operations. Wang and Wang solve the linear systems arising from the
discretization in O(N log2 N ) arithmetic operations using the conjugate gradient on the
normal equations (known asCGNR)method. The convergence of theCGNRmethod turns out
to be fast when the diffusion coefficients are very small and the discretized systems are well-
conditioned, but it can be rather slow when the diffusion coefficients are not small [8]. As an
attempt of a possible remedy, Zhao et al. have extended the preconditioned technique, which
is introduced by Lin et al. in the context of space fractional diffusion equations [60] to the case
of solving Toeplitz-like linear systems arising from the discretization of TSFCDE [50]. Their
results related to the promising acceleration of the convergence of the iterativemethods, while
solving (1.1). At the same time, it remarked that these mentioned fast solution techniques
and the corresponding eigenvalue analyses (of preconditioned matrices ) are constructed via
using the shifted Grünwald formula, in which its coefficients have many essential properties
for theoretical results; refer to [50,60,61] for details.

The novelty of this paper compared to earlier literature in this field is to present a new
unconditionally stable implicit difference scheme that is second-order accurate in both space
and time, i.e.,O(τ 2+h2), for solving problem (1.1). These properties of our proposed scheme
will be proved both analytically and numerically. To the best of our knowledge, this is the
successfully attempt to derive a second-order numerical scheme of TSFCDEs without using
extrapolation. Especially, we also investigate the performance of our scheme for TSFCDEs
when its convection term becomes dominant and our scheme also works well for this case.
On the other side, the time marching of the scheme gives rise to a sequence of linear systems
with different Toeplitz coefficientmatrices. Those linear systems can be solved efficiently one
after one by using Krylov subspace methods with suitable circulant preconditioners [59,61],
then it can reduce the computational cost and memory deeply. Especially for TSFCDE with
constant coefficients, we turn to represent the inverse of the Toeplitz coefficient matrix as a
sum of products of Toeplitz triangular matrices [59,62], so that the solution of each linear
system for time marching can be obtained by several FFTs. To obtain the explicit inversion of
Toeplitz matrix, only two specific linear systemswith the same Toeplitz coefficient matrix are
needed to be solved by the preconditioned Krylov subspace methods [63] with complexity
O(N log N ).

An outline of this paper is as follows. In Sect. 2, we establish a novel implicit difference
scheme for (1.1) and we prove that this scheme is unconditionally stable and convergent
with the accuracy of O(τ 2 + h2). In Sect. 3, we investigate that the resulting linear systems
have the nonsymmetric Toeplitz matrices, then we design the fast solution techniques based
on preconditioned Krylov subspace methods to solve (1.1) by exploiting the Toeplitz matrix
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property of the implicit difference scheme. Finally, we present numerical experiments to
illustrate the effectiveness of our numerical approaches in Sect. 4 and provide concluding
remarks in Sect. 5.

2 An Implicit Difference Scheme for TSFCDEs

In this section, we present an implicit differencemethod for discretizing the TSFCDE defined
by (1.1). Unlike former numerical approaches with the first-order accuracy in both time and
space [45–47,49,50], we exploit henceforth second-order approximate operators to discretize
the Riemann–Liouville derivatives in (1.3) and (1.4). We can show that, by two-sided frac-
tional derivatives, this proposed method is also unconditionally stable and convergent under
second-order accuracy in time and space.

2.1 Numerical Discretization of the TSFCDE

To derive the proposed scheme, we first consider a rectangle Q̄T = {(x, t) : a ≤ x ≤
b, 0 ≤ t ≤ T } discretized on the mesh �hτ = �h × �τ , where �h = {xi = ih, i =
0, 1, . . . , N ; hN = b − a}, and �τ = {t j = jτ, j = 0, 1, . . . , M; τ = T/M}. We denote
by v = {vi | 0 ≤ i ≤ N } any grid function. Then, the following lemma introduced in [64]
gives a complete description of the discretization in the time variable.

Lemma 2.1 Suppose 0 < α < 1, σ = 1− α
2 , u(t) ∈ C3[0, T ], and t j+σ = ( j + σ)τ . Then

∂α
0,t u(t j+σ ) − �α

0,t j+σ
u(t) = O(τ 3−α),

where �α
0,t j+σ

u(t) = τ−α

�(2−α)

j∑

s=0
c(α,σ, j)
j−s [u(ts+1) − u(ts)], and c(α,σ,0)

0 = a(α,σ )
0 for j = 0,

c(α,σ, j)
m =

⎧
⎪⎨

⎪⎩

a(α,σ )
0 + b(α,σ )

1 , m = 0,

a(α,σ )
m + b(α,σ )

m+1 − b(α,σ )
m , 1 ≤ m ≤ j − 1,

a(α,σ )
j − b(α,σ )

j , m = j,

for j ≥ 1, in which a(α,σ )
0 = σ 1−α, a(α,σ )

� = (� + σ)1−α − (� − 1 + σ)1−α, for � ≥ 1; and

b(α,σ )
� = 1

2−α
[(� + σ)2−α − (� − 1 + σ)2−α] − 1

2 [(� + σ)1−α + (� − 1 + σ)1−α].
To characterize the discretization in the space variable, first we denote by Ln+β(R) =

{v|v ∈ L1(R) and
∫ +∞
−∞ (1 + |k|)n+β |v̂(k)|dk < ∞}, where v̂(k) = ∫ +∞

−∞ eιkxv(x)dx is the

Fourier transformation of v(x), and by ι = √−1 the imaginary unit. Then we introduce the
following preliminary lemma:

Lemma 2.2 ([65,66]) Suppose that v ∈ L2+β(R), and let

δ
β
x,+v(x) = 1

hβ

[ x−a
h ]

∑

k=0

ω
(β)
k v(x − (k − 1)h),

δ
β
x,−v(x) = 1

hβ

[ b−x
h ]

∑

k=0

ω
(β)
k v(x + (k − 1)h),
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then for a fixed h, we have

aD
β
x v(x) = δ

β
x,+v(x) + O(h2),

x D
β
b v(x) = δ

β
x,−v(x) + O(h2),

where
{

ω
(β)
0 = λ1g

(β)
0 , ω

(β)
1 = λ1g

(β)
1 + λ0g

(β)
0 ,

ω
(β)
k = λ1g

(β)
k + λ0g

(β)
k−1 + λ−1g

(β)
k−2, k ≥ 2,

with

λ1 = β2 + 3β + 2

12
, λ0 = 4 − β2

6
, λ−1 = β2 − 3β + 2

12
, and g(β)

k = (−1)k
(

β

k

)

.

At the stage, let u(x, t)∈ C4,3x,t ([a, b] × [0, T ]) be a solution of the problem (1.1). Then
we define the parameter σ = 1 − α

2 and consider Eq. (1.1) at the set of grid points (x, t) =
(xi , t j+σ ) ∈ Q̄T , i = 1, 2, . . . , N − 1, j = 0, 1, . . . , M − 1:

∂α
0,t u(x, t j+σ ) = γ (t j+σ )

(∂u(x, t)

∂x

)

(xi ,t j+σ )
+ d+(t j+σ )

(

aD
β
x u(x, t)

)

(xi ,t j+σ )

+ d−(t j+σ )
(

x D
β
b u(x, t)

)

(xi ,t j+σ )
+ f (xi , t j+σ ).

For simplicity, we define

u(σ )
i = σu j+1

i + (1 − σ)u j
i , γ ( j+σ) = γ (t j+σ ),

D( j+σ)
± = d±(t j+σ ), f j+σ

i = f (xi , t j+σ )

and

δ
β
h u

(σ )
i = γ ( j+σ)

u(σ )
i+1 − u(σ )

i−1

2h
+ D( j+σ)

+
hβ

i+1∑

k=0

ω
(β)
k u(σ )

i−k+1 + D( j+σ)
−
hβ

N−i+1∑

k=0

ω
(β)
k u(σ )

i+k−1.

ByLemma2.1, the following implicit difference schemewith the approximationorderO(h2+
τ 2) is derived:

⎧
⎪⎨

⎪⎩

�α
0,t j+σ

ui = δ
β
h u

(σ )
i + f j+σ

i , 1 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1,

u0i = φ(xi ), 1 ≤ i ≤ N − 1,

u j
0 = u j

N = 0, 0 ≤ j ≤ M.

(2.1)

It is interesting to note that for α → 1, Eq. (2.1) reduces to the classical Crank–Nicolson
difference scheme.

2.2 Stability and Convergence Analysis

In this section, we need to analyze the stability and convergence for the implicit difference
scheme (2.1). We define

Vh = {v | v = {vi } is a grid function on �h and vi = 0 if i = 0, N },
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and, for all u, v ∈ Vh , the discrete inner product and corresponding discrete L2-norms

(u, v) = h
N−1∑

i=1

uivi , and ‖u‖ = √
(u, u).

The starting point of our analysis is the following theoretical result.

Lemma 2.3 ([17,60,65]) Let 1 < β < 2 and g(β)
k be defined in Lemma 2.2. Then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(β)
0 = 1, g(β)

1 = −β, g(β)
2 > g(β)

3 > · · · > 0,
∞∑
k=0

g(β)
k = 0,

N∑

k=0
g(β)
k < 0, N > 1,

g(β)
k = O(k−(β+1)), g(β)

k =
(
1 − β+1

k

)
g(β)
k−1, k = 1, 2, . . .

Lemma 2.3 ensures the following properties of the coefficients ω
(β)
k , since the second-

order approximate formulae of two two-sided Riemann–Liouville fractional derivatives are
constructed by combining the distinct shifted Grünwald–Letnikov formulae with their cor-
responding weights [65].

Lemma 2.4 ([65,66])Let 1 < β < 2 and g(β)
k be defined in Lemma 2.2. Then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω
(β)
0 = λ1, ω

(β)
1 < 0, ω

(β)
k > 0, k ≥ 3,

∞∑
k=0

ω
(β)
k = 0,

N∑

k=0
ω

(β)
k < 0, N > 1,

ω
(β)
0 + ω

(β)
2 ≥ 0.

Lemma 2.4 ensures the first property of the discrete inner product related to two approx-
imate operators δ

β
x,+ and δ

β
x,− shown below.

Lemma 2.5 ([65,66]) For 1 < β < 2, and any v ∈ Vh, it holds that

(δ
β
x,+v, v) = (δ

β
x,−v, v) ≤

( 1

hβ

N−1∑

k=0

ω
(β)
k

)
‖v‖2.

A more accurate estimate of the discrete inner product associated to two approximate
operators δ

β
x,+ and δ

β
x,− can be obtained from Lemma 2.5 as follows.

Lemma 2.6 For 1 < β < 2, N ≥ 5, and any v ∈ Vh, there exists a positive constant c1,
such that

(−δ
β
x,+v, v) = (−δ

β
x,−v, v) > c1 ln 2‖v‖2.

Proof Since N ≥ 5 and

2N+2∑

k=N

ω
(β)
k =

2N∑

k=N

g(β)
k + (λ1 + λ0)g

(β)
2N+1 + λ1g

(β)
2N+2 + ζ(β),

where

ζ(β) = (λ0 + λ−1)g
(β)
N−1 + λ−1g

(β)
N−2 =

[
(λ0 + λ−1)

N − 2 − β

N − 1
+ λ−1

]
g(β)
N−2

= (12 − 6β)N + β3 + 4β2 − β − 22

12(N − 1)
g(β)
N−2,

� ϑ(β)

12(N − 1)
g(β)
N−2
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then ζ(2) = 0, ϑ(2) = 0 and ϑ ′(β) = −6N + 3β2 + 8β − 1 ≤ 27− 6N< 0 due to N ≥ 5,
which implies ζ(β) is a decreasing function for β ∈ [1, 2]. Hence ζ(β) > 0 when N ≥ 5
(i.e., g(β)

N−2 > 0).
Next, by Lemma 2.3, there exist two positive constants c̃1 and c1, such that

1

hβ

∞∑

k=N

ω
(β)
k >

1

hβ

2N+2∑

k=N

ω
(β)
k >

1

hβ

2N∑

k=N

g(β)
k ≥ c̃1

2N∑

k=N

k−(β+1)Nβ

> c̃1

2N∑

k=N

k−(β+1)
(k

2

)β= c̃1
2β

2N∑

k=N

1

k

≥ c1

∫ 2N+1

N

1

x
dx ≥ c1

∫ 2N

N

1

x
dx = c1 ln 2, N ≥ 5.

(2.2)

The penultimate and antepenult inequalities in (2.2) hold because J1(x) = 1
x is a lower

convex function and J2(x) = ln(x) > 0, x ∈ [N , 2N + 1] is an increasing function. Then,
applying Lemmas 2.4 and 2.5, we obtain the desired result

(−δ
β
x,+v, v) = (−δ

β
x,−v, v) >

( 1

hβ

∞∑

k=N

ω
(β)
k

)
‖v‖2 > c1 ln 2‖v‖2.

The following bound, derived from the above lemmas, is an essential ingredient for the
stability analysis of this section. 
�
Theorem 2.1 For any v ∈ Vh, it holds that

(δ
β
h v, v) ≤ −c ln 2‖v‖2,

where c is a positive constant independent of the spatial step size h.

Proof We start from the expression of (δ
β
h v, v)

(δ
β
h v, v) = γ ( j+σ)h

N−1∑

i=1

vi+1 − vi−1

2h
vi + D( j+σ)

+ (δ
β
x,+v, v) + D( j+σ)

− (δ
β
x,−v, v). (2.3)

Since v0 = vN = 0, we have

γ ( j+σ)h
N−1∑

i=1

vi+1 − vi−1

2h
vi = 0. (2.4)

Moreover, according to Lemma 2.6, there exists a positive constant c1 independent of the
spatial step size h such that, for any non-vanishing vector v ∈ Vh , it is

D( j+σ)
+ (δ

β
x,+v, v) + D( j+σ)

− (δ
β
x,−v, v) ≤ −c1 ln 2

(
D( j+σ)

+ + D( j+σ)
−

)
‖v‖2 (2.5)

Denote c = c1
(
D( j+σ)

+ + D( j+σ)
−

)
. Then the main result follows by inserting (2.4) and (2.5)

into (2.3). 
�
Before proving the most important result of this section on the unconditional stability and

quadratic-order convergence property of the implicit difference scheme (2.1), we first need
to recall the following useful lemma.
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Lemma 2.7 ([64,66]) Let Vτ = {u|u = (u0, u1, . . . , uM )} For any u ∈ Vτ ; one has the
following inequality

[σu j+1 + (1 − σ)u j ]�α
0,t j+σ

u ≥ 1

2
�α

0,t j+σ
(u)2.

For simplicity of presentation, in our proof, we denote a j+1
s = c(α,σ, j)

j−s
τα�(2−α)

. Then�α
0,t j+σ

u =
j∑

s=0
(us+1 − us)a j+1

s .

Theorem 2.2 Denote ‖ f j+σ ‖2 = h
N−1∑

i=1
f 2(xi , t j+σ ). Then the implicit difference scheme

(2.1) is unconditionally stable with respects to the initial value u0 and the source term f ,
and the following priori estimate holds:

‖u j+1‖2 ≤ ‖u0‖2 + T α�(1 − α)

c ln 2
‖ f j+σ ‖2, 0 ≤ j ≤ M − 1, (2.6)

where u j+1 = (u j+1
1 , u j+1

2 , . . . , u j+1
N−1)

T .

Proof To make an inner product of (2.1) with u(σ ), we have

(�α
0,t j+σ

u, u(σ )) = (δ
β
h u

(σ ), u(σ )) + ( f j+σ , u(σ )). (2.7)

It follows from Theorem 2.1 and Lemma 2.6 that

(δ
β
h u

(σ ), u(σ )) ≤ −c ln 2‖u(σ )‖2, (2.8)

(�α
0,t j+σ

u, u(σ )) ≥ 1

2
�α

0,t j+σ
(‖u‖2). (2.9)

Inserting (2.8) and (2.9) into (2.7) and using the Cauchy–Schwarz and Youngs’ inequalities,
we can write

1

2
�α

0,t j+σ
(‖u‖2) ≤ −c ln 2‖u(σ )‖2 + ( f j+σ , u(σ ))

≤ −c ln 2‖u(σ )‖2 + c ln 2‖u(σ )‖2 + 1

4c ln 2
‖ f j+σ ‖2

≤ 1

4c ln 2
‖ f j+σ ‖2.

(2.10)

Next, we have the following inequality

a j+1
j ‖u j+1‖2 ≤

j∑

s=1

(a j+1
s − a j+1

s−1 )‖us‖2 + a j+1
0 ‖u0‖2 + 1

2c ln 2
‖ f j+σ ‖2.

Exploiting a j+1
0 > 1

2T α�(1−α)
(cf. [64]), we obtain

a j+1
j ‖u j+1‖2 ≤

j∑

s=1

(a j+1
s − a j+1

s−1 )‖us‖2 + a j+1
0

(
‖u0‖2 + T α�(1 − α)

c ln 2
‖ f j+σ ‖2

)
.

(2.11)
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Suppose h < 1 and denote

P̌ � ‖u0‖2 + T α�(1 − α)

c ln 2
‖ f j+σ ‖2.

Then, Eq. (2.11) can be rewritten as

a j+1
j ‖u j+1‖2 ≤

j∑

s=1

(a j+1
s − a j+1

s−1 )‖us‖2 + a j+1
0 P̌. (2.12)

At this stage, by mathematical induction we prove that the estimate relation (2.6) is valid for
j = 0, 1 . . . , M − 1 . The result is obviously true for j = 0 from (2.12). Assuming that (2.6)
holds for all 0 ≤ j ≤ k (0 ≤ k ≤ M − 1), meaning that

‖u j‖ ≤ P̌, j = 0, 1, . . . , k.

From (2.12) at j = k, one has

ak+1
k ‖uk+1‖2 ≤

k∑

s=1

(ak+1
s − ak+1

s−1 )‖us‖2 + ak+1
0 P̌

≤
k∑

s=1

(ak+1
s − ak+1

s−1 )P̌ + ak+1
0 P̌ = ak+1

k P̌.

This completes the proof of Theorem 2.2. 
�

The following theorem shows that our implicit difference scheme achieves quadratic-order
convergence in both time and space variables.

Theorem 2.3 Suppose that u(x, t)∈ C4,3
x,t ([a, b] × [0, T ]) is the solution of (1.1) and {u j

i |
xi ∈ �h, 0 ≤ j ≤ M} is the solution of the implicit difference scheme (2.1). Denote

E j
i = u(xi , t j ) − u j

i , xi ∈ �h, 0 ≤ j ≤ M.

Then there exists a positive constant c̃ such that

‖E j‖ ≤ c̃(τ 2 + h2), 0 ≤ j ≤ M.

Proof It can be easily obtained that E j satisfies the following error equation

⎧
⎪⎨

⎪⎩

�α
0,t j+σ

Ei = δ
β
h E

(σ )
i + R j+σ

i , 1 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1,

E0
i = 0, 1 ≤ i ≤ N − 1,

E j
0 = E j

N = 0, 0 ≤ j ≤ M.

where R j+σ
i = O(τ 2 + h2). In virtue of Theorem 2.2, we can write

‖E j+1‖2 ≤ T α�(1 − α)

c ln 2
‖R j+σ ‖2 ≤ c̃(τ 2 + h2), 0 ≤ j ≤ M − 1,

which proves the theorem. 
�
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3 Fast Solution Techniques Based on Preconditioned Iterative Solvers

In the section, we analyze both the implementation and the computational complexity of IDS
(2.1) and we propose an efficient implementation based on preconditioned Krylov subspace
solvers. We start the development from the following matrix form of the implicit difference
scheme (2.1) at the time level j :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
η j I − σ

(
γ (σ)

2h Q + D(σ )
+
hβ Wβ + D(σ )

−
hβ WT

β

)]
u1 =

[
η j I + (1 − σ)

(
γ (σ)

2h Q + D(σ )
+
hβ Wβ

+ D(σ )
−
hβ WT

β

)]
u0 + f σ , j = 0,

[
η j I − σ

(
γ ( j+σ)

2h Q + D( j+σ)
+
hβ Wβ + D( j+σ)

−
hβ WT

β

)]
u j+1 =

[
η j I + (1 − σ)

(
γ ( j+σ)

2h Q +
D( j+σ)

+
hβ Wβ + D( j+σ)

−
hβ WT

β

)]
u j − τ−α

�(2−α)

j−1∑

s=0
c(α,σ, j)
j−s (us+1 − us) + f j+σ ,

j = 1, 2, . . . , M − 1,

(3.1)

where the coefficients η j are defined as

η j =
⎧
⎨

⎩

c(α,σ,0)
0

τα�(2−α)
= a(α,σ )

0
τα�(2−α)

, j = 0
c(α,σ, j)
0

τα�(2−α)
= a(α,σ )

0 +b(α,σ )
1

τα�(2−α)
, j = 1, 2, . . . , M − 1,

and Q and W are real matrices of size (N − 1) × (N − 1) with the following form

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
−1 0 1

. . .
...

0 −1
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · 0 −1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Wβ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω
(β)
1 ω

(β)
0 0 · · · 0

ω
(β)
2 ω

(β)
1 ω

(β)
0

. . .
...

... ω
(β)
2 ω

(β)
1

. . . 0

ω
(β)
N−2 · · · . . .

. . . ω
(β)
0

ω
(β)
N−1 ω

(β)
N−2 0 ω

(β)
2 ω

(β)
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.2)

It is obvious that Wβ is a Toeplitz matrix (see [8,59,66]), and therefore it can be stored with
only N + 1 entries [59].

3.1 Resulting Problems from the Discretized Scheme

According to (3.1) and (3.2), there is a sequence of nonsymmetric Toeplitz linear systems to
be solved at each time level j of the form

A( j+σ)u( j+1) = B( j+σ)u( j) + δu( j) + f ( j+σ) (3.3)

where we have denoted by δu( j) = τ−α

�(2−α)

j−1∑

s=0
c(α,σ, j)
j−s (us+1 − us), and by

A( j+σ) = η j I − σ
(γ ( j+σ)

2h
Q + D( j+σ)

+
hβ

Wβ + D( j+σ)
−
hβ

WT
β

)
,

B( j+σ) = η j I + (1 − σ)
(γ ( j+σ)

2h
Q + D( j+σ)

+
hβ

Wβ + D( j+σ)
−
hβ

WT
β

)
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for all j = 0, 1, . . . , M−1 and A( j+1) varies with j ; f ( j+σ) ∈ R
N−1 also varies with j . The

solutions of the sequence of linear systems (3.3) corresponds to the time-stepping scheme
(2.1) is inherently sequential, thus it is difficult to parallelize over time.

However, if the coefficients γ (t) = γ and d±(t) = d± are constant, then the scalars η j

do not depend on j = 1, 2, . . . , M − 1, and consequently the coefficient matrices A( j+σ)

A( j+σ) =
{
A(σ ), j = 0,

A, j = 1, 2, . . . , M − 1
(3.4)

with A( j+σ) = A = η j I − σ
(

γ
2h Q + d+

hβ Wβ + d−
hβ W

T
β

)
are time independent. In this case

of j = 1, 2, . . . , M − 1, the solutions simply write as u( j+σ) = A−1
(
B( j+σ)u( j) + δu( j) +

f ( j+σ)
)
and can be computed at the cost of only one LU factorization [67, pp. 44–54].

This approach, however, may be prohibitively expensive if the Toeplitz matrix is large and
rather dense. Fortunately, since A is also a Toeplitz matrix, its inverse can be computed with
limited memory and algorithmic cost by the Gohberg–Semencul formula (GSF) [59,62]
using only its first and last columns. More precisely, denote by e1, eN−1 the first and the
last column of the (N − 1)-by-(N − 1) identity matrix, and let x = [ξ0, ξ1, . . . , ξN−2]T and
y = [η0, η1, . . . , ηN−2]T be the solutions of the following two Toeplitz systems

Ax = e1 and A y = eN−1. (3.5)

If ξ0 �= 0, then the Gohberg–Semencul formula can be expressed as

A−1 = 1

ξ0

(

⎡

⎢
⎢
⎢
⎣

ξ0 0 · · · 0
ξ1 ξ0 · · · 0
...

...
. . .

...

ξN−2 ξN−3 · · · ξ0

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

ηN−2 ηN−3 · · · η0
0 ηN−2 · · · η1
...

...
. . .

...

0 0 · · · ηN−2

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

0 0 · · · 0
η0 · · · 0 0
...

...
. . .

...

ηN−3 · · · η0 0

⎤

⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎣

0 ξN−2 · · · ξ1
...

...
. . .

...

0 0 · · · ξN−2

0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

)

= 1

ξ0
(L pRp − L0

p R
0
p),

(3.6)

where L p, L0
p are both lower Toeplitz matrices, and Rp, R0

p are upper Toeplitz matrices.

Consequently, the Toeplitz matrix–vector multiplication A−1
(
B( j+σ)u( j)+δu( j)+ f ( j+σ)

)

can be achieved in several FFTs of length N − 1 [59]. The following fast algorithm sketches
the product of A−1 times a vector v using the GSF.

Algorithm 1 Compute z = A−1v

1: Solve two linear systems in Eq. (3.5)
2: Compute z1 = R0

pv and z2 = Rpv via FFTs

3: Compute z3 = L0p z1 and z4 = L p z2 via FFTs

4: Compute z = 1
ξ0

(z4 − z3)

In summary, we need to search some efficient solvers for the nonsymmetric resulted
Toeplitz linear systems, whether to solve (3.3) or (3.5). In next subsection, we will intro-
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duce how to build efficient preconditioned iterative solvers for nonsymmetric Toeplitz linear
systems.

3.2 Fast Implementation of IDS Based on Preconditioned Iterative Solvers

In this subsection, we discuss the detailed framework about implementing the proposed
implicit difference scheme (2.1). For the sake of clarity, an algorithm for implementing the
implicit difference scheme is given in Algorithm 2.

Algorithm 2 Practical implementation of IDS
1: for j = 0, 1, . . . , M − 1, do
2: Compute g( j+1) = B( j+σ)u( j) + δu( j) + f ( j+σ)

3: Solve A( j+σ)u( j+1) = g( j+1)

4: end for

From Algorithm 2, M real linear systems are needed to be solved. Direct solvers based
on variants of Gaussian elimination [67, pp. 33–44]) are prohibitively expensive when N
is large, due to O(MN 3). Exploiting the Toeplitz form of matrices A( j+σ) and B( j+σ),
the matrix–vector product B( j+σ)u( j) in Step 2 can be evaluated by FFTs in O(N log N )

operations, and fast iterative Toeplitzmethods can be used to solve the linear systems in Step 3
of Algorithm 2 inO(N log N ) arithmetic operations per iteration step. A thorough discussion
on itertive methods for Toeplitz systems can be found in [59] and in [8,50,60,61,66,69] for
their application to solving space fractional diffusion equations. In this study, we employ
a Krylov subspace solver namely the conjugate gradient squared (CGS) method [63, pp.
241-244] with the circulant preconditoner

P( j+σ) = η j I − σ
(γ ( j+σ)

2h
s(Q) + D( j+σ)

+
hβ

s(Wβ) + D( j+σ)
−
hβ

s(WT
β )

)
, (3.7)

where s(·) means the well-known Strang circulant approximation of a given Toeplitz matrix
[59,61] for solving A( j+σ)u( j+1) = g( j+1). The high efficiency of Strang circulant precondi-
tioner for space FDEs has been demonstrated in [61]. Below we show that the preconditioner
P( j+σ) defined in (3.7) is nonsingular, thus is well-defined.

Lemma 3.1 All eigenvalues of s(Wβ) and s(WT
β ) fall inside the open disc

{z ∈ C : |z − ω
(β)
1 | < −ω

(β)
1 }. (3.8)

Proof All the Gershgorin disc [63, pp. 119–122] of the circulant matrices s(Wβ) and s(WT
β )

are centered at −ω
(β)
1 > 0 with radius

rN = ω
(β)
0 +

N�
2∑

k=2

ω
(β)
k <

∞∑

k=0,k �=1

ω
(β)
k = −ω

(β)
1 . (3.9)

by the properties of the sequence {ω(β)
k }; refer to Lemmas 2.3 and 2.4. 
�

Remark 3.1 It is worth to mention that:

1. The real parts of all eigenvalues of s(Wβ) and s(WT
β ) are strictly negative for all N ;
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2. The absolute values of all eigenvalues of s(Wβ) and s(WT
β ) are bounded above by 2|ω(β)

1 |
for all N .

As we know, a circulant matrix can be quickly diagonalized by the Fourier matrix F
[28,59,61]. Then it follows that s(Q) = F∗�q F, s(Wβ) = F∗�βF , and s(WT

β ) = F∗�̄βF ,

where �̄β is the complex conjugate of �β . Decompose the circulant matrix P( j+σ) =
F∗�pF with the diagonal matrix�p = η j I −σ

(
γ ( j+σ)

2h �q + D( j+σ)
+
hβ �β + D( j+σ)

−
hβ �̄β

)
. Then

P( j+σ) is invertible if all diagonal entries of �p are nonzero. Moreover, we can obtain the
following conclusion about the invertibility of P( j+σ) in (3.7).

Theorem 3.1 The circulant preconditioners P( j+σ) defined as in (3.7) are nonsingular.

Proof We already know that Q is a skew-symmetric Toeplitz matrix. However, s(Q) is also a
skew-symmetric circulant matrix, thus the real part of�q is equal to zero, i.e., Re([�q ]k,k) =
0. On the other hand, by Part 1 of Remark 3.1, we have Re([�β ]k,k) < 0. Noting that

η j > 0, σ > 0, and D( j+σ)
± ≥ 0, thus we obtain

Re([�p]k,k) = η j − σ
(
0 + D( j+σ)

+
hβ

Re([�β ]k,k) + D( j+σ)
−
hβ

Re([�̄β ]k,k)
)

�= 0,

for each k = 1, 2, . . . , N − 1. Therefore, P( j+σ) are invertible. 
�
Although we do not investigate the eigenvalue distributions of preconditioned matrices

(P( j+σ))−1A( j+σ) theoretically, we still analyse in next section the favourable clustering of
the spectra for several preconditioned matrices numerically. In our experiments, the iteration
numbers always fluctuate between 4 and 11, ensuring anO(N log N ) complexity for solving
the linear system in Step 3 and an overall computational complexity of O(MN log N ) for
implementing the proposed IDS.

Beside, if we have the coefficients γ (t) = γ and d±(t) = d± in Eq. (1.1), the matrix
B( j+σ) also has the similar form as B( j+σ) in Eq. (3.4), then we can simplify Algorithm 2
as the following Algorithm 3.

Algorithm 3 Practical implementation of IDS with constant coefficients
1: for j = 0, 1, . . . , M − 1, do
2: if j = 0 then
3: Compute g(1) = B(σ )u(0) + f (σ )

4: Solve A(σ )u(1) = g(1)

5: else
6: Compute g( j+1) = Bu( j) + δu( j) + f ( j+σ)

7: Solve u( j+1) = A−1g( j+1)

8: end if
9: end for

Again, if a direct method is employed to solve the linear system in Step 4 of Algorithm 3,
the LU decomposition can be reused in Step 7 of Algorithm 3; however, the complexity will
be still O(MN 3), which is too costly if N is large. On the other hand, utilizing the Toeplitz
structure of those four matrices in Steps 3, 4, 6 and 7 of Algorithm 3, two matrix–vector
multiplications B(σ )u(0) and Bu( j) in Steps 3 and 6 can be evaluated by FFTs inO(N log N )

operations. Then fast Toeplitz iterative solvers with suitable circulant preconditioners can be
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applied to solve the Toeplitz system in Step 4 and (3.5). Here we can construct two circulant
preconditioners defined as

P(σ ) = η0 I − σ
( γ

2h
s(Q) + D+

hβ
s(Wβ) + D−

hβ
s(WT

β )
)
, (3.10)

P = η j I − σ
( γ

2h
s(Q) + D+

hβ
s(Wβ) + D−

hβ
s(WT

β )
)
, (3.11)

for the linear systems in Step 4 and (3.5), respectively. Note that the invertibility of the
two circulant preconditioners introduced in (3.10–3.11) can be similarly proved from The-
orem 3.1. Then we can employ Algorithm 1 to evaluate the matrix–vector multiplication
A−1g( j+1) in Step 7 of Algorithm 3. Similarly, we will show in next section that the iteration
numbers required by preconditioned Krylov subspace methods always range between 4 and
11.1 In this case, the algorithmic complexity of preconditioned Krylov subspace methods
is only O(N log N ) at each iteration step, leading to the total complexity of O(MN log N )

operations for implementing the IDS with constant coefficients.

4 Numerical Results

The numerical experiments presented in this section have a two-fold objective. They illustrate
that the proposed IDS can indeed converge with the second-order accuracy in both space and
time. At the same time, they assess the computational efficiency of the fast solution tech-
niques (i.e., Algorithms 1, 2, and 3) described in Sect. 3. For Krylov subspace method and
direct solver, we choose built-in functions for the preconditioned CGS (PCGS) method, LU
factorization of MATLAB in Example 1 and MATLAB’s backslash in Example 2, respec-
tively. For the CGS method with circulant preconditioners, the stopping criterion of those
methods is ‖r(k)‖2/‖r(0)‖2 < 10−12, where r(k) is the residual vector of the linear system
after k iterations, and the initial guess is chosen as the zero vector. All experiments were
performed on a Windows 7 (32 bit) PC-Intel(R) Core(TM) i5-3470 CPU 3.20 GHz, 4 GB of
RAM using MATLAB 2014a with machine epsilon 10−16 in double precision floating point
arithmetic. By the way, all timings are averages over 20 runs of our algorithms.

Example 1 We solved Eq. (1.1) on the space interval [a, b] = [0, 1] and time interval
[0, T ] = [0, 1], with diffusion coefficients d+(t) = d+ = 0.8, d−(t) = d− = 0.5, convec-
tion coefficient γ (t) = γ = −0.1. The initial condition was u(x, 0) = x2(1 − x)2, and the
source term was

f (x, t) = �(3 + α)

2
x2(1 − x)2t2 − (t2+α + 1)

{
2γ x(1 − x)(1 − 2x) + �(3)

�(3 − β)
[d+x2−β

+ d−(1 − x)2−β ] − 2�(4)

�(4 − β)
[d+x3−β + d−(1 − x)3−β ] + �(5)

�(5 − β)
[d+x4−β

+ d−(1 − x)4−β ]
}
.

This problem is modified from [24, Example 6]. and has exact solution u(x, t) = (t2+α +
1)x2(1− x)2. In the finite difference discretization, the space step and time step are taken to
be h = 1/N and τ = h, respectively.

1 In this case, it shouldmention that we only need to solve three nonsymmetric Toeplitz systems, i.e., equations
with the form like (3.5) and in Step 4 of Algorithm 3, for implementing the whole for loop.
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Table 1 L2-norm and maximum norm error behavior versus grid size reduction when τ = h and β = 1.8 in
Example 1

α h max0≤n≤M ‖En‖0 CO in ‖ · ‖0 ‖E‖C(ω̄hτ ) CO in ‖ · ‖C(ω̄hτ )

0.10 1/32 2.7954e−4 – 4.0880e−4 –

1/64 6.6775e−5 2.0657 9.8580e−5 2.0520

1/128 1.6010e−5 2.0603 2.3815e−5 2.0494

1/256 3.8514e−6 2.0556 5.7630e−6 2.0470

0.50 1/32 2.6670e−4 – 3.8874e−4 –

1/64 6.3583e−5 2.0685 9.3590e−5 2.0544

1/128 1.5219e−5 2.0628 2.2573e−5 2.0518

1/256 3.6558e−6 2.0576 5.4539e−6 2.0492

0.90 1/32 2.4972e−4 – 3.6255e−4 –

1/64 5.9441e−5 2.0708 8.7173e−5 2.0562

1/128 1.4206e−5 2.0650 2.0993e−5 2.0540

1/256 3.4078e−6 2.0596 5.0762e−6 2.0481

0.99 1/32 2.5899e−4 – 3.7959e−4 –

1/64 6.2121e−5 2.0598 9.1923e−5 2.0460

1/128 1.4944e−5 2.0555 2.2275e−5 2.0450

1/256 3.6057e−6 2.0512 5.4042e−6 2.0433

The quantities reported in Tables 1 and 2 are the error (E = U − u) and the convergence
order (CO = logh1/h2

‖E1‖‖E2‖ , where Ei is the error corresponding to hi ) computed in the norms
‖ · ‖0 and ‖ · ‖C(ω̄hτ ) with ‖U‖C(ω̄hτ ) = max(xi ,t j )∈ω̄hτ

|U |. In Tables 5 and 6 we report on the
performance of the fast solvers presented in Sect. 3. The quantity denoted as “Speed-up”
is defined as

Speed-up = Time1

Time2
.

where Time2 is the computing time required by the fast IDS for solving problem, and
Time1 is the time required by Algorithm 3 that reuses the LU decomposition. Obviously,
when Speed-up > 1, it means that Time2 needed by our proposed method is more
competitive than Time1 required by Algorithm 3 with reusing LU decomposition in aspects
of the CPU time elapsed.

We notice from Table 1 that the maximum error decreased when the space grid size h and
time step size h = τ were reduced. The convergence order of the approximate scheme is
O(h2) = O(τ 2). In Table 2, we fixed h = 1/1000 and increasing the number of time steps
(i.e., M); a reduction in the maximum error was observed, and the convergence order of time
isO(τ 2), where the convergence order is given by the following formula: CO = logτ1/τ2

‖E1‖‖E2‖ .
Finally, to further illustrate the reliability of our proposed scheme, Fig. 1 are plotted to show
that the ’quadratic-type’ order of accuracy is achieved in both time and space directions.

Since it is important to investigate convergence behaviors of the proposed method in the
cast that the convection term of Eq. (1.1) becomes more dominant, so we choose a large
coefficient γ = −400 and we reduced the step-size h = τ in Table 3, while in Table 4
we used a constant h = 1/1600 and decreased τ . The same numerical trend was observed
as in the case of a less dominant convection term. This is evident both from Tables 3 and
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Table 2 L2-norm and maximum norm error behavior versus τ -grid size reduction when h = 1/1000 and
β = 1.8 in Example 1

α τ max0≤n≤M ‖En‖0 CO in ‖ · ‖0 ‖E‖C(ω̄hτ ) CO in ‖ · ‖C(ω̄hτ )

0.10 1/5 7.6009e−5 – 1.2059e−4 –

1/10 1.9209e−5 1.9843 3.0437e−5 1.9861

1/20 4.6741e−6 2.0390 7.4069e−6 2.0389

1/40 1.0134e−6 2.2054 1.6095e−6 2.2023

0.50 1/5 5.0068e−4 – 7.9189e−4 –

1/10 1.2639e−4 1.9860 1.9985e−4 1.9864

1/20 3.1564e−5 2.0015 4.9914e−5 2.0014

1/40 7.7315e−6 2.0295 1.2232e−5 2.0288

0.90 1/5 9.9593e−4 – 1.5728e−3 –

1/10 2.4927e−4 1.9983 3.9380e−4 1.9978

1/20 6.2151e−5 2.0039 9.8203e−5 2.0036

1/40 1.5356e−5 2.0170 2.4272e−5 2.0165

0.99 1/5 1.0964e−3 – 1.7304e−3 –

1/10 2.7402e−4 2.0005 4.3269e−4 1.9997

1/20 6.8333e−5 2.0036 1.0791e−4 2.0035

1/40 1.6913e−5 2.0145 2.6714e−5 2.0142

Fig. 1 Comparison the order of accuracy obtained by our proposed schemes for Example 1 in space and time
variables. Left space direction; Right time direction

4 and from the plot in 2. In our experiments, no noticeable instabilities have arisen in the
approximation solution when the convection term becomes more dominant.

In Figs. 3 and 4, the eigenvalues of both the original matrix A( j+σ) and the preconditioned
matrix (P( j+σ))−1A( j+σ) are plotted. These two figures confirm that the circulant precon-
ditioning exhibits very nice clustering properties. The eigenvalues of (P( j+σ))−1A( j+σ) are
well grouped around 1 expect for a few (about 5 ∼ 11) outliers. The vast majority of the
eigenvalues are well separated away from 0. It may be interpreted as that in our whole imple-
mentation the number of iterations required by preconditioned Krylov subspace methods for
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Table 3 L2-norm andmaximumnorm error behavior versus grid size reductionwhen τ = h, d1 = 0.6, d2 =
0.7, γ = −400 and β = 1.9 in Example 1

α h max0≤n≤M ‖En‖0 CO in ‖ · ‖0 ‖E‖C(ω̄hτ ) CO in ‖ · ‖C(ω̄hτ )

0.10 1/32 7.0004e−4 – 9.6167e−4 –

1/64 1.7386e−4 2.0095 2.3901e−4 2.0085

1/128 4.3044e−5 2.0141 5.9287e−5 2.0113

1/256 1.0626e−5 2.0182 1.4673e−5 2.0146

0.50 1/32 6.8858e−4 – 9.4341e−4 –

1/64 1.7101e−4 2.0095 2.3446e−4 2.0015

1/128 4.2330e−5 2.0143 5.8151e−5 2.0014

1/256 1.0448e−5 2.0185 1.4389e−5 2.0017

0.90 1/32 6.7575e−4 – 9.2302e−4 –

1/64 1.6780e−4 2.0098 2.2936e−4 2.0088

1/128 4.1529e−5 2.0145 5.6878e−5 2.0117

1/256 1.0247e−5 2.0185 1.4071e−5 2.0152

0.99 1/32 7.1465e−4 – 9.9367e−4 –

1/64 1.7239e−4 2.0516 2.3711e−4 2.0672

1/128 4.2694e−5 2.0136 5.8841e−5 2.0107

1/256 1.0542e−5 2.0179 1.4566e−5 2.0142

Table 4 L2-norm and maximum norm error behavior versus τ -grid size reduction when h = 1/1600, d1 =
0.6, d2 = 0.7, γ = −400 and β = 1.9 in Example 1

α τ max0≤n≤M ‖En‖0 CO in ‖ · ‖0 ‖E‖C(ω̄hτ ) CO in ‖ · ‖C(ω̄hτ )

0.10 1/5 8.6540e−5 – 1.3583e−4 –

1/10 2.1512e−5 2.0083 3.3795e−5 2.0070

1/20 5.1923e−6 2.0507 8.1879e−6 2.0452

1/40 1.1252e−6 2.2062 1.7960e−6 2.1887

0.50 1/5 5.5079e−4 – 8.6424e−4 –

1/10 1.3856e−4 1.9910 2.1744e−4 1.9908

1/20 3.4587e−5 2.0022 5.4308e−5 2.0014

1/40 8.4703e−6 2.0297 1.3331e−5 2.0264

0.90 1/5 1.0809e−3 – 1.6961e−3 –

1/10 2.7042e−4 1.9989 4.2431e−4 1.9991

1/20 6.7513e−5 2.0020 1.0597e−4 2.0015

1/40 1.6696e−5 2.0157 2.6236e−5 2.0140

0.99 1/5 1.1826e−3 – 1.8559e−3 –

1/10 2.9603e−4 1.9982 4.6443e−4 1.9986

1/20 7.3789e−5 2.0043 1.1582e−4 2.0036

1/40 1.8239e−5 2.0164 2.8650e−5 2.0152
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Fig. 2 Comparison the order of accuracy obtained by our proposed schemes for Example 1 in space and time
variables. Left space direction; Right time direction
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Fig. 3 Spectrum of both original and preconditioned matrices at the time level j = 0, respectively, when
N = M = 128, α = 0.9 and β = 1.8. Left original matrix; Right circulant preconditioned matrix

solving three targeted nonsymmetric Toeplitz systems2 (i.e., equations with the form like
(3.5) and in Step 4 of Algorithm 3) almost ranges from 5 to 11. We validate the effectiveness
and robustness of the designed circulant preconditioner from the perspective of clustering
spectra distribution.

Tables 5 and 6 illustrate that the proposed fast direct solver for different discretized prob-
lems takes much less CPU time elapsed as M and N become large. When M = N = 210

and different discretized parameters, the CPU time of Algorithm 3 is about 14.5 seconds, the
speedup is more than three times. Meanwhile, although Time1 required by Algorithm 3 for
small test problems (M = N = 32, 64, 128) is lower than Time2 needed by Algorithm 3,
our proposed method is still more attractive in terms of the lower memory requirement.

2 For the sake of clarity, here we do not list the number of iterations required for solving those three linear
systems one by one.
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Fig. 4 Spectrum of both original and preconditioned matrices at the time level j = 1, respectively, when
N = M = 128, α = 0.9 and β = 1.8. Left original matrix; Right circulant preconditioned matrix

Table 5 CPU time in seconds for solving Example 1 with α = 0.9 that Time1 is done by for Algorithm 3
(LU decomposition) and Time2 is done by Algorithm 3 with Algorithm 1

h = τ β = 1.2 β = 1.5 β = 1.8

Time1 Time2 Speed-up Time1 Time2 Speed-up Time1 Time2 Speed-up

2−5 0.003 0.010 0.30 0.003 0.010 0.30 0.003 0.010 0.30

2−6 0.011 0.017 0.65 0.011 0.017 0.65 0.011 0.017 0.69

2−7 0.051 0.061 0.84 0.052 0.061 0.85 0.051 0.061 0.84

2−8 0.492 0.253 1.91 0.493 0.255 1.93 0.496 0.257 1.93

2−9 4.544 1.714 2.65 4.548 1.713 2.65 4.550 1.714 2.65

2−10 44.532 14.436 3.08 44.562 14.571 3.06 44.548 14.446 3.08

Table 6 CPU time in seconds for solving Example 1 with β = 1.8 that Time1 is done by for Algorithm 3
(LU decomposition) and Time2 is done by Algorithm 3 with Algorithm 1

h = τ α = 0.1 α = 0.5 α = 0.9

Time1 Time2 Speed-up Time1 Time2 Speed-up Time1 Time2 Speed-up

2−5 0.003 0.010 0.30 0.003 0.010 0.30 0.003 0.010 0.30

2−6 0.011 0.017 0.65 0.011 0.017 0.65 0.011 0.017 0.65

2−7 0.051 0.061 0.84 0.052 0.061 0.85 0.051 0.061 0.85

2−8 0.494 0.254 1.94 0.495 0.254 1.95 0.494 0.253 1.28

2−9 4.562 1.716 2.66 4.547 1.716 2.65 4.549 1.717 2.65

2−10 44.560 14.452 3.08 44.553 14.448 3.08 44.547 14.466 3.08
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Table 7 CPU time in seconds for solving Example 1 with α = 0.99 that Time1 is done by for Algorithm 3
(LU decomposition) and Time2 is done by Algorithm 3 with Algorithm 1

h = τ β = 1.8 β = 1.9 β = 1.99

Time1 Time2 Speed-up Time1 Time2 Speed-up Time1 Time2 Speed-up

2−5 0.003 0.009 0.33 0.003 0.009 0.33 0.003 0.009 0.33

2−6 0.012 0.016 0.75 0.012 0.016 0.75 0.012 0.016 0.75

2−7 0.060 0.061 0.98 0.060 0.059 1.02 0.060 0.059 1.02

2−8 0.536 0.255 2.10 0.539 0.255 2.11 0.531 0.252 2.11

2−9 5.018 1.711 2.93 4.725 1.701 2.78 4.653 1.693 2.75

2−10 44.568 14.408 3.09 44.574 14.393 3.10 44.587 14.401 3.10

Table 8 CPU time in seconds for solving Example 1 with β = 1.99 that Time1 is done by for Algorithm 3
(LU decomposition) and Time2 is done by Algorithm 3 with Algorithm 1

h = τ α = 0.1 α = 0.5 α = 0.9

Time1 Time2 Speed-up Time1 Time2 Speed-up Time1 Time2 Speed-up

2−5 0.003 0.009 0.33 0.003 0.009 0.33 0.003 0.009 0.33

2−6 0.012 0.016 0.75 0.012 0.016 0.75 0.012 0.016 0.75

2−7 0.059 0.059 1.00 0.060 0.059 1.02 0.060 0.059 1.02

2−8 0.538 0.256 2.10 0.540 0.255 2.11 0.536 0.254 2.11

2−9 4.704 1.707 2.76 4.676 1.698 2.75 4.669 1.700 2.75

2−10 44.559 14.389 3.10 44.565 14.392 3.10 44.548 14.378 3.10

Compared to Algorithm 3 with reusing the LU decomposition, it highlighted that in the
whole implementation the proposed solution technique does not require to store the full
matrices (e.g., some matrices A(σ ), A and their LU decomposition factors) at all. In short,
we can conclude that our proposed IDS with fast implementation is still more competitive
than the IDS with reusing the conventional LU decomposition.

In Tables 7 and 8, we investigate the performance of our proposed preconditioners for
handling discretized nonsymmetric Toeplitz systems if the convection term appearing in Eq.
(1.1) becomes more dominate. Here we take d1 = 0.6, d2 = 0.7 and γ = −400 for making
the discretized linear systems very ill-conditioned. It illustrates that the proposed fast solver
still requires much less CPU time as M and N become larger. When M = N = 210, the
CPU time of Algorithm 3 is only 14.4 seconds, the speedup factor is more than 3. On the
other hand, although Time1 required by Algorithm 3 with the LU factorization for small test
problems (M = N = 32, 64) is lower than Time2 needed byAlgorithm 3with Algorithm 1,
our proposed method is still more attractive memory-wise. Compared to Algorithm 3 with
reusing the LU decomposition, it remarked that the practical implementation of the proposed
solution techniques does not need to store the full matrices (e.g., some matrices A(σ ), A and
their LU decomposition factors) at all.

Similarly, here we present two eigenvalue plots about both original and preconditioned
matrices in Figs. 5 and 6. Compare with Figs. 3 and 4, we can see that when the convection
term of Eq. (1.1) becomemore dominate, the discretized nonsymmetric linear systems indeed
tend to be more ill-conditioned in terms of “scattering” eigenvalue distribution plots (i.e.,
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Fig. 5 Spectrum of both original and preconditioned matrices at the time level j = 0, respectively, when
d+ = 0.6, d− = 0.7, γ = −400, N = M = 128, α = 0.99 and β = 1.9. Left original matrix; Right circulant
preconditioned matrix
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Fig. 6 Spectrum of both original and preconditioned matrices at the time level j = 1, respectively, when
d+ = 0.6, d− = 0.7, γ = −400, N = M = 128, α = 0.99 and β = 1.9. Left original matrix; Right circulant
preconditioned matrix

Figs. 5, 6). These two figures confirm that for circulant preconditioners, the eigenvalues
of preconditioned matrices are clustered at 1, expect for a few (about 4 ∼ 8) outliers. The
vast majority of the eigenvalues are well separated away from 0. It may guarantee that our
proposed preconditioners can deeply accelerate Krylov subspace methods for solving three
targeted nonsymmetric Toeplitz systems (i.e., equations with the form like (3.5) and in Step
4 of Algorithm 3). We validate the effectiveness and robustness of the designed circulant
preconditioner from the perspective of clustering spectrum distribution.
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Table 9 L2-norm and maximum norm error behavior versus grid size reduction when τ = h and β = 1.3 in
Example 2

α h max0≤n≤M ‖En‖0 CO in ‖ · ‖0 ‖E‖C(ω̄hτ ) CO in ‖ · ‖C(ω̄hτ )

0.10 1/32 3.1941e−4 – 5.6886e−4 –

1/64 7.6298e−5 2.0657 1.6055e−4 1.8250

1/128 1.8397e−5 2.0521 4.2694e−5 1.9110

1/256 4.4694e−6 2.0414 1.1036e−5 1.9519

0.50 1/32 3.0866e−4 – 5.6897e−4 –

1/64 7.3673e−5 2.0668 1.6054e−4 1.8254

1/128 1.7757e−5 2.0527 4.2689e−5 1.9110

1/256 4.3137e−6 2.0414 1.1035e−5 1.9518

0.90 1/32 2.9880e−4 – 5.6951e−4 –

1/64 7.1478e−5 2.0636 1.6058e−4 1.8264

1/128 1.7232e−5 2.0524 4.2691e−5 1.9113

1/256 4.1814e−6 2.0430 1.1034e−5 1.9519

0.99 1/32 3.2304e−4 – 5.7367e−4 –

1/64 7.7278e−5 2.0638 1.6119e−4 1.8314

1/128 1.8633e−5 2.0522 4.2748e−5 1.9149

1/256 4.5227e−6 2.0426 1.1035e−5 1.9538

Example 2 In the last test, we investigate the proposed method for solving Eq. (1.1) on the
space interval [a, b] = [0, 1] and the time interval [0, T ] = [0, 1] with diffusion coefficients
d+(t) = 9 sin(t), d−(t) = 4 sin(t), convection coefficient γ (t) = −t , initial condition
u(x, 0) = x2(1 − x)2, and source term

f (x, t) =�(3 + α)

2
t2x2(1 − x)2 − (t2+α + 1)

{
− 2t x(1 − x)(1 − 2x)+�(3) sin(t)

�(3 − β)
[9x2−β

+ 4(1 − x)2−β ] − 2�(4) sin(t)

�(4 − β)
[9x3−β + 4(1 − x)3−β ] + �(5) sin(t)

�(5 − β)
[9x4−β

+ 4(1 − x)4−β ]
}
.

This example can be viewed as a variant of [56, Example 1]. The exact solution of this example
is defined as u(x, t) = (t2+α+1)x2(1 − x)2 For the implicit finite difference discretization,
the space step and time step are taken to be h = 1/N and τ = h, respectively. The experiment
results about the proposed IDS for Example 2 are reported in Tables 9 and 10. Furthermore,
the effectiveness of fast solution techniques presented in Sect. 3 for this example will be
illustrated in Tables 11 and 12.

According to the numerical results illustrated in Table 9, it finds that as the number
of the spatial subintervals and time steps is increased keeping h = τ , a reduction in the
maximumerror takes place, as expected and the convergence order of the approximate scheme
isO(h2) = O(τ 2), where the convergence order is given by the formula: CO = logh1/h2

‖E1‖‖E2‖
(Ei is the error corresponding to hi ).On the other hand,Table 10 illustrates that if h = 1/1800,
then as the number of time steps of our approximate scheme is increased, a reduction in the
maximum error takes place, as expected and the convergence order of time is O(τ 2), where
the convergence order is given by the following formula: CO = logτ1/τ2

‖E1‖‖E2‖ . In order to
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Table 10 L2-norm and maximum norm error behavior versus τ -grid size reduction when h = 1/1800 and
β = 1.3 in Example 2

α τ max0≤n≤M ‖En‖0 CO in ‖ · ‖0 ‖E‖C(ω̄hτ ) CO in ‖ · ‖C(ω̄hτ )

0.10 1/6 5.7382e−5 – 9.0504e−5 –

1/12 1.4405e−5 1.9940 2.2699e−5 1.9954

1/24 3.5630e−6 2.0154 5.6036e−6 2.0182

1/48 8.4188e−7 2.0814 1.3128e−6 2.0937

0.50 1/6 3.6999e−4 – 5.8276e−4 –

1/12 9.3087e−5 1.9908 1.4660e−4 1.9910

1/24 2.3295e−5 1.9986 3.6679e−5 1.9989

1/48 5.7803e−6 2.0108 9.0927e−6 2.0122

0.90 1/6 7.2848e−4 – 1.1469e−3 –

1/12 1.8230e−4 1.9986 2.8697e−4 1.9988

1/24 4.5551e−5 2.0008 7.1699e−5 2.0009

1/48 1.1337e−5 2.0065 1.7836e−5 2.0071

0.99 1/6 7.9927e−4 – 1.2586e−3 –

1/12 1.9978e−4 2.0006 3.1431e−4 2.0015

1/24 4.9882e−5 2.0014 7.8492e−5 2.0016

1/48 1.2419e−5 2.0060 1.9533e−5 2.0066

Table 11 CPU time in seconds for Example 2 with α = 0.9 that Time1 is done by for Algorithm 2
(MATLAB’s backslash) and Time2 (Iters) is done by Algorithm 2 with PCGS solver

h = τ β = 1.3 β = 1.5 β = 1.9

Time1 Time2 Speed-up Time1 Time2 Speed-up Time1 Time2 Speed-up

2−5 0.03 0.06 (6.0) 0.50 0.03 0.06 (6.8) 0.50 0.03 0.06 (6.0) 0.50

2−6 0.09 0.13 (6.0) 0.69 0.09 0.13 (6.8) 0.69 0.09 0.13 (6.0) 0.69

2−7 0.46 0.32 (6.0) 1.44 0.47 0.35 (7.0) 1.34 0.46 0.35 (7.0) 1.31

2−8 4.04 0.88 (7.0) 4.59 4.05 0.91 (7.7) 4.45 4.07 0.89 (7.0) 4.57

2−9 36.91 3.53 (7.0) 10.46 36.97 3.71 (8.0) 9.96 37.03 3.57 (7.0) 10.37

2−10 375.68 20.10 (7.0) 18.69 376.59 20.89 (8.0) 18.03 377.02 20.28 (7.0) 18.59

further verify the reliability of our proposed scheme, Fig. 7 are plotted to illustrate that the
’quadratic-type’ order of accuracy is achieved in both time and space variables.

Again, for the case of variable time coefficients, several eigenvalue plots about both
original and preconditioned matrices are similarly displayed in Figs. 8 and 9. These two
figures confirm that for circulant preconditioning, the eigenvalues of preconditionedmatrices
are clustered at 1, expect for a few (about 6 ∼ 10) outliers. The vastmajority of the eigenvalues
are well separated away from 0. It may be mainly interpreted as that in our implementation
the number of iterations needed by PCGS with circulant preconditioners almost ranges from
6 to 10.We validate the effectiveness and robustness of the proposed circulant preconditioner
from the perspective of clustering spectrum.

In Tables 11 and 12, it verifies that the proposed fast direct solver for different discretized
problems takes much less CPU time elapsed as M and N become large . Here we mention
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Table 12 CPU time in seconds for Example 2 with β = 1.8 that Time1 is done by for Algorithm 2
(MATLAB’s backslash) and Time2 (Iters) is done by Algorithm 2 with PCGS solver

h = τ α = 0.5 α = 0.9 α = 0.99

Time1 Time2 Speed-up Time1 Time2 Speed-up Time1 Time2 Speed-up

2−5 0.03 0.06 (6.0) 0.50 0.03 0.06 (6.0) 0.50 0.03 0.06 (6.0) 0.50

2−6 0.09 0.14 (7.0) 0.64 0.09 0.14 (7.0) 0.64 0.09 0.13 (7.0) 0.69

2−7 0.45 0.36 (7.3) 1.28 0.45 0.35 (7.0) 1.29 0.45 0.35 (7.0) 1.29

2−8 4.09 0.98 (9.0) 4.13 4.05 0.89 (7.0) 4.55 4.07 0.88 (7.0) 4.63

2−9 37.41 3.89 (9.0) 9.62 37.26 3.56 (7.0) 10.47 37.39 3.54 (7.0) 8.21

2−10 379.28 21.04 (9.0) 18.03 380.01 20.81 (8.3) 18.26 378.59 20.42 (7.0) 18.54

Fig. 7 Comparison the order of accuracy obtained by our proposed schemes for Example 2 in space and time
variables. Left space direction; Right time direction
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Fig. 8 Spectrum of both original and preconditioned matrices at the time level j = 0, respectively, when
N = M = 128, α = 0.9 and β = 1.5. Left original matrix; Right circulant preconditioned matrix
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Fig. 9 Spectrum of both original and preconditioned matrices at the time level j = 1, respectively, when
N = M = 128, α = 0.9 and β = 1.5. Left original matrix; Right circulant preconditioned matrix

that “Iters” in brackets denotes the average number of iterations required for solving the
TSFCDE problem (1.1); i.e.,

I ters = 1

M

M∑

j=1

I ter( j),

where I ter( j) denotes the number of iterations required for solving Eqs. (3.1). When M =
N = 210 and different discretized parameters, the CPU time of Algorithm 3 by PCGS
with circulant preconditioners is about 21 s, the speedup factor is more than 18. For all
listed cases, we find that the average number of iterations required for solving a series of
nonsymmetric Toeplitz systems is less than 10. Meanwhile, although Time1 required by
Algorithm 3 with MATLAB’s backslash for small test problems (M = N = 32, 64) is
cheaper than Time2 needed by Algorithm 3 with using the PCGS method, our proposed
method is still more attractive in aspects of the lower memory requirement. Compared to
Algorithm 3 with MATLAB’s backslash, it highlighted that in the whole procedure the
proposed solution technique does not require to store a series of full matrices (e.g., coefficient
matrices A( j+σ), j = 0, 1, . . . , M − 1) at all. All in all, we can conclude that our proposed
IDS with fast solution techniques is still more promising than the IDS with conventional
implementations, in which direct solvers are straightforwardly employed.

5 Conclusions

In this paper, the stability and convergence of a new implicit difference scheme approximating
the time-space fractional convection–diffusion equation are studied. Sufficient conditions for
the unconditional stability of such difference schemes are obtained. For proving the stability
of a wide class of difference schemes approximating the time fractional diffusion equation, it
is simple enough to check the stability conditions obtained in this paper. Meanwhile, the new
difference schemes of the second approximation order in space and the second approximation
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order in time for the TSFCDE with variable coefficients (in terms of t) are constructed as
well. The stability and convergence of these implicit schemes in the mesh L2-norm with
the rate equal to the order of the approximation error are proved. The method can be easily
adopted to other TSFCDEs with other boundary conditions (refer, e.g., to [68]). Numerical
tests completely confirming the obtained theoretical results are carried out.

More significantly, we have also shown an efficient implementation of the proposed IDS
based on preconditioned iterative solvers, achieving O(N log N ) computational complexity
andO(N ) storage cost. Extensive numerical results fully support the theoretical findings and
prove the efficiency of the proposed preconditioning methods. Future work will include the
extension of the proposed IDS with fast solution techniques for two and three-dimensional
TSFCDEs subject to various boundary value conditions. Meanwhile, we will also focus on
the development of other efficient preconditioners for accelerating the convergence of Krylov
subspace solvers in this context; refer, e.g., to our recent work [69] for this topic.
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