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The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an
unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level
including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental
values) by carefully accounting for all individual contributions beyond the standard relativistic coupled
cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and
theoretical IP and EA of gold.
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The quantum electrodynamic (QED) treatment of free
elementary particles like the electron or the muon is now
well established [1]. For example, the anomalous magnetic
moment of the electron g − 2 can be determined precisely
to ∼11 significant digits using summations over more than
10 000 terms of the tenth order Feynman diagrams includ-
ing lowest order hadronic and electroweak contributions
[2–4]. Together with experiments from a one-electron
quantum cyclotron, this determines the precise value of the
fine structure constant α as a stringent test of the standard
model [5].
The situation is very different for bound state QED,

especially when the nuclear charge Zα becomes large
(strong Coulomb fields) [6,7]. Karshenboim pointed out
that current ab initio QED calculations cannot present
any theoretical prediction to compare with the precise
measurements [8,9]. However, for few-electron systems,
remarkable progress has been made over the past two
decades [10], predicting energy levels including the hyper-
fine and the QED effects of highly charged ions to meV
accuracy, or for the special case of the hydrogen atom, even
down to peVaccuracy [11]. For example, Beiersdorfer et al.
measured the 2P1=2 − 2S1=2 transition energy of the
lithiumlike uranium isotope 238U89þ to be 280.645(15) eV
[12], in very good agreement with the QED results by
Kozhedub et al. [280.71(10) eV] [13].
In contrast, the computational treatment of multielectron

systems with an accuracy that rivals experiment remains
a great challenge. Here, the bottleneck lies in both the
electron correlation and the QED treatment, as these are not
strictly additive [14,15]. Considerable progress has been

made for simple one- or two-valence-electron systems,
which have energetically low lying cores that are well
separated from the valence shell [16–18]. The usual
approach to multielectron systems is to apply QED model
operators for the lowest orders bound-state Feynman
diagrams, such as the multiple commutator approach by
Labzowsky and Goidenko [19,20], the covariant evolution
operator method of Lindgren and co-workers [21],
Shabaev’s two-time Green’s function method [15] and
approximation to the electron self-energy by using local
and nonlocal operators [22], or the approach by Ginges and
Flambaum separating the self-energy term into a magnetic
form factor plus low- and high-frequency parts [23,24]. For
the vacuum polarization, the Uehling potential with a finite
nucleus plus higher order terms, such as the Wichmann-
Kroll and the Källén-Sabry corrections, are commonly
used [25,26].
Au has a 6s1 ground state configuration and may

formally be considered a one-valence electron system.
However, due to the strong relativistic 6s stabilization
and the indirect 5d expansion [27] (including spin-orbit
coupling), the 5d=6s energy gap becomes small with a
2S1=2 − 2D5=2 separation of only 1.14 eV [28]. In fact, the
resulting soft and polarizable 5d shell is responsible for the
enhancement of relativistic effects within the group 11 and
12 elements of the periodic table [29]. Moreover, correlat-
ing the 5d shell and the lower lying (5s5p) shells now
becomes essential for any accurate determination of the
valence electron spectrum of gold. We note that this group
11 (and 12) enhancement of relativistic effects has also
been observed in the rather large QED contributions to the
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ionization potential (IP) and electron affinity (EA) of the
gold atom [24].
State-of-the-art Fock-space coupled cluster calculations

[30] adding QED included perturbatively [24] at the Dirac–
Hartree–Fock level reveals a rather large discrepancy of
0.16 and 0.05 eV for the IP and EA, respectively, compared
to the experiment [31,32]. This caused a dispute in the
relativistic community, if this is due to missing electron
correlation in the positive energy spectrum or due to the
neglect of correlating the Dirac negative energy sea [33].
We note that the lowest 1s state in gold is energetically well
separated from the negative energy continuum with a large
gap of 941.3 keV ≈ 1.8mc2; from a perturbative argument,
it is hard to justify that correlating negative energy states
are responsible for such a large discrepancy [34]. The aim
of this study is therefore to reach experimental accuracy for
the ionization potential and the electron affinity of atomic
gold by using a four-component relativistic formalism
including contributions from the Breit interaction and
QED. We note that a number of earlier good quality
investigations on the IP and EA of gold have been
performed; however, none has reached the level of accuracy
required to determine the origin of the disagreement
between experiment and theory [30,35–40].
The Hamiltonian chosen for our calculations is

H ¼ HDC þHBreit þHQED. The initial mean-field calcu-
lations were carried out using the GRASP program [41,42]
in the framework of the relativistic no-virtual-pairs
Dirac–Coulomb Hamiltonian (in atomic units),

HDC ¼
X

i

hDðiÞ þ
X

i<j

ð1=rijÞ: ð1Þ

Here, hD is the one-electron Dirac Hamiltonian,

hDðiÞ ¼ cαi · pi þ c2βi þ VnucðiÞ; ð2Þ

which gives Dirac–Coulomb-Hartree–Fock (DC-HF) limit
values for the IP and EA using a very fine and well-
converged numerical grid. Here, α and β are the Dirac
matrices in the standard representation. The nuclear
Coulomb potential Vnuc takes into account the finite size
of the nucleus modeled by a 2-parameter Fermi charge
distribution [43,44].
We include electron correlation via the relativistic

coupled cluster method with single, double, and perturba-
tive triple excitations [DC-CCSD(T)], as implemented in
the DIRAC15 [45] program package. In these calculations,
virtual orbitals with energies above 50 a.u. were omitted;
all electrons were correlated down to the 1s level. The
correlation-consistent relativistic basis sets of Dyall [46]
were used, and the correlation contribution was extrapo-
lated to the complete basis set limit using the v3z and v4z
basis sets [CBS(34)]. As seen in Table I, the DC-CCSD IP
and EA are lower than the experimental value, with a larger

error in the electron affinity as one would expect. Adding
the perturbative triple excitation contribution overshoots
the experimental mark by 68 meV and 37 meV for the IP
and EA, respectively. As expected, the perturbative triples
δðTÞ contribution is significantly larger, by about 61 meV,
for the electron affinity. These results clearly demonstrate
that perturbative triples are insufficient to describe the
electron correlation accurately despite the extrapolation to
the complete basis set limit.
The next step is to estimate the effects of neglecting

higher-order excitations from the valence (5d6s), and
where possible, also from the core shells (4f5s5p) using
Kállay’s MRCC program [47–51] linked to DIRAC15. Here,
we included excitations up to the full pentuple level
(CCSDTQP). Because of the exponentially increasing
number of Slater determinants with increasing excitation
level, we needed to restrict these calculations to smaller
basis sets and lower energy cutoffs for the virtual orbital
space (for details, see Table II). Currently, calculations
involving only up to several billions of determinants are
computationally tractable by this methodology. The results
are summarized in Table I and shown in more detail in
Table II.
Going from perturbative to full triple excitations lowers

the IP and EA by 30 and 35 meV, respectively. Accounting
for quadruple excitations raises the IP by 5 meV, but has a
much stronger effect of þ17 meV for the EA. Finally, the
pentuple (five-electron) excitations contribute less than a
single meV in both cases; therefore, accounting for higher
excitations is not required. We note that as we go to
higher excitations, the perturbative result provides a worse
approximation to the full iterative coupled cluster treat-
ment. Thus, the highest perturbative correction used in this
work (P) strongly overestimates the absolute value of the
full iterative pentuple correction P, and in fact, δðPÞ and δP
almost cancel each other out. Taking the DC-CCSD(T)
results as the starting point, the overall contribution of
higher excitations amounts to −24 meV for the IP and
−18 meV for EA. We can see that the CCSD(T) method,
termed as the “gold standard” of electronic structure theory,
although accounting for most of the electron correlation, is
not sufficient to obtain meV precision. Because of the good
localization of the higher excitation energy contributions in

TABLE I. Calculated IP and EA of Au at different levels of
theory and error with respect to experiment [31,32] (eV).

IP Error EA Error

DC-HF 7.6892 −1.5363 0.6690 −1.6396
DC-CCSD 9.1164 −0.1092 2.1070 −0.2017
DC-CCSD(T) 9.2938 0.0683 2.3457 0.0371
DC-CCSDTQP 9.2701 0.0446 2.3278 0.0192
þBreit 9.2546 0.0290 2.3188 0.0102
þQED 9.2288 0.0032 2.3072 −0.0014
Experiment [31,32] 9.2256 2.3086
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the valence-shell region (see Table II), instead of using the
computationally cumbersome and demanding all-order
coupled cluster contributions, in practice, it is more
appropriate to use some efficient “dressed valence-
complete CI” approach that includes potentially exact
correlation of the valence electrons and thus, captures
the majority of the effect of the higher excitations.
Examples of such efficient size-extensive valence-shell
approaches are the intermediate Hamiltonian or equa-
tion-of-motion coupled cluster methods (see Ref. [52]
for a comprehensive review of coupled cluster approaches).
We now turn our attention to the treatment of the

Breit and QED contributions. The lowest order relativistic
correction to the Dirac Hamiltonian is the Breit operator
[53] in the Coulomb gauge between electron 1 and 2,

B12 ¼ −
~α1~α2
r12

expðic−1jω12jr12Þ

− ð~α1 ~∇1Þð~α2 ~∇2Þ
expðic−1jω12jr12Þ − 1

c−2ω2
12r12

; ð3Þ

where ω12 is the frequency of the exchange photon between
the two electrons. We used the Breit term variationally in
the low frequency limit (ω12 → 0) within a Fock-space
coupled cluster approach (DCB-FSCCSD), using the
Tel Aviv atomic computational package [54]. The finite
frequency contribution to the Breit term was calculated
perturbatively at the DC-HF level as implemented in GRASP.
This contribution, however, amounts to less than 1 meV
in both cases. Table I shows that the overall effect of the
Breit contribution lowers the calculated IP by 15 meV, and
the EA by 9 meV.
To account for the QED corrections to the IP and EA, we

applied the model Lamb shift operator (MLSO) of Shabaev
and co-workers [55] to the atomic no-virtual-pair many-
body DCB Hamiltonian as implemented into the QEDMOD

program. This model Hamiltonian uses the Uehling poten-
tial and an approximate Wichmann–Kroll term for the
vacuum polarization (VP) potential [25], and local and
nonlocal operators for the self-energy (SE), the cross terms

(SEVP), and the higher-order QED terms [22]. Our
implementation of the MLSO formalism into the Tel
Aviv atomic computational package allows us to obtain
the VP and SE contributions beyond the usual mean-field
level, namely at the DCB-FSCCSD level. The individual
QED contributions are presented in Table III. To test the
validity of these results, we also carried out perturbative
QED calculations using the Uehling and Källén–Sabry
[25,56] terms (as implemented in GRASP) for the VP,
and the effective nonlocal SE operator (ENLO) originally
introduced by Ginges and Flambaum [23], and modified
and implemented by our group into GRASP [24]. The two
approaches (ENLO and MLSO) give similar results at the
mean-field level. For comparison, we also include the more
approximate perturbative SE values obtained by using the
screened Z-expansion (SZE) interpolating the tabulated
values for hydrogenlike systems reported by Mohr [57–59]
and by using the local Gaussian-type operator (LGO) of
Pyykkö [60]. For the final QED contributions, we use the
MLSO values. The overall Lamb shift of the ionization
potential is −26 meV, with the CC contribution accounting
for about 21%, which is an improvement over the estimated
QED contributions of Pyykkö and Labzowsky (ranging
between−18 and−26 meV) [20,61]. In case of the EA, the
overall Lamb shift is only half in size compared to the IP,
but the relative CC contribution remains the same. This
clearly indicates that electron correlation contributions to
QED cannot be neglected. Note that the overall QED
contributions are of the same magnitude as the higher-order
electron correlation contributions.
Adding all the contributions provides us with calculated

IP and EA just 3.2 and 1.4 meV off the corresponding
experimental values, respectively (Table I). Comparing our
final results to the earlier theoretical values obtained from
accurate electron correlation treatments in Table IV, we
find that nearly all previous results are considerably lower
than experiment. One exception is the DC-CI+MBPT2
calculation for the gold EA, where the excellent agreement
with experiment is attributed to the empirical scaling of
the electron correlation to simulate higher-order correlation
effects [39].

TABLE II. Higher-order electron correlation contributions to
the IP and EA of Au (eV) including basis set information and
virtual space energy cutoffs (a.u.).

Contribution IP EA Basis set, cutoff

δT Valence −0.0221 −0.0314 CBSð34Þ; 30
Core −0.0074 −0.0033 v3z; 30

δðQÞ Valence 0.0048 0.0155 CBSð34Þ; 30
Core 0.0004 0.0019 v2z; 30þ δðv3z; 10Þ

δQ Valence 0.0010 −0.0004 v2z; 30
δðPÞ Valence −0.0014 −0.0015 v2z; 30
δP Valence 0.0009 0.0013 v2z; 5
Total −0.0237 −0.0179

TABLE III. QED contributions to the IP and EA of Au (eV).

IP EA

DC-HF δCCSD DC-HF δCCSD

SE SZE −0.0213 −0.0079
LGO −0.0272 −0.0117
ENLO −0.0264 −0.0114
MLSO −0.0261 −0.0070 −0.0112 −0.0039

VP GRASP 0.0053 0.0023
MLSO 0.0049 −0.0002 0.0021 −0.0001

SEVP MLSO 0.0000 0.0026 0.0000 0.0015
Total MLSO −0.0212 −0.0046 −0.0091 −0.0025
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Through highly accurate theoretical treatment of the gold
atom accounting for all contributions beyond the standard
relativistic coupled cluster approach, our results resolve a
long-standing debate about the origin of the discrepancy
between theory and experiment. We expect that the electron
correlation contribution from the negative energy states will
be of the order of 1 meVor less, but should be included in
future investigations together with an explicit treatment of
the QED Feynman diagrams within a more accurate
electron correlation framework such as the R12 method-
ology [62]. We add the important conclusion that in order to
obtain balanced and precise results higher-order correlation
effects and Breit and QED contributions (preferably at the
correlated level) must be included simultaneously; neglect-
ing any of them from the computational scheme renders the
inclusion of others meaningless.
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