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1. UNCONJUGATED NEONATAL HYPERBILIRUBINEMIA 

Neonatal unconjugated hyperbilirubinemia, or neonatal jaundice, is a common 

condition in infants that primarily occurs during the first 2 weeks of life 1. In 

most cases, neonatal jaundice is physiological, and mild hyperbilirubinemia in 

term infants does not require treatment. However, severe unconjugated 

hyperbilirubinemia is associated with the development of bilirubin-induced 

neurotoxicity. This neurotoxicity is caused by deposition of bilirubin in the 

brain, leading to kernicterus, or yellow core, referring to the yellowish 

appearance of brains of infants that died from this disease. Severe 

hyperbilirubinemia is associated with a variety of clinical manifestations, 

nowadays called kernicterus spectrum disorders (KSD) 2. KSD consist of both 

acute, potentially life threatening symptoms, and long term consequences. 

Acute symptoms include decreased alertness, hypotonia and poor feeding, 

which can eventually progress to strong backward arching of neck and back, 

caused by hypertonia of extensor muscles. These severe symptoms are 

associated with permanent neurological problems, including cerebral palsy, 

sensorineural deafness, gaze abnormalities and potential cognitive deficits 2,3. 

Due to early recognition and appropriate treatment, KSD and their 

consequences have become relatively rare in high income countries, with a 

reported incidence between 1:40.000 (USA) and 1:100.000 (UK) 4. However, 

incidences in low and middle income countries are poorly reported and might 

be higher due to the predisposition of e.g. the Asian race to hyperbilirubinemia 

5,6. Furthermore, incidences in preterm infants are likely to be higher, as will be 

explained in the subsequent paragraphs.   
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2. BILIRUBIN METABOLISM 
 
2.1 Bilirubin origin 

Unconjugated bilirubin (UCB) is the degradation product of heme in the 

reticuloendothelial system (RES) and mainly originates from hemoglobin in 

erythrocytes 7 and to a lesser extent from myoglobin from muscle 8 and 

mitochondrial heme components 9. The primary site of erythrocyte degradation 

is the spleen, followed by the liver. In neonates, the liver is the main bilirubin 

production site 10. In the RES, heme is converted to biliverdin by heme 

oxygenase (HO) enzyme and subsequently converted to bilirubin by the 

enzyme biliverdin reductase (fig. 1A) 11,12. In contrast to UCB, biliverdin is not 

toxic and in most non-mammalian species, biliverdin is the end product of heme 

degradation 13,14. From an evolutionary perspective, this production of a non-

toxic metabolite seems logical. However, biliverdin is not able to pass the 

mammalian placenta, whereas bilirubin does 15, which partially explains the 

evolutionary necessity of this potentially toxic metabolite. In neonates, UCB 

production is higher compared to adults, due to their relatively larger 

hemoglobin mass and the enhanced degradation of fetal hemoglobin. UCB levels 

are further increased in presence of large hematoma’s or hemolysis, in e.g. 

blood group incompatibility or sepsis 16.    

 

 

Figure 1: Enzymatic conversion of heme (erythrocyte-derived) to biliverdin and bilirubin, 

as occurs in the reticuloendothelial system.  

 

1 
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2.2 Albumin-binding and free bilirubin 

UCB is very hydrophobic, and therefore hardly soluble in water or blood. Upon 

release in the bloodstream, it is bound to albumin as its carrier. Once it arrives 

at the liver, UCB dissociates from albumin and passes the basolateral 

hepatocyte membrane 17-19. However, under certain circumstances, UCB levels 

exceed the bilirubin-albumin binding capacity. This occurs at extremely high 

UCB levels, hypoalbuminemia or when the bilirubin-albumin binding affinity is 

decreased 20. Although the binding affinity cannot be completely quantitated 

yet, it is known to decrease in conditions of e.g. acidosis, sepsis or by certain 

medications 21. When the bilirubin-albumin binding capacity is exceeded, a 

small fraction of UCB can occur in the blood as free, unbound bilirubin 

(UCBfree). This is problematic, since in contrast to albumin-bound UCB, 

UCBfree can diffuse across the blood brain barrier (BBB) and deposit in the 

brain 22. BBB permeability to UCBfree is inversely related to gestational and 

postnatal age 23. Preterm infants have an immature BBB, causing them to be 

more sensitive to bilirubin-induced neurotoxicity. Therefore, UCB treatment 

thresholds are lower and treatment is started earlier in younger infants 24. 

Apart from BBB permeability, brain UCB concentrations are also determined by 

export from the brain, which is known to be, at least partially, mediated by ATP 

Binding Cassette (ABC) Transporter B1 (MDR1/P-glycoprotein) 25. ABCB1 

expression is positively correlated with postnatal age and this is another factor 

that makes preterm neonates more vulnerable for bilirubin toxicity 26. 

2.3 Hepatic metabolism 

The exact mechanism of UCB transport across the basolateral hepatocyte 

membrane is not fully elucidated 27. Partially, UCB is transported by organic 

anion transporting polypeptides (OATP)1B1/1B3 in humans or Oatp1a/1b in 

mice 28-30 (fig. 2). A deficiency in these transporters results in Rotor syndrome, 

a disease characterized by a mild, mixed unconjugated and conjugated  
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hyperbilirubinemia 31. Although plasma UCB increases 2-fold in Oatp1a/1b 

knock-out mice, significant amounts of conjugated bilirubin (CB) are still 

present in bile and plasma 32. This indicates that independent of OATP1B1/1B3, 

UCB is still able to be taken up by the liver where it can be conjugated. 

In the hepatocyte, UCB is conjugated by UDP-glucuronosyltransferase 1A1 

(UGT1A1)33 . The addition of a glucuronyl group by UGT1A1 makes it water-

soluble and easily excretable into the bile. In infants, UGT1A1 expression is 

modulated in a developmental manner. Between 17 and 30 weeks of gestation 

its expression is only 0.1% of adult levels, which increases to 1% between 30 

and 40 weeks of gestation. Adult levels are only reached after postnatal day 14 

34,35. Therefore, during the first postnatal weeks, UGT1A1 is considered to be 

the rate limiting enzyme in bilirubin metabolism and this conjugation 

deficiency, in presence of increased bilirubin production, is one of the main 

causes of neonatal hyperbilirubinemia 16.  

A complete or partial lack of UGT1A1 results in a disease called Crigler-Najjar 

type I or II, respectively 36. Crigler-Najjar type I patients need daily 

phototherapy (PT) to prevent otherwise inevitable KSD 37. A mild UGT1A1-

deficiency resulting from a TATA-box mutation in the UGT1A1 promoter, 

occurs in Gilbert-Syndrome, resulting in mostly subclinical hyperbilirubinemia. 

The prevalence of Gilbert syndrome in the general population is estimated to 

be 3-7%, but many patients live undiagnosed 38.  

After conjugation, CB is transported over the canalicular hepatocyte membrane 

by ATP-Binding Cassette transporter 2 (ABCC2, MRP2) 39,40. Alternatively, when 

CB cannot be excreted in the bile, e.g. in the case of bile duct obstruction, CB can 

be transported back into the blood by the basolateral transporter ABCC3 (fig. 

2) 41-43. A genetic deficiency in ABCC2 results in a clinical syndrome called 

Dubin-Johnson syndrome. Affected individuals display a recessively inherited 

conjugated hyperbilirubinemia, which can result in clinically apparent jaundice 

1
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and itch 44, especially in females in pregnancy or during oral contraceptive use 

45. However, Dubin-Johnson patients are mostly asymptomatic.  

Under physiologic conditions, ABCC3 is not abundantly present in liver and 

otherwise healthy Abcc3 knock-out mice do not have elevated TB levels 42,46,47. 

A strong upregulation of ABCC3 is observed however, when ABCC2 function is 

decreased or absent, as in Dubin-Johnson syndrome 43. ABCC3 is also 

upregulated in cholestatic livers of humans and rats 41,48. Although the relative 

contribution of ABCC3 to normal bilirubin metabolism has not been 

established, ABCC3 can provide an alternative bilirubin detoxification pathway 

by transporting conjugated bilirubin (CB) from hepatocytes back into the blood, 

after which it can be either excreted into urine or transported back into liver by 

OATP1B1/3 47. The capacity of OATP1B1 and 1B3 to transport both UCB and CB 

explains the mixed hyperbilirubinemia in Rotor syndrome, but CB forms the 

main fraction. In Oatp1a/1b knock-out mice, plasma UCB increases 2-fold 

whereas CB increases >50 fold. Also, biliary CB decreases with >50% in these 

mice, highlighting the importance of the collaboration between OATP1B1/1B3 

and ABCC3 in CB excretion 32. Both ABCC2 and 3 are abundantly expressed in 

intestine 49,50, but their potential role as CB transporters into the intestinal 

lumen or back into the blood, is not established.  

Another alternative hepatic UCB catabolic pathway has been identified in 

absence of UGT1A1. UGT1A1-deficient Gunn rats express higher levels of 

hepatic cytochrome P450 proteins (CYP)1A1 and 1A2 compared to wild-type 

controls51. In vitro, these enzymes have shown to be able to oxidize UCB to yet 

unidentified compounds 52. However, the in vivo contribution of this UCB 

disposal pathway remains to be determined.  



General introduction 

15 
 

Figure 2: Schematic overview of hepatic bilirubin metabolism. UCB is transported in the blood 

bound to albumin. At the basolateral membrane, UCB is released from albumin and transported in 

the hepatocytes (partially) by OATP1B1 and OATP1B3. Subsequently, UCB is conjugated by UGT1A1 

and transported into the bile via canalicular membrane transporter ABCC2. Alternatively, CB can 

be transported back into the blood via ABCC3 and transported back into downstream hepatocytes 

via OATP1B1 and 1B and subsequently transported into the bile. In absence of UGT1A1, bilirubin 

can be oxidized by CYP1A1 and CYP1A2, and the oxidation product is released into the bile.  

 

2.4 Intestinal metabolism 

CB is excreted in the intestine via the bile. In the intestinal lumen, neonatal 

mucosa has a high glucuronidase activity, which leads to an almost complete 

hydrolysis of CB to UCB 53. After deconjugation, UCB is converted to 

urobilinogens and their oxidized derivatives 54,55. These urobilinoids are 

believed to be nontoxic due to their increased polarity 56. They can either leave 

the intestinal lumen via the feces, or are reabsorbed by the intestine to be 

excreted by the kidneys 57. A small fraction of urobilinoids undergoes 

1
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enterohepatic circulation, and due to their hydrophilicity, they are easily 

excreted by the liver without conjugation 56-58. Urobilinoid production is highly 

efficient and therefore only small amounts of bilirubin can be found in the feces 

of human adults, whereas urobilinoids are the predominant fecal bile pigments 

55,59. In infants however, this mechanism is believed to only play a minor role, 

since their still undeveloped intestinal microbiota is not capable of UCB 

conversion60,61. In a study by Vitek et al. 56, fecal samples of 60 neonates were 

examined for urobilinoids and bilirubin. In 57% of infants, urobilinoids only 

became detectable in the feces at postnatal day five and the increase in fecal 

urobilinoids was paralleled by a decrease in fecal bilirubin concentration. In 

other work by Vitek et al. 62, hyperbilirubinemic rats were treated with 

clindamicin/neomycin, antibiotics against the anaerobic intestinal flora that 

converts UCB to urobilinoids. This treatment caused fecal urobilinoids to 

disappear almost completely and caused a marked increase in plasma UCB. It is 

therefore believed that in absence of the appropriate microbiota, UCB becomes 

available for reabsorption in infants (fig. 3A). 
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Figure 3: Schematic overview of intestinal bilirubin metabolism. A) Intestinal bilirubin 

metabolism in the (term) neonate. After hepatic conjugation, CB is released via the bile into the 

intestine, where it can be deconjugated by either mucosal β-glucuronidases or intestinal microbiota. 

Following deconjugation, UCB can either be reabsorbed back into the blood or further converted to 

urobilinoids by intestinal microbiota. Urobilinoids are either fecally excreted, or reabsorbed and 

subsequently excreted via the kidney or bile. B) Intestinal bilirubin metabolism in UGT1A1-deficient 

Gunn rat or Crigler Najjar type I. In severe hyperbilirubinemia, UCB is either released into the bile 

by unknown mechanisms, or transmucosally excreted over the intestinal wall. In the intestine, UCB 

can be converted to urobilinoids, which are fecally excreted or reabsorbed, and subsequently 

excreted via the kidney or bile. 

 

2.5 Alternative intestinal metabolism: transintestinal bilirubin excretion 

In patients with Crigler-Najjar type I and in the rat model for this disease, the 

Gunn rat, UCB levels rise until a plateau phase 36,51. This indicates that these 

individuals are partially able to dispose of their UCB, independent of 

conjugation . A small amount of UCB can be detected in the bile 63,64. No 

transporter has been identified for this biliary excretion, but it is possible that 

UCB enters the bile by simple diffusion, caused by the sheer overload of UCB in 

the hepatocyte (fig. 3B).  

The UCB from the bile ends up in the intestinal lumen. However, in Gunn rats, a 

larger amount of UCB can be detected in the intestinal lumen that cannot be 

accounted for by biliary excretion. This indicates that UCB can be excreted 

transintestinally from the blood into the intestinal lumen 64 (fig. 3B). Although 

the underlying mechanism of this transport has not been elucidated so far and 

any responsible transporters have been not been identified, transmucosal 

transport can be targeted therapeutically in Gunn rats 58,65-68.  

In addition to hepatic UCB conjugation, intestinal UGT1A1 could potentially also 

play a significant role in neonatal bilirubin metabolism, as is discussed under 

‘Animal models – Humanized UGT1A mice’.  

1
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3. ANIMAL MODELS 

To study neonatal hyperbilirubinemia in vivo, three animal models are 

currently in use; the Gunn rat, UGT1A1 knock-out mice and humanized UGT1A1 

(hUGT1*1) mice.  

3.1 Gunn rats 

Gunn rats suffer from a spontaneous UGT1A1 mutation, leading to a complete 

UGT1A1 deficiency and were discovered in 1934. They are the rat equivalent of 

Crigler-Najjar type 1 and experience lifelong severe unconjugated 

hyperbilirubinemia, along with varying but relatively mild neurotoxic signs, 

including delayed motor development, stunting and cerebellar hypoplasia 69. 

Like human neonates, Gunn rat neonates exhibit increased UCB levels when 

compared to adults (unpublished observations). After this initial peak, UCB 

levels decrease to young adult values and gradually increase again during 

ageing 70. The advantage of this model lies in its long existence and the broad 

experience with the Gunn rat in the hyperbilirubinemia research field. Also, 

Gunn rats can be studied both as neonates and adults and their size (larger than 

mice) allows for collection of considerable volumes of e.g. bile, blood and feces, 

which is sufficient for numerous scientific analyses.  

3.2 Ugt1a1 knock-out mice 

The mouse equivalent of the Gunn rat was developed in Italy in 2012, by the 

group of prof. Andrés Muro 71. These genetically engineered knock-outs have a 

similar mutation as Gunn rats. However, in contrast to Gunn rats, their 

postnatal UCB levels are higher and, if untreated, their phenotype is lethal 

within the first 5-11 postnatal days 71. These mice thus need continuous rescue 

treatment in the form of phototherapy or albumin administration to survive 

and they die as soon as these treatments are stopped 72. Although the course of 

disease is in several aspects more similar to the human course of Crigler-Najjar 

type I 36, the therapy requirement can complicate the testing of new treatment 



General introduction 

19 
 

strategies. Since these animals die without rescue therapies, insufficiently 

effective experimental therapies will quickly lead to death of the animal, which 

comes with ethical concerns. In addition, new therapies have to be either tested 

in neonatal animals or in adults that are previously treated with other rescue 

therapies. Neonatal mice are vulnerable and provide little tissue material and 

in adults, the previously required rescue therapies can interfere with 

subsequent experimental therapies. Nevertheless, this model has proven very 

valuable in studying bilirubin-induced brain toxicity and development effects 

25,73-76 .  

3.3 Humanized UGT1A mice 

The hUGT1*1 mice are knock-outs for the entire mouse Ugt1a family (7 UGT1A 

members) in which the  respective locus has been replaced by a human UGT1A 

locus (9 members) 77,78. Although the Ugt1a family knock-out was lethal, like the 

Ugt1a1-knock-out mice described above, the humanized mice exhibit a milder 

hyperbilirubinemia. Interestingly, this hyperbilirubinemia is largely present 

during the first 3 postnatal weeks, with a peak around day 14. This is similar to 

the course of breast milk jaundice; a prolonged unconjugated 

hyperbilirubinemia observed in breastfed neonates. After this period, the 

hUGT1*1 mice become normobilirubinemic adults. This specific postnatal 

course is explained by the course of hUGT1A1 expression, which is significantly 

induced between postnatal day 14 and 21 in both liver and intestine. Before day 

14, hUGT1A1 in this model is hardly detectable in liver, but its intestinal 

expression is clearly present 78.   

The hUGT1A1 expression profile seems counter-intuitive at first instance, since 

in adult humans and rodents, UGTs are predominantly expressed in liver 79. 

However, in preterm human neonates, UGT1A1 is also expressed at very low 

levels in liver during the first postnatal days 35,80. Already in the 90’s, McDonnel 

et al.81 established intestinal UGT1A1 expression and bilirubin conjugation 

1
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activity in the human intestinal tract. In adults human tissues, the intestinal 

conjugation of estradiol, an UGT1A1 substrate, even exceeds the liver 

conjugation capacity 82, indicating its potential importance. Also, this model 

demonstrates that intestinal hUGT1A1 expression is enough to rescue the 

kernicterus phenotype, confirming the impact of intestinal UGT1A1. However, 

the intestinal UGT1A1 expression and its contribution to neonatal bilirubin 

metabolism in human neonates has never been studied. Therefore, we do not 

know for sure whether this model is an accurate reflection of the human 

neonatal situation.   

In contrast to Gunn rats and Ugt1a1-knock-out mice, the hUGT1*1 model allows 

the study of UGT1A1 regulation. Along with the UGT1A locus, the human 

UGT1A1 promoter has been inserted in these mice, including the distally 

located phenobarbital-response element (PBREM). Consequently, the known 

transcriptional regulation of hUGT1A1 by the pregnane X-receptor (PXR), 

constitutive androstane receptor (CAR), Aryl hydrocarbon receptor (AhR) and 

Glucocorticoid receptor (GR) agonists is intact 83,84. Since the UGT1A1 promoter 

is poorly conserved between rodents and humans 85, this is the only model in 

which the transcriptional regulation of UGT1A1 can be accurately tested in vivo.  

 

4. THERAPEUTIC STRATEGIES 

Over the years, various treatment strategies in neonatal hyperbilirubinemia 

have been developed and investigated. Below, the currently available strategies 

are discussed in detail. In the various chapters of this thesis, we address several 

steps in neonatal hyperbilirubinemia management, each targeting different 

steps in bilirubin metabolism (fig. 4) 

4.1 Decreasing total serum bilirubin – Phototherapy 

Phototherapy, blue light therapy, has been the gold standard treatment for 

neonatal hyperbilirubinemia since 1968 86. Through the skin, phototherapy 
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exposes UCB that is present in the superficial capillaries and interstitial spaces. 

Upon exposure to blue light, UCB undergoes photochemical conversion e.g. 

photo-oxidation, configuration and structural isomerization, which result in 

non-toxic isomers (fig. 5) 87. In contrast to UCB, these isomers are water-soluble 

can be excreted in the bile without the need for conjugation88. Since the 

evolution of phototherapy, the use of exchange transfusions has been 

dramatically reduced 89. Currently, phototherapy is used in over 80% of 

preterm infants admitted at a neonatal intensive care unit (NICU) 90,91.   

 

Figure 4: Treatment strategies in neonatal hyperbilirubinemia and their underlying 

mechanism. Chapter 3 describes the postnatal course and risk factors of UCBfree in preterm 

neonates. Chapter 4 & 5 evaluate a recently introduced form of phototherapy: LED phototherapy. 

Chapter 6 investigates two novel drug strategies targeting both UCB conjugation and intestinal 

metabolism.  

1
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Although generally safe and effective, phototherapy has some disadvantages. 

Firstly, it is not sufficiently effective in all infants and therefore does not 

completely eliminate the need for exchange transfusions. In addition, it can only 

decrease already accumulated UCB and does not prevent its accumulation.  

Furthermore, phototherapy has been associated with an increased mortality 

risk in the smallest preterm infants 92-94 and more recently, with the 

development of oxidative stress and infantile cancer 95-101 and with diabetes, 

asthma and epilepsy during childhood 102-105.  Another downside of 

phototherapy is that it is not suitable for places with unreliable power supply 

and consequently, is hardly usable or affordable in low resource countries. 

Therefore, significant effort has been put into the development of alternative or 

complementary treatments strategies 106. A selection of these strategies will be 

discussed below.  

 

Figure 5: Conversion of UCB into oxidation products, configurational and structural isomers 

by phototherapy.  
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4.2 Decreasing free bilirubin 

Given that non-albumin bound UCBfree is the neurotoxic fraction of UCB, any 

UCBfree reduction is a rational strategy to prevent bilirubin-induced 

neurotoxicity. This has been successfully achieved in Gunn rats and Ugt1a1 

knock-out mice, in which infusion of human serum albumin (HSA) decreased 

both the UCBfree fraction in blood and UCB level in brain 72,107,108. More 

importantly, HSA had an additional therapeutic advantage on both parameters 

when used in parallel with phototherapy. In Ugt1a1 knock-out mice, regular 

HSA infusions, could even rescue them from kernicterus-induced death 72. 

Counterintuitively however, HSA alone increased TSB in both Gunn rats and 

Ugt1a1 knock-out mice 72,107,108. These data support a model first proposed by 

Cuperus et al.108, in which UCBfree is able to move between the vascular (blood) 

and extravascular (tissue) compartments. HSA infusions increase the vascular 

binding capacity of albumin in the blood. Thereby, UCBfree is drawn from the 

tissues to the blood. Once in the blood, UCBfree becomes available for e.g. 

phototherapy, which explains the additional therapeutic advantage of HSA 

when used in combination with phototherapy.  

Although these data are both intriguing and promising, the lack of TSB decrease 

upon HSA treatment, makes it hard to prove its efficacy in human neonates. 

Brain UCB levels cannot be determined in human neonates and reliable clinical 

markers for bilirubin-induced toxicity are lacking. Only two studies 

investigated the combined effect of albumin and phototherapy in neonates. 

Caldera et al. 109 combined phototherapy with two hours albumin infusion at 

the start of phototherapy. Albumin infusion with phototherapy caused a 

significant additional decrease of UCB and UCBfree compared to phototherapy 

alone. Later, Hosono et al.110,111 showed the same with a similar setup and also 

showed that the addition of albumin infusion to phototherapy and caused a 

significantly better auditory brainstem response (ABR) at 6 months follow-up. 

Other studies primarily focused on the use of albumin infusions before 

1
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exchange transfusion, but the results on post-exchange UCB levels are 

inconsistent 112-116. 

Other studies targeting UCBfree primarily focus on factors influencing the 

bilirubin-albumin binding affinity 21. So far, it is known that low gestational and 

postnatal age, birth weight, illness and acidosis predispose to a lower albumin-

bilirubin binding affinity. Furthermore, several endogenous and exogenous 

substances are known to act as bilirubin replacers from albumin, at least in 

vitro, including commonly used drugs such as ibuprofen, ceftriaxone and 

sulfonamide antibiotics 117. Recently, intravenously administered free fatty 

acids in the blood have been shown to competitively decrease bilirubin-

albumin binding, and increase UCBfree levels in neonates, but this has not led 

to clinical management alterations 118,119. Attempts to actively increase the 

bilirubin-albumin binding affinity have so far not been described. 

4.3 Stimulating hepatic bilirubin conjugation 

In addition to exchange transfusion, phenobarbital has been used in the past to 

treat neonatal hyperbilirubinemia before the introduction of phototherapy. 

Phenobarbital, currently used as an anti-epileptic drug, is a Constitutive 

Androstane Receptor (CAR) agonist, that binds to the promoter of UGT1A1, 

induces its transcription 120 and thereby increases bilirubin conjugation 121-123. 

Several clinical trials have shown that phenobarbital administration to 

neonates limits the severity of unconjugated hyperbilirubinemia and the need 

for exchange transfusion 124,125. Also, phenobarbital administration to pregnant 

mothers in the last week before delivery decreased the incidence of 

hyperbilirubinemia and exchange transfusions 126,127. In addition to inducing 

bilirubin conjugation, phenobarbital also increased the hepatic uptake and 

storage of UCB, which lowers its plasma levels 128. However, phenobarbital was 

abandoned because of its adverse sedative effect and limited and slow effect 

compared to phototherapy. 
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In addition to CAR, three other transcription factors are known to induce 

hUGT1A1 transcription: PXR, GR and AhR. Like CAR, these transcription factors 

bind to PBREM. In vitro, UGT1A1 is transcriptionally induced by the PXR-

agonist rifampicin, the GR-agonist cortisol and the AhR agonist benzo(a)pyrene 

120,129-132. Rifampicin is a broad spectrum antibiotic that is used for a variety of 

infections in children, including tuberculosis 133. However, it is not suitable for 

treatment of neonatal hyperbilirubinemia due to its potentially serious adverse 

effects, including hepatotoxicity, renal failure and thrombocytopenia 133,134. 

Dexamethasone, a GR-agonist appears to induce UGT1A1 mainly via PXR-

dependent mechanisms 120,135. Dexamethasone is not routinely used in 

neonates, but a trial studying the effect of early neonatal dexamethasone on 

chronic lung disease did not show any effect on hyperbilirubinemia 136. Many 

foetuses are antenatally exposed to corticosteroids, since corticosteroids are 

prescribed to promote lung maturation in the preparation for preterm labour. 

However, studies on the effect of antenatal steroids on neonatal bilirubin levels 

are largely conflicting 136. For AhR, no pharmaceutical ligands suitable for 

human use are currently available.  

4.4 Decreasing intestinal transit time 

The intestinal transit time affects the window of intestinal UCB absorption. 

When infants receive insufficient feeding during the first postnatal week, this 

causes their UCB levels to rise 137,138. Conversely, early and frequent feedings 

reduce UCB levels 139. In rats, fasting increases UCB in the intestinal lumen, but 

decreases fecal UCB excretion. This intestinal UCB is reabsorbed from the 

intestine, which increases plasma UCB. This intestinal reabsorption is 

attributed to decreased intestinal motility and associated increased intestinal 

transit time 140,141. In line with this, infants with decreased gastrointestinal 

transit, as is the case in e.g. pyloric stenosis or Hirschprung disease, are known 

to have higher UCB levels 142,143. Correspondingly, the anti-diarrhea drug 

loperamide, decreases intestinal motility and increases plasma UCB while the 

1
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laxative polyethylene glycol (PEG) accelerates intestinal transit and decreases 

plasma UCB in Gunn rats 144. In neonates however, PEG is not registered for 

infants < 1 month.  

In addition to intestinal transit time, the amount of stool production could 

theoretically affect fecal bilirubin excretion, which has been postulated as 

potential mechanism for fasting and breastfeeding jaundice 145-147. 

Breastfeeding is associated with higher neonatal TSB levels, due to enhanced 

intestinal bilirubin reabsorption 148. Studies by Carvalho and Gourley et al. 

showed lower postnatal stool production in breastfed infants and a negative 

relationship between stool production and bilirubin levels 145,146. However, 

later studies by Bertini et al. and Buiter et al. did not find a difference i n 

bilirubin levels between breast- and formula fed infants, nor a difference in 

stool production 147,149. The discrepancy between studies could potentially be 

explained by different formula feeding compositions, including the fat content 

(see paragraph 4.6).  

4.5 Intestinal trapping 

Besides affecting intestinal motility, intestinal UCB could also be affected by 

intestinal entrapment. Several compounds have been shown to bind to UCB in 

the intestinal lumen, thereby preventing its reabsorption and promoting its 

fecal excretion. These compounds include agar, cholestyramine, charcoal, 

amorphous calcium phosphate and zinc salts. Of these compounds, both agar 

150-152 and cholestyramine 153-156 have been tested in neonates, with inconsistent 

results. Charcoal has some proven additional value over phototherapy when 

used in combination in neonates, but only when used directly postpartum 157,158. 

Calcium-phosphate has a mild beneficial effect in patients with Crigler-Najjar 

type I, but has not been tested in neonates 159. Zinc sulphate is known to 

increase the fecal UCB excretion in Gunn rats and Gilbert patients 160,161, but is 

not clinically used because of zinc-induced toxicity risks.  
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4.6 Increasing intestinal fat content 

In Gunn rats, bilirubin levels are inversely correlated to fecal fat excretion. On a 

low fat diet, their UCB levels were shown to increase twofold when compared 

to high fat diet, and a completely fat-free diet increases UCB threefold 67,162. This 

effect of dietary fats was hypothesized to be mediated by fecal fat excretion 163, 

as increased dietary fat increased both fecal fat and fecal bilirubin excretion in 

Gunn rats. Since UCB is highly hydrophobic, it is hypothesized to associate with 

unabsorbed fat in the intestinal lumen. This fat ‘entrapment’ is thought to 

prevent intestinal reabsorption and thereby decrease plasma UCB.  

Treatment with orlistat, which blocks intestinal fat absorption, had the same 

effect. Orlistat decreased plasma UCB levels to a similar extent as phototherapy 

and had additional bilirubin-lowering capacity when used in combination with 

phototherapy in Gunn rats 67,68. In Crigler-Najjar type-I patients, orlistat 

decreased UCB by an additional 9% when used in combination with 

phototherapy 164. Orlistat inhibits gastrointestinal lipases and thereby prevents 

the conversion of triglycerides into absorbable fat, e.g. free fatty acids or 

monoglycerides 165. Thereby it increased the concentration of unabsorbable fat 

in feces, which again increased the fecal UCB excretion. Theoretically, the 

inverse could be true for breastfeeding. Mother’s milk is known to increase fecal 

fat absorption compared to formula feeding 148,166. The consequent lower fecal 

fat excretion could promote intestinal UCB reabsorption and thereby 

contribute to higher plasma UCB levels.  

Although this hypothesis is attractive, the actual concept has never been proven 

in vitro, and it is not known how the association between unabsorbed fat and 

UCB works. Theoretically, both dietary fats and orlistat could also work by 

modulating  intestinal motility, intestinal microbiota or bile acid metabolism or 

a combination of these 58 . Although orlistat has not been described to alter total 

fecal bile acids, it does alter the bile acid composition 68,165. From previous work 
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by Cuperus et al.68, it is known that bile acid composition can significantly affect 

intestinal bilirubin metabolism and that treatment with bile acids cholic acid 

(CA) and ursodeoxycholic acid (UDCA) can significantly decrease plasma UCB 

in Gunn rats. Although the mechanism of this effect has not been elucidated, 

both bile acids are known to enhance fecal, but not biliary bilirubin excretion, 

indicating that they act via decreasing intestinal reabsorption and/or 

promoting transmucosal excretion. In human neonates, UDCA in combination 

with phototherapy has been shown to cause a larger bilirubin decrease and 

shorten PT duration 167.  

 

5. OXIDATIVE STRESS AND DNA DAMAGE IN NEONATAL 

HYPERBILIRUBINEMIA 

5.1 Bilirubin and oxidative stress 

The role of UCB in oxidative stress has the nature of a double-edged sword; on 

the one hand, UCB is an endogenous anti-oxidant that at mild levels may protect 

against oxidative stress. On the other hand, severe hyperbilirubinemia is 

associated with increased oxidative stress and neurotoxicity. However, since no 

clear threshold UCB value for oxidative stress has been described and in 

neonates, it is possible that both protective and damaging effects are present at 

the same time. In 1954, Bernhard et al. showed that low levels of UCB could 

prevent the oxidation of vitamin A and linoleic acid in vitro 168. Years later in 

1987, Stocker et al. performed a landmark study in which they showed UCB to 

exceed the anti-oxidative power of α-tocopherol, which was until then regarded 

as the best anti-oxidant for lipid peroxidation 169. In following years, the 

protective effects of UCB have been investigated in many research fields, in 

particular cardiovascular and metabolic diseases. In 1994, a negative 

correlation was shown betwe en TSB and ischemic heart disease 170 and  the 

incidence of ischemic heart disease was shown to be lower in patients with 
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Gilbert syndrome 171. The nature  of the correlation between bilirubin and 

decreased cardiovascular risk is still not fully elucidated, but is hypothesized to 

be partially explained by reduction of oxidative stress upon mild 

hyperbilirubinemia 172. Vitek et al.173, showed an inverse relationship in Gilbert 

syndrome patients between TSB and urinary biopyrrins, an oxidative stress 

marker which is generated upon the reaction of bilirubin with reactive oxygen 

species (ROS) 174. Furthermore, in studies with Gilbert syndrome patients and 

healthy individuals, a positive association between total serum antioxidant 

capacity (TAC) and TSB was reported 171,175. Although these findings point 

towards oxidative stress as a mediator, the causality between oxidative stress, 

bilirubin and cardiovascular risk in Gilbert patients has never been shown. 

Gilbert patients have a generally leaner phenotype and a more favourable lipid 

profile compared with age-matched controls 176. In addition, UCB is known to 

decrease platelet activation and thereby the risk of thrombotic events, 

independent of oxidative stress 177.  All these factors could theoretically explain 

the decreased cardiovascular risk in Gilbert patients and do not necessarily 

depend on reduction of oxidative stress. Lastly, increased TSB levels due to liver 

dysfunction in humans did not protect against cardiovascular events 178. 

 

Regarding neonatal hyperbilirubinemia, one study by Dennery et al.179 

describes the protective effects of hyperbilirubinemia against hyperoxia-

induced oxidative stress in Gunn rat pups. Most studies, however, focussed on 

bilirubin-induced neurotoxicity in brain, where part of the neurotoxic effects 

are known to be mediated by oxidative stress 76,180. In human neonates, studies 

on the bilirubin-oxidative stress relationship are largely conflicting and rather 

heterogeneous in terms of gestational age of the studied infants, TSB levels and 

interventions during the study period (Table I) (reviewed by Dani et al.181).  
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Table I: Effect of total serum bilirubin increase on oxidative stress 

parameters in neonates* 

Study Infants TSB 
(mg/dL)** 

Treatment Effect of TSB 
increase 

Yigit et al. 182 58 term infants 23.9 ± 5.7 Phototherapy 
and/or exchange 
transfusion 

↑ MDA 

Gopinathan et al. 183 16 term, 31 
preterm infants 

— 12 preterm infants 
treated with 
phototherapy 

↑ TPAC in term 
infants but not in 
preterm infants 

Belanger et al. 184  Term infants 14.5–25.0 Exchange 
transfusion 

↑ TPAC 

Kumar et al. 185  70 term infants <5.0–25.0 Phototherapy ↓ MDA 
↑ TPAC 

Basu et al. 186 
 

64 term infants >12.0 Phototherapy ↑ MDA 
↓ TPAC 

Dogan et al. 187 
 

36 term infants 20.9 ± 5.1 Phototherapy ↑ MDA 
↑ TPAC 

Hammerman et al. 188 41 preterm 
infants 

<10.0 — ↑ TPAC 

Dani et al. 189 21 preterm 
infants 

12.7 ± 1.5 Phototherapy ↓ TPAC 

Dani et al. 190 12 preterm 
infants 

13.7 ± 0.9 Phototherapy ↓ TPAC 
= NTBI 

 

TSB: total serum bilirubin; MDA: malondialdehyde; TPAC: total plasma antioxidant capacity; HO: 

heme oxygenase; NTBI: nontransferrin-bound iron. *Adapted from Dani et al. (2018): Bilirubin and 

oxidative stress in term and preterm infants. ** To convert mg/dL to µmol/L, multiply by 17.1. 

5.2 Phototherapy, oxidative stress and DNA damage 

In almost all studies describing the relationship between oxidative stress and 

hyperbilirubinemia infants are treated with phototherapy, exchange 

transfusion or both (Table II). These therapies can potentially interfere with the 

relationship between bilirubin and oxidative stress; especially phototherapy 

has been associated with adverse effects, including oxidative stress and DNA 

damage 95-100. Phototherapy has also been associated with increased mortality 

in very low birth weight infants 92-94 and with an increased incidence of infantile 

cancer 101. However, the causality between phototherapy and these adverse 

outcomes has never been shown and is hard to prove in humans, since the 

phototherapy-induced bilirubin decrease could also account for changes in 

oxidative stress or antioxidant capacity. Furthermore, especially preterm 

neonates are also exposed to various diseases and interventions associated 
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with oxidative stress, such as sepsis, inflammation, respiratory distress, 

supplemental oxygen, or mechanical ventilation, which could also interfere 

191,192.  

 

Table II shows all studies on the effect of phototherapy on oxidative stress and 

DNA damage and their conclusions. Noteworthy, the vast majority of studies 

was performed using fluorescent tube (FT)-phototherapy, and all FT 

phototherapy studies show induced oxidative stress after PT. Currently, 

however, FTs are gradually being replaced by LED phototherapy, since LED 

phototherapy is able to produce a higher irradiance without significant heat 

production. Only three studies have so far described the effect of LED 

phototherapy on oxidative stress and compared LED with FT phototherapy. The 

results are inconsistent, since Demirel et al.193 concluded that FT- but not LED 

phototherapy induced oxidative stress, whereas Kale et al.194 concluded that 

both FT and LED induce oxidative stress. El-Farrash et al.195 also reported a 

significant induction of lipid peroxidation marker malondialdehyde (MDA) 

after both types of phototherapy, but this induction was smaller in LED 

phototherapy when compared to FT phototherapy. However, the results are 

difficult to interpret since Demirel and Kale et al. compared rather low light 

irradiances of FT phototherapy with substantially higher doses of LED 

phototherapy. El-Farrash et al. also included intensive FT phototherapy, but 

unfortunately did not accurately report the irradiances used (only >60 

µW/cm2/nm). 
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Table II: Effect of phototherapy on oxidative stress and DNA damage 

parameters in neonates 

Study Infants Phototherapy 
(PT) 

Effect of Phototherapy on Oxidative 
stress/DNA damage markers 

   TOS TAC OSI Miscellaneous 
Gathwal
a et al 95.  

30 
preter
m 
infants 

-Duration: 96h 
-Type: FT PT 
-Irradiance: not 
measured 

   ↑ TBRS 

Aycicek 
et al. 96 

34 term 
infants 

-Duration: 24h 
-Type: FT PT 
-Irradiance  12-16 
µW/cm2/nm 

↑TOS 
 
 

 ↑OSI ↓MDA 
 

Tatli et 
al 97.  

47 term 
infants 

-Duration: 72h 
-Type: FT PT 
-Irradiance: 12 
µW/cm2/nm 

   ↑ lymphocyte 
DNA damage 
(Comet assay) 

Aycicek 
et al 98.  

65 term 
infants 

-Duration: max. 
72h 
-Type: FT PT 
-Irradiance: 12-16 
or 30-34 
µW/cm2/nm 

↑TOS 
 
 

=TAC 
 

↑OSI 
 

↑leukocyte 
DNA damage 
(Comet assay) 

Kahveci 
et al 99. 

22 term 
infants 

-Duration: 24-96h 
-Type: FT PT 
-Irradiance: 15 
µW/cm2/nm 

   ↑SCE in blood 

Yahia et 
al. 196 

45 term 
infants 

-Duration: till 
normal bilirubin 
was reachted 
-Type: FT PT 
-Irradiance: 10 16 
µW/cm2/nm 

   ↑leukocyte 
DNA damage 
(Comet assay) 

Demirel 
et al 193.  

60 term 
and late 
preter
m (≥35 
wk) 
infants 

-Duration: till 
normobilirubinemi
c levels were 
reached 
-Type: FT and LED 
-Irradiance FT PT : 
12-16 µW/cm2/nm 
-Irradiance LED PT  
30 µW/cm2/nm 

FT PT 
↑TOS 
 
LED-
PT 
=TOS 
 

FT PT 
=TAC 
 
LED PT 
=TAC 
 

FT PT 
↑OSI 
 
LED PT 
=OSI 

 

Kale et al 
194.  

90 term 
and late 
preter
m (≥35 
wk) 
infants 

-Duration 24h 
-Type: FT, LED, 
LED fibre optic 
blanket 
-Irradiance FT PT 
10-15 
µW/cm2/nm 
-Irradiance LED PT 

FT PT 
↑TOS 
 
LED-
PT 
↑TOS 
 
LED 
blanke

FT PT 
↓TAC 
 
LED-PT 
↓TAC 
 
LED 
blanket 
↓TAC 

FT PT 
↑OSI 
 
LED-PT 
↑OSI 
 
LED 
blanket 
↑OSI 
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60-90 
µW/cm2/nm 
-Irradiance LED, 
fibre-optic blanket 
35 µW/cm2/nm 

t 
=TOS 
 

 

El-
Farrash 
et al 195.  

120 
term 
and late 
preter
m (≥35 
wk) 
infants 

-Duration 24h 
-Type: 
conventional FT 
PT, intensive FT 
PT, LED PT 
-Irradiance 
conventional FT PT  
12-16 µW/cm2/nm 
-Irradiance 
intensive FT PT 
>60 µW/cm2/nm 
-Intensity LED PT 
30-120 
µW/cm2/nm 

 Conven
ti-onal 
FTPT 
↓TAC 
 
 
Intensi
ve FT 
PT 
↓TAC 
 
LED PT 
↓TAC 
 

 Conventional 
FT PT 
↑MDA 
↑NO 
 
Intensive FT 
PT 
↑MDA 
↑NO 
 
LED PT 
↑MDA* 
↑NO 

 

TBRS thiobarbituric acid reactive substances; SCE sister chromatid exchange; TOS total oxidant 

status; OSI oxidative stress index; TAC total antioxidant capacity; MDA malondialdehyde; NO nitric 

oxide. *The MDA increase after LED PT was lower compared to the increase after FTPT.  

There are several arguments why FT phototherapy could be expected to induce 

more oxidative stress than LED phototherapy. First, the heat produced by FTs 

can induce hyperthermia, which is known to enhance oxidative stress 197. 

Second, FTs primarily produce ultraviolet (UV)-light, which is subsequently 

converted to visible light by the internal phosphor coating. Several studies have 

described leakage of UV-light from FTs, especially when the coating wears off 

and becomes damaged over time 198. Although this was never shown for FT 

phototherapy devices, UV-leakage could theoretically lead to a clinically 

significant UV-exposure, especially when the newborn infant is placed close to 

the lamp. Compared to LEDs, FTs need to be placed closer, due to the relatively 

lower irradiance of the emitted light, which could aggravate the exposure to UV 

198. To protect from UV exposure, FT-based phototherapy devices need to be 

used with a protective screen to absorb UV-radiation. However, most studies 

do not report on the use of such a screen and in practice, the screens may be 

removed after a certain time because they get dirty or damaged, or because the 
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protective role of the screens is not realized. Finally, FTs emit a broader 

wavelength of light compared to LEDs, and FTs emit several high irradiance 

peaks at different wavelengths. Although these are not visible by eye, these 

different wavelength peaks can potentially cause side effects, including the 

previously reported induction of oxidative stress or DNA damage. The blue LED 

spectrum on the other hand is narrower and does not have high irradiance 

peaks at other wavelengths 199.  

 

5 SCOPE OF THIS THESIS 
 
The aim of this thesis is to evaluate current developments in the 

management of neonatal hyperbilirubinemia and to explore new treatment 

possibilities. In the various chapters, we address several steps in neonatal 

hyperbilirubinemia management (fig. 4), including the evaluation of UCBfree 

and the UCBfree/TSB ratio in preterm neonates, an evaluation of recently 

introduced LED phototherapy and two new potential therapies for neonatal 

hyperbilirubinemia. In all studies we aim to use a translational approach, by 

connecting established molecular knowledge with clinical applicability, using 

specific hyperbilirubinemia animal models, both adult and neonatal, and by 

testing clinically available compounds. Hereby, we aim to make a valuable 

contribution to both biomedical science and pediatric clinical care. 

In Chapter 2 we review the role of CB transporters ABCC2 and ABCC3 in 

bilirubin metabolism, cholestasis and drug disposition and their 

(post)transcriptional regulation.  

 

Chapter 3 describes the postnatal course of UCBfree and the UC Bfree/TSB 

ratio and studies their correlation with gestational age, postnatal age, birth 

weight and hyperbilirubinemia risk factors.  
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Whereas current treatment guidelines of neonatal hyperbilirubinemia 

determine their thresholds for starting phototherapy on TSB levels, it is known 

that TSB poorly correlates with brain bilirubin levels 200,201. Not surprising, TSB 

is a poor predictor of bilirubin-induced neurologic dysfunction (BIND) and 

various cases have been described of BIND under low TSB levels 202. UCBfree is 

the neurotoxic fraction of UCB, is able to pass the BBB and more closely 

correlates with BIND 22. In addition, the UCBfree/TSB ratio could be used to 

assess BIND risk, since it is a diagnostic marker that not only represents the 

magnitude of the bilirubin pool (represented by TSB), but combines it with 

UCBfree, which represents the tissue distribution of the pool. Both UCBfree and 

the UCBfree/TSB ratio are not routinely determined in clinical care, and their 

postnatal course was not accurately described.  

 

Chapter 4 and 5 evaluate the potential of LED phototherapy to induce 

oxidative stress and DNA damage in rats and preterm infants, respectively. 

Phototherapy has been associated with oxidative stress, increased incidence of 

infantile cancer and increased mortality in extremely low birth weight infants. 

However, these associations are reported in studies using conventional 

phototherapy devices, using FT light. However, FT phototherapy is currently 

being replaced by LED phototherapy, which allows higher irradiance treatment 

without significant heat production. However, the implementation of this high 

in phototherapy has been impeded by concerns about detrimental side-effects. 

In chapter 4, we investigated whether LED phototherapy induced oxidative 

DNA damage. We performed studies using super-intensive LED phototherapy 

(dosage up to 100 µW/cm2/nm) in Gunn rats, using a urinary oxidative DNA-

damage marker 8-hydroxy-2’-deoxyguanosine (8-OHdG). Subsequently, in 

chapter 5, a translation step is made towards the pediatric clinic and the same 

marker is determined in preterm infants under LED phototherapy. 
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In Chapter 6, we studied the potential of therapeutic bile acids to treat and 

prevent neonatal hyperbilirubinemia, that could be used as prevention or in 

adjunct to phototherapy. We studied treatment of two anticholestatic drugs: 

UDCA and Obeticholic acid (OCA), in two animal models for neonatal 

hyperbilirubinemia; neonatal hUGT1*1 mice and neonatal Gunn rats. In this 

chapter we show the effect of these drugs on plasma and brain bilirubin and 

investigate the underlying mechanisms of these compounds.  

 

In Chapter 7, we discuss the findings of the different studies in relation to 

current literature on neonatal hyperbilirubinemia and its management and 

conclude with the implications of the present findings on current clinical care 

of neonatal hyperbilirubinemia and future research.  
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